EP1188915B1 - Procédé de réglage de la régénération d'un catalyseur d'accumulation de NOx - Google Patents

Procédé de réglage de la régénération d'un catalyseur d'accumulation de NOx Download PDF

Info

Publication number
EP1188915B1
EP1188915B1 EP20010119751 EP01119751A EP1188915B1 EP 1188915 B1 EP1188915 B1 EP 1188915B1 EP 20010119751 EP20010119751 EP 20010119751 EP 01119751 A EP01119751 A EP 01119751A EP 1188915 B1 EP1188915 B1 EP 1188915B1
Authority
EP
European Patent Office
Prior art keywords
regeneration
catalytic converter
storage catalytic
storage
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010119751
Other languages
German (de)
English (en)
Other versions
EP1188915A2 (fr
EP1188915A3 (fr
Inventor
Ekkehard Dr. Pott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1188915A2 publication Critical patent/EP1188915A2/fr
Publication of EP1188915A3 publication Critical patent/EP1188915A3/fr
Application granted granted Critical
Publication of EP1188915B1 publication Critical patent/EP1188915B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0808NOx storage capacity, i.e. maximum amount of NOx that can be stored on NOx trap

Definitions

  • the invention relates to a method for controlling a NO x regeneration of a NO x storage catalytic converter with the features mentioned in the preamble of claim 1.
  • a reductant mass flow as well as a level of NO x formation during the combustion process are highly dependent on the mixture ratios prevailing during combustion.
  • phases of rich or stoichiometric operation a largely complete conversion to NO x is ensured.
  • the NO x reduction is reduced because of an excess of oxygen.
  • Such memory components sorbed in phases lean operation NO x and store this one as nitrate.
  • desorption of NO x occurs again.
  • the catalyst component for reducing the NO x and the storage component can be combined to form a so-called NO x storage catalyst.
  • a storage capacity of the NO x storage catalytic converter is naturally limited. Therefore, such a NO x storage catalyst must be regenerated at regular intervals.
  • the NO x regeneration takes place by changing to stoichiometric or rich operation, wherein the incorporated nitrate is again desorbed as NO x and reduced to nitrogen at the catalyst component with the aid of the reducing agent.
  • the NO x regeneration in the case of NO x storage catalytic converter systems is initiated, for example, after reaching a predetermined NO x charge state or after exceeding a predetermined NO x concentration downstream of the NO x storage catalytic converter.
  • a predetermined NO x concentration downstream of the NO x storage catalytic converter For example, it is known from WO 99/35386, to determine a current NO x -BleadungsSullivan a NO x storage in dependence on previous engine operating time, traveled distance and / or operating conditions of the NO x storage (such as catalyst temperature, exhaust gas mass flow or Abgaslambda) and when exceeded a load state threshold to initialize a NO x regeneration.
  • the threshold for the loading state can be adapted to the aging state of the NO x storage.
  • a reducing agent mass flow is increased by a motor intervention, for example in the region of the throttle valves or of the injection system.
  • the increase takes place in that a lambda value in front of the NO x storage catalytic converter is lowered to a predetermined rich desired value.
  • the lambda value is predetermined as a function of the exhaust gas temperature and the exhaust gas mass flow.
  • the NO x regeneration is generally terminated when the lambda value, or a lambda-proportional voltage correlating thereto, at a gas probe disposed downstream of the NO x storage catalyst exceeds a predetermined threshold (regeneration termination voltage threshold).
  • Both the regeneration abort voltage threshold and the rich lambda setpoint during NO x regeneration are set independent of the catalyst state in the prior art. This involves the risk that the NO x regeneration of aged, that is damaged, NO x storage catalysts is not carried out as needed. Thus, with very large reductant mass flows and low regeneration termination voltage thresholds, only partial regeneration of the NO x storage catalytic converter is to be expected.
  • the high reducing agent mass flow is used only partially for NO x regeneration, and thus shortly after the beginning of the NO x regeneration a slightly rich exhaust gas passes through the NO x storage catalytic converter and leads to the termination of the NO x regeneration.
  • Object of the present invention is therefore to provide a generic method available, with a need-based implementation of NO x regeneration can be carried out taking into account the catalyst state. In this case, a complete regeneration while avoiding Reduktionsstoff be achieved especially in damaged NO x storage.
  • this object is achieved by the method for controlling a NO x regeneration of a arranged in the exhaust line of a lean-running internal combustion engine NO x storage catalytic converter with the features mentioned in claim 1.
  • the damage state of the NO x storage catalytic converter is assessed on the basis of a current NO x storage capacity in comparison to a NO x storage capacity of an undamaged NO x storage catalytic converter.
  • the NO x storage capacity can be determined with known models based on the signals provided by the sensor signals of the emission control system. In this case, variables such as a current NO x charge state and a remaining NO x storage capability can be taken into account.
  • the regeneration interrupt voltage threshold can be increased. The former measure reduces the likelihood of reductant mass breakthroughs, since even at high space velocities of the exhaust gas, an almost complete conversion in the NO x storage catalytic converter is ensured. By increasing the regeneration termination voltage threshold, a higher NO x breakthrough emission can be tolerated alongside or in combination.
  • the exhaust gas purification system 12 comprises at least one NO x storage catalytic converter 14 and a suitable sensor system for detecting operating parameters in the exhaust gas line 16.
  • This sensor system includes downstream and upstream of the NO x Storage catalytic converter 14 arranged gas sensors, here the lambda probes 18, 20 and a NO x -sensitive measuring device 22nd
  • the sensors provided by the signals are in an engine control unit 24th read in and evaluated there using stored algorithms.
  • About the Engine control unit 24 may then initiate a control action to change during a Combustion process of the internal combustion engine 10 prevailing conditions respectively.
  • an actuator 26 a throttle valve 26 in an intake passage 28 is shown.
  • About a change in a throttle angle can then Inlet volume of the internal combustion engine 10 can be influenced.
  • injection parameters such as a Injection duration, injection angle, injection volume and the like.
  • the engine control unit 24 is further integrated with a control unit 30, with a Adaptation of a regeneration interrupt voltage threshold and / or the Reductant mass flow depending on a catalyst state carried out can.
  • a corresponding algorithm is stored in the control unit 30.
  • the Control unit 30 can of course also be implemented as a separate unit become.
  • the catalyst state can also be quantified with the aid of a model and made available, for example, as a percentage degree of damage to the further process.
  • the NO x storage capacity can in turn be determined using known models in which a NO x mass flow upstream of the NO x storage catalytic converter 14 is detected and an NO x breakthrough emission downstream of the NO x storage catalytic converter is checked.
  • the current state of the catalyst can then be characterized, for example, as 85% of a fresh NO x storage catalyst.
  • FIG. 2 shows, for a fresh and a damaged NO x storage catalytic converter 14, a voltage curve at the downstream lambda probe 20 and second setpoint values SV i for lambda upstream of the NO x storage catalytic converter 14 and regeneration termination voltage thresholds S i .
  • the voltage profile at the lambda probe 20 during the NO x regeneration of a fresh NO x storage catalytic converter is given by the curve 40 (bold solid line) and for the already damaged NO x storage catalytic converter by the curve 42 (dashed line).
  • the target specifications SV i which are predetermined during this rich regeneration phase of the internal combustion engine 10 by suitable influencing of the actuators for the lambda value in front of the NO x storage catalytic converter 14, are dependent on the catalyst state.
  • the situation is the same with the regeneration interrupt voltage thresholds S i , which, when reached at the lambda probe 20, again record a lean operation of the internal combustion engine 10.
  • a curve 44 shows the desired course of lambda in the case of NO x regeneration of a fresh NO x storage catalytic converter 14 (double, solid line).
  • the voltage signal at the lambda probe 20 shows a rapid increase resulting from the sudden increase in reductant breakdown emission. If the voltage reaches a regeneration interrupt voltage threshold S 1 , for example at 650 mV (time T E, 1 ), then the internal combustion engine 10 is switched back into the lean mode.
  • the reducing agent mass flow is reduced. This is done by appropriate specification of a target specification SV 2 for the rich regeneration phase - here, for example, to a lambda value of approximately 0.92. Along with this, the reducing agent mass flow also decreases, so that it is possible to prevent a slightly rich exhaust gas from passing through the NO x storage catalytic converter 14 shortly after the beginning of the NO x regeneration and possibly interrupting the NO x regeneration incompletely. Furthermore, in the present case, the regeneration interrupt voltage threshold S 2 is raised for this catalyst state. This additionally prolongs the rich regeneration phase, so that an almost complete NO x regeneration of the NO x storage catalytic converter 14 is ensured and a change to lean operation takes place only at a time point T E, 2 (curve 46, double dashed line).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (6)

  1. Procédé en vue de la régulation d'une régénération de NOx d'un catalyseur à accumulation de NOx disposé dans la ligne de gaz d'échappement d'un moteur à combustion interne capable de fonctionner à régime maigre, caractérisé en ce qu'un état d'endommagement du catalyseur à accumulation de NOx (14) est détecté et qu'en fonction de l'état d'endommagement, un courant massique de réducteur pendant la régénération de NOx et/ou un seuil de tension d'interruption de régénération (Si) sont prédéterminés au niveau d'une sonde de gaz d'échappement (20) de détermination, disposée en aval dans l'écoulement du catalyseur à accumulation de NOx (14).
  2. Procédé selon la revendication 1, caractérisé en ce que l'état d'endommagement du catalyseur à accumulation de NOx (14) est jugé à l'aide d'une capacité d'accumulation de NOx réelle par rapport à une capacité d'accumulation de NOx d'un catalyseur à accumulation de NOx non endommagé.
  3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le courant massique de réducteur est influencé par la régulation d'une valeur lambda avant le catalyseur à accumulation de NOx (14).
  4. Procédé selon la revendication 3, caractérisé en ce que la valeur lambda est déplacée pendant la régénération de NOx avec un degré d'endommagement croissant du catalyseur à accumulation de NOx (14) dans la direction λ = 1.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le seuil de tension d'interruption de régénération (Si) est augmenté avec un degré d'endommagement croissant du catalyseur à accumulation de NOx (14).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la sonde de gaz d'échappement (20) est une sonde lambda et/ou un capteur de NOx.
EP20010119751 2000-09-15 2001-08-28 Procédé de réglage de la régénération d'un catalyseur d'accumulation de NOx Expired - Lifetime EP1188915B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000145610 DE10045610A1 (de) 2000-09-15 2000-09-15 Verfahren zur Regelung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE10045610 2000-09-15

Publications (3)

Publication Number Publication Date
EP1188915A2 EP1188915A2 (fr) 2002-03-20
EP1188915A3 EP1188915A3 (fr) 2004-01-07
EP1188915B1 true EP1188915B1 (fr) 2005-11-16

Family

ID=7656276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010119751 Expired - Lifetime EP1188915B1 (fr) 2000-09-15 2001-08-28 Procédé de réglage de la régénération d'un catalyseur d'accumulation de NOx

Country Status (2)

Country Link
EP (1) EP1188915B1 (fr)
DE (2) DE10045610A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320257A1 (de) * 2003-05-07 2004-11-25 Daimlerchrysler Ag Verfahren zur Bestimmung des Gehalts einer Gaskomponente im Abgas einer Brennkraftmaschine
JP4826398B2 (ja) * 2006-09-06 2011-11-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE102019200367A1 (de) * 2019-01-15 2020-07-16 Ford Global Technologies, Llc Verfahren zum Bestimmen von Regenerationsparameterwerten eines Mehrfach-LNT-Katalysatorsystems und Vorrichtung zur Datenverarbeitung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138453A (en) * 1997-09-19 2000-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
DE59800195D1 (de) * 1998-01-09 2000-08-17 Ford Global Tech Inc Verfahren zur Regeneration einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors
DE19800665C1 (de) * 1998-01-10 1999-07-01 Degussa Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
JP3997599B2 (ja) * 1998-04-27 2007-10-24 株式会社デンソー 内燃機関の空燃比制御装置

Also Published As

Publication number Publication date
DE50108067D1 (de) 2005-12-22
DE10045610A1 (de) 2002-04-18
EP1188915A2 (fr) 2002-03-20
EP1188915A3 (fr) 2004-01-07

Similar Documents

Publication Publication Date Title
EP1250524B1 (fr) PROCEDE DE DESULFURATION D'UN CATALYSEUR ACCUMULATEUR DE NOx MONTE DANS LE CANAL POUR GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
EP0961876B1 (fr) Procede pour l'exploitation d'un moteur diesel
EP1084332B1 (fr) Procede pour actionner un moteur a combustion interne
EP1086741B1 (fr) Procédé pour commander la régénération d'un filtre à particules et la désulfuration d'un catalyseur d'accumulation des oxydes d'azote
EP1272744B1 (fr) DISPOSITIF ET PROCEDE POUR DETERMINER LA NECESSITE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx
EP1106798B1 (fr) Dispositif et procédé pour NOx- et/ou SOx régénération d'un catalyseur accumulateur de NOx
EP1224385B1 (fr) PROCEDE POUR ETABLIR UN DIAGNOSTIC SUR UN ETAT DE DETERIORATION DANS UN POT CATALYTIQUE A ACCUMULATION DE NOx MONTE DANS UN CANAL DE GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
DE10114456B4 (de) Vorrichtung und Verfahren zur Koordination von abgasrelevanten Maßnahmen
WO2003047732A1 (fr) Procede et systeme pour regenerer, notamment a desulfater un pot catalytique lors de la purification des gaz d'echappement
EP1188915B1 (fr) Procédé de réglage de la régénération d'un catalyseur d'accumulation de NOx
EP1255922B1 (fr) Dispositif et procede pour commander le mode de fonctionnement d'un moteur multicylindre pour vehicules automobiles comprenant une installation de purification des gaz d'echappement a plusieurs flux
DE10160704B4 (de) Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
EP1204815B1 (fr) Procede de reglage de la temperature des gaz d'echappement d'un moteur a combustion interne a melange pauvre pendant une desulfuration d'un catalyseur
EP1303690B1 (fr) Procede d'adaptation d'une gamme de temperature de consigne de catalyseur pour un catalyseur a accumulateur de no x?
DE10023079B4 (de) Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
EP1365131B1 (fr) Procédé de reglage d'un catalyseur d'accumulation de NOx
DE10260886B4 (de) Verfahren zur Durchführung einer NOx-Regeneration sowie Mehrzylindermotor mit mehrflutiger Abgasreinigungsanlage
DE10036390B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10018062A1 (de) Mehrzylindermotor für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage und Verfahren zur Steuerung eines Betriebs des Mehrzylindermotors
DE102017201399A1 (de) Abgasnachbehandlungssystem
EP1471222B1 (fr) Procédé de régénération d'un catalyseur de stockage pour moteur à combustion interne
EP1210509B1 (fr) Procede de regulation d'une operation de combustion d'un moteur a combustion interne pendant la regeneration d'un catalyseur a accumulateur
DE10114523B4 (de) Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
EP1287249B1 (fr) Moteur a combustion interne a injection directe et a allumage commande, et procede pour reduire la teneur en oxygene residuel des gaz d'echappement de ce moteur
EP1435444A2 (fr) Procédé pour faire fonctionner un moteur à combustion interne à émissions stables et véhicule à émissions stables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040707

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051116

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108067

Country of ref document: DE

Date of ref document: 20051222

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060817

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50108067

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170830

Year of fee payment: 17

Ref country code: DE

Payment date: 20170831

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108067

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828