EP1198881B1 - Filtre a ondes acoustiques de surface - Google Patents

Filtre a ondes acoustiques de surface Download PDF

Info

Publication number
EP1198881B1
EP1198881B1 EP00951200A EP00951200A EP1198881B1 EP 1198881 B1 EP1198881 B1 EP 1198881B1 EP 00951200 A EP00951200 A EP 00951200A EP 00951200 A EP00951200 A EP 00951200A EP 1198881 B1 EP1198881 B1 EP 1198881B1
Authority
EP
European Patent Office
Prior art keywords
tine
surface acoustic
acoustic wave
wave filter
tines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00951200A
Other languages
German (de)
English (en)
Other versions
EP1198881A1 (fr
Inventor
Günter Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tele Filter Zweigniederlassung der Dover Germany GmbH
Original Assignee
Tele Filter Zweigniederlassung der Dover Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19943072A external-priority patent/DE19943072B4/de
Application filed by Tele Filter Zweigniederlassung der Dover Germany GmbH filed Critical Tele Filter Zweigniederlassung der Dover Germany GmbH
Publication of EP1198881A1 publication Critical patent/EP1198881A1/fr
Application granted granted Critical
Publication of EP1198881B1 publication Critical patent/EP1198881B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14564Shifted fingers transducers
    • H03H9/14567Stepped-fan shaped transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14547Fan shaped; Tilted; Shifted; Slanted; Tapered; Arched; Stepped finger transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14564Shifted fingers transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the invention relates to the field Electrical / Electronics. Objects where application is possible and is expedient, components based on acoustic Surface waves like broadband bandpass filters and Verzog réelles effeten.
  • transducers for surface acoustic waves known those on a piezoelectric substrate two interdigital Distributed acoustic reflection transducers that come from Tine groups are composed, are arranged.
  • Tine groups composed of two or three tines consist.
  • two of these tines form a reflection-free one Tine pair, while the third tine each Reflector tine is.
  • the distance is typically between the center lines of the reflector tine and this Reflector tine adjacent tine of the pair of tines 3 ⁇ / 8 ( ⁇ is the longitudinal wavelength assigned to the center frequency a straight line parallel to the collecting electrodes in predetermined distance from one of these collecting electrodes.
  • a transducer structure of this type is a Single phase unidirectional converter Transducer, abbreviated: SPUDT).
  • SPUDT Single phase unidirectional converter Transducer
  • the execution [4] has the disadvantage that the bandwidth of this type of filter makes sense as close as possible of 1%. Broadband filter with low insertion loss can therefore not be realized.
  • the invention has for its object acoustic To change surface wave filters of the SPUDT type so that Broadband filter with low insertion loss and small Form factor without significantly increasing the layout can be produced.
  • the invention is based on a surface acoustic wave filter the SPUDT type, in which on a piezoelectric Substrate two transducers with distributed acoustic reflection are arranged, which consist of tine groups and collecting electrodes exist, the tines of the transducers one towards one the two collecting electrodes form a tapered structure, when along two parallel straight lines, all of them Cut the prongs of the transducer so that in each transducer along the lines all tine groups are of equal width the width of the tines and gaps between the two lines differs by a factor.
  • the structure which tapers according to the invention can be used as Parallel connection of a large number of narrow filter channels are viewed, the converters are only by their Period length and therefore by its center frequency differ. As a result of this rejuvenation of the structure therefore set a range of center frequencies that, determines the bandwidth at the same time. The greater the degree of Rejuvenation, the wider the range.
  • the Edge steepness, which determines the form factor, can, however are hardly influenced by the degree of rejuvenation, but is mainly due to the construction of the filter channels certainly.
  • the solution according to the invention offers the advantage this also applies to filters with a tapered structure to use to extend the impulse response as if everyone Filter channel and consequently the entire filter would have significantly more wave sources or, in other words, would be much longer than the current layout.
  • This The solution [1] does not offer any advantage because the echoes in each Filter channel are suppressed in that each converter channel in each filter channel for itself and consequently every converter as a whole through mutual compensation of reflection and Regeneration is reflectionless.
  • the invention can be expediently configured as follows.
  • the taper can be that the width of the Prongs and the gap between them gradually decreased.
  • each tine level a rectangular tine section with two each Direction of propagation vertical or parallel boundaries contains, the two parallel to the direction of propagation Limits of all tine sections of the same level each form a straight boundary line so that the between these two straight boundary lines lying tine areas represent filter channels through Intermediate areas are separated.
  • a tine group can contain two or three tines. in the the latter case can have two tines in a tine group form a pair of tines, the tines of a pair of tines equally wide and on different collecting electrodes are connected and arranged so that each other the pair of tines is reflectionless overall and each third prong is a reflector prong.
  • Particularly useful Refinements are when each tine group has a DART or EWC cell is.
  • Each tine group can have the source strength of the Amplitude excitation by a source strength function and a Reflection factor assigned by a reflection function be, with the source strength function and the Reflection function determined by an optimization process could be.
  • the reflection function can be such that the Reflection factor in at least one group of tines the other sign has the opposite sign Has. It is useful to change this sign realize that the distance of the reflector tine of said Tine group from the other reflector tines n ⁇ / 2 + ⁇ / 4 is, where ⁇ is assigned to the center frequency Wavelength is along a straight line that all prongs are like that cuts that in every transducer along that line all Tine groups are of equal width and n is an integer.
  • a particular source strength function is it is expedient if at least some tine groups, referred to as structured tine groups, at least a converter in parallel to the collecting electrodes in a number are divided by sub-converters that are electrically in series are switched. It is particularly useful if everyone Subconverters of the same structured tine group have the same aperture.
  • the number of sub-converters in at least one structured one Tine group can differ from one in the other differentiate structured tine groups.
  • the widths of the respective Tine pair of tines or the width of the Reflector tines in at least one group of tines in at least one a converter of those in the other tine groups distinguish or differentiate.
  • the invention is based on a Embodiment and an associated drawing closer explained.
  • the drawing shows an acoustic surface wave filter, which consists of two interdigital converters, which are on one piezoelectric substrate are arranged.
  • Tine groups 23, 24 and 25 are EWC cells. All tine groups 23, 24 and 25 are of the apart from the different average inclination of their tines, constructed identically. Therefore only the tine group 23 described in more detail. It is made of reflector tine 231 and tines 232 and 233, which together form a pair of tines, composed.
  • the converter 3 is composed of the collecting electrodes 31 and 32 as well composed of the tine groups 33, 34 and 35. This are representative of significantly more tine groups, from which the converter 3 consists of.
  • the prongs of the Converter 3 form a in the direction of the collecting electrode 32 tapered structure in the sense that the width the prongs and the gaps between them step by step reduced.
  • Tine groups 33, 34 and 35 are EWC cells. All tine groups 33, 34 and 35 are of the apart from the different average inclination of their tines, constructed identically. Therefore only the tine group 33 described in more detail. It is made of reflector tine 331 and the tines 332 and 333, which together form a pair of tines, composed.
  • the filter is made up of filter channels 201, 203, 205 and 207 composed. Between the adjacent filter channels 201 and 203, 203 and 205 as well as 205 and 207 are the Intermediate areas 202, 204 and 206, in which the Tine sections of adjacent filter channels leading to and belong to the same prong, are connected to each other.
  • the Gap 4 between transducers 2 and 3 is in these Filter channels represented by the spaces 41, 42, 43 and 44. All tine edges are parallel to each other. however are equivalent tine edges in different filter channels so shifted against each other that the intersection points 208 of the left edges of equivalent sections of one and the same prong with the lower boundary line of the respective filter channel straight on one and the same in different filter channels Line.
  • the straight lines 210 and 310 are inclined so that whose straight extensions 26 and 36 over the respective tine area in one and the same point 5 to cut.
  • the straight lines 210 and 310 are inclined so that whose straight extensions 26 and 36 over the respective tine area in one and the same point 5 to cut.
  • the equivalent tines differ Gap widths but also the spaces 46 and 47 between both transducers only by one and the same factor. Therefore differ in arbitrarily selected Filter channels not only equivalent tine and gap widths but also two of the spaces 41, 42, 43 and 44 between both transducers that go to the selected one Filter channels only belong to one and the same factor.
  • This Property guarantees that the transmission properties (e.g.
  • the reflection factor of some Tine groups have one compared to the other tine groups, opposite sign. This is realized in that the distance of the reflector tines in the affected tine groups from the other reflector tines n ⁇ / 2 + ⁇ / 4, where n is an integer.
  • the Reflector tines of the tine groups 23, 24 and 25 shown and 33, 34 and 35 have distances equal to n ⁇ from each other. However, if the reflection factor of one of these tine groups would be negative, the reflection prong would have to be this Tine group in relation to their position in the drawing 3 / 4 ⁇ , 5 / 4 ⁇ or 7 / 4 ⁇ to be shifted.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Claims (19)

  1. Filtre à ondes de surface acoustiques, basé sur des convertisseurs unidirectionnels monophasés interdigitaux (Single Phase Unidirectional Transducer / SPUDT /), avec lequel deux convertisseurs (2 ; 3) de ce type à réflexion acoustique distribuée sont disposés sur un substrat piézoélectrique (1), lesquels se composent de groupes de dents (23-25 ; 33-35) et d'électrodes collectrices (21 ; 22 ; 31 ; 32), les dents des convertisseurs formant une structure qui se rétrécit en direction de l'une des deux électrodes collectrices, avec lequel le long de deux lignes droites parallèles (6 ; 7), qui croisent toutes les dents des convertisseurs (2 ; 3) de manière à ce que tous les groupes de dents (23-25 ; 33-35) sont de la même largeur le long des lignes (6 ; 7) dans chaque convertisseur (2 ; 3), la largeur des dents (231-233 ; 331-333) et les espaces entre celles-ci se différencient d'un facteur donné entre les deux lignes (6 ; 7), caractérisé en ce que l'espace intermédiaire (46 ; 47) entre les deux convertisseurs (2 ; 3) se différencie lui aussi du facteur donné entre les deux lignes (6 ; 7) de manière à ce que les prolongations rectilignes (26 ; 36) des dents (231-233 ; 331-333) des deux convertisseurs (2 ; 3) se croisent au-delà de la zone des dents en un seul et même point (5).
  2. Filtre à ondes de surface acoustiques selon la revendication 1, caractérisé en ce que dans le cas de la structure qui se rétrécit, la largeur des dents (231-233 ; 331-333) et des espaces entre celles-ci se réduit graduellement.
  3. Filtre à ondes de surface acoustiques selon la revendication 2, caractérisé en ce que tous les coins (208 ; 209) d'une seule et même arête de dent se trouvent sur une courbe, les prolongations rectilignes (26 ; 36) de toutes ces courbes des deux convertisseurs (2 ; 3) se croisant au-delà de la zone des dents en un seul et même point (5).
  4. Filtre à ondes de surface acoustiques selon la revendication 3, caractérisé en ce que chaque étage de dent comprend une section de dent rectangulaire avec à chaque fois deux délimitations perpendiculaires ou parallèles par rapport au sens de l'élargissement, les deux délimitations parallèles au sens de l'élargissement de toutes les sections de dent du même étage formant à chaque fois une ligne de délimitation droite de manière à ce que les zones de dents qui se trouvent à chaque fois entre ces deux lignes de délimitation droites forment des canaux filtrants (201 ; 203 ; 205 ; 207) qui sont séparés les uns des autres par des zones intermédiaires (202 ; 204 ; 206).
  5. Filtre à ondes de surface acoustiques selon la revendication 3, caractérisé en ce que toutes les courbes sont des lignes droites (210 ; 310).
  6. Filtre à ondes de surface acoustiques selon la revendication 1, caractérisé en ce que chaque groupe de dents (23-25 ; 33-35) des deux convertisseurs (2 ; 3) comprend deux dents.
  7. Filtre à ondes de surface acoustiques selon la revendication 1, caractérisé en ce que chaque groupe de dents (23-25 ; 33-35) des deux convertisseurs (2 ; 3) comprend trois dents.
  8. Filtre à ondes de surface acoustiques selon la revendication 7, caractérisé en ce que deux dents (232 ; 233 ou 332 ; 333) d'un groupe de dents (23-25 ; 33-35) forment à chaque fois une paire de dents, les dents d'une paire de dents étant de la même largeur et étant raccordées à des électrodes collectrices (21 ; 22 ou 31 ; 32) différentes et étant disposées l'une par rapport à l'autre de telle manière que la paire de dent ne présente globalement aucune réflexion et la troisième dent (231 ou 331) est à chaque fois une dent de réflexion.
  9. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce que chaque groupe de dents (23-25 ; 33-35) est une cellule DART.
  10. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce que chaque groupe de dents (23-25 ; 33-35) est une cellule EWC.
  11. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce que l'intensité de source d'excitation d'amplitude est affectée à chaque groupe de dents (23-25 ; 33-35) par une fonction d'intensités de source.
  12. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce qu'un facteur de réflexion est affecté à chaque groupe de dents (23-25 ; 33-35) par une fonction de réflexion.
  13. Filtre à ondes de surface acoustiques selon la revendication 12, caractérisé en ce que le facteur de réflexion présente le signe opposé dans au moins un groupe de dents (23-25 ; 33-35) par rapport à l'autre groupe de dents, ce qui est réalisé par le fait que l'écart entre les dents de réflexion (231 ; 331) dudit groupe de dents et les autres dents de réflexion est de nλ/2 + λ/4, λ, étant la longueur d'onde affectée à la fréquence centrale le long d'une ligne droite (6 ; 7) qui croise toutes les dents de manière à ce que dans chaque convertisseur (2 ; 3), tous les groupes de dents (23-25 ; 33-35) présentent la même largeur le long de cette ligne et n est un nombre entier.
  14. Filtre à ondes de surface acoustiques selon la revendication 11 ou 12, caractérisé en ce que la fonction d'intensités de source et la fonction de réflexion sont déterminées par un procédé d'optimisation.
  15. Filtre à ondes de surface acoustiques selon la revendication 11, caractérisé en ce qu'au moins quelques groupes de dents (23-25 ; 33-35), désignés sous le nom de groupes de dents structurés, sont divisés dans au moins un convertisseur parallèlement aux électrodes collectrices en un nombre donné de sous-convertisseurs qui sont branchés en série.
  16. Filtre à ondes de surface acoustiques selon la revendication 15, caractérisé en ce que tous les sous-convertisseurs d'un seul et même groupe de dents structuré ont la même ouverture.
  17. Filtre à ondes de surface acoustiques selon la revendication 15, caractérisé en ce que le nombre de sous-convertisseurs dans au moins un groupe de dents structuré est différent de celui dans les autres groupes de dents structurés.
  18. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce que les largeurs des dents (232 ; 233) faisant partie de la paire de dents correspondante dans au moins un groupe de dents (23-25 ; 33-35) dans au moins un convertisseur (2 ; 3) sont différentes de celles dans les autres groupes de dents.
  19. Filtre à ondes de surface acoustiques selon la revendication 8, caractérisé en ce que la largeur de la dent de réflexion (231 ; 331) dans au moins un groupe de dents (23-25 ; 33-35) dans au moins un convertisseur (2 ; 3) est différente de celle dans les autres groupes de dents.
EP00951200A 1999-06-03 2000-05-31 Filtre a ondes acoustiques de surface Expired - Lifetime EP1198881B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19925798 1999-06-03
DE19925798 1999-06-03
DE19943072A DE19943072B4 (de) 1999-06-03 1999-09-06 Akustisches Oberflächenwellenfilter
DE19943072 1999-09-06
PCT/DE2000/001808 WO2000076065A1 (fr) 1999-06-03 2000-05-31 Filtre a ondes acoustiques de surface

Publications (2)

Publication Number Publication Date
EP1198881A1 EP1198881A1 (fr) 2002-04-24
EP1198881B1 true EP1198881B1 (fr) 2004-07-28

Family

ID=26053668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951200A Expired - Lifetime EP1198881B1 (fr) 1999-06-03 2000-05-31 Filtre a ondes acoustiques de surface

Country Status (4)

Country Link
US (1) US6707229B1 (fr)
EP (1) EP1198881B1 (fr)
JP (1) JP2003501934A (fr)
WO (1) WO2000076065A1 (fr)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009359B4 (de) * 2005-03-01 2014-12-11 Epcos Ag Bandpassfilter
JP2014192866A (ja) * 2013-03-28 2014-10-06 Nippon Dempa Kogyo Co Ltd 弾性波フィルタ
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11996827B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11206009B2 (en) * 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US10797675B2 (en) 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US12021496B2 (en) 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
CN113615083A (zh) 2019-03-14 2021-11-05 谐振公司 带有半λ介电层的横向激励的薄膜体声波谐振器
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
US10911021B2 (en) 2019-06-27 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with lateral etch stop
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
US11817845B2 (en) 2020-07-09 2023-11-14 Murata Manufacturing Co., Ltd. Method for making transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11463066B2 (en) 2020-10-14 2022-10-04 Resonant Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524649C3 (de) 1975-06-03 1980-11-06 Siemens Ag, 1000 Berlin Und 8000 Muenchen Fernseh-ZF-Filter nach dem Oberflächenwellenprinzip
AT341578B (de) 1975-12-19 1978-02-10 Hans Dr Kuzmany Elektroakustischer wandler zur elektrischen anregung einer akustischen oberflachenwelle bzw. zur akustischen anregung einer elektrischen welle durch den piezoelektrischen effekt
GB2193060B (en) 1986-07-16 1991-04-03 Japan Radio Co Ltd Surface elastic wave filter
US4746882A (en) * 1987-06-24 1988-05-24 Unisys Corporation Saw multiplexer using tapered transducers
US4908542A (en) * 1987-06-24 1990-03-13 Unisys Saw tapered transducers
US5831492A (en) * 1995-09-15 1998-11-03 Sawtek Inc. Weighted tapered spudt saw device
US5818310A (en) 1996-08-27 1998-10-06 Sawtek Inc. Series-block and line-width weighted saw filter device
US5831494A (en) * 1996-12-12 1998-11-03 Sawtek Inc. Dual track low-loss reflective saw filter
US6023122A (en) * 1999-04-15 2000-02-08 Nortel Networks Corporation Surface wave devices with tapered transducers

Also Published As

Publication number Publication date
JP2003501934A (ja) 2003-01-14
US6707229B1 (en) 2004-03-16
EP1198881A1 (fr) 2002-04-24
WO2000076065A1 (fr) 2000-12-14

Similar Documents

Publication Publication Date Title
EP1198881B1 (fr) Filtre a ondes acoustiques de surface
DE69403281T2 (de) Akustisches Oberflächenwellenfilter
DE69909913T2 (de) Akustischer oberflächenwandler und filter mit reflektionsumkehrung
EP0089617B1 (fr) Elément de circuit électronique à ondes acoustiques de surface
DE19714085C2 (de) Akustisches Multimode-Oberflächenwellenfilter
DE69636897T2 (de) Akustischer Oberflächenwellenfilter
DE10135871B4 (de) Wandler für Oberflächenwellen mit verbesserter Unterdrückung störender Anregung
WO2000025423A1 (fr) Systeme a ondes de surface presentant au moins deux structures a ondes de surface
WO2007073722A1 (fr) Transducteur utilisant des ondes acoustiques et filtre associe au transducteur
DE102007063470A1 (de) Wandler, Resonator und Filter für akustische Oberflächenwellen
DE3025871C2 (de) Akustische Oberflächenwelleneinrichtung
DE2848267B2 (de) Akustische Oberflächenwelleneinrichtung
EP0638212B1 (fr) Reflecteur pondere pour un dispositif a ondes de surface
DE10309250B4 (de) Elektroakustischer Wandler für mit Oberflächenwellen arbeitendes Bauelement
DE4013214C2 (de) Akustisches Oberflächenwellenfilter
DE10345239B4 (de) Mit Oberflächenwellen arbeitender Wandler
DE69733237T2 (de) Akustische Oberflächenwellenanordnung
DE19943072B4 (de) Akustisches Oberflächenwellenfilter
EP1190484B1 (fr) Transducteur pour ondes de surface
DE3832943A1 (de) Oberflaechenwellenfilter
DE10062847C1 (de) Transversal gekoppeltes Resonatorfilter
DE69730189T2 (de) Unidirektionales Filter mit akustischen Oberflächenwellen
EP0151275B1 (fr) Dispositif électronique pour des ondes acoustiques de surface réfléchies
DE19852300A1 (de) AOW-Filter
EP0909026A2 (fr) Filtre acoustique, notamment filtre à ondes de surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50007219

Country of ref document: DE

Date of ref document: 20040902

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040728

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080528

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080528

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100528

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50007219

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201