EP1200203B1 - Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation - Google Patents

Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation Download PDF

Info

Publication number
EP1200203B1
EP1200203B1 EP00945806A EP00945806A EP1200203B1 EP 1200203 B1 EP1200203 B1 EP 1200203B1 EP 00945806 A EP00945806 A EP 00945806A EP 00945806 A EP00945806 A EP 00945806A EP 1200203 B1 EP1200203 B1 EP 1200203B1
Authority
EP
European Patent Office
Prior art keywords
radicals
coating
oder
acid
basecoat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00945806A
Other languages
German (de)
English (en)
Other versions
EP1200203A2 (fr
Inventor
Wolfgang Bremser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Publication of EP1200203A2 publication Critical patent/EP1200203A2/fr
Application granted granted Critical
Publication of EP1200203B1 publication Critical patent/EP1200203B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/57Three layers or more the last layer being a clear coat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a novel multicoat color and / or effect coating for a primed or unprimed substrate. Furthermore, the present invention relates to a novel process for producing a multicoat color and / or effect coating on a primed or unprimed substrate. Last but not least, the present invention relates to the use of the new color and / or effect multi-layer coating and the new process for their preparation in the automotive original and - repair, the industrial coating, including container coating and coil coating, and the furniture coating.
  • Color and / or effect multi-layer coatings for primed or unprimed substrates are known. They usually contain a mechanical energy-absorbing filler layer and a color and / or effect solid-color topcoat. In another variant, they contain a filler layer, a color and / or effect basecoat and a clearcoat.
  • a multi-layer coating is often used which contains a color and / or effect basecoat and a clearcoat. Frequently, such multicoat paint systems are produced by the wet-on-wet process, in which, in particular, the basecoat film is merely dried but not cured before the application of the clearcoat film, and the basecoat film and the clearcoat film are cured together.
  • constituents which are prepared by free-radical polymerization of olefinically unsaturated monomers are frequently used. These ingredients are also called binders designated. In the majority of cases, the binders of the type mentioned are acrylate copolymers.
  • acrylate copolymers can be carried out by generally well-known polymerization processes in bulk, solution or emulsion.
  • Polymerization processes for the preparation of acrylate copolymers, in particular polyacrylate resins are generally known and have been described many times (cf., for example: Houben Weyl, Methods of Organic Chemistry, 4th Edition, Volume 14/1, pages 24 to 255 (1961 )).
  • Suitable reactors for the copolymerization are the conventional and known stirred tank, stirred tank cascades, tubular reactors, loop reactors or Taylor reactors, as described for example in the patents DE-B-1 071 241 or EP-A-0 498 583 or in the article of K. Kataoka in Chemical Engineering Science, Vol. 50, No. 9, 1995, pages 1409 to 1416 , to be described.
  • the radical polymerization used to prepare the acrylate copolymers is often very exothermic and difficult to control. For the reaction, this means that high concentrations of monomers and / or the so-called batch procedure, in which the entire amount of the monomers initially charged in an aqueous medium, emulsified and then polymerized, must be avoided.
  • the targeted setting of defined molecular weights, molecular weight distributions and other properties often presents difficulties.
  • the targeted adjustment of a certain property profile of the acrylate copolymers is of great importance for their use as binders in coating materials, as this can directly influence the performance profile of the coating materials.
  • the international patent application WO 92/13903 describes a process for preparing low molecular weight copolymers by free radical polymerization in the presence of a group transfer agent having a carbon-sulfur double bond. These compounds not only act as chain transfer agents but also as growth regulators to result in only low molecular weight copolymers.
  • the object of the present invention is to provide novel multicoat color and / or effect paint systems and novel processes for their preparation, in which at least one layer of the multicoat color and / or effect paint is produced from a coating material which in a simple manner is suitable for its respective use Filler, basecoat and / or Clear coat can be adjusted.
  • the resulting new multicoat color and / or effect coating systems should no longer exhibit the disadvantages of the prior art but have excellent optical quality, intercoat adhesion and condensation resistance and show no cracking (mudcracking), flow defects or surface structures.
  • These chemically structured polymers should also be useful as a friction resins, which allow advantageously to provide particularly well mixable pigment pastes for the filler, basecoats and clearcoats used for the preparation of the new color and / or effect multi-layer coatings.
  • process according to the invention The new process for producing a multicoat color and / or effect coating ML on a primed or unprimed substrate is referred to below as "process according to the invention".
  • the complex object on which the present invention was based could be achieved with the aid of the method according to the invention and the multicoat systems ML according to the invention.
  • the multicoat paint systems ML according to the invention have an outstanding optical quality, intercoat adhesion and condensation resistance and no longer exhibit cracking (mud cracking), flow defects or surface structures.
  • Even more surprising was that the use of thixotropic agents or rheology aids in basecoats, the production of pearlescent effects and / or dichroic effects, largely or possibly can be completely dispensed with.
  • At least one layer of the multicoat system ML according to the invention is produced from a coating material which contains a constituent (A). According to the invention, it is advantageous if at least two layers, in particular all layers, of the multi-layer coating ML according to the invention are produced from such coating materials.
  • the component (A) is prepared by controlled radical polymerization of at least one olefinically unsaturated monomer (a) and at least one olefinically unsaturated monomer (b) which is different from the monomer (a).
  • Each of the above-mentioned monomers (a1) to (a14) may be polymerized alone with the monomer (b). According to the invention, however, it is advantageous to use at least two monomers (a), because in this way the profile of properties of the resulting constituents (A), ie the copolymers (A), varies very widely in a particularly advantageous manner and is very specifically adapted to the particular intended use of the coating material can be.
  • functional groups can be incorporated into the copolymers (A) in this manner, by means of which the copolymers (A) become hydrophilic, so that they can be dispersed or dissolved in aqueous media.
  • functional groups (afg) can be incorporated which can undergo thermal crosslinking reactions with the below-described complementary functional groups (bfg) of the crosslinking agents (B).
  • functional groups incorporating the component (A) self-crosslinking properties such as N-methylol or N-alkoxymethyl groups.
  • the monomers (a) used are the monomers (a1) and (a2) and optionally (a3).
  • the monomers (b) used are compounds of the general formula I.
  • the radicals R 1 , R 2 , R 3 and R 4 are each independently of one another hydrogen or substituted or unsubstituted alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, aryl, alkylaryl, cycloalkylaryl-arylalkyl or Arylcycloallcylreste, with the proviso that at least two of the variables R 1 , R 2 , R 3 and R 4 are substituted or unsubstituted aryl, arylalkyl or Arylcycloalkylreste, in particular substituted or unsubstituted aryl radicals.
  • alkyl radicals examples include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, amyl, hexyl or 2-ethylhexyl.
  • Suitable cycloalkyl radicals are cyclobutyl, cyclopentyl or cyclohexyl.
  • alkylcycloalkyl radicals examples include methylenecyclohexane, ethylene cyclohexane or propane-1,3-diylcyclohexane.
  • Suitable cycloalkylalkyl radicals are 2-, 3- or 4-methyl, -ethyl, -propyl or -butylcyclohex-1-yl.
  • Suitable aryl radicals are phenyl, naphthyl or biphenylyl, preferably phenyl and naphthyl and in particular phenyl.
  • alkylaryl radicals examples include benzyl or ethylene or propane-1,3-diylbenzene.
  • Suitable cycloalkylaryl radicals are 2-, 3- or 4-phenylcyclohex-1-yl.
  • Suitable arylalkyl radicals are 2-, 3- or 4-methyl, -ethyl, -propyl or -butylphen-1-yl.
  • Suitable arylcycloalkyl radicals are 2-, 3- or 4-cyclohexylphen-1-yl:
  • radicals R 1 , R 2 , R 3 and R 4 may be substituted. Electron-withdrawing or electron-donating atoms or organic radicals can be used for this purpose.
  • Suitable substituents are halogen atoms, in particular chlorine and fluorine, nitrile groups, nitro groups, partially or completely halogenated, in particular chlorinated and / or fluorinated, alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, aryl, alkylaryl, cycloalkylaryl, arylalkyl and Arylcycloalkyl radicals, including those mentioned above by way of example, in particular tert-butyl; Aryloxy, alkyloxy and cycloalkyloxy, especially phenoxy, naphthoxy, methoxy, ethoxy, propoxy, butyloxy or cyclohexyloxy; Arylthio, alkylthio and cycloalkylthio radicals, in particular phenylthio, naphthylthio, methylthio, ethylthio, propylthio, butylthio or
  • Examples of monomers (b) used particularly preferably according to the invention are diphenylethylene, dinaphthaleneethylene, cis-trans-stilbene, vinylidene bis (4-N, N-dimethylaminobenzene), vinylidene bis (4-aminobenzene) or vinylidene bis (4-nitrobenzene ).
  • the monomers (b) can be used individually or as a mixture of at least two monomers (b).
  • diphenylethylene is of very particular advantage and is therefore used with very particular preference according to the invention.
  • the monomers (a) and (b) to be used according to the invention are reacted with one another in the presence of at least one free-radical initiator to give the copolymer (A).
  • suitable initiators are: dialkyl peroxides, such as di-tert-butyl peroxide or dicumyl peroxide; Hydroperoxides, such as cumene hydroperoxide or tert-butyl hydroperoxide; Peresters, such as tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl per 3,5,5-trimethylhexanoate or tert-butylper-2-ethylhexanoate; Potassium, sodium or ammonium peroxodisulfate; Azodinitriles such as azobisisobutyronitrile; C-C-cleaving initiators such as benzpinacol silyl ether; or a combination of a non-oxidizing initiator
  • comparatively large amounts of free-radical initiator are added, the proportion of initiator in the reaction mixture being based in each case to the total amount of the monomers (a) and the initiator, more preferably 0.5 to 50 wt .-%, most preferably 1 to 20 wt .-% and in particular 2 to 15 wt .-% is.
  • the weight ratio of initiator to monomers (b) is preferably 4: 1 to 1: 4, particularly preferably 3: 1 to 1: 3 and in particular 2: 1 to 1: 2. Further advantages result if the initiator is within the stated limits in the Excess is used.
  • the free-radical copolymerization in the aforementioned devices in particular stirred tanks or Taylor reactors carried out, wherein the Taylor reactors are designed so that over the entire reactor length. Conditions of Taylor flow are satisfied, even if the kinematic viscosity of the reaction medium due to the copolymerization greatly changes, in particular increases.
  • the copolymerization is carried out in an aqueous medium.
  • the aqueous medium contains essentially water:
  • the aqueous medium in minor amounts, the crosslinking agent (B) described below in detail, reactive diluents (F), coating additives (G) and / or organic solvents (H) and / or other dissolved solid, liquid or gaseous organic and / or inorganic, low and / or high molecular weight substances, in particular surface-active substances, if they do not affect the copolymerization in a negative way or even inhibit.
  • the term "minor amount” means an amount which does not abolish the aqueous character of the aqueous medium.
  • the aqueous medium may also be pure water.
  • the copolymerization is carried out in the presence of at least one base.
  • bases such as sodium hydroxide, potassium hydroxide, ammonia, diethanolamine, triethanolamine, mono-, di- and triethylamine, and / or dimethylethanolamine, in particular ammonia and / or di- and / or triethanolamine.
  • the copolymerization is advantageously carried out at temperatures above room temperature and below the lowest decomposition temperature of the monomers used in each case, preference being given to a temperature range from 10 to 150 ° C., very particularly preferably from 70 to 120 ° C. and in particular from 80 to 110 ° C.
  • the copolymerization can also be carried out under pressure, preferably below 1.5 to 3,000 bar, especially 5 to 1,500 and in particular 10 to 1,000 bar.
  • the component (A) is not limited.
  • the copolymerization is conducted so that a molecular weight distribution Mw / Mn measured by gel permeation chromatography using polystyrene as a standard of ⁇ 4, preferably more preferably ⁇ 2 and in particular ⁇ 1.5 and in some cases also ⁇ 1.3 results.
  • the molecular weights of components (A) are controllable by the choice of the ratio of monomer (a) to monomer (b) to radical initiator within wide limits.
  • the content of monomer (b) determines the molecular weight in such a way that the larger the proportion of monomer (b), the lower the molecular weight obtained.
  • the component (A) resulting from the copolymerization is generally obtained as a mixture with the aqueous medium in the form of a dispersion. It can be further processed directly in this form or used as macroinitiator for further reaction with at least one further monomer (a) in a second stage (ii). However, the component (A) resulting in the first stage (i) can also be isolated as a solid and then reacted further.
  • step (ii) is preferably carried out under the usual conditions for a free radical polymerization, wherein suitable solvents (H) and / or reactive diluents (F) may be present.
  • suitable solvents (H) and / or reactive diluents (F) may be present.
  • the stages (i) and (ii) can be carried out both spatially and temporally separated from each other in the context of the method according to the invention.
  • the steps (i) and (ii) can also be carried out in succession in a reactor.
  • the monomer (b) is first reacted with at least one monomer (a) completely or partially depending on the desired application and the desired properties, after which at least one further monomer (a) is added and free-radically polymerized.
  • At least two monomers (a) are used from the beginning, the monomer (b) first reacting with one of the at least two monomers (a) and subsequently the resulting reaction product (A) above a certain molecular weight also with the other monomer (a) reacts.
  • Component (A) may contain at least one, preferably at least two, functional groups (afg) which may undergo thermal crosslinking reactions with complementary functional groups (bfg) of the optional crosslinking agent (B) described below.
  • the functional groups (afg) can be introduced via the monomers (a) into the component (A) or introduced after its synthesis by polymer-analogous reactions.
  • variable R 5 is substituted or unsubstituted alkyl, cycloalkyl, alkylcycloalkyl, cycloalkylalkyl, aryl, alkylaryl, cycloalkylaryl, arylalkyl or arylcycloalkyl radicals;
  • variables R 6 and R 7 are identical or different alkyl, cycloalkyl, alkylcycloalkyl or cycloalkylalkyl radicals or are linked together to form an aliphatic or heteroaliphatic ring.
  • suitable radicals of this type are those listed above for the radicals R 1 , R 2 , R 3 and R 4 .
  • the selection of the respective complementary groups (afg) and (bfg) depends on the fact that they do not undergo undesired reactions during storage and / or may not disturb or inhibit curing with actinic radiation, and secondly, in which Temperature range, the thermal curing is to take place.
  • hydroxyl groups and isocyanate groups or carboxyl groups and epoxy groups have proved to be advantageous as complementary functional groups, for which reason they are preferably used according to the invention in the coating materials according to the invention which are present as two-component or multicomponent systems.
  • Particular advantages result when the hydroxyl groups are used as functional groups (afg) and the isocyanate groups as functional groups (bfg).
  • suitable coating materials are also one-component systems in which the functional groups (afg) are preferably thio-, amino-, hydroxyl-, carbamate-, allophanate-, carboxy- and / or (meth) acrylate groups, but especially hydroxyl groups and the functional groups (bfg) preferably anhydride, carboxy, epoxy, blocked isocyanate, urethane, Methylol, methylol ether, siloxane, amino, hydroxy and / or beta-hydroxyalkylamide groups.
  • the functional groups (afg) are preferably thio-, amino-, hydroxyl-, carbamate-, allophanate-, carboxy- and / or (meth) acrylate groups, but especially hydroxyl groups and the functional groups (bfg) preferably anhydride, carboxy, epoxy, blocked isocyanate, urethane, Methylol, methylol ether, siloxane, amino, hydroxy and / or beta
  • the component (A) or the coating material produced therewith can also be film-free without a crosslinking agent (B) and form an excellent finish.
  • the component (A) is physically curing.
  • the physical curing and the curing via the complementary groups (afg) and (bfg) described above are summarized under the generic term "thermal curing".
  • the proportion of the component (A) to be used according to the invention on the coating material can vary very widely and depends in particular on whether the coating material for the mechanical energy absorbing filler layer FL, the color and / or effect topcoat DL, the color and / or effect-imparting basecoat BL or the clearcoats KL should be used.
  • the proportion is 1 to 90, preferably 2 to 80, particularly preferably 3 to 75 and in particular 4 to 70 wt.%, In each case based on the total solids content of the coating material.
  • the coating material may further comprise at least one component (A ') which is a common and known binder (A') having at least one functional group (afg).
  • suitable binders (A ') are linear and / or branched and / or block-like, comb-like and / or random poly (meth) acrylates or acrylate copolymers, polyesters, alkyds, aminoplast resins, polyurethanes, acrylated polyurethanes, acrylated polyesters, polylactones, polycarbonates, Polyethers, epoxy resin-amine adducts, (meth) acrylate diols, partially saponified polyvinyl esters or polyureas containing said functional groups (afg). If used, they are preferably present in the coating material in an amount of 1 to 50, preferably 2 to 40, particularly preferably from 3 to 30 and in particular from 4 to 25% by weight, based in each case on the total solids content of the coating material.
  • the coating material may further contain at least one crosslinking agent (B) containing at least two, in particular three, of the complementary functional groups (bfg) described in detail above.
  • the coating material is a two-component or multi-component system
  • polyisocyanates and / or polyepoxides are used as crosslinking agent (B).
  • suitable polyisocyanates (B) are organic polyisocyanates, in particular so-called lacquer polyisocyanates, having aliphatically, cycloaliphatically, araliphatically and / or aromatically bound, free isocyanate groups. Preference is given to using polyisocyanates having from 2 to 5 isocyanate groups per molecule and having viscosities of from 100 to 10,000, preferably from 100 to 5,000 and in particular from 100 to 2,000 mPas (at 23 ° C.).
  • the polyisocyanates still small amounts of organic solvent (H); preferably 1 to 25 wt .-%, based on pure polyisocyanate, are added, so as to improve the incorporation of the isocyanate and optionally to lower the viscosity of the polyisocyanate to a value within the above ranges.
  • suitable solvents for the polyisocyanates are ethoxyethyl propionate, amyl methyl ketone or butyl acetate.
  • the polyisocyanates (B) may be hydrophilic or hydrophobic modified in a conventional manner.
  • Suitable polyisocyanates (B) are, for example, in “ Methods of Organic Chemistry “, Houben-Weyl, Volume 14/2, 4th Edition, Georg Thieme Verlag, Stuttgart 1963, pages 61 to 70 , and from W. Siefken, Liebigs Annalen der Chemie, Volume 562, pages 75 to 136 , described.
  • suitable polyisocyanates (B) are isocyanurate, biuret, allophanate, iminooxadiazinedione, urethane, urea and / or uretdione polyisocyanates.
  • urethane group-containing polyisocyanates are prepared by reacting a portion of the isocyanate groups with polyols, e.g. Trimethylolpropane and glycerin.
  • aliphatic or cycloaliphatic polyisocyanates in particular hexamethylene diisocyanate, dimerized and trimerized hexamethylene diisocyanate, isophorone diisocyanate, 2-Isocyanatopropylcyclohexylisocyanat, dicyclohexylmethane-2,4'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate or 1,3-bis (isocyanatomethyl) cyclohexane (BIC ), Diisocyanates derived from dimer fatty acids, such as those sold under the trade name DDI 1410 by Henkel, 1,8-diisocyanato-4-isocyanatomethyl-octane, 1,7-diisocyanato-4-isocyanatomethyl-heptane or 1-isocyanato 2- (3-isocyanatopropyl) cyclohex
  • suitable polyepoxides (B) are all known aliphatic and / or cycloaliphatic and / or aromatic polyepoxides, for example based on bisphenol-A or bisphenol-F.
  • suitable as polyepoxides are, for example, the polyepoxides commercially available under the names Epikote® from Shell, Denacol® from Nagase Chemicals Ltd., Japan, such as Denacol EX-411 (pentaerythritol polyglycidyl ether), Denacol EX-321 (trimethylolpropane polyglycidyl ether), Denacol EX-512 (polyglycerol polyglycidyl ether) and Denacol EX-521 (polyglycerol polyglycidyl ether).
  • crosslinking agents (B) are used which react at higher temperatures with the functional groups of the binders to build up a three-dimensional network.
  • crosslinking agents (B) may be used in minor amounts in the multicomponent systems.
  • minor amount means a proportion which does not disturb or even completely prevent the main crosslinking reaction.
  • Suitable crosslinking agents (B) of this type are blocked polyisocyanates.
  • suitable polyisocyanates for the preparation of the blocked polyisocyanates are those described above.
  • crosslinking agent (B) can also tris (alkoxycarbonylamino) triazines (TACT) of the general formula be used.
  • tris (alkoxycarbonylamino) triazines (B) examples include the tris (methoxy, tris (butoxy and / or tris (2-ethylhexoxycarbonylamino) triazines are used.
  • methyl-butyl mixed esters the butyl 2-ethylhexyl mixed esters and the butyl esters. These have the advantage over the pure methyl ester the advantage of better solubility in polymer melts and also less prone to crystallization.
  • aminoplast resins for example, melamine resins, guanamine resins or urea resins
  • crosslinking agent (B) Any aminoplast resin suitable for transparent topcoats or clearcoats or a mixture of such aminoplast resins may be used here.
  • Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, 1998, page 29 “Amino resins”
  • Lackadditive by Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, pages 242 ff .
  • Paints, Coatings and Solvents secondly revised edition, Edit D. Stoye and W.
  • crosslinking agents (B) are beta-hydroxyalkylamides such as N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide or N, N, N', N-tetrakis (2-hydroxypropyl) adipamide.
  • suitable crosslinking agents (B) are siloxanes, in particular siloxanes having at least one trialkoxy or dialkoxysilane group.
  • crosslinking agents (B) are polyanhydrides, in particular polysuccinic anhydride.
  • suitable crosslinking agents (B) are compounds having on average at least two groups capable of transesterification, for example of malonic diesters and polyisocyanates or reaction products of monoisocyanates with esters and partial esters of malonic acid with polyhydric alcohols, as described in European Pat EP-A-0 596 460 to be discribed;
  • the amount of crosslinking agent (B) in the coating material can vary widely and depends, in particular, on the functionality of the crosslinking agents (B) and on the number of crosslinking functional groups (afg) present in the binder (A). as well as the network density that you want to achieve.
  • the person skilled in the art can therefore determine the amount of crosslinking agent (B) on the basis of his general knowledge, if appropriate with the aid of simple orienting experiments.
  • the crosslinking agent (B) in the coating material according to the invention in an amount of 1 to 60 wt .-%, particularly preferably 2 to 50 wt .-% and in particular 3 to 45 wt .-%, each based on the total solids content of the coating material, contain.
  • crosslinking agent (B) and binder (A) it is further recommended to choose the amounts of crosslinking agent (B) and binder (A) so that in the Coating material the ratio of functional groups (bfg) in the crosslinking agent (B) and functional groups (afg) in the binder (A) between 2: 1 to 1: 2, preferably 1.5: 1 to 1: 1.5, particularly preferably 1 , 2: 1 to 1: 1.2, and more preferably 1.1: 1 to 1: 1, 1.
  • the coating material is to be curable not only thermally but also with actinic radiation, in particular UV radiation and / or electron radiation (dual cure), it contains at least one component (C) which is curable with actinic radiation.
  • the coating material is to be curable predominantly (dual cure) or exclusively with actinic radiation, which is suitable in the context of the process according to the invention, in particular for the clearcoats, it must contain a constituent (C).
  • Suitable constituents (C) are in principle all actinic radiation, in particular UV radiation and / or electron radiation, curable oligomeric and polymeric compounds, such as are conventionally used in the field of UV curable or electron beam curable coating materials.
  • radiation-curable binders are used as constituents (C).
  • suitable radiation-curable binders (C) are (meth) acryl-functional (meth) acrylic copolymers, polyether acrylates, polyester acrylates, unsaturated polyesters, epoxy acrylates, urethane acrylates, amino acrylates, melamine acrylates, silicone acrylates, isocyanato acrylates and the corresponding methacrylates.
  • binders (C) which are free of aromatic structural units.
  • Preference is therefore given to using urethane (meth) acrylates and / or polyester (meth) acrylates, more preferably aliphatic urethane acrylates.
  • components (C) are used, they are present in the coating material in an amount of preferably from 1 to 80, preferably from 1.5 to 70, particularly preferably from 2 to 65 and in particular from 2.5 to 60,% by weight, in each case on the total solids content of the coating material.
  • the coating material may further contain at least one photoinitiator (D). If the coating material or the layers produced therefrom in the process according to the invention additionally or should be crosslinked (dual cure) or exclusively with UV radiation, the use of a photoinitiator (D) is generally necessary. If it is used with, it is in the coating material according to the invention preferably in proportions of 0.01 to 10 wt .-%, preferably 0.1 to 8 wt .-% and in particular 0.5 to 6 wt .-%, each based on the total solids content of the coating material according to the invention.
  • Suitable photoinitiators (D) are those of the Norrish II type whose mechanism of action is based on an intramolecular variant of the hydrogen abstraction reactions, as they occur in a variety of ways in photochemical reactions (by way of example here Römpp Chemie Lexikon, 9th extended and revised edition, Georg Thieme Verlag Stuttgart, Vol 4, 1991 , referenced) or cationic photoinitiators (for example, see Römpp Lexikon »Paints and Printing Inks « Georg Thieme Verlag Stuttgart, 1998, pages 444 to 446 , referenced), in particular benzophenones, benzoins or benzoin ethers or phosphine oxides.
  • the coating material may contain at least one thermal crosslinking initiator (E).
  • E thermal crosslinking initiator
  • thermolabile free-radical initiators are organic peroxides, organic azo compounds or C-C-cleaving initiators such as dialkyl peroxides, peroxycarboxylic acids, peroxodicarbonates, peroxide esters, hydroperoxides, ketone peroxides, azodinitriles or benzpinacol silyl ethers.
  • C-C-cleaving initiators are particularly preferred, since during their thermal decomposition no gaseous decomposition products are formed which could lead to disruptions in the lacquer layer.
  • wt .-% preferably 0.05 to 8 wt .-% and in particular 0.1 to 5 wt .-%, each based on the total solids content of coating material of the invention.
  • the coating material may contain at least one actinic radiation and / or thermally curable reactive diluent (F).
  • thermally crosslinkable reactive diluents are branched, cyclic and / or acyclic C 9 -C 16 -alkanes which are functionalized with at least two hydroxyl groups, preferably dialkyloctanediols, in particular the positionally isomeric diethyloctanediols.
  • thermally crosslinkable reactive diluents are oligomeric polyols which are obtainable from oligomeric intermediates obtained by metathesis reactions of acyclic monoolefins and cyclic monoolefins by hydroformylation and subsequent hydrogenation;
  • suitable cyclic monoolefins are cyclobutene, cyclopentene, Cyclohexene, cyclooctene, cycloheptene, norbornene or 7-oxanorbonen;
  • suitable acyclic monoolefins are contained in hydrocarbon mixtures which are obtained in petroleum processing by cracking (C 5 cut );
  • suitable oligomeric polyols to be used according to the invention have a hydroxyl number (OHN) of 200 to 450, a number-average molecular weight Mn of 400 to 1,000 and a weight-average molecular weight Mw of 600 to 1,100.
  • thermally crosslinkable reactive diluents are hyperbranched compounds having a tetrafunctional central group derived from ditrimethylolpropane, diglycerol, ditrimethylolethane, pentaerythritol, tetrakis (2-hydroxyethyl) methane, tetrakis (3-hydroxypropyl) methane or 2,2-bishydroxymethyl-butanediol - (1,4) (homopentaerythritol).
  • the preparation of these reactive diluents can be carried out by the customary and known methods of preparing hyperbranched and dendrimeric compounds.
  • Suitable reactive diluents (F) are polycarbonate diols, polyester polyols, poly (meth) acrylate diols or hydroxyl-containing polyaddition products.
  • Suitable reactive solvents which can be used as reactive diluents (F) are butylglycol, 2-methoxypropanol, n-butanol, methoxybutanol, n-propanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, Diethylenglykolmonobutylether, trimethylolpropane, 2-Hydroxypropion Acidethylester or 3-methyl-3-methoxybutanol and derivatives based on propylene glycol, for example, isopropoxypropanol called.
  • Suitable reactive diluents (F) which can be crosslinked with actinic radiation are, for example, polysiloxane macromonomers, (meth) acrylic acid and its other esters, maleic acid and its esters or monoesters, vinyl acetate, vinyl ethers, vinyl ureas and the like. used.
  • alkylene glycol di (meth) acrylate examples which may be mentioned are alkylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, vinyl (meth) acrylate, allyl (meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate , Trimethylolpropane di (meth) acrylate, tripropylene glycol diacrylate, styrene, vinyltoluene, divinylbenzene, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipropylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, ethoxyethoxyethyl acrylate, N-viny
  • the acrylate groups may also be separated by a polyoxybutylene structure. It is also possible to use 1,12-dodecyldiacrylate and the reaction product of 2 moles of acrylic acid with one mole of a dimer fatty alcohol, which generally has 36 C atoms. Also suitable are mixtures of the monomers mentioned.
  • reactive diluents (F) it is preferred to use mono- and / or diacrylates, for example isobornyl acrylate, hexanediol diacrylate, tripropylene glycol diacrylate, Laromer® 8887 from BASF AG and Actilane® 423 from Akcros Chemicals Ltd., GB. Particular preference is given to using isobornyl acrylate, hexanediol diacrylate and tripropylene glycol diacrylate.
  • the reactive diluents (F) in an amount of preferably 1 to 70 wt .-%, more preferably 2 to 65 wt .-% and in particular 3 to 50 wt .-%, each based on the total solids content of Inventive coating material applied.
  • the coating material may contain conventional lacquer additives (G) in effective amounts.
  • the type and amount of the additives (G) are mainly determined by the intended use of the coating material of the invention.
  • the additives (G) are not volatile under the processing and application conditions of the coating material according to the invention.
  • coating additives compulsorily at least one filler and / or a color and / or effect pigment (G) in customary and known, effective amounts.
  • the coating material contains the fillers and / or pigments (G) in amounts of 1 to 95 wt .-%, particularly preferably 2 to 90 wt .-% and in particular 3 to 85 wt .-%, each based on the total solids content of the coating material.
  • the pigments (G) may consist of inorganic or organic compounds and may be effect and / or coloring. Because of this large number of suitable pigments (G), the coating material according to the invention therefore ensures a universal range of application of the coating materials and makes it possible to realize a large number of hues and optical effects.
  • effect pigments (G) it is possible to use metal flake pigments, such as commercial aluminum bronzes, according to US Pat DE-A-36 36 183 chromated aluminum bronzes, and commercial stainless steel bronzes and non-metallic effect pigments, such as pearlescent or. Interference pigments are used.
  • suitable inorganic color pigments (G) are titanium dioxide, iron oxides, sicotrans yellow and carbon black.
  • suitable organic coloring pigments (G) are Indanthrenblau, Cromophthalrot, Irgazinorange and Heliogen imperative.
  • the coating material in particular the filler FL organic and inorganic fillers (G) in conventional and known, effective amounts.
  • suitable fillers are chalk, calcium sulfate, barium sulfate, silicates such as talc or kaolin, silicas, oxides such as aluminum hydroxide or magnesium hydroxide or organic fillers such as textile fibers, cellulose fibers, polyethylene fibers or wood flour.
  • it will open Römpp Lexikon Lacke and printing inks, Georg Thieme publishing house, 1998, pages 250 ff ., "Fillers", referenced.
  • additives (G) can also be incorporated into the coating materials via pigment pastes, suitable abrasion resins being, in particular, the constituents (A) described above and optionally the constituents (A ') described above.
  • paint additives (G) described above which may be present in both the fillers, the solid-color topcoats and the basecoats, as well as in the clearcoats, do not adversely affect the transparency and clarity of the coating material when it is used as clearcoat KL.
  • the coating material contains these coating additives (G), which may be present both in the fillers, the solid-color topcoats and the basecoats and in the clearcoats, in amounts of up to 40% by weight, particularly preferably up to 30% by weight and in particular up to 20 wt .-%, each based on the total solids content of the coating material.
  • G coating additives
  • the coating materials especially in the case of non-aqueous coating materials, 1 to 70 wt .-%, preferably 2 to 60 wt .-%, (based on the application-ready coating material) water-miscible and water-immiscible organic solvent (H), such. aliphatic, aromatic and / or cycloaliphatic hydrocarbons such as toluene or methylcyclohexane or decalin, alkyl esters of acetic acid or propionic acid, alkanols such as ethanol, ketones such as methyl isobutyl ketone, glycol ethers glycol ether, and / or ethers such as tetrahydrofuran.
  • carbon dioxide can also be used as solvent (H).
  • the coating material can be in different forms.
  • liquid coating material which is substantially free of organic solvents and / or water (100% system).
  • the coating material may be a solution or dispersion of the ingredients described above in organic solvents (H) and / or water. It is a further advantage of the coating material that solid contents of up to more than 80% by weight, based on the coating material, can be set.
  • the coating material may be a powder paint, with a suitable choice of its constituents described above.
  • component (B) may be microencapsulated if it is a polyisocyanate. This powder coating can then optionally be dispersed in water, resulting in a powder slurry coating.
  • the coating material may be a two-component or multi-component system in which at least component (B) is stored separately from the other constituents and added to it just prior to use.
  • the coating material of the invention may also be aqueous, wherein the component (B) is preferably present in a component containing a solvent (H).
  • the coating material may be part of a so-called mixing system or modular system, as described for example in the patents DE-A-41 10 520 .
  • the coating material according to the invention is present as an aqueous solution, dispersion and / or emulsion, in particular dispersion, because in this case the isolation of the component (A) to be used according to the invention can be omitted.
  • the preparation of the coating material from its components (A) and optionally at least one of its constituents (A '), (B), (C), (D), (E), (F), (G) and / or (H) has no special features, but is carried out in a conventional manner by mixing the components in suitable mixing units such as stirred tank, dissolver or extruder according to the methods suitable for the preparation of the respective coating materials.
  • the coating material according to the invention serves to prepare the multicoat paint systems ML according to the invention on primed or unprimed substrates.
  • Suitable substrates are all surfaces to be painted, which are not damaged by a curing of the coatings thereon using heat and optionally actinic radiation into consideration, these are, for.
  • metals plastics, wood, ceramics, stone, textile, fiber composites, leather, glass, glass fibers, glass and rock wool, mineral and resin-bound building materials such as gypsum and cement boards or roof tiles, and composites of these materials.
  • the multicoat system ML according to the invention is also suitable for applications outside of automotive finishing, in particular for the coating of furniture and industrial coating, including coil coating and container coating.
  • industrial coatings it is suitable for the coating of virtually all parts for private or industrial use such as radiators, household appliances, small metal parts, hubcaps or rims.
  • primers can be used, which are prepared in a conventional manner from electrocoating (ETL).
  • ETL electrocoating
  • ATL anodic
  • KTL cathodic
  • the multi-layer coating ML according to the invention in particular primed or unprimed plastics such as ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, UHMWPE, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PUR-RIM, SMC, BMC, PP-EPDM and UP (abbreviated to DIN 7728T1).
  • the plastics to be coated can also be polymer blends, modified plastics or fiber-reinforced plastics. It is also possible to use the plastics usually used in vehicle construction, in particular motor vehicle construction.
  • non-functionalized and / or non-polar substrate surfaces they may be subjected to a pretreatment, such as with a plasma or with flames, or provided with a hydro-primer prior to coating in a known manner.
  • the multicoat paint systems ML according to the invention can be prepared in different ways by the process according to the invention.
  • the third variant is particularly preferably used in automotive OEM finishing.
  • the multicoat systems ML according to the invention can have a different structure.
  • the application of the coating material can be carried out in the context of the method according to the invention by all customary application methods, such as spraying, knife coating, brushing, pouring, dipping or rolling.
  • spray application methods are used, such as compressed air spraying, airless spraying, high rotation, electrostatic spray application (ESTA), optionally combined with hot spray application such as hot air hot spraying.
  • the applications can be carried out at temperatures of max. 70 to 80 ° C are performed, so that suitable application viscosities are achieved without a change or damage to the coating material and its optionally reprocessable overspray occurring during the brief thermal load.
  • the hot spraying can be designed so that the coating material is heated only very briefly in or just before the spray nozzle.
  • the spray booth used for the application can be operated, for example, with an optionally temperature-controlled circulation, with a suitable absorption medium for overspray, z. B. the coating material itself, is operated.
  • the coating material contains components (C) which can be crosslinked with actinic radiation
  • the application is carried out with illumination with visible light of a wavelength of more than 550 nm or with exclusion of light. As a result, a material change or damage to the coating material and the overspray are avoided.
  • the surfacer coating layer, topcoat layer, basecoat layer and clearcoat layer are applied in a wet layer thickness such that layers FL, DL, BL and KL result with their layer thicknesses which are necessary and advantageous for their functions.
  • this layer thickness is from 10 to 150, preferably from 15 to 120, particularly preferably from 20 to 100 and in particular from 25 to 90 ⁇ m
  • in the case of the topcoat DL it is from 5 to 90, preferably from 10 to 80, particularly preferably 15 to 60, and in particular 20 to 50 microns
  • the basecoat BL it is 5 to 50, preferably 10 to 40, particularly preferably 12 to 30 and in particular 15 to 25 microns
  • the clearcoats KL it is 10 to 100, preferably 15 to 80, particularly preferably 20 to 70 and in particular 25 up to 60 ⁇ m.
  • the surfacer coating layer, topcoat layer, basecoat layer and clearcoat layer can be cured thermally or thermally and with actinic radiation, depending on their material composition. According to the invention, it is advantageous not to cure the basecoat film at all or only partially before applying the clearcoat film in order subsequently to cure it together with the clearcoat film (wet-in-wet process).
  • Curing can take place after a certain rest period. It may have a duration of 30 seconds to 2 hours, preferably 1 minute to 1 hour and especially 1 minute to 30 minutes.
  • the rest period is used, for example, for the course and the degassing of. Coating layers or for evaporation of volatile components such as solvents, water or carbon dioxide, when the coating material has been applied with supercritical carbon dioxide as the solvent (H).
  • the rest period can be supported and / or shortened by the use of elevated temperatures up to 80 ° C, provided that no damage or changes in the paint layers occur, such as premature complete crosslinking.
  • the thermal curing has no special features, but takes place according to the usual and known methods such as heating in a convection oven or irradiation with IR lamps.
  • the thermal curing can also be done gradually.
  • the thermal curing is carried out at a temperature of 50 to 100 ° C, more preferably 80 to 100 ° C and in particular 90 to 100 ° C for a time of 1 min to 2 h, more preferably 2 min to 1 h and in particular 3 min to 30 min.
  • the thermal crosslinking can also be carried out at temperatures above 100 ° C. In general, it is advisable to not exceed temperatures of 180 ° C, preferably 160 ° C and especially 140 ° C.
  • the thermal curing can be supplemented by curing with actinic radiation with appropriate material composition of the coating material, wherein UV radiation and / or electron beams can be used.
  • actinic radiation with appropriate material composition of the coating material, wherein UV radiation and / or electron beams can be used.
  • it may be carried out or supplemented with actinic radiation from other sources.
  • electron beams it is preferable to operate under an inert gas atmosphere. This can be ensured for example by supplying carbon dioxide and / or nitrogen directly to the surface of the paint layer.
  • the usual and known radiation sources and optical aids are used.
  • suitable radiation sources are high and low pressure mercury vapor lamps, optionally doped with lead, to open a beam window up to 405 nm, or electron beam sources.
  • Their arrangement is known in principle and can be adapted to the conditions of the workpiece and the process parameters.
  • the non-direct radiation accessible areas such as cavities, folds and other constructional undercuts may be cured with spot, small area or omnidirectional radiators coupled with an automatic moving device for irradiating cavities or edges.
  • the curing can be done in stages, d. H. by multiple exposure or irradiation with actinic radiation. This can also be done alternately, d. h., That is cured alternately with UV radiation and electron radiation.
  • thermal curing and curing are combined with actinic radiation (dual cure), these methods can be used simultaneously or alternately. If the two curing methods are used alternately, for example, the thermal curing can be started and the curing with actinic radiation can be ended. In other cases, it may be advantageous to begin and terminate curing with actinic radiation.
  • the person skilled in the art can determine the curing method, which is particularly suitable for each individual case, on the basis of its general knowledge, if appropriate with the aid of simple preliminary tests.
  • the multicoat paint systems ML according to the invention have an outstanding property profile which is very well balanced in terms of mechanics, appearance, corrosion resistance and adhesion.
  • the multicoat paint systems ML according to the invention have the high optical quality and intercoat adhesion demanded by the market and no longer pose problems such as lack of condensation resistance of the surfacer layers, cracking (mud cracking) in the basecoats or flow defects or surface structures in the clearcoats.
  • the multi-layer coating ML of the present invention has excellent excellent metallic effect, excellent DO1. (Distinctiveness of the Reflected Image) and excellent surface smoothness, on. It is weather-resistant, resistant to chemicals and bird droppings and scratch-resistant and shows a very good reflow behavior.
  • Another essential advantage is the very good recoatability of the multicoat system ML according to the invention, even without sanding. As a result, it can be easily coated with customary and known highly scratch-resistant coating materials based on organically modified ceramic materials.
  • a multi-layer coating can be realized which is based exclusively on aqueous coating materials.
  • the first and second feed were added within one hour.
  • the third feed was metered in over 1.25 hours.
  • the resulting reaction mixture was held at 90 ° C for four hours and then cooled to below 40 ° C and filtered through a 100 micron GAF bag.
  • the resulting dispersion had a solids content of 32 to 34% by weight (1 hour, 130 ° C.) and a content of free monomers of less than 0.2% by weight (determined by gas chromatography).
  • the dispersion (A) was used for the preparation of a block copolymer (A).
  • the resulting dispersion was cooled below 40 ° C and filtered through a 50 micron GAF bag.
  • the dispersion (A) had a solids content of 41 to 42 wt .-% (1 hour, 130 ° C) and a content of free monomers of less than 0.2 wt .-% (determined by gas chromatography).
  • the mixture was predispersed for ten minutes in a dissolver and then ground on a sand mill to a Hegmann fineness ⁇ 15 microns.
  • the viscosity of the paste was 160 mPas at a shear rate of 100 s -1 and 23 ° C.
  • the filler was prepared by mixing 57.8 parts by weight of the pigment paste according to Examples 1.1.1 and 30 parts by weight of the dispersion (A) according to Preparation Example 2. It had a viscosity of 122 mPas at a shear rate of 100 s -1 and 23 ° C. With water, the filler was adjusted to an injection viscosity of 55 mPas.
  • the preparation of the metallic basecoat was first a color paste of 50 parts by weight of the dispersion (A) according to Preparation Example 2, 2 parts by weight of Pluriol® P900 (BASF AG), 43 parts by weight of Sicopalgelb® L1100 (BASF AG), 0.4 parts by weight of Agitan® 281 (commercial defoamer, Münzing Chemie GmbH).
  • the mixture was predispersed in a dissolver for ten minutes and then ground in a sand mill to a Hegmann fineness ⁇ 5 microns.
  • the viscosity of the resulting color paste was 424 mPas at a shear rate of 1,000 s -1 and 23 ° C.
  • a thixotropic agent was further prepared from 94 parts by weight demineralized water, 3.0 parts by weight Laponite® RD (Solvay Alkali GmbH) and Pluriol® P900 (BASF AG).
  • a polyester was further prepared in a conventional manner from 23.23 parts by weight dimer fatty acid (Pripol.RTM. 1009), 10.43 parts by weight 1,6-hexanediol, 6.28 parts by weight hexahydrophthalic anhydride, 9.9 parts by weight neopentyl glycol and 10.43 parts by weight of trimellitic anhydride.
  • dimer fatty acid Principal fatty acid
  • entrainer one part by weight of cyclohexane was used.
  • the resulting polyester was dispersed in with 17.48 parts by weight of deionized water, 18.9 parts by weight of butylglycol and 2.25 parts by weight of dimethylethanolamine.
  • the pH of the metallic paste was adjusted to 7.8 with 10% dimethylethanolamine solution.
  • the viscosity of the metallic paste was adjusted to 80 mPas by further addition of water.
  • the metallic basecoat was prepared by mixing the color paste according to Example 1.2.1 and the metallic paste according to Example 1.2.4 in a weight ratio of 2: 10.
  • a clearcoat of 100 parts by weight of the dispersion (A) according to the preparation example was also used 2.5 parts by weight of a commercially available crosslinking agent based on tris (alkoxycarbonylamino) triazines (Cylink® 2000, CYTEC) and 0.4 parts by weight of Agitan® 281.
  • the low viscosity mixture was homogenized with an Ultraturrax. Thereafter, the viscosity at 128 mPas was at a shear rate of 1.00 s -1 and 23 ° C.
  • test panels were pneumatically coated with the filler according to Example 1.1.
  • the resulting surfacer coat was predried at room temperature for ten minutes and at 80 ° C for ten minutes. After that, it was baked at 100 ° C for 20 minutes and at 130 ° C for 20 minutes. This resulted in a filler layer FL of a layer thickness of 35 ⁇ m.
  • the metallic basecoat according to Example 1.2 was applied pneumatically.
  • the resulting metallic basecoat layer was predried at room temperature for ten minutes and at 80 ° C for ten minutes.
  • the clearcoat according to Example 1.2.6 was applied to the predried metallic basecoat film, after which the resulting clearcoat film was flashed off for 15 minutes at room temperature. Thereafter, the metallic basecoat film and the clearcoat film were baked at 140 ° C. for 30 minutes (wet-in-wet process). This resulted in a metallic basecoat BL having a layer thickness of 15 .mu.m and a clearcoat KL having a layer thickness of 35 .mu.m.
  • the multilayer coating ML of the present invention prepared in this manner had an excellent overall appearance, in particular, an excellent metallic effect, excellent D.O.I. (Distinctiveness of the Reflected Image) and excellent surface smoothness, on.
  • the clearcoat KL was weather-stable, resistant to chemicals and bird droppings and scratch-resistant and showed a very good reflow behavior.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne une peinture multicouche de coloration et/ou à effets (ML) destinée à un substrat comportant ou non une première couche, ladite peinture contenant: (1) une couche de charge (FL) qui absorbe l'énergie mécanique et (2) une couche extérieure de coloration et/ou à effets (DL); ou (1) une couche de charge (FL) qui absorbe l'énergie mécanique, (2) une couche de base de coloration et/ou à effets (BL) et (3) une couche transparente (KL); ou (1) une couche de base de coloration et/ou à effets (BL) et (2) une couche transparente (KL). Au moins une couche, de préférence au moins deux couches et en particulier toutes les couches de la peinture multicouche (ML) sont réalisées à partir d'un matériau de revêtement comprenant au moins un composé (A) pouvant être obtenu par polymérisation radicalaire dans un milieu aqueux de a) monomères oléfiniquement insaturés et b) de monomères de formule (I) R?1R2C=CR3R4¿ différemment oléfiniquement insaturés par les monomères oléfiniquement insaturés a). Dans la formule (I), les résidus R?1, R2, R3 et R4¿ sont indépendamment les uns des autres des atomes d'hydrogène ou des résidus alkyle, cycloalkyle, alkylcycloalkyle, cycloalkylalkyle, aryle, alkylaryle, cycloalkylaryle, arylalkyle ou arylcycloalkyle, deux d'entre eux étant au moins des résidus aryle, arylalkyle ou arylcycloalkyle.

Claims (14)

  1. Revêtement de peinture multicouche colorant et/ou à effet ML pour un subjectile muni ou non d'un primaire, contenant, superposés dans l'ordre indiqué
    (1) une couche d'apprêt de garnissage FL absorbant l'énergie mécanique et
    (2) un revêtement de peinture de finition colorant et/ou à effet DL
    ou
    (1) une couche d'apprêt de garnissage FL absorbant l'énergie mécanique,
    (2) un revêtement de peinture de fond, colorant et/ou à effet BL et
    (3) un revêtement de vernis KL
    ou
    (1) un revêtement de peinture de fond, colorant et/ou à effet BL et
    (2) un revêtement de vernis KL,
    caractérisé en ce qu'au moins une couche FL et/ou DL ou BL et/ou KL ou FL, BL et/ou KL, de préférence au moins deux couches FL, BL et/ou KL ou toutes les couches FL et DL ou BL et KL ou FL, BL et KL du revêtement de peinture multicouche ML a (ont) été produite(s) à partir d'une matière de revêtement qui contient au moins un composant (A) pouvant être préparé par polymérisation radicalaire de
    a) au moins un monomère à insaturation oléfinique et
    b) au moins un monomère à insaturation oléfinique différent du monomère à insaturation oléfinique (a), de formule générale I

            R1R2C=CR3R4     (I)

    dans laquelle les radicaux R1, R2, R3 et R4 représentent, indépendamment les uns des autres, des atomes d'hydrogène ou des radicaux alkyle, cycloalkyle, alkylcycloalkyle, cycloalkylalkyle, aryle, alkylaryle, cycloalkylaryle, arylalkyle ou arylcycloalkyle, substitués ou non substitués, sous réserve qu'au moins deux des variables R1, R2, R3 et R4 représentent des radicaux aryle, arylalkyle ou arylcycloalkyle substitués ou non substitués, en particulier des radicaux aryle substitués ou non substitués ;
    dans un milieu aqueux.
  2. Procédé pour la production d'un revêtement de peinture multicouche colorant et/ou à effet ML sur un subjectile revêtu ou non d'un primaire, par
    (I) production d'une couche d'apprêt de garnissage par application d'un apprêt de garnissage sur le subjectile,
    (II) durcissement de la couche d'apprêt de garnissage, de sorte qu'il en résulte la couche d'apprêt de garnissage FL,
    (III) production d'une couche de peinture de finition universelle, par application d'une peinture de finition universelle sur la couche d'apprêt de garnissage FL et
    (IV) durcissement de la couche de peinture universelle, de sorte qu'il en résulte le revêtement de peinture de finition universelle DL,
    ou
    (I) production d'une couche de peinture de fond par application d'une peinture de fond sur le subjectile,
    (II) séchage de la couche de peinture de fond,
    (III) production d'une couche de vernis par application d'un vernis sur la couche de peinture de fond,
    (IV) durcissement commun de la couche de peinture de fond et de la couche de vernis, de sorte qu'il en résulte la couche de peinture de fond BL et la couche de vernis KL,
    ou
    (I) production d'une couche d'apprêt de garnissage par application d'un apprêt de garnissage sur le subjectile,
    (II) durcissement de la couche d'apprêt de garnissage, de sorte qu'il en résulte la couche d'apprêt de garnissage FL,
    (III) production d'une couche de peinture de fond, par application d'une peinture de fond sur la couche d'apprêt de garnissage FL et
    (IV) séchage de la couche de peinture de fond,
    (V) production d'une couche de vernis par application sur la couche de peinture de fond et
    (VI) durcissement commun de la couche de peinture de fond et de la couche de vernis, de sorte qu'il en résulte la couche de peinture de fond BL et la couche de vernis KL,
    caractérisé en ce qu'au moins une couche, de préférence au moins deux et en particulier toutes les couches de revêtement chaque fois utilisées contient ou contiennent au moins un composant (A) pouvant être préparé par polymérisation radicalaire de
    a) au moins un monomère à insaturation oléfinique et
    b) au moins un monomère à insaturation oléfinique différent du monomère à insaturation oléfinique (a), de formule générale I

            R1R2C=CR3R4     (I)

    dans laquelle les radicaux R1, R2, R3 et R4 représentent, indépendamment les uns des autres, des atomes d'hydrogène ou des radicaux alkyle, cycloalkyle, alkylcycloalkyle, cycloalkylalkyle, aryle, alkylaryle, cycloalkylaryle, arylalkyle ou arylcycloalkyle, substitués ou non substitués, sous réserve qu'au moins deux des variables R1, R2, R3 et R4 représentent des radicaux aryle, arylalkyle ou arylcycloalkyle substitués ou non substitués, en particulier des radicaux aryle substitués ou non substitués ;
    dans un milieu aqueux.
  3. Revêtement de peinture multicouche ML selon la revendication 1, caractérisé en ce que le composant (A) de la matière de revêtement peut être obtenu par
    (i) polymérisation radicalaire d'au moins un monomère (a) et d'au moins un monomère (b) dans un milieu aqueux, puis
    (ii) mise en réaction du produit de réaction résultant avec au moins un autre monomère (a) dans des conditions radicalaires.
  4. Revêtement de peinture multicouche ML selon la revendication 1 ou 3, caractérisé en ce que les radicaux aryle R1, R2, R3 et/ou R4 du composé (b) sont des radicaux phényle ou naphtyle, en particulier des radicaux phényle.
  5. Revêtement de peinture multicouche ML selon l'une quelconque des revendications 1, 3 ou 4, caractérisé en ce que les substituants dans les radicaux R1, R2, R3 et/ou R4 du composé (b) sont des atomes ou des radicaux organiques attirant les électrons ou repoussant les électrons, en particulier des atomes d'halogène, des radicaux nitrilo, nitro, des radicaux alkyle, cycloalkyle, alkylcycloalkyle, cycloalkylalkyle, aryle, alkylaryle, cycloalkylaryle, arylalkyle et arylcycloalkyle partiellement ou totalement halogénés ; des radicaux aryloxy, alkyloxy et cycloalkyloxy ; des radicaux arylthio, alkylthio et cycloalkylthio, des groupes hydroxy ; et/ou des groupes amino primaires, secondaires et/ou tertiaires.
  6. Revêtement de peinture multicouche ML selon l'une quelconque des revendications 1 ou 3 à 5, caractérisé en ce qu'on utilise comme monomères (a)
    a1) des esters d'acide (méth)acrylique essentiellement dépourvus de groupes acides ;
    a2) des monomères qui portent au moins un groupe hydroxy, un groupe amino, un groupe alcoxyméthylamino ou un groupe imino par molécule et sont essentiellement dépourvus de groupes acides ;
    a3) des monomères qui portent par molécule au moins un groupe acide qui peut être converti en le groupe anion d'acide correspondant ;
    a4) des esters vinyliques d'acides monocarboxyliques ramifiés en position alpha, ayant de 5 à 18 atomes de carbone dans la molécule ;
    a5) des produits de réaction d'acide acrylique et/ou d'acide méthacrylique avec l'ester glycidylique d'un acide monocarboxylique ramifié en position alpha, ayant de 5 à 18 atomes de carbone par molécule ;
    a6) des oléfines cycliques et/ou acycliques ;
    a7) des (méth)acrylamides ;
    a8) des monomères contenant des groupes époxy;
    a9) des hydrocarbures vinylaromatiques ;
    a10) des nitriles ;
    a11) des composés vinyliques, en particulier des halogénures de vinyle et/ou de vinylidène, la N-vinylpyrrolidone, des éthers vinyliques et/ou des esters vinyliques ;
    a12) des composés allyliques, en particulier des éthers et esters allyliques ;
    a13) des macromonomères polysiloxane qui ont une masse moléculaire moyenne en nombre Mn de 1 000 à 40 000 et comportent par molécule en moyenne de 0,5 à 2,5 doubles liaisons à insaturation éthylénique ; et/ou
    a14) des monomères vinyliques contenant des groupements acryloxysilane, pouvant être préparés par réaction de silanes à fonction hydroxy avec l'épichlorhy-drine et réaction subséquente du produit de réaction avec l'acide (méth)acrylique et/ou des esters hydroxyalkyliques et/ou cycloalkyliques de l'acide (méth)acrylique (monomères a2).
  7. Revêtement de peinture multicouche ML selon l'une quelconque des revendications 1 ou 3 à 6, caractérisé en ce que la matière de revêtement contient encore au moins l'un des composants suivants :
    A) au moins un liant comportant au moins un groupe fonctionnel (afg) qui peut participer à des réactions de réticulation thermique avec des groupes fonctionnels complémentaires (bfg) dans l'agent de réticulation (B) ;
    B) au moins un agent de réticulation comportant au moins deux groupes fonctionnels (bfg) qui peuvent participer à des réactions de réticulation thermique avec des groupes fonctionnels complémentaires (afg) dans le composant (A) ;
    (C) au moins un composant qui est réticulable à l'aide d'un rayonnement actinique ;
    (D) au moins un photoamorceur ;
    (E) au moins un amorceur de la réticulation thermique ;
    (F) au moins un diluant réactif durcissable thermiquement et/ou à l'aide d'un rayonnement actinique ;
    (G) au moins un additif pour peintures et/ou
    (H) au moins un solvant organique.
  8. Procédé selon la revendication 2, caractérisé en ce que le composant (A) de la matière de revêtement peut être obtenu par
    (i) polymérisation radicalaire d'au moins un monomère (a) et d'au moins un monomère (b) dans un milieu aqueux, puis
    (ii) mise en réaction du produit de réaction résultant avec au moins un autre monomère (a) dans des conditions radicalaires.
  9. Procédé selon la revendication 2 ou 8, caractérisé en ce que les radicaux aryle R1, R2, R3 et/ou R4 du composé (b) sont des radicaux phényle ou naphtyle, en particulier des radicaux phényle.
  10. Procédé selon l'une quelconque des revendications 1, 8 ou 9, caractérisé en ce que les substituants dans les radicaux R1, R2, R3 et/ou R4 du composé (b) sont des atomes ou des radicaux organiques attirant les électrons ou repoussant les électrons, en particulier des atomes d'halogène, des radicaux nitrilo, nitro, des radicaux alkyle, cycloalkyle, alkylcycloalkyle, cycloalkylalkyle, aryle, alkylaryle, cycloalkylaryle, arylalkyle et arylcycloalkyle partiellement ou totalement halogénés ; des radicaux aryloxy, alkyloxy et cycloalkyloxy ; des radicaux arylthio, alkylthio et cycloalkylthio, des groupes hydroxy ; et/ou des groupes amino primaires, secondaires et/ou tertiaires.
  11. Procédé selon l'une quelconque des revendications 2 ou 8 à 10, caractérisé en ce qu'on utilise comme monomères (a)
    a1) des esters d'acide (méth)acrylique essentiellement dépourvus de groupes acides ;
    a2) des monomères qui portent au moins un groupe hydroxy, un groupe amino, un groupe alcoxyméthylamino ou un groupe imino par molécule et sont essentiellement dépourvus de groupes acides ;
    a3) des monomères qui portent par molécule au moins un groupe acide qui peut être converti en le groupe anion d'acide correspondant ;
    a4) des esters vinyliques d'acides monocarboxyliques ramifiés en position alpha, ayant de 5 à 18 atomes de carbone dans la molécule ;
    a5) des produits de réaction d'acide acrylique et/ou d'acide méthacrylique avec l'ester glycidylique d'un acide monocarboxylique ramifié en position alpha, ayant de 5 à 18 atomes de carbone par molécule ;
    a6) des oléfines cycliques et/ou acycliques ;
    a7) des (méth)acrylamides ;
    a8) des monomères contenant des groupes époxy;
    a9) des hydrocarbures vinylaromatiques ;
    a10) des nitriles ;
    a11) des composés vinyliques, en particulier des halogénures de vinyle et/ou de vinylidène, la N-vinylpyrrolidone, des éthers vinyliques et/ou des esters vinyliques ;
    a12) des composés allyliques, en particulier des éthers et esters allyliques ;
    a13) des macromonomères polysiloxane qui ont une masse moléculaire moyenne en nombre Mn de 1 000 à 40 000 et comportent par molécule en moyenne de 0,5 à 2,5 doubles liaisons à insaturation éthylénique ; et/ou
    a14) des monomères vinyliques contenant des groupements acryloxysilane, pouvant être préparés par réaction de silanes à fonction hydroxy avec l'épichlorhydrine et réaction subséquente du produit de réaction avec l'acide (méth)acrylique et/ou des esters hydroxyalkyliques et/ou cycloalkyliques de l'acide (méth)acrylique (monomères a2).
  12. Procédé selon l'une quelconque des revendications 2 ou 8 à 11, caractérisé en ce que la matière de revêtement contient encore au moins l'un des composants suivants :
    A) au moins un liant comportant au moins un groupe fonctionnel (afg) qui peut participer à des réactions de réticulation thermique avec des groupes fonctionnels complémentaires (bfg) dans l'agent de réticulation (B) ;
    B) au moins un agent de réticulation comportant au moins deux groupes fonctionnels (bfg) qui peuvent participer à des réactions de réticulation thermique avec des groupes fonctionnels complémentaires (afg) dans le composant (A) ;
    (C) au moins un composant qui est réticulable à l'aide d'un rayonnement actinique;
    (D) au moins un photoamorceur ;
    (E) au moins un amorceur de la réticulation thermique ;
    (F) au moins un diluant réactif durcissable thermiquement et/ou à l'aide d'un rayonnement actinique ;
    (G) au moins un additif pour peintures et/ou
    (H) au moins un solvant organique.
  13. Utilisation du revêtement de peinture multicouche ML selon l'une quelconque des revendications 1 ou 3 à 7 ou du revêtement de peinture multicouche ML produit par le procédé selon l'une quelconque des revendications 2 ou 8 à 12, pour la première mise en peinture et le peinturage de réparation d'automobiles, le peinturage industriel, y compris le peinturage de rubans en continu (coil coating) et le peinturage de récipients (container coating), le peinturage de matières plastiques et le peinturage de meubles.
  14. Subjectiles revêtus ou non d'un primaire, comportant au moins un revêtement de peinture multicouche ML selon l'une quelconque des revendications 1 ou 3 à 7 ou au moins un revêtement de peinture multicouche ML produit par le procédé selon l'une quelconque des revendications 2 ou 8 à 12.
EP00945806A 1999-06-30 2000-06-23 Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation Expired - Lifetime EP1200203B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930066 1999-06-30
DE19930066A DE19930066A1 (de) 1999-06-30 1999-06-30 Farb- und/oder effektgebende Mehrschichtlackierung, Verfahren zu ihrer Herstellung und ihre Verwendung
PCT/EP2000/005825 WO2001002102A2 (fr) 1999-06-30 2000-06-23 Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation

Publications (2)

Publication Number Publication Date
EP1200203A2 EP1200203A2 (fr) 2002-05-02
EP1200203B1 true EP1200203B1 (fr) 2008-07-30

Family

ID=7913118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945806A Expired - Lifetime EP1200203B1 (fr) 1999-06-30 2000-06-23 Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation

Country Status (6)

Country Link
US (1) US6815081B1 (fr)
EP (1) EP1200203B1 (fr)
JP (1) JP4800531B2 (fr)
AU (1) AU5977400A (fr)
DE (2) DE19930066A1 (fr)
WO (1) WO2001002102A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1144462B1 (fr) * 1998-12-23 2004-08-11 BASF Coatings AG Agent de revetement
DE19930067A1 (de) * 1999-06-30 2001-01-11 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung von Füllerschichten und Steinschlagschutzgrundierungen
US6916877B2 (en) 2000-06-16 2005-07-12 Basf Corporation Coating composition including a water-based copolymer cross-linking with a water-dispersible cross-linking agent, method of preparing the same, and a cured film thereof
DE10219462A1 (de) * 2002-04-30 2003-11-20 Basf Ag Mehrschichtmaterialien zum Herstellen von Verpackungen
US20050025901A1 (en) * 2003-07-31 2005-02-03 Kerluke David R. Method of curing coatings on automotive bodies using high energy electron beam or X-ray
US20060068116A1 (en) * 2004-09-27 2006-03-30 Marc Chilla Process for the production of multi-layer coatings in light metallic color shades
JP5439702B2 (ja) * 2006-05-02 2014-03-12 マツダ株式会社 水性塗料組成物、複層塗膜の形成方法、及び塗装物
DE102009021071A1 (de) * 2009-05-13 2010-11-18 Basf Coatings Ag Effektwasserbasislacke mit verbesserten optischen Eigenschaften
DE102010012449A1 (de) * 2010-03-24 2011-09-29 Basf Coatings Gmbh Verfahren zur Herstellung einer farb- und/oder effektgebenden mehrschichtigen Lackierung
EP2570197A1 (fr) * 2011-09-19 2013-03-20 Basf Se Procédé destiné au revêtement de jantes en métal léger
US20220073764A1 (en) * 2020-09-08 2022-03-10 Illinois Tool Works Inc. Ultra-fast uv-cured material for repairing surface imperfections

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3552986A (en) 1967-11-24 1971-01-05 Sun Chemical Corp Printing and coating untreated polyolefins
US3577476A (en) 1969-02-18 1971-05-04 Geigy Chem Corp Arylene and arlidene polymers and copolymers
US4085168A (en) 1971-02-22 1978-04-18 Cpc International Inc. Chemically joined, phase separated self-cured hydrophilic thermoplastic graft copolymers and their preparation
DE3041648C2 (de) 1980-11-05 1982-10-07 Basf Farben + Fasern Ag, 2000 Hamburg Zweischicht-Metallic-Lackierung, Verfahren zu ihrer Herstellung und Verwendung
JPS5930877A (ja) 1982-08-16 1984-02-18 Tokuyama Soda Co Ltd 歯科用接着性組成物
US4521580A (en) 1982-12-29 1985-06-04 Exxon Research & Engineering Co. Microemulsion process for producing acrylamide-alkyl acrylamide copolymers
DE3407362A1 (de) 1984-02-29 1985-08-29 Bayer Ag, 5090 Leverkusen Waessrige dispersionen von pfropfpolymerisaten oder -copolymerisaten, ein verfahren zu ihrer herstellung und ihre verwendung als hydrophobierungs- und oleophobierungsmittel fuer textilien
US4677003A (en) 1985-04-30 1987-06-30 Rohm And Haas Company Microsuspension process for preparing solvent core sequential polymer dispersion
US4656226A (en) 1985-09-30 1987-04-07 E. I. Du Pont De Nemours And Company Acrylic pigment dispersants made by group transfer polymerization
DE3546594C3 (de) 1985-12-23 1999-05-20 Synthopol Chemie Dr Koch Verfahren zur Herstellung von hydroxylgruppenhaltigen Copolymerisaten und ihre Verwendung
US5385996A (en) 1986-12-05 1995-01-31 Commonwealth Scientific And Industrial Research Organisation Control of molecular weight and end-group functionality of polymers
US5047454A (en) 1987-02-03 1991-09-10 Basf Corporation Waterborne pigmented acrylic hydrosol coating composition
DE3830626A1 (de) 1988-09-09 1990-03-15 Herberts Gmbh Elektrisch abscheidbarer waessriger tauchlack-ueberzug und verfahren zur herstellung steinschlagfester lackaufbauten
DE3834738A1 (de) * 1988-10-12 1990-04-19 Basf Lacke & Farben Verfahren zur herstellung eines mehrschichtigen ueberzuges, waessrige beschichtungszusammensetzungen, wasserverduennbare polyacrylatharze und verfahren zur herstellung von wasserverduennbaren polyacrylatharzen
DE3841540A1 (de) 1988-12-09 1990-06-13 Basf Lacke & Farben Verfahren zur herstellung eines mehrschichtigen ueberzuges, wasserverduennbare beschichtungszusammensetzungen, wasserverduennbare emulsionspolymere und verfahren zur herstellung von wasserverduennbaren emulsionspolymeren
NZ233481A (en) 1989-05-30 1992-04-28 Ppg Industries Inc Water-based coating compositions having reduced organic solvent content comprising an aqueous dispersion of hydrophobic polymer microparticles
DE3936288A1 (de) 1989-11-01 1991-05-02 Bayer Ag In wasser dispergierbare bindemittelkombinationen, ein verfahren zur herstellung eines einbrennfuellers und dessen verwendung
ATE154343T1 (de) 1989-11-01 1997-06-15 Commw Scient Ind Res Org Kontrolle des molekulargewichts und der endgruppenfunktionalität in polymeren unter verwendung ungesättigter peroxide als kettenübertragungsmittel
DE3942804A1 (de) 1989-12-23 1991-06-27 Basf Lacke & Farben Verfahren zur herstellung eines mehrschichtigen ueberzuges
US5601880A (en) 1990-03-28 1997-02-11 Basf Lacke & Farben, Ag Process for the production of a multicoat finish and aqueous basecoat suitable for this process
JPH04363303A (ja) 1991-02-05 1992-12-16 Nippon Paint Co Ltd 連続重合方法および装置
DE69225591T2 (de) 1991-02-06 1999-01-07 Commw Scient Ind Res Org Polymerisationsregelung
US5098104A (en) 1991-06-17 1992-03-24 Kane Pat E Water soluble golf ball
DE4142816C1 (fr) 1991-12-23 1993-03-04 Herberts Gmbh, 5600 Wuppertal, De
DE4204518A1 (de) 1992-02-15 1993-08-19 Basf Lacke & Farben Verfahren zur herstellung einer zweischichtigen lackierung und fuer dieses verfahren geeignete nicht-waessrige lacke
US5264530A (en) 1992-05-01 1993-11-23 E. I. Du Pont De Nemours And Company Process of polymerization in an aqueous system
DE4215499A1 (de) * 1992-05-12 1993-11-18 Basf Lacke & Farben Verfahren zur Herstellung eines mehrschichtigen schützenden und/oder dekorativen Überzugs auf einer Substratoberfläche und zur Durchführung des Verfahrens geeignete wäßrige Lacke
FR2697840B1 (fr) 1992-11-10 1994-12-02 Rhone Poulenc Chimie Utilisation de diènes comme agent de transfert lors de la préparation de polymères.
DE4314297A1 (de) 1993-04-30 1994-11-03 Hoechst Ag Wäßrige Kunstharzdispersionen
CA2127919A1 (fr) 1993-09-03 1995-03-04 Jessie Alvin Binkley Procede de production de latex ultrafins
IL111484A (en) 1993-11-03 2001-06-14 Commw Scient Ind Res Org Polymerization process using pendant chain transfer means to regulate the molecular weight, the polymers thus obtained and a number of new pesticide compounds
DE4337961A1 (de) 1993-11-06 1995-05-11 Basf Lacke & Farben Wäßrige Lacke und deren Verwendung zur Herstellung von Füllerschichten bei der Automobillackierung
US5670557A (en) 1994-01-28 1997-09-23 Minnesota Mining And Manufacturing Company Polymerized microemulsion pressure sensitive adhesive compositions and methods of preparing and using same
JP3640996B2 (ja) 1994-01-28 2005-04-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー 高分子複合材料
EP0756609A4 (fr) 1994-04-19 1998-12-02 Univ Lehigh Compositions d'encre d'impression, leurs procedes de fabrication et leurs utilisations
US6140386A (en) 1994-04-19 2000-10-31 Vanderhoff; John W. Aqueous coating compositions, methods for making same and uses thereof
GB9408748D0 (en) 1994-05-03 1994-06-22 Zeneca Resins Bv Production of aqueous polymer compositions
CN1082514C (zh) 1994-06-16 2002-04-10 巴斯福股份公司 热塑性模塑料
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
DE4438504A1 (de) 1994-10-28 1996-05-02 Basf Lacke & Farben Lackschichtformulierung zur Verwendung in wässrigen Mehrschichtlacksystemen
AUPM930394A0 (en) 1994-11-09 1994-12-01 Commonwealth Scientific And Industrial Research Organisation Block copolymer synthesis
IT1270703B (it) 1994-11-17 1997-05-07 Ausimont Spa Microemulsioni di fluoropoliossialchileni in miscela con idrocarburi, e loro uso in processi di (co)polimerizzazione di monomeri fluorurati
DE19508935A1 (de) 1995-03-13 1996-09-19 Basf Ag Flammgeschützte thermoplastische Formmassen, enthaltend als wesentliche Komponenten
DE19519807A1 (de) * 1995-05-31 1997-02-13 Basf Lacke & Farben Beschichtungsmittel auf der Basis eines hydroxylgruppenhaltigen Polyacrylatharzes und seine Verwendung in Verfahren zur Herstellung einer Mehrschichtlackierung
US5969030A (en) 1995-07-24 1999-10-19 Basf Corporation Waterborne coating compositions containing hydrophobically modified emulsions
EP0755946A3 (fr) 1995-07-24 1997-10-01 Basf Corp Méthode de préparation de polymères en émulsion rendus hydrophobes, les polymères ainsi obtenus et les compositions aqueuses de revêtement contenant ces polymères
DE19529124C1 (de) * 1995-08-08 1996-11-21 Herberts Gmbh Überzugsmittel und deren Verwendung in Verfahren zur Herstellung von Mehrschichtüberzügen
AUPN585595A0 (en) 1995-10-06 1995-11-02 Commonwealth Scientific And Industrial Research Organisation Control of molecular weight and end-group functionality in polymers
EP0902731B1 (fr) * 1995-12-21 2002-04-03 BASF Coatings Aktiengesellschaft Procede de production de revetements multicouches
US5830928A (en) 1996-02-20 1998-11-03 Ppg Industries, Inc. Waterborne coating compositions
EP0882071B1 (fr) 1996-02-23 2003-10-15 E.I. Du Pont De Nemours And Company Synthese de polymeres ramifies
US6046259A (en) 1996-06-27 2000-04-04 Ppg Industries Ohio, Inc. Stable aqueous dispersions of cellulose esters and their use in coatings
EP0910587B1 (fr) 1996-07-10 2001-12-12 E.I. Du Pont De Nemours And Company Polymerisation presentant des caracteristiques vivantes
DE19628143A1 (de) 1996-07-12 1998-01-15 Basf Ag Verfahren zur Herstellung einer wäßrigen Polymerisatdispersion
DE19628142A1 (de) 1996-07-12 1998-01-15 Basf Ag Verfahren zur Herstellung von wäßrigen Polymerdispersionen mit bimodaler Teilchengrößenverteilung
DE19629851A1 (de) * 1996-07-24 1998-01-29 Basf Lacke & Farben Beschichtungsmittel auf Basis eines verzweigten hydroxylgruppenhaltigen Polyacrylatharzes enthaltend cycloaliphatische Monomereinheiten und seine Verwendung in Verfahren zur Herstellung einer Mehrschichtlackierung
DE19704020A1 (de) 1997-02-04 1998-08-06 Herberts Gmbh Hydroxylgruppenhaltige Copolymerisate und Verfahren zu ihrer Herstellung
US6316519B1 (en) 1997-02-19 2001-11-13 E. I. Du Pont De Nemours And Company Molecular weight controlled polymers by photopolymerization
DE19727505A1 (de) 1997-06-27 1999-01-07 Basf Ag Verfahren der radikalisch initiierten wäßrigen Emulsionspolymerisation zur Herstellung einer wäßrigen Polymerisatdispersion
CN1278279A (zh) 1997-08-28 2000-12-27 伊斯曼化学公司 二醇胶乳组合物
DE19741554B4 (de) 1997-09-20 2005-04-14 Basf Coatings Ag Härtbare Beschichtungszusammensetzung sowie Verfahren zur Herstellung eines schützenden Überzugs
US6020438A (en) 1998-06-09 2000-02-01 The B. F. Goodrich Company Supported vinyl chloride emulsion (co) polymers and process for making the same
US6339126B1 (en) 1998-08-31 2002-01-15 Ppg Industries Ohio, Inc. Thermosetting compositions containing carboxylic acid functional polymers prepared by atom transfer radical polymerization
DE19841408C2 (de) 1998-09-10 2001-02-15 Basf Coatings Ag Pulverklarlack und wäßrige Pulverklarlack-Slurry sowie deren Verwendung
DE19855167A1 (de) 1998-11-30 2000-05-31 Basf Coatings Ag Aus mindestens drei Komponenten bestehendes Beschichtungsmittel, Verfahren zu seiner Herstellung sowie seine Verwendung
ES2229802T3 (es) * 1998-12-18 2005-04-16 Basf Coatings Ag Procedimiento para la obtencion de un producto de reaccion polimero.
EP1144462B1 (fr) 1998-12-23 2004-08-11 BASF Coatings AG Agent de revetement
US6624279B2 (en) 1999-05-21 2003-09-23 Basf Corporation Water-soluble carbamate materials
US6346591B1 (en) 1999-05-21 2002-02-12 Basf Corporation Monomer and polymerization process
US6624241B2 (en) 1999-05-21 2003-09-23 Basf Corporation Waterborne coating compositions containing materials dispersed with water-soluble carbamate materials
US6624275B2 (en) 2001-11-02 2003-09-23 Basf Corporation Water- and organic-soluble carbamate material
DE19930067A1 (de) * 1999-06-30 2001-01-11 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung von Füllerschichten und Steinschlagschutzgrundierungen
US6462139B1 (en) 1999-11-10 2002-10-08 Ppg Industries Ohio, Inc. Solvent-free film-forming compositions for clear coats
DE10005819A1 (de) 2000-02-10 2001-08-23 Basf Coatings Ag Wäßrige Primärdispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10018078A1 (de) * 2000-04-12 2001-11-08 Basf Coatings Ag Formmassen und Verfahren zur Herstellung von Formkörpern
DE10018601A1 (de) 2000-04-14 2001-10-25 Basf Coatings Ag Wäßrige Primärdispersionen und Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10029803A1 (de) 2000-06-16 2002-01-03 Basf Coatings Ag Copolymerisate und Copolymerisatdispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
US6916877B2 (en) 2000-06-16 2005-07-12 Basf Corporation Coating composition including a water-based copolymer cross-linking with a water-dispersible cross-linking agent, method of preparing the same, and a cured film thereof

Also Published As

Publication number Publication date
AU5977400A (en) 2001-01-22
JP2003503196A (ja) 2003-01-28
JP4800531B2 (ja) 2011-10-26
EP1200203A2 (fr) 2002-05-02
WO2001002102A2 (fr) 2001-01-11
DE19930066A1 (de) 2001-01-11
US6815081B1 (en) 2004-11-09
DE50015286D1 (de) 2008-09-11
WO2001002102A3 (fr) 2001-08-16

Similar Documents

Publication Publication Date Title
EP1196507B1 (fr) Peinture d'appret et son utilisation pour la production de peintures d'appret et de peintures multicouches a coloration ou a effet
EP1192229B1 (fr) Substance de revetement et son utilisation pour la realisation de couches de charge et d'apprets de resistance aux impacts de gravillons
EP1194491B1 (fr) Vernis et son utilisation pour la production de vernis et de peintures multicouches a coloration ou a effet
WO2003016376A1 (fr) Matieres de revetement durcissables thermiquement et par rayonnement actinique et leur utilisation
EP1419015B1 (fr) Procede de production de revetements au moyen de substances de revetement pouvant etre durcies thermiquement et par rayonnement actinique
EP1274805B1 (fr) Procede de preparation des dispersions primaires et agents d'enduction aqueux et leur utilisation
WO2002014394A1 (fr) Polyurethane et polymerisats mixtes greffes a base de polyurethane et leur utilisation pour produire des matieres de recouvrement, des adhesifs et des matieres d'etancheite
EP1368441B1 (fr) Substance de recouvrement aqueuse sensiblement ou entierement exempte de substances organiques volatiles, procedes permettant de la produire et son utilisation
EP1194494B1 (fr) Substance de revetement aqueuse, son procede de production et son utilisation
WO2002064652A1 (fr) Dispersion primaire aqueuse pratiquement ou totalement exempte de matieres organiques volatiles, son procede de production et son utilisation
WO2003025041A1 (fr) Polyurethanes et copolymeres greffes a base de polyurethane, et leur utilisation pour preparer des matieres de revetement, des matieres adhesives et des matieres d'etancheite
EP1373385B1 (fr) Dispersions aqueuses libres ou essentiellement libres de composes organiques volatils, procede de fabrication et utilisation
EP1200203B1 (fr) Peinture multicouche de coloration et/ou a effets, son procede de realisation et son utilisation
EP1287083B1 (fr) Dispersions de vernis clairs en poudre (vernis clairs pulverulents en suspension), leur procede de preparation et leur utilisation
WO2002016461A1 (fr) Melange de substances thermodurcissable et son utilisation
EP1287040A1 (fr) Dispersions primaires aqueuses, leur procede de production et leur utilisation
WO2001064803A1 (fr) Materiau de recouvrement acrylique durcissable, avec agent de protection solaire incorpore par polymerisation, et son utilisation
WO2002046321A2 (fr) Produit de revetement aqueux a effet, son procede de production et son utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50015286

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160831

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103