EP1191496A1 - Streulichtrauchmelder - Google Patents

Streulichtrauchmelder Download PDF

Info

Publication number
EP1191496A1
EP1191496A1 EP01122157A EP01122157A EP1191496A1 EP 1191496 A1 EP1191496 A1 EP 1191496A1 EP 01122157 A EP01122157 A EP 01122157A EP 01122157 A EP01122157 A EP 01122157A EP 1191496 A1 EP1191496 A1 EP 1191496A1
Authority
EP
European Patent Office
Prior art keywords
light
smoke detector
receiver
scattered
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01122157A
Other languages
English (en)
French (fr)
Other versions
EP1191496B2 (de
EP1191496B1 (de
Inventor
Joachim Schneider
Anton Dr. Pfefferseder
Bernd Siber
Andreas Hensel
Ulrich Oppelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7657231&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1191496(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1191496A1 publication Critical patent/EP1191496A1/de
Application granted granted Critical
Publication of EP1191496B1 publication Critical patent/EP1191496B1/de
Publication of EP1191496B2 publication Critical patent/EP1191496B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/04Monitoring of the detection circuits
    • G08B29/043Monitoring of the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention is based on a scattered light smoke detector the genus of the independent claim.
  • the scattered light smoke detector according to the invention with the features the independent claim has the Advantage that a distinction between permanent Foreign objects in the scattering point of the scattered light smoke detector and actual smoke is possible.
  • Such foreign objects can e.g. Ladders that are parked for handicrafts, or boxes stacked up to the ceiling.
  • Spiders can be found in narrow shafts in the free space of the Scattered Smoke Detectors build their network and by chance in the scattering point of the scattered light smoke detector permanently linger.
  • the scattered light smoke detector according to the invention recognizes such foreign bodies and eliminates them from the Measurement signals so that false fire reports are avoided become.
  • the means for Differentiation between smoke and other foreign bodies Processor for analyzing the time course of received signals of the light receiver, wherein the processor to the Light receiver is connected. Based on the passage of time it is advantageously possible to determine whether smoke or another foreign object in the scattered light smoke detector is present. With smoke, it increases with time Intensity of the scattered light signal registered, while at Penetration of a foreign body into the scattering point a kind Jump function occurs briefly, then back in again solid signal to pass. This distinction in view so a jump in the time function allows on easy way of distinguishing between smoke and one other foreign body. It is still an advantage that an existing scattered light smoke detector is only about software must be added, which this temporal analysis of the Received signal from the light receiver. So that's the Scattered light detectors according to the invention in a simple manner realizable.
  • an optic preferably a faceted mirror, attached is the scatter signals from an area around the scatter point in couples the light receiver.
  • the total signal on Light receiver is the integral of the signals from all Scattering areas in this area.
  • suitable Faceted mirror it is possible to spatially many to detect spreading areas in which the Detector reacts sensitively to stray light. If there is of smoke it can be assumed that all spreading areas in the Essentially homogeneous with the corresponding smoke density deliver a share of the scattered light signal, while a Spider locally scatters a partial signal on the receiver. With such an arrangement can be done by simple Amplitude comparison distinguished a spider from smoke become.
  • the light receiver is designed as a photo receiver array, the Photo receiver array at least two photo receiver elements having. It is therefore advantageously possible, and not only an integral of signals from different scattering points too measure, but a spatial distribution of the scatter signals take. Because of this spatial distribution, it is advantageously possible between smoke, small animals and Distinguish objects. You still get one Information about the distribution of smoke density and the Distance of the particles from the scattered light smoke detector. With help of cross-correlation techniques, which are based on a processor Scattered light smoke detectors are still implemented the speed of the smoke or objects measurable near the scattered light smoke detector. By a suitable optics, preferably a lens, will be the recording enables the spatial distribution of the scatter signals.
  • the scattered light smoke detector train such that a distinction between smoke and other foreign bodies is possible is the formation of the Light source with adjustable wavelength. So that will advantageously exploited the effect that the Rayleigh scattering is the scattering behavior of the wavelength of the Radiation is dependent.
  • the Rayleigh scattering different signal intensities as a function of wavelength. For particles that are large compared to the wavelength, the scatter does not depend or only slightly depending on the wavelength, therefore at tuning the light transmitter is not significant Effect occur with the scatter signals. With small ones Particles like smoke particles, this effect is the Intensity variation depending on the wavelength clearly measurable. It is thus advantageously possible distinguish such smoke particles from larger parts. This distinction is then made by a processor in the Scattered light smoke detector according to the invention performed.
  • the light transmitter with is connected to an amplitude modulator.
  • amplitude-modulated light signals enable due to the phase shift between broadcast and received signals, these are the impulses that come from the Amplitude modulation arose Distance determination from the scattering object while a pulse broadening, i.e. a dispersion, a measure of is a diffuse scattering body, like one in particular Cloud of smoke is. So it is advantageous possible that depending on the pulse broadening It can be determined whether smoke or another foreign body is present.
  • the Scattered light smoke detector has an ultrasonic sensor, the ultrasonic sensor being a transmitter and a receiver has and wherein the ultrasonic sensor is arranged in such a way is so that the ultrasonic sensor covers the area around the Scatter point monitored.
  • the ultrasonic sensor monitors it advantageously the optical scattering range of the Scattered light detector. There is a solid foreign body in the scattering range, the ultrasonic sensor and the Scattered light sensor a signal. Is there smoke in the Scattering point, only the scattered light sensor receives a signal but not the ultrasonic sensor.
  • Ultrasonic sensors in the megahertz range are particularly suitable work because these ultrasonic sensors are a very have good directivity.
  • the ultrasonic sensor determine whether there is a foreign body in an area the smoke detector, which may be a Influencing the flow conditions for the Fire detection means. This can serve as a warning from the Headquarters are issued.
  • FIG. 1 shows a first embodiment of the scattered light smoke detector according to the invention
  • FIG. 2 a second embodiment of the invention Scattered light smoke detector with a facet mirror
  • Figure 3 a third embodiment of the invention Scattered light smoke detector with a photo receiver array
  • figure 4 shows a fourth embodiment of the invention Scattered light smoke detector with an amplitude modulator
  • figure 5 shows a fifth embodiment of the invention Scattered light smoke detector with an ellipsoid
  • Figure 6 a amplitude-modulated optical signal for determining a Distance
  • Figure 7 amplitude-modulated optical signals to identify a cloud of smoke
  • Figure 8 the Scattered light smoke detector according to the invention with a Ultrasonic detection for foreign bodies.
  • Scattered light smoke detectors which are used as fire detectors, have the advantage, independent of stray light sources, Dust, pollution, insects, short-term smoke and briefly introduced foreign bodies in the measuring point, such as e.g. Cleaning equipment to be.
  • Longer term Clouds of smoke such as those that arise during a fire, provide the scattered light smoke detector for a clear scatter signal, which is recognized as a fire detection signal, for example by comparison with a predetermined threshold. at permanent retention of objects at the measuring point, that is the scatter point, becomes the scattered light smoke detector however, functionally report a fire.
  • a scattered light smoke detector proposed proposed that has means to switch between smoke and distinguish other foreign objects. Such means relate in particular to a processor, the timing received signals from the light receiver.
  • FIG 1 is a first embodiment of the Scattered light smoke detector according to the invention as a block diagram shown.
  • a cover 3 protects the Scattering smoke detector against moisture, aggressive gases and mechanical damage.
  • the cover 3 is as made of transparent plastic. Alternatively it is possible to use glass.
  • the cover 3 is like this procure so that it is for the light for the Scattered light measurement is transparent. It can also be used as a Filters for unwanted interference. In particular if infrared radiation is used, it is Ambient light easily through the cover 3 and Light receiver 2 filterable.
  • a light transmitter 1, here a light emitting diode Infrared.
  • a laser is also preferred a semiconductor laser, and / or other wavelength ranges possible, which is controlled by a transmitter control 5.
  • the transmitter control 5 is therefore a driver circuit for the light transmitter 1. In the case of a laser, it is one typical laser driver circuit with temperature and Bias compensation.
  • the control 5 is a second output connected to a processor 7.
  • the Processor 7 is connected to a data input / output Memory 8 connected in the permanently stored Reference signals are stored and that for storage of intermediate values is used.
  • the processor 7 with a data input Receive evaluation 6 connected. Via a data output the processor 7 to a signaling device 9 connected.
  • An input of the reception evaluation 6 is with connected to a light receiver 2.
  • the light receiver 2 is here is a photodiode.
  • the light emitting diode 1 and the photodiode 2 are arranged such that a scattering point 4 outside the Scattered smoke detector is located outdoors.
  • the signaling device 9 can be a Light, a siren or a communication module, a signaling to a center, preferably via a bus transmits. This is particularly advantageous if several scattered light smoke detectors are used, the are connected to the control center via the bus to a central monitoring of a building.
  • the processor 7 now carries out a time profile analysis of the Receive signals of the photodiode 2 through.
  • Smoke occurs in the Scatter point 4, this leads to a continuous Increase in the intensity of the scattered light received by the Photodiode 2.
  • a foreign object is in the scattering point 4 is introduced, then when inserting the foreign body in the scatter point 4 a jump in the course of time Intensity function of the received signals by the Photodiode 2 take place, then after the introduction and the Remain of the foreign body in the scattering point 4 again to produce a flat signal plateau.
  • a brief appearance of a foreign body in the scattering point 4 calls a short one Impulse in the reception function of the scatter signals and is thus recognized as a signal that is not used for Alarm triggering is used.
  • FIG 2 is a second embodiment of the Scattered smoke detector according to the invention shown, wherein around the light receiver 2 a faceted mirror of two concave mirrors (concave mirror segments) 10 and 11 attached is.
  • the concave mirrors 10 and 11 collect light from one Area around its own scattering point and couple it into the light receiver 2 a.
  • the or the scatter points are Strictly speaking, volume areas where the light beam of the Radiation source and the receiving lobe of the light receiver to cut.
  • the light receiver 2 is therefore sensitive all around, so that the light receiver 2 now consists of several diodes that light can receive from different directions, is composed.
  • the cover 3 in turn protects the Scattered light smoke detector against external attacks.
  • the light receiver 2 is through its output with the Receive evaluation 6 connected via its data output is connected to the processor 7.
  • the processor 7 is connected to the memory 8 via a data input / output.
  • the processor 7 is connected to the via a data output Signaling device 9 connected.
  • To a second The data input of the processor 7 is the transmitter control 5 connected.
  • a second output of the transmitter control 5 leads to the light transmitter 1, here again a light emitting diode is.
  • a laser can also be used here.
  • the concave mirrors 10 and 11 as Faceted mirror is the integral of the captured Scattered areas formed by the light receiver 2.
  • Presence of smoke is assumed to be everyone Scattering areas essentially homogeneous with the corresponding Provide smoke density a share of the scattered light signal, while a spider only locally sends a partial signal to the Recipient scatters.
  • the evaluation can in particular also by evaluating the time signal. Smoke there a continuous signal while an insect as an example for a foreign body a signal jump when leaving and Enter each segment. An insect would become a pulse train when crossing through the scattering area produce.
  • a spider would be a signal result that is below the threshold. The threshold is determined based on experimental data.
  • FIG. 3 shows a third embodiment of the Sreulich smoke detector according to the invention shown.
  • the Cover 3 again protects the scattered light smoke detector external attacks.
  • the light transmitter 1 is via its entrance connected to the transmitter control 5.
  • the transmitter control 5 is connected to processor 7 via a second output connected.
  • the processor 7 is via a data input / output connected to the memory 8.
  • To a second data input of processor 7 is a photo receiver array evaluation 13 connected.
  • a signaling device 9 is connected to a photo receiver array 12.
  • the Photo receiver array evaluation 13 is connected via its input connected to a photo receiver array 12.
  • the photo receiver array 12 consists of an array of photodiodes. It can alternatively also a CCD (Charged Coupled Device) line, CCD matrix or a CMOS matrix.
  • a lens 14 is between cover 3 and photoreceptor array 12 arranged. The lens 14 is arranged such that the Photo diodes of the photoreceptor array 12 have several local areas Detect around scattering point 4.
  • the photo receiver array evaluation 13 asks the individual Signals from the photodiodes and digitized them to then to be transferred to the processor 7, which is therefore a Spatial resolution of the received signals around the scattering point 4 performs. It is possible not only the integral of the Receive signals from the area around the scattering point 4 measure, but with the lens 14 a local distribution of Record signals. Through rays 15, 16, 17 and 18 are examples of two local areas, which by the Photo receiver diode array 12 are detected, shown. This spatial resolution can now clearly between Smoke that will be homogeneous, small animals that are only in individual areas popping up, and items differ. For items that are slightly larger, will the received intensity signal between two photodiodes of the photo receiver array a jump in the received Cause light intensity. It is also possible that when inserting an object several photodiodes of the Photo receiver arrays are wandered through and in time interval produces a typical signal pattern what is due to the insertion of an object into the Stray field of the scattered light smoke detector.
  • FIG. 4 shows a fourth embodiment of the Scattered smoke detector according to the invention shown.
  • the Cover 3 in turn protects the scattered light smoke detector external intervention.
  • the light transmitter 1 is above its Input connected to an amplitude modulator 19.
  • On Data output of the amplitude modulator 19 leads to a first data input of the processor 7.
  • the transmitter control 5 is at a data input of the amplitude modulator 19 connected.
  • a second output of the transmitter control 5 leads to a second data input of the processor 7.
  • the Processor 7 is connected to the via its third data input Receiver evaluation 6 connected. Via a data input / output the processor 7 is connected to the memory 8. Via a data output of the processor 7 Signaling device 9 connected.
  • the receiver evaluation 6 is the light receiver 2 connected.
  • the light transmitter 1 and the light receiver 2 are arranged so that the scattering point 4 outside the Scattered smoke detector is located outdoors.
  • the amplitude modulator 19 forms from the electrical signal the transmitter control 5 a pulse train and thereby leads an amplitude modulation. In its simplest form this is simply a switch so that a sequence of periodic light pulses in the light transmitter 1 is generated and then another blanking is carried out and this alternately in one cycle, which the amplitude modulator 19 pretends.
  • the processor 7 evaluates the received signals in Comparison to these transmitted signals that the Transmits amplitude modulator 19 directly to processor 7, by.
  • processor 7 is able, on the one hand a distance determination based on the phase shift between the transmitted and the received pulses perform and check on the other hand whether it is a cloud of smoke or an object. Is at all Finding nothing at scatter point 4 except air will not Signals are scattered and the receiver 2 only receives Ambient light, which by appropriate choice of Light wavelength or the light wavelength range as well (electronic) constant light suppression eliminated can be.
  • FIG. 6 shows how pulse sequences, the have been sent and received in the phase differ.
  • Figure 6a is the pulse train sent shown by the arrow 21 on the Reflection plane 22 falls.
  • Figure 6b is the received one Pulse train shown. You recognize through one Time comparison that the phase shift 23 occurred is. The phase shift 23 is a measure of the Distance from the light transmitter and receiver to the Reflection plane 22.
  • FIG. 7a there is again a transmitted one Pulse train shown that hits a cloud of smoke 25.
  • the pulse train received is from Cloud of smoke 25 shown. Because of that many scattering centers in the cloud of smoke 25, the impulses widen the transmitted pulse train A, and there is one Pulse dispersion as shown in Figure 7b.
  • the width of the received pulses in Figure 7b is a measure of whether smoke is present or not. This can be done using a Threshold value comparison can be determined by the processor 7. This threshold value is then specified and in memory 8 stored.
  • objects of one Differentiating a cloud of smoke is the use of a Light source with tunable wavelength as a light transmitter 1.
  • a Light source with tunable wavelength can be a tunable Semiconductor lasers are used in the infrared range tuned over a predetermined wavelength range to see if the scattered light signals are dependent on the wavelength. This spread will Called Rayleigh scattering. With small particles, as in there is a cloud of smoke, this is Rayleigh scattering wavelength dependent.
  • the processor 7 is thus on the Transmitter control 5 over the currently used wavelength informed, then the received signals as a function of Analyze transmission wavelength.
  • FIG. 5 shows a fifth embodiment of the Scattered smoke detector according to the invention shown.
  • the Cover 3 again protects the scattered light smoke detector external interventions.
  • the light transmitter 1 is above its Input connected to the transmitter control 5, the Transmitter control 5 via a data output with a first Data input of the processor 7 is connected.
  • the processor 7 is via a data input / output with the memory 8 connected.
  • the processor is via a second data input 7 connected to the reception evaluation 6.
  • At one Data output of processor 7 is the Signaling device 9 connected.
  • the Light receiver 2 is at an input of the Receiver evaluation 6 connected. To the light receiver 2 an ellipsoid 20 is arranged, which ensures that as much scattered light as possible in the light receiver 2 is coupled. This improves the signal-to-noise ratio of the scattered smoke detector.
  • An alternative method is that a stronger light transmitter 1 is used.
  • the 8 is the scattered light smoke detector according to the invention with an ultrasound detection.
  • the light transmitter 1 and the light receiver 2 are arranged so that the Scattering point 4 outside of the scattered light smoke detector outdoors lies.
  • the cover 3 protects the scattered light smoke detector external attacks.
  • At an input of the light transmitter 1 is the transmitter control 5 connected.
  • a data output of the Transmitter control 5 leads to a first data input of the Processor 7.
  • To a second data input of processor 7 signal processing 28 is connected, others Input an ultrasound receiver 27 is connected.
  • the ultrasound receiver is aimed at scatter point 4, to which an ultrasonic transmitter 26 is also aligned.
  • the Ultrasonic transmitter is either in continuous operation or in operated periodically.
  • the processor 7 receive evaluation 6 connected. To a data output the processor 7 is connected to a signal 9. The processor 7 is connected to the processor via a data input Memory 8 connected. At an entrance to the Receiving evaluation 6, the light receiver 2 is connected.
  • the function of an ultrasound transmitter and receiver can also be integrated in a component. It will be a first Ultrasound pulse emitted. Then you switch to reception around and waits for that from an existing one Object reflected signal (echo operation).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Es wird ein Streulichtrauchmelder vorgeschlagen, der Mittel aufweist, um zwischen Rauch und anderen Fremdkörpern im Streupunkt zu unterscheiden. Diese Unterscheidung wird beispielsweise durch die Analyse des Zeitverlaufs der empfangenen Signale durchgeführt. Durch eine Optik können Streusignale aus verschiedenen Streubereichen ermittelt werden, um so durch eine Ortsinformation eine größere Sicherheit zur Unterscheidung zwischen Rauch und Gegenstand zu erreichen. Durch ein Fotoempfänger-Array als Lichtempfänger ist eine genaue Ortsauflösung und Unterscheidung möglich. Eine weitere Alternative ist eine durchstimmbare Lichtquelle. Der Streulichtrauchmelder kann auch mit einem Ultraschallsensor kombiniert werden, um einen Gegenstand zu detektieren. <IMAGE>

Description

Stand der Technik
Die Erfindung geht aus von einem Streulichtrauchmelder nach der Gattung des unabhängigen Patentanspruchs.
Es ist bereits bekannt, dass Streulichtrauchmelder verwendet werden, wobei der Streupunkt von Lichtsender und Lichtempfänger außerhalb des Streulichtrauchmelders im Freien liegt. Dies hat den Vorteil, dass keine Meßkammer mit einem Labyrinth vorgesehen werden muß. Rauchmelder mit Labyrinth weisen den Nachteil auf, dass das Labyrinth durch Verschmutzung verstopft werden kann.
Vorteile der Erfindung
Der erfindungsgemäße Streulichtrauchmelder mit den Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, dass eine Unterscheidung zwischen permanenten Fremdkörpern im Streupunkt des Streulichtrauchmelder und tatsächlichem Rauch möglich ist. Solche Fremdkörper können z.B. Leitern, die für Handwerksarbeiten abgestellt werden, oder Kisten, die deckenhoch gestapelt werden, sein. Auch Spinnen können in engen Schächten in dem Freiraum des Streulichtrauchmelders ihr Netz bauen und durch Zufall in dem Streupunkt des Streulichtrauchmelders dauerhaft verweilen. Der erfindungsgemäße Streulichtrauchmelder erkennt solche Fremdkörper und eliminiert sie aus den Meßsignalen, so dass falsche Brandmeldungen vermieden werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen des im unabhängigen Patentanspruch angegebenen Streulichtrauchmelders möglich.
Besonders vorteilhaft ist, dass die Mittel zur Unterscheidung zwischen Rauch und anderen Fremdkörpern einen Prozessor zur Analyse des Zeitverlaufs von Empfangssignalen des Lichtempfängers aufweisen, wobei der Prozessor an den Lichtempfänger angeschlossen ist. Anhand des Zeitverlaufs ist es vorteilhafterweise möglich, festzustellen, ob Rauch oder ein anderer Fremdkörper im Streulichtrauchmelder vorliegt. Bei Rauch wird mit zunehmender Zeit eine steigende Intensität des Streulichtsignals registriert, während beim Eindringen eines Fremdkörpers in den Streupunkt eine Art Sprungfunktion kurzfristig auftritt, um dann wieder in ein festes Signal überzugehen. Diese Unterscheidung im Hinblick auf einen Sprung in der Zeitfunktion ermöglicht also auf einfache Weise die Unterscheidung zwischen Rauch und einem anderen Fremdkörper. Dabei ist es weiterhin von Vorteil, dass ein vorhandener Streulichtrauchmelder nur um Software ergänzt werden muß, die diese zeitliche Analyse des Empfangssignals vom Lichtempfänger durchführt. Damit ist der erfindungsgemäße Streulichtmelder in einfacher Weise realisierbar.
Weiterhin ist es von Vorteil, dass um den Lichtempfänger eine Optik, vorzugsweise ein Facettenspiegel, angebracht ist, die Streusignale aus einem Gebiet um den Streupunkt in den Lichtempfänger einkoppelt. Das Gesamtsignal am Lichtempfänger ist das Integral der Signale aus allen Streubereichen in diesem Gebiet. Durch geeignete Facettenspiegel ist es möglich, viele räumlich auseinanderliegende Streubereiche zu erfassen, in denen der Melder sensibel auf Streulicht reagiert. Bei Vorhandensein von Rauch ist davon auszugehen, dass alle Streubereiche im Wesentlichen homogen mit der entsprechenden Rauchdichte einen Anteil am Streulichtsignal liefern, während eine Spinne lokal ein Teilsignal auf den Empfänger streut. Mit einer solchen Anordnung kann durch einfachen Amplitudenvergleich eine Spinne von Rauch unterschieden werden.
Darüber hinaus ist es von Vorteil, dass der Lichtempfänger als ein Fotoempfänger-Arrays ausgebildet ist, wobei der Fotoempfänger-Array wenigstens zwei Fotoempfängerelemente aufweist. Damit ist es vorteilhafterweise möglich, nicht nur ein Integral von Signalen von verschiedenen Streupunkten zu messen, sondern eine Ortsverteilung der Streusignale aufzunehmen. Durch diese Ortsverteilung ist es vorteilhafterweise möglich, zwischen Rauch, Kleintieren und Gegenständen zu unterscheiden. Man erhält weiterhin eine Information über die Verteilung der Rauchdichte und den Abstand der Partikel vom Streulichtrauchmelder. Mit Hilfe von Kreuzkorrelationstechniken, die auf einem Prozessor im Streulichtrauchmelder implementiert werden, ist weiterhin die Geschwindigkeit der Rauchschwaden oder der Gegenstände in der Nähe des Streulichtrauchmelders meßbar. Durch eine geeignete Optik, vorzugsweise eine Linse, wird die Aufnahme der Ortsverteilung der Streusignale ermöglicht.
Ein weiterer vorteilhafter Ansatz, den Streulichtrauchmelder derart auszubilden, dass eine Unterscheidung zwischen Rauch und anderen Fremdkörpern möglich ist, ist die Ausbildung der Lichtquelle mit einstellbarer Wellenlänge. Damit wird vorteilhafterweise der Effekt ausgenutzt, dass bei der Rayleighstreuung das Streuverhalten von der Wellenlänge der Strahlung abhängig ist. Bei Verwendung eines durchstimmbaren Lasers erhält man bei Vorhandensein von Rauchpartikeln für die Rayleighstreuung unterschiedliche Signalsintensitäten als Funktion der Wellenlänge. Bei Partikeln, die groß gegenüber der Wellenlänge sind, hängt die Streuung nicht oder nur geringfügig von der Wellenlänge ab, daher wird bei einem Durchstimmen des Lichtsenders kein signifikanter Effekt bei den Streusignalen auftreten. Bei kleinen Partikeln, wie es Rauchpartikel sind, ist dieser Effekt der Intensitätsvariation in Abhängigkeit von der Wellenlänge deutlich meßbar. Damit ist es vorteilhafterweise möglich, solche Rauchpartikel von größeren Teilen zu unterscheiden. Diese Unterscheidung wird dann durch einen Prozessor im erfindungsgemäßen Streulichtrauchmelder durchgeführt.
Ein weiterer Vorteil besteht darin, dass der Lichtsender mit einem Amplitudenmodulator verbunden ist. Amplitudenmodulierte Lichtsignale ermöglichen einerseits aufgrund der Phasenverschiebung zwischen gesendeten und empfangenen Signalen, das sind die Impulse, die aus der Amplitudenmodulation entstanden sind, eine Entfernungsbestimmung von dem streuenden Objekt, während eine Pulsverbreiterung, also eine Dispersion, ein Maß für einen diffusen Streukörper ist, wie es vor allem eine Rauchwolke ist. Damit ist es also vorteilhafterweise möglich, dass in Abhängigkeit von der Pulsverbreiterung bestimmt werden kann, ob Rauch oder ein anderer Fremdkörper vorliegt.
Schließlich ist es auch von Vorteil, dass der Streulichtrauchmelder einen Ultraschallsensor aufweist, wobei der Ultraschallsensor einen Sender und einen Empfänger aufweist und wobei der Ultraschallsensor derart angeordnet ist, so dass der Ultraschallsensor das Gebiet um den Streupunkt überwacht. Der Ultraschallsensor überwacht damit vorteilhafterweise den optischen Streubereich des Streulichtmelders. Befindet sich ein fester Fremdkörper in dem Streubereich, so empfängt der Ultraschallsensor und der Streulichtsensor ein Signal. Befindet sich Rauch im Streupunkt, so empfängt nur der Streulichtsensor ein Signal nicht aber der Ultraschallsensor. Für diesen Verfahren eignen sich vor allem Ultraschallsensoren, die im Megahertz-Bereich arbeiten, da diese Ultraschallsensoren eine sehr gute Richtwirkung aufweisen. Mit Hilfe des Ultraschallsensors ist es weiterhin vorteilhafterweise feststellbar, ob sich ein Fremdkörper in einem Bereich um den Rauchmelder befindet, der möglicherweise eine Beeinflussung der Strömungsverhältnisse für die Branderkennung bedeutet. Dies kann als Warnung von der Zentrale ausgegeben werden.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt eine erste Ausführungsform des erfindungsgemäßen Streulichtrauchmelders, Figur 2 eine zweite Ausführungsform des erfindungsgemäßen Streulichtrauchmelders mit einem Facettenspiegel, Figur 3 eine dritte Ausführungsform des erfindungsgemäßen Streulichtrauchmelders mit einem Fotoempfänger-Arrays, Figur 4 eine vierte Ausführungsform des erfindungsgemäßen Streulichtrauchmelders mit einem Amplitudenmodulator, Figur 5 eine fünfte Ausführungsform des erfindungsgemäßen Streulichtrauchmelders mit einem Ellipsoid, Figur 6 ein amplitudenmoduliertes optisches Signal zur Bestimmung einer Entfernung, Figur 7 amplitudenmodulierte optische Signale zur Identifikation einer Rauchwolke und Figur 8 der erfindungsgemäße Streulichtrauchmelder mit einer Ultraschalldetektion für Fremdkörper.
Beschreibung
Streulichtrauchmelder, die als Brandmelder verwendet werden, haben den Vorteil, unabhängig gegenüber Störlichtquellen, Staub, Verschmutzung, Insekten, kurzfristigen Rauchschwaden und kurzzeitig eingebrachten Fremdkörpern im Meßpunkt, wie z.B. Reinigungsgeräten, zu sein. Längerfristige Rauchschwaden, wie sie bei einem Brand entstehen, sorgen bei dem Streulichtrauchmelder für ein deutliches Streusignal, das als Branderkennungssignal erkannt wird, beispielsweise durch Vergleich mit einem vorgegebenen Schwellwert. Bei einem dauerhaften Verbleiben von Gegenständen im Meßpunkt, das ist der Streupunkt, wird der Streulichtrauchmelder jedoch funktionsgemäß eine Brandmeldung abgeben. Erfindungsgemäß wird daher ein Streulichtrauchmelder vorgeschlagen, der Mittel aufweist, um zwischen Rauch und anderen Fremdkörpern zu unterscheiden. Solche Mittel betreffen insbesondere einen Prozessor, der den Zeitverlauf von Empfangssignalen des Lichtempfängers analysiert. Weitergehende Möglichkeiten umfassen die Verwendung von Facettenspiegeln, um ein Gebiet um den Streupunkt zu erfassen, ein Fotoempfänger-Array, um eine Ortsauflösung zu erzielen, eine durchstimmbare Lichtquelle, um wellenlängenabhängige Streusignale zu detektieren, einen Amplitudenmodulator, um über amplitudenmodulierte Lichtsignale die Unterscheidung zwischen Fremdkörpern und Rauch zu treffen und einen Ultraschallsensor, der das Gebiet um den Streupunkt überwacht.
In Figur 1 ist eine erste Ausführungsform des erfindungsgemäßen Streulichtrauchmelders als Blockschaltbild dargestellt. Eine Abdeckung 3 schützt den Streulichtrauchmelder vor Feuchtigkeit, aggressiven Gasen und mechanischen Beschädigungen. Die Abdeckung 3 ist als transparenter Kunststoff ausgebildet. Alternativ ist es auch möglich, Glas zu verwenden. Die Abdeckung 3 ist derart beschaffen, so dass sie für das Licht für die Streulichtmessung transparent ist. Sie kann damit auch als Filter für unerwünschte Störstrahlung wirken. Insbesondere wenn Infrarotstrahlung verwendet wird, ist das Umgebungslicht leicht durch die Abdeckung 3 und den Lichtempfänger 2 filterbar. Hinter der Abdeckung 3 befindet sich einerseits ein Lichtsender 1, hier eine Leuchtdiode im Infrarotbereich. Alternativ ist auch ein Laser, vorzugsweise ein Halbleiterlaser, und/oder andere Wellenlängenbereiche möglich, der von einer Senderansteuerung 5 angesteuert wird. Die Senderansteuerung 5 ist also eine Treiberschaltung für den Lichtsender 1. Im Falle eines Lasers ist es eine typische Lasertreiberschaltung mit Temperatur- und Arbeitspunktkompensation. Die Ansteuerung 5 ist über einen zweiten Ausgang mit einem Prozessor 7 verbunden. Der Prozessor 7 ist über einen Datenein-/-ausgang mit einem Speicher 8 verbunden, in dem fest abgespeicherte Referenzsignale abgespeichert sind und der zur Abspeicherung von Zwischenwerten verwendet wird. Über einen zweiten Dateneingang ist der Prozessor 7 mit einer Empfangsauswertung 6 verbunden. Über einen Datenausgang ist der Prozessor 7 an eine Signalisierungsvorrichtung 9 angeschlossen. Ein Eingang der Empfangsauswertung 6 ist mit einem Lichtempfänger 2 verbunden. Der Lichtempfänger 2 ist hier eine Fotodiode. Die Leuchtdiode 1 und die Fotodiode 2 sind derart angeordnet, dass ein Streupunkt 4 außerhalb des Streulichtrauchmelders im Freien liegt.
In dem Streupunkt 4 wird detektiert, ob Rauch vorliegt oder nicht. Liegt Rauch vor, wird dies durch Streusignale von der Fotodiode 2 erkannt, und der Prozessor 7 führt daraufhin mit der Signalisierungsvorrichtung 9 eine Signalisierung bezüglich eines Brandes durch. Die Empfangsauswertung 6 ist hier ein Empfangsverstärker und eine Analog/Digitalwandlung. Die Signalisierungsvorrichtung 9 kann eine Leuchte, eine Sirene oder ein Kommunikationsbaustein sein, der eine Signalisierung an eine Zentrale, vorzugsweise über einen Bus, überträgt. Dies ist insbesondere von Vorteil, wenn mehrere Streulichtrauchmelder verwendet werden, die über den Bus mit der Zentrale verbunden sind, um eine zentrale Überwachung eines Gebäudes durchzuführen.
Der Prozessor 7 führt nun eine Zeitverlaufsanalyse der Empfangssignale der Fotodiode 2 durch. Tritt Rauch im Streupunkt 4 auf, führt dies zu einem kontinuierlichen Anstieg der Intensität des empfangenen Streulichts durch die Fotodiode 2. Wird jedoch ein Fremdkörper in den Streupunkt 4 eingebracht, dann wird beim Einbringen des Fremdkörpers in den Streupunkt 4 ein Sprung in dem Zeitverlauf der Intensitätsfunktion der empfangenen Signale durch die Fotodiode 2 stattfinden, um dann nach dem Einbringen und dem Verbleiben des Fremdkörpers im Streupunkt 4 wieder ein flaches Signalplateau hervorzurufen. Ein kurzes Auftauchen eines Fremdkörpers in dem Streupunkt 4 ruft einen kurzen Impuls in der Empfangsfunktion der Streusignale hervor und wird damit als ein Signal erkannt, das nicht zur Alarmauslösung verwendet wird.
Tritt also in der Zeitfunktion der Intensität der Empfangssignale ein Sprung auf, ist dies auf ein Einbringen eines Fremdkörpers zurückzuführen. Dies kann softwaremäßig durch den Prozessor 7 erkannt werden, um es dann über den Kommunikationsbaustein 9 der Zentrale zu übertragen, so dass hier gemeldet wird, dass der Streulichtrauchmelder aufgrund eines Fremdkörpers nicht mehr ordnungsgemäß funktionieren kann, so dass die optimalen Strömungsverhältnisse wieder herzustellen sind.
Andere Signale sind beispielsweise bei Spinnennetzen und Spinnen direkt im Streupunkt zu erwarten. Durch die langsame Entstehung eines Spinnennetzes wird der eigentliche Bau des Spinnennetzes durch die in den Streulichtrauchmeldern übliche Driftkompensation ausgeglichen. Die übliche Driftkompensation besteht darin, dass sehr langsame Signaländerungen im Bereich von 6 bis 8 Stunden unterdrückt werden. Die einfachste Ausführungsform ist ein Hochpass mit einer entsprechend kleinen Zeitkonstanten. Eine Drift tritt in konventionellen Brandmeldern durch Alterung der Bauteile und insbesondere auch durch eine langsame Verschmutzung des Labyrinthinneren auf. Damit ist also eine Ruhewertnachführung realisiert.
Schwankungen des Spinnennetzes, z.B. durch einen Luftzug, können aber zu Störsignalen führen oder, wenn die Spinne sich selbst langsam in den Streupunkt bewegt, kann dies zu Täuschungssignalen führen. Dies wird jedoch zu einem Knick in der Intensitätsfunktion führen, so dass solche Intensitätssprünge durch den Prozessor 7 erkennbar sind.
In Figur 2 ist eine zweite Ausführungsform des erfindungsgemäßen Streulichtrauchmelders dargestellt, wobei um den Lichtempfänger 2 ein Facettenspiegel aus zwei konkaven Spiegeln (Hohlspiegelsegmente) 10 und 11 angebracht ist. Die konkaven Spiegel 10 und 11 sammeln Licht aus einem Gebiet um jeweils einen eigenen Streupunkt und koppeln es in den Lichtempfänger 2 ein. Der oder die Streupunkte sind genau genommen Volumenbereiche, wo sich die Lichtkeule der Strahlungsquelle und die Empfangskeule des Lichtempfängers schneiden. Hier liegen zwei Streupunkte vor, da es für die optischen Achsen der beiden Spiegel 10 und 11 sowie der optischen Achse des Lichtsenders 1 jeweils zwei Schnittpunkte gibt.
Der Lichtempfänger 2 ist daher rundherum empfindlich, so dass der Lichtempfänger 2 nun aus mehreren Dioden, die Licht aus verschiedenen Richtungen empfangen können, zusammengesetzt ist. Die Abdeckung 3 schützt wiederum den Streulichtrauchmelder vor äußeren Angriffen.
Der Lichtempfänger 2 ist über seinen Ausgang mit der Empfangsauswertung 6 verbunden, die über ihren Datenausgang an dem Prozessor 7 angeschlossen ist. Der Prozessor 7 ist über einen Datenein-/-ausgang mit dem Speicher 8 verbunden. Über einen Datenausgang ist der Prozessor 7 mit der Signalisierungsvorrichtung 9 verbunden. An einen zweiten Dateneingang des Prozessors 7 ist die Senderansteuerung 5 angeschlossen. Ein zweiter Ausgang der Senderansteuerung 5 führt zu dem Lichtsender 1, der hier erneut eine Leuchtdiode ist. Weiterhin ist hier ein Laser einsetzbar.
Durch Verwendung der konkaven Spiegel 10 und 11 als Facettenspiegel wird das Integral aus den erfassten Streubereichen durch den Lichtempfänger 2 gebildet. Bei Vorhandensein von Rauch ist davon auszugehen, dass alle Streubereiche im Wesentlichen homogen mit der entsprechenden Rauchdichte einen Anteil am Streulichtsignal liefern, während eine Spinne nur lokal ein Teilsignal auf den Empfänger streut. Mit einer solchen Anordnung kann durch einen einfachen Amplitudenvergleich der Empfangssignale durch den Prozessor 7 eine Spinne als Fremdkörper von Rauch unterschieden werden. Die Auswertung kann insbesondere auch durch eine Bewertung des Zeitsignals erfolgen. Rauch gibt ein kontinuierliches Signal, während ein Insekt als Beispiel für einen Fremdkörper einen Signalsprung bei Verlassen und Betreten jedes Segments erzeugt. Ein Insekt würde demnach eine Impulsfolge beim Durchqueren durch den Streubereich erzeugen. Dabei ist dann ein Schwellwert im Speicher 8 vorzusehen, der eine Schwelle für die Amplitude vorgibt, ab der Rauch als erkannt gilt. Eine Spinne würde ein Signal ergeben, das unter dem Schwellwert liegt. Der Schwellwert wird anhand experimenteller Daten festgelegt.
In Figur 3 ist eine dritte Ausführungsform des erfindungsgemäßen Sreulichtrauchmelders dargestellt. Die Abdeckung 3 schützt erneut den Streulichtrauchmelder vor äußeren Angriffen. Der Lichtsender 1 ist über seinen Eingang mit der Senderansteuerung 5 verbunden. Die Senderansteuerung 5 ist über einen zweiten Ausgang mit dem Prozessor 7 verbunden. Der Prozessor 7 ist über einen Datenein-/-ausgang mit dem Speicher 8 verbunden. An einen zweiten Dateneingang des Prozessors 7 ist eine Fotoempfängerarray-Auswertung 13 angeschlossen. An einen Datenausgang des Prozessors 7 ist eine Signalisierungsvorrichtung 9 angeschlossen. Die Fotoempfängerarray-Auswertung 13 ist über ihren Eingang mit einem Fotoempfänger-Array 12 verbunden. Das Fotoempfänger-Array 12 besteht aus einem Feld von Fotodioden. Es kann alternativ auch eine CCD (Charged Coupled Device)-Zeile, CCD-Matrix oder eine CMOS-Matrix sein. Eine Linse 14 ist zwischen der Abdeckung 3 und dem Fotoempfänger-Array 12 angeordnet. Die Linse 14 ist derart angeordnet, so dass die Fotodioden des Fotoempfänger-Arrays 12 mehrere Ortsbereiche um den Streupunkt 4 detektieren.
Die Fotoempfängerarray-Auswertung 13 fragt die einzelnen Signale der Fotodioden ab und digitalisiert sie, um sie dann an den Prozessor 7 zu übertragen, der damit eine Ortsauflösung der Empfangssignale um den Streupunkt 4 durchführt. Damit ist es möglich, nicht nur das Integral der Empfangssignale aus dem Gebiet um den Streupunkt 4 zu messen, sondern mit der Linse 14 eine Ortsverteilung der Signale aufzunehmen. Durch die Strahlen 15, 16, 17 und 18 sind beispielhaft zwei Ortsbereiche, die durch das Fotoempfängerdioden-Array 12 erfasst werden, dargestellt. Durch diese Ortsauflösung lässt sich nun eindeutig zwischen Rauch, der homogen sein wird, Kleintieren, die nur in einzelnen Bereichen auftauchen, und Gegenständen unterscheiden. Bei Gegenständen, die etwas größer sind, wird das empfangene Intensitätssignal zwischen zwei Fotodioden des Fotoempfänger-Arrays einen Sprung in der empfangenen Lichtintensität hervorrufen. Weiterhin ist es möglich, dass beim Einbringen eines Gegenstands mehrere Fotodioden des Fotoempfänger-Arrays durchwandert werden und dabei im zeitlichen Abstand ein typisches Signalmuster produziert wird, was auf das Einbringen eines Gegenstandes in das Streufeld des Streulichtrauchmelders schließen lässt.
In Figur 4 ist eine vierte Ausführungsform des erfindungsgemäßen Streulichtrauchmelders dargestellt. Die Abdeckung 3 schützt wiederum den Streulichtrauchmelder vor äußeren Eingriffen. Der Lichtsender 1 ist über seinen Eingang mit einem Amplitudenmodulator 19 verbunden. Ein Datenausgang des Amplitudenmodulators 19 führt zu einem ersten Dateneingang des Prozessors 7. Die Senderansteuerung 5 ist an einen Dateneingang des Amplitudenmodulators 19 angeschlossen. Ein zweiter Ausgang der Senderansteuerung 5 führt zu einem zweiten Dateneingang des Prozessors 7. Der Prozessor 7 ist über seinen dritten Dateneingang mit der Empfängerauswertung 6 verbunden. Über einen Datenein-/ausgang ist der Prozessor 7 mit dem Speicher 8 verbunden. Über einen Datenausgang des Prozessor 7 ist die Signalisierungsvorrichtung 9 angeschlossen. An einen Eingang der Empfängerauswertung 6 ist der Lichtempfänger 2 angeschlossen. Der Lichtsender 1 und der Lichtempfänger 2 sind so angeordnet, dass der Streupunkt 4 außerhalb des Streulichtrauchmelders im Freien liegt.
Der Amplitudenmodulator 19 formt aus dem elektrischen Signal der Senderansteuerung 5 eine Impulsfolge und führt dadurch eine Amplitudenmodulation durch. In der einfachsten Form ist dies einfach ein Schalter, so dass eine Folge von periodischen Lichtimpulsen im Lichtsender 1 erzeugt wird und dann wieder eine Dunkeltastung durchgeführt wird und dies abwechselnd in einem Takt, den der Amplitudenmodulator 19 vorgibt. Der Prozessor 7 wertet dann die Empfangssignale im Vergleich zu diesen gesendeten Signalen, die der Amplitudenmodulator 19 dem Prozessor 7 direkt überträgt, durch. Dadurch ist der Prozessor 7 in der Lage, einerseits eine Entfernungsbestimmung anhand der Phasenverschiebung zwischen den gesendeten und den empfangenen Impulsen durchzuführen und andererseits zu überprüfen, ob es sich um eine Rauchwolke oder einen Gegenstand handelt. Ist überhaupt nichts im Streupunkt 4 außer Luft zu finden, werden keine Signale gestreut und der Empfänger 2 empfängt nur Umgebungslicht, was durch entsprechende Wahl der Lichtwellenlänge oder des Lichtwellenlängenbereichs sowie eine (elektronische) Gleichlichtunterdrückung ausgeschieden werden kann.
In Figur 6 ist dargestellt, wie sich Impulsfolgen, die gesendet wurden und die empfangen wurden, in der Phase unterscheiden. In Figur 6a ist die gesendete Impulsfolge dargestellt, die angezeigt durch den Pfeil 21, auf die Reflexionsebene 22 fällt. In Figur 6b ist die empfangene Impulsfolge dargestellt. Man erkennt durch einen Zeitvergleich, dass die Phasenverschiebung 23 aufgetreten ist. Die Phasenverschiebung 23 ist ein Maß für die Entfernung von dem Lichtsender und -empfänger zu der Reflexionsebene 22. In Figur 7a ist erneut eine gesendete Impulsfolge dargestellt, die auf eine Rauchwolke 25 trifft. In Figur 7b ist dagegen die empfangene Impulsfolge von der Rauchwolke 25 dargestellt. Dadurch, dass viele Streuzentren in der Rauchwolke 25 vorliegen, verbreitern sich die Impulse der gesendeten Impulsfolge A, und es kommt zu einer Pulsdispersion wie in Figur 7b dargestellt. Die Breite der empfangenen Impulse in Figur 7b ist ein Maß, ob Rauch vorliegt oder nicht. Dies kann mittels eines Schwellwertvergleichs von dem Prozessor 7 ermittelt werden. Dieser Schwellwert wird dann vorgegeben und im Speicher 8 abgelegt.
Eine weitere Ausführungsform, Gegenstände von einer Rauchwolke zu unterscheiden, ist die Verwendung einer Lichtquelle mit durchstimmbarer Wellenlänge als Lichtsender 1. Es kann beispielsweise ein durchstimmbarer Halbleiterlaser im Infrarotbereich verwendet werden, der über einen vorgegebenen Wellenlängenbereich durchgestimmt wird, um zu erkennen, ob die gestreuten Lichtsignale abhängig von der Wellenlänge sind. Diese Streuung wird Rayleighstreuung genannt. Bei kleinen Partikeln, wie sie in einer Rauchwolke vorkommen, ist diese Rayleighstreuung wellenlängenabhängig. Der Prozessor 7 wird damit über die Senderansteuerung 5 über die momentan verwendete Wellenlänge informiert, um dann die empfangenen Signale als Funktion der Sendewellenlänge zu analysieren. Ergibt diese Funktion eine Waagrechte oder eine annähernd Waagrechte, dann ist ein Gegenstand in den Streupunkt 4 eingebracht worden, da große Gegenstände, die insbesondere groß gegenüber der verwendeten Wellenlänge sind, keine Intensitätsabhängigkeit von der Wellenlänge aufweisen. Damit ist eine eindeutige Detektion möglich, ob ein Fremdkörper oder Rauch im Gebiet um den Streupunkt 4 vorliegt.
Neben einem durchstimmbaren Laser ist es auch möglich, eine Lampe zu verwenden, die bei mehreren Wellenlängen Licht emittiert und über einen Filter dann diese einzelnen Wellenlängen zu selektieren.
In Figur 5 ist eine fünfte Ausführungsform des erfindungsgemäßen Streulichtrauchmelders dargestellt. Die Abdeckung 3 schützt erneut den Streulichtrauchmelder vor äußeren Eingriffen. Der Lichtsender 1 ist über seinen Eingang mit der Senderansteuerung 5 verbunden, wobei die Senderansteuerung 5 über einen Datenausgang mit einem ersten Dateneingang des Prozessors 7 verbunden ist. Der Prozessor 7 ist über einen Datenein-/-ausgang mit dem Speicher 8 verbunden. Über einen zweiten Dateneingang ist der Prozessor 7 mit der Empfangsauswertung 6 verbunden. An einen Datenausgang des Prozessors 7 ist die Signalisierungsvorrichtung 9 angeschlossen. Der Lichtempfänger 2 ist an einen Eingang der Empfängerauswertung 6 angeschlossen. Um den Lichtempfänger 2 ist ein Ellepsoid 20 angeordnet, der dafür sorgt, dass möglichst viel Streulicht in den Lichtempfänger 2 eingekoppelt wird. Dies verbessert den Signal-zu-Rausch-Abstand des Streulichtrauchmelders. Eine alternative Methode ist, dass ein stärkerer Lichtsender 1 verwendet wird.
In Fig. 8 ist der erfindungsgemäße Streulichtrauchmelder mit einer Ultraschalldetektion dargestellt. Der Lichtsender 1 und der Lichtempfänger 2 sind so angeordnet, dass der Streupunkt 4 außerhalb des Streulichtrauchmelders im Freien liegt. Die Abdeckung 3 schützt den Streulichtrauchmelder vor äußeren Angriffen. An einen Eingang des Lichtsenders 1 ist die Senderansteuerung 5 angeschlossen. Ein Datenausgang der Senderansteuerung 5 führt zu einem ersten Dateneingang des Prozessors 7. An einen zweiten Dateneingang des Prozessors 7 ist eine Signalverarbeitung 28 angeschlossen, wobei anderen Eingang ein Ultraschallempfänger 27 angeschlossen ist. Der Ultraschallempfänger ist auf den Streupunkt 4 ausgerichtet, auf den auch ein Ultraschallsender 26 ausgerichtet ist. Der Ultraschallsender wird entweder im Dauerbetrieb oder in periodischen Zeitabschnitten betrieben.
An einen dritten Eingang des Prozessors 7 ist die Empfangsauswertung 6 angeschlossen. An einen Datenausgang des Prozessors 7 ist eine Signalisierung 9 angeschlossen. Über einen Datenein-\-ausgang ist der Prozessor 7 mit dem Speicher 8 verbunden. An einen Eingang der Empfangsauswertung 6 ist der Lichtempfänger 2 angeschlossen.
Liegt ein Fremdkörper im Gebiet um den Streupunkt 4, dann empfangen sowohl der Lichtempfänger 2 als auch der Ultraschallempfänger 27 Signale, so dass der Prozessor 7 anhand des Empfangssignals von der Signalverarbeitung 28, die die Empfangssignale von dem Ultraschallempfänger 27 verstärkt und digitalisiert, erkennt, dass es sich um einen Fremdkörper handelt und nicht um Rauch, der die Streusignale, die der Lichtempfänger 2 empfängt, verursacht. Damit wird das optische Empfangssignal durch das Ultraschallempfangssignal überwacht. Handelt es sich um Rauch, der die Streusignale im Streupunkt 4 hervorruft, dann erhält der Ultraschallempfänger kein Empfangssignal. Ultraschallwellen bieten die Möglichkeit, gezielt ein Gebiet zu beschallen, so dass Fehlsignale unwahrscheinlich sind.
Die Funktion eines Ultraschall-Senders und -Empfängers kann auch in einem Bauteil integriert sein. Es wird zunächst ein Ultraschallimpuls abgestrahlt. Dann stellt man auf Empfang um und wartet auf das von einem gegebenenfalls vorhandenen Gegenstand reflektiertem Signal (Echobetrieb).

Claims (10)

  1. Streulichtrauchmelder, wobei der Streulichtrauchmelder einen Lichtsender (1) und einen Lichtempfänger (2) aufweist, die derart angeordnet sind, so dass der Streupunkt (4) von dem Lichtsender (1) und dem Lichtempfänger (2) außerhalb des Streulichtrauchmelders im Freien liegt, dadurch gekennzeichnet, dass der Streulichtrauchmelder eine Abdeckung (3) zum Schutz des Lichtsenders und des Lichtempfängers (2) und Mittel (7) zur Unterscheidung zwischen Rauch und anderen Fremdkörpern, die sich in einem Gebiet um den Streupunkt (4) befinden, aufweist.
  2. Streulichtrauchmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel zur Unterscheidung zwischen Rauch und anderen Fremdkörpern einen Prozessor (7) zur Analyse des Zeitverlaufs von Empfangssignalen des Lichtempfängers (2) aufweisen, wobei der Prozessor (7) an den Lichtempfänger (2) angeschließbar ist.
  3. Streulichtrauchmelder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mittel zur Unterscheidung zwischen Rauch und anderen Fremdkörpern eine Optik (10, 11) an dem Lichtempfänger (2) aufweisen, die Streusignale aus mehreren Streubereichen in einem Gebiet um den Streupunkt (4) in den Lichtempfänger (2) einkoppelt.
  4. Streulichtrauchmelder nach Anspruch 1, dadurch gekennzeichnet, dass die Optik als Facettenspiegel (10, 11) ausgebildet ist.
  5. Streulichtrauchmelder nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass der Lichtempfänger als ein Fotoempfänger-Array (12) ausgebildet ist, wobei der Fotoempfänger-Array (12) wenigstens zwei Fotoempfänger-Elemente aufweist.
  6. Streulichtrauchmelder nach Anspruch 5, dadurch gekennzeichnet, dass ein Linsensystem (14) vor dem Fotoempfänger-Array (12) angeordnet ist.
  7. Streulichtrauchmelder nach Anspruch 2, 3, 4, 5 oder 6, dadurch gekennzeichnet, dass der Lichtsender (1) als eine durchstimmbare Lichtquelle ausgebildet ist, wobei die durchstimmbare Lichtquelle in Abhängigkeit von Steuersignalen von einer Senderansteuerung (5) Licht mit einer veränderten Wellenlänge emittiert.
  8. Streulichtrauchmelder nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Lichtsender (1) mit einem Amplitudenmodulator (19) verbindbar ist.
  9. Streulichtrauchmelder nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der Streulichtrauchmelder einen Ultraschallsensor aufweist, wobei der Ultraschallsensor einen Ultraschallsender und einen Ultraschallempfänger aufweist und dass der Ultraschallsensor derart angeordnet ist, so dass der Ultraschallsensor das Gebiet um den Streupunkt (4) überwacht.
  10. Streulichtrauchmelder nach Anspruch 9, dadurch gekennzeichnet, dass der Ultraschallsensor im Echobetrieb betreibbar ist.
EP01122157A 2000-09-22 2001-09-15 Streulichtrauchmelder Expired - Lifetime EP1191496B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10046992 2000-09-22
DE10046992A DE10046992C1 (de) 2000-09-22 2000-09-22 Streulichtrauchmelder

Publications (3)

Publication Number Publication Date
EP1191496A1 true EP1191496A1 (de) 2002-03-27
EP1191496B1 EP1191496B1 (de) 2004-08-11
EP1191496B2 EP1191496B2 (de) 2010-11-24

Family

ID=7657231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01122157A Expired - Lifetime EP1191496B2 (de) 2000-09-22 2001-09-15 Streulichtrauchmelder

Country Status (6)

Country Link
US (1) US6515589B2 (de)
EP (1) EP1191496B2 (de)
AT (1) ATE273545T1 (de)
DE (3) DE10046992C1 (de)
ES (1) ES2225374T5 (de)
TR (1) TR200402201T4 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043451A2 (de) 2006-10-09 2008-04-17 Schako Klima Luft Ferdinand Schad Kg Vorrichtung zur erkennung von rauch in einem raum
DE102007013295A1 (de) 2007-03-16 2008-09-18 Aoa Apparatebau Gauting Gmbh Rauchmelder
EP2043068A1 (de) * 2007-09-28 2009-04-01 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Vorrichtung zur Überwachung eines Brandmelders und Konfigurierungsverfahren und Brandmelder
EP2093734A1 (de) 2008-02-19 2009-08-26 Siemens Aktiengesellschaft Rauchmelder mit zeitlicher Auswertung eines Rückstreusignals, Testverfahren für Funktionsfähigkeit eines Rauchmelders
EP2189956A1 (de) 2008-11-21 2010-05-26 Hekatron Vertriebs GmbH Brandmelder und Verfahren zur Erkennung von Verschmutzungen
EP2348495A1 (de) * 2009-12-04 2011-07-27 Atral-Secal GmbH Rauchmelder mit Ultraschall-Abdecküberwachung
WO2012167858A1 (de) * 2011-06-09 2012-12-13 Ista International Gmbh Rauchwarnmelder und verfahren zu dessen betrieb
DE102006023048C5 (de) * 2006-05-17 2014-12-11 Techem Energy Services Gmbh Brandwarnmelder und Verfahren zur Überprüfung dessen Funktionsfähigkeit
EP2839448B1 (de) 2012-09-07 2015-07-22 Amrona AG Vorrichtung und verfahren zum detektieren von streulichtsignalen
EP3029647A1 (de) 2014-12-04 2016-06-08 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
EP3091516A1 (de) 2015-05-06 2016-11-09 Siemens Schweiz AG Offener streulichtrauchmelder sowie mobiles kommunikationsgerät für einen derartigen offenen streulichtrauchmelder zum empfang von melderdaten und zum senden von update-daten
EP3091517A1 (de) 2015-05-06 2016-11-09 Siemens Schweiz AG Offener streulichtrauchmelder sowie prüfgerät für einen derartigen offenen streulichtrauchmelder
EP2423895B1 (de) 2010-08-26 2017-03-08 Siemens Schweiz AG Streulicht-Brandmelder mit Mitteln zur Unterdrückung einer akustischen Warnung im Falle einer niedrigen Batteriespannung
EP2879104B1 (de) 2013-11-27 2018-05-30 Siemens Schweiz AG Zusatzeinrichtung für einen als Punktmelder ausgebildeten Gefahrenmelder zur Funktionsüberwachung des Gefahrenmelders, sowie Anordnung und Verwendung einer solchen Einrichtung
EP3547278A3 (de) * 2018-03-26 2019-11-20 Kidde Technologies, Inc. Schutzabdeckung für kammerlosen punktsensor
DE102023203881A1 (de) 2023-04-26 2024-10-31 Hekatron Vertriebs Gmbh Brandmelder und Vorrichtung zur Überwachung

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876305B2 (en) * 1999-12-08 2005-04-05 Gentex Corporation Compact particle sensor
DE10232878B4 (de) * 2002-07-19 2012-02-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Distanzmessung
DE10246056A1 (de) * 2002-10-02 2004-04-22 Robert Bosch Gmbh Rauchmelder
AU2003902319A0 (en) 2003-05-14 2003-05-29 Garrett Thermal Systems Limited Laser video detector
JP4347296B2 (ja) * 2003-11-17 2009-10-21 ホーチキ株式会社 散乱光式煙感知器
DE102004001699A1 (de) 2004-01-13 2005-08-04 Robert Bosch Gmbh Brandmelder
DE102004002591B4 (de) 2004-01-16 2016-03-03 Robert Bosch Gmbh Brandmelder
CN101099186B (zh) * 2004-11-12 2012-01-18 Vfs技术有限公司 微粒探测器,系统与方法
DE102005045484A1 (de) 2005-07-29 2007-02-01 Cedes Ag Sensorvorrichtung
ES2306025T3 (es) * 2005-11-04 2008-11-01 Siemens Aktiengesellschaft Avisador de incendios combinados de luz dispersa y de extincion.
ES2306026T3 (es) * 2005-11-04 2008-11-01 Siemens Aktiengesellschaft Aseguramiento frente a la manipulacion de un avisador de incendios.
US7493816B1 (en) * 2007-09-28 2009-02-24 Honeywell International Inc. Smoke detectors
US8519854B2 (en) * 2007-10-26 2013-08-27 Panasonic Corporation Fire alarm system
EP3082117B1 (de) * 2007-11-15 2018-03-28 Garrett Thermal Systems Limited Partikelnachweis
US7760359B2 (en) * 2007-12-10 2010-07-20 Honeywell International Inc. Beam detector distance measurement
WO2010041476A1 (ja) * 2008-10-09 2010-04-15 ホーチキ株式会社 煙検出器
DE102009013556A1 (de) 2009-03-17 2010-09-30 Airbus Deutschland Gmbh Streulichtrauchmelder
WO2011033552A1 (ja) * 2009-09-15 2011-03-24 ホーチキ株式会社 煙感知器
WO2011057997A2 (fr) * 2009-11-16 2011-05-19 Thomson Licensing Procede d'estimation de diffusion de la lumiere
DE102010037744B3 (de) * 2010-09-23 2011-12-08 Sick Ag Optoelektronischer Sensor
US8624745B2 (en) 2011-03-16 2014-01-07 Honeywell International Inc. High sensitivity and high false alarm immunity optical smoke detector
DE102011108389A1 (de) 2011-07-22 2013-01-24 PPP "KB Pribor" Ltd. Rauchdetektor
DE102011108390B4 (de) 2011-07-22 2019-07-11 PPP "KB Pribor" Ltd. Verfahren zur Herstellung eines Rauchdetektors vom offenen Typ
DE102012201589A1 (de) 2012-02-03 2013-08-08 Robert Bosch Gmbh Brandmelder mit Mensch-Maschinen-Schnittstelle sowie Verfahren zur Steuerung des Brandmelders
US9191762B1 (en) 2012-02-23 2015-11-17 Joseph M. Matesa Alarm detection device and method
US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
US8947243B2 (en) 2012-04-29 2015-02-03 Valor Fire Safety, Llc Smoke detector with external sampling volume and utilizing internally reflected light
DE202013005222U1 (de) 2013-06-08 2013-07-01 Manuel Müller Deckenlampe mit Rauchmelder
CN105849787B (zh) * 2013-10-30 2019-02-15 瓦洛尔消防安全有限责任公司 具有外部采样体积和环境光抑制的烟雾探测器
DE102014200243A1 (de) 2014-01-09 2015-07-09 Robert Bosch Gmbh Rauchmelder mit Umgebungslichterkennung
US9652958B2 (en) 2014-06-19 2017-05-16 Carrier Corporation Chamber-less smoke sensor
GB2537940B (en) * 2015-05-01 2018-02-14 Thorn Security Fire detector drift compensation
ES2894676T3 (es) 2016-08-04 2022-02-15 Carrier Corp Detector de humo
EP3635700B1 (de) * 2017-06-05 2021-10-20 Carrier Corporation Verfahren zur überwachung des zustands einer schutzabdeckung einer detektionsvorrichtung
EP3635699B1 (de) 2017-06-09 2022-07-27 Carrier Corporation Kammerloser rauchmelder mit erkennung und überwachung der innenraumluftqualität
EP3454311B1 (de) 2017-09-08 2020-06-10 Tyco Fire & Security GmbH Kammerloser rauchmelder
WO2020010599A1 (en) 2018-07-13 2020-01-16 Carrier Corporation High sensitivity fiber optic based detection
US11176796B2 (en) 2018-07-13 2021-11-16 Carrier Corporation High sensitivity fiber optic based detection
EP3821415A2 (de) 2018-07-13 2021-05-19 Carrier Corporation Erhöhte robustheit für hochempfindliche faseroptische rauchdetektion
DE102018216836B3 (de) * 2018-10-01 2020-02-13 Siemens Schweiz Ag Offener Streulichtrauchmelder mit koaxialer Anordnung von Lichtsender und Lichtempfänger
WO2020118001A1 (en) * 2018-12-05 2020-06-11 Carrier Corporation Fire detection with data transmission
CN113470301A (zh) * 2021-07-29 2021-10-01 上海嘉筠通信技术有限公司 一种带自动灭火材料的烟雾报警器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206456A (en) * 1975-06-23 1980-06-03 Chloride Incorporated Smoke detector
EP0472039A2 (de) * 1990-08-23 1992-02-26 Nohmi Bosai Ltd. Feuer-Detektierungsverfahren und -vorrichtung
EP0978718A1 (de) * 1998-08-07 2000-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Erfassung von Rauch mittels eines Lidar-Systems
EP1039426A2 (de) * 1999-03-22 2000-09-27 Schako Metallwarenfabrik Ferdinand Schad Kg Vorrichtung zur Erkennung von Rauch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502434A (en) * 1992-05-29 1996-03-26 Hockiki Kabushiki Kaisha Smoke sensor
US5420567A (en) * 1993-02-02 1995-05-30 Schwarz; Frank Combination fire/intrusion alarm detectors using active infared elements
CH686914A5 (de) * 1993-12-20 1996-07-31 Cerberus Ag Brandmeldesystem zur Frueherkennung von Braenden.
DE4414166C1 (de) * 1994-04-22 1995-12-07 Lorenz Mesgeraetebau Verfahren und Vorrichtung zur Messung der Lichtstreuung an Partikeln
JPH1123458A (ja) * 1997-05-08 1999-01-29 Nittan Co Ltd 煙感知器および監視制御システム
US6150935A (en) * 1997-05-09 2000-11-21 Pittway Corporation Fire alarm system with discrimination between smoke and non-smoke phenomena
DE19951403B4 (de) 1999-10-26 2010-01-07 Schako Metallwarenfabrik Ferdinand Schad Kg Zweigniederlassung Kolbingen Verfahren zur Erkennung von Rauch
DE19912911C2 (de) * 1999-03-22 2001-07-19 Schako Metallwarenfabrik Vorrichtung zur Erkennung von Rauch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206456A (en) * 1975-06-23 1980-06-03 Chloride Incorporated Smoke detector
EP0472039A2 (de) * 1990-08-23 1992-02-26 Nohmi Bosai Ltd. Feuer-Detektierungsverfahren und -vorrichtung
EP0978718A1 (de) * 1998-08-07 2000-02-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Erfassung von Rauch mittels eines Lidar-Systems
EP1039426A2 (de) * 1999-03-22 2000-09-27 Schako Metallwarenfabrik Ferdinand Schad Kg Vorrichtung zur Erkennung von Rauch

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006023048C5 (de) * 2006-05-17 2014-12-11 Techem Energy Services Gmbh Brandwarnmelder und Verfahren zur Überprüfung dessen Funktionsfähigkeit
WO2008043451A3 (de) * 2006-10-09 2008-05-29 Schako Klima Luft Vorrichtung zur erkennung von rauch in einem raum
WO2008043451A2 (de) 2006-10-09 2008-04-17 Schako Klima Luft Ferdinand Schad Kg Vorrichtung zur erkennung von rauch in einem raum
DE102007013295A1 (de) 2007-03-16 2008-09-18 Aoa Apparatebau Gauting Gmbh Rauchmelder
EP2043068A1 (de) * 2007-09-28 2009-04-01 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Vorrichtung zur Überwachung eines Brandmelders und Konfigurierungsverfahren und Brandmelder
EP2043069A1 (de) 2007-09-28 2009-04-01 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Vorrichtung zur Überwachung eines Brandmelders und Konfigurierungsverfahren und Brandmelder
US8587442B2 (en) 2008-02-19 2013-11-19 Siemens Aktiengesellschaft Smoke alarm with temporal evaluation of a backscatter signal, test method for the functional capability of a smoke alarm
EP2093734A1 (de) 2008-02-19 2009-08-26 Siemens Aktiengesellschaft Rauchmelder mit zeitlicher Auswertung eines Rückstreusignals, Testverfahren für Funktionsfähigkeit eines Rauchmelders
EP2189956A1 (de) 2008-11-21 2010-05-26 Hekatron Vertriebs GmbH Brandmelder und Verfahren zur Erkennung von Verschmutzungen
EP2348495A1 (de) * 2009-12-04 2011-07-27 Atral-Secal GmbH Rauchmelder mit Ultraschall-Abdecküberwachung
EP2423895B1 (de) 2010-08-26 2017-03-08 Siemens Schweiz AG Streulicht-Brandmelder mit Mitteln zur Unterdrückung einer akustischen Warnung im Falle einer niedrigen Batteriespannung
WO2012167858A1 (de) * 2011-06-09 2012-12-13 Ista International Gmbh Rauchwarnmelder und verfahren zu dessen betrieb
EP2839448B1 (de) 2012-09-07 2015-07-22 Amrona AG Vorrichtung und verfahren zum detektieren von streulichtsignalen
EP2879104B1 (de) 2013-11-27 2018-05-30 Siemens Schweiz AG Zusatzeinrichtung für einen als Punktmelder ausgebildeten Gefahrenmelder zur Funktionsüberwachung des Gefahrenmelders, sowie Anordnung und Verwendung einer solchen Einrichtung
EP3029647A1 (de) 2014-12-04 2016-06-08 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
EP3029647B1 (de) 2014-12-04 2017-05-31 Siemens Schweiz AG Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
CN106248629A (zh) * 2015-05-06 2016-12-21 西门子瑞士有限公司 开放式散射光烟雾检测器及用于该类型开放式散射光烟雾检测器的测试设备
EP3091517A1 (de) 2015-05-06 2016-11-09 Siemens Schweiz AG Offener streulichtrauchmelder sowie prüfgerät für einen derartigen offenen streulichtrauchmelder
US9905102B2 (en) 2015-05-06 2018-02-27 Siemens Schweiz Ag Open scattered light smoke detector and testing device for an open scattered light smoke detector of this type
EP3091516A1 (de) 2015-05-06 2016-11-09 Siemens Schweiz AG Offener streulichtrauchmelder sowie mobiles kommunikationsgerät für einen derartigen offenen streulichtrauchmelder zum empfang von melderdaten und zum senden von update-daten
CN106248629B (zh) * 2015-05-06 2019-02-22 西门子瑞士有限公司 开放式散射光烟雾检测器及用于该类型开放式散射光烟雾检测器的测试设备
EP3547278A3 (de) * 2018-03-26 2019-11-20 Kidde Technologies, Inc. Schutzabdeckung für kammerlosen punktsensor
US11860092B2 (en) 2018-03-26 2024-01-02 Kidde Technologies, Inc. Protective cover for chamberless point sensor
DE102023203881A1 (de) 2023-04-26 2024-10-31 Hekatron Vertriebs Gmbh Brandmelder und Vorrichtung zur Überwachung

Also Published As

Publication number Publication date
DE10066246A1 (de) 2005-10-06
DE50103194D1 (de) 2004-09-16
US20020080040A1 (en) 2002-06-27
EP1191496B2 (de) 2010-11-24
EP1191496B1 (de) 2004-08-11
US6515589B2 (en) 2003-02-04
ES2225374T3 (es) 2005-03-16
ES2225374T5 (es) 2011-04-08
ATE273545T1 (de) 2004-08-15
TR200402201T4 (tr) 2004-10-21
DE10046992C1 (de) 2002-06-06

Similar Documents

Publication Publication Date Title
EP1191496B1 (de) Streulichtrauchmelder
EP2541273B1 (de) Erfassung und Abstandsbestimmung von Objekten
EP2093734B1 (de) Rauchmelder mit zeitlicher Auswertung eines Rückstreusignals, Testverfahren für Funktionsfähigkeit eines Rauchmelders
EP3029647B1 (de) Offener Streulichtrauchmelder, insbesondere mit einer Sidelooker-LED
EP0756703B1 (de) Vorrichtung zur messung der lichtstreuung an partikeln
EP2252984B1 (de) Auswerten eines differenzsignals zwischen ausgangssignalen zweier empfangseinrichtungen in einer sensorvorrichtung
EP2093733A1 (de) Rauchdetektion mittels zweier spektral unterschiedlicher Streulichtmessungen
DE102014100696B3 (de) Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
US7274448B2 (en) Short range LIDAR apparatus having a flat spatial response
EP1376504B1 (de) Streulichtrauchmelder
DE10229408B4 (de) Optischer Sensor
DE102006039670A1 (de) Partikelerfassungsvorrichtung und Partikelerfassungsverfahren, das dafür verwendet wird
EP1281166A1 (de) Bildgebender brandmelder
EP1012805B1 (de) Rauchmelder
DE3930272C2 (de)
DE69417531T2 (de) Integrierter Detektor für Laserfernmessköpfe
WO2018086786A1 (de) Partikelsensor mit wenigstens zwei laser-doppler-sensoren
EP2851704A1 (de) Vorrichtung und Verfahren zum optischen Bestimmen von Abständen zu Objekten in einem Überwachungsbereich
DE3917571C2 (de)
DE19511990C2 (de) Messvorrichtung zum Messen von Transversalgeschwindigkeit und Länge eines Messobjekts
CA2628027C (en) Short range lidar apparatus having a flat spatial response
EP1134595A2 (de) Verfahren zum Erfassen von Abständen von Objekten mittels eines Triangulations-Sensors und Triangulations-Sensor zum Durchführen des Verfahrens
EP2910972B1 (de) Entfernungsmessender Sensor und Verfahren zur Abstandsbestimmung von Objekten in einem Überwachungsbereich
DE102018216909B4 (de) Optische Brandsensorvorrichtung und entsprechendes Branderfassungsverfahren
EP4249948A1 (de) Erfassung und abstandsbestimmung eines objekts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020927

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040811

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040915

REF Corresponds to:

Ref document number: 50103194

Country of ref document: DE

Date of ref document: 20040916

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041111

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041215

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2225374

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20040930

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

ET Fr: translation filed
26 Opposition filed

Opponent name: NOVAR GMBH

Effective date: 20050509

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

BERE Be: lapsed

Owner name: ROBERT *BOSCH G.M.B.H.

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050111

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20101124

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2225374

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20110408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160921

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160923

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 273545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200914

Year of fee payment: 20

Ref country code: FR

Payment date: 20200921

Year of fee payment: 20

Ref country code: GB

Payment date: 20200923

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201121

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50103194

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210915