EP1187915A2 - Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation - Google Patents

Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation

Info

Publication number
EP1187915A2
EP1187915A2 EP00921551A EP00921551A EP1187915A2 EP 1187915 A2 EP1187915 A2 EP 1187915A2 EP 00921551 A EP00921551 A EP 00921551A EP 00921551 A EP00921551 A EP 00921551A EP 1187915 A2 EP1187915 A2 EP 1187915A2
Authority
EP
European Patent Office
Prior art keywords
seq
polynucleotide
patient
sequences
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00921551A
Other languages
German (de)
English (en)
Inventor
Steven G. Reed
Michael J. Lodes
Raodoh Mohamath
Heather Secrist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corixa Corp
Original Assignee
Corixa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/370,838 external-priority patent/US6444425B1/en
Application filed by Corixa Corp filed Critical Corixa Corp
Publication of EP1187915A2 publication Critical patent/EP1187915A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464499Undefined tumor antigens, e.g. tumor lysate or antigens targeted by cells isolated from tumor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/55Lung
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Definitions

  • the present invention relates generally to compositions and methods for the treatment of lung cancer.
  • the invention is more specifically related to nucleotide sequences that are preferentially expressed in lung tumor tissue, together with polypeptides encoded by such nucleotide sequences.
  • the inventive nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the treatment of lung cancer.
  • compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.
  • vaccines are provided.
  • Such vaccines comprise a polypeptide or polynucleotide as described above and an immunostimulant.
  • the present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a lung tumor protein; and (b) a physiologically acceptable carrier.
  • compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient.
  • Antigen presenting cells include dendritic cells, macrophages. monocytes. fibroblasts and B cells.
  • vaccines are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.
  • the present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.
  • compositions comprising a fusion protein, or a polynucleotide encoding a fusion protein, in combination with a physiologically acceptable carrier are provided.
  • Vaccines are further provided, within other aspects, that comprise a fusion protein, or a polynucleotide encoding a fusion protein, in combination with an immunostimulant.
  • Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.
  • the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide.
  • the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.
  • SEQ ID NO: 296 s the determined cDNA sequence for SCC 1-348
  • SEQ ID NO: 300 s the determined cDNA sequence for SCC 1-355
  • SEQ ID NO: 301 s the determined cDNA sequence for SCCl-356
  • SEQ ID NO: 302 s the determined cDNA sequence for SCC1-357
  • SEQ ID NO: 314 iis the determined cDNA sequence for SCC 1-530
  • SEQ ID NO: 317 i is the determined cDNA sequence for SCC 1-533
  • SEQ ID NO: 319 iis the determined cDNA sequence for SCC 1-538
  • SEQ ID NO: 320 i is the determined cDNA sequence for SCC1-539
  • SEQ ID NO: 321 i is the determined cDNA sequence for SCC 1-541
  • SEQ ID NO: 322 i is the determined cDNA sequence for SCC 1-542
  • SEQ ID NO: 324 iis the determined cDNA sequence for SCC 1-549
  • SEQ ID NO: 325 iis the determined cDNA sequence for SCC1-551
  • SEQ ID NO: 326 i is the determined cDNA sequence for SCC1-552
  • SEQ ID NO: 330 iis the determined cDNA sequence for SCC 1-561
  • SEQ ID NO: 331 i is the determined cDNA sequence for SCC 1-562
  • SEQ ID NO: 332 i is the determined cDNA sequence for SCC 1-564
  • SEQ ID NO: 338 iis the determined cDNA sequence for SCC 1-572
  • SEQ ID NO: 340 i is the determined cDNA sequence for SCC 1-576
  • SEQ ID NO: 341 i is the determined cDNA sequence for SCC 1-577
  • the present invention is based on the discovery of human lung tumor proteins. Sequences of polynucleotides encoding specific tumor proteins are provided in SEQ ID NOS: 1-31, 49-55, 63,64, 66, 68-72, 78-80, 84-92 and 217-389.
  • RNA molecules include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.
  • Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a lung tumor protein or a portion thereof) or may comprise a variant of such a sequence.
  • Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native tumor protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein.
  • Variants preferably exhibit at least about 70% identity, more preferably at least about 80%) identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native lung tumor protein or a portion thereof.
  • Two polynucleotide or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acids in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity.
  • a “comparison window” as used herein refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
  • amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence.
  • amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step.
  • Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50%> and anneal to the target sequence at temperatures of about 68°C to 72°C.
  • the amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.
  • amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 7(5:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region.
  • sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region.
  • RACE Rapid amplification of cDNA ends
  • This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 7 : 111 - 19, 1991 ) and walking PCR (Parker et al., Nucl. Acids. Res. 79:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.
  • polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below.
  • a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art.
  • Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243- 247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones.
  • antisera and antibodies are "antigen- specific" if they specifically bind to an antigen (i.e.. they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins).
  • antisera and antibodies may be prepared as described herein, and using well known techniques.
  • a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, 125 I-labeled Protein A.
  • Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed.
  • Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal ofthe mature protein.
  • Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.
  • a suitable purification matrix such as an affinity matrix or an ion exchange resin.
  • a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein.
  • a fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein.
  • Certain preferred fusion partners are both immunological and expression enhancing fusion partners.
  • Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments.
  • Still further fusion partners include affinity tags, which facilitate purification ofthe protein.
  • the ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements.
  • the regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides.
  • stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.
  • the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells.
  • a preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.
  • Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues.
  • a linker group which is cleavable during or upon internalization into a cell.
  • a number of different cleavable linker groups have been described.
  • the mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No.
  • immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.
  • T cells are considered to be specific for a lung tumor polypeptide if the T cells kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide.
  • T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques.
  • compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive.
  • one or more immunogenic portions of other tumor antigens may be present, either inco ⁇ orated into a fusion polypeptide or as a separate compound, within the composition or vaccine.
  • a pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ.
  • Thl -type cytokines will increase to a greater extent than the level of Th2-type cytokines.
  • the levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.
  • Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the lung tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors).
  • the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule).
  • a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.
  • immunotherapy may be active immunotherapy, in which treatment relies on the in vivo stimulation of the endogenous host immune system to react against tumors with the admimstration of immune response-modifying agents (such as polypeptides and polynucleotides disclosed herein).
  • immune response-modifying agents such as polypeptides and polynucleotides disclosed herein.
  • immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system.
  • agents with established tumor-immune reactivity such as effector cells or antibodies
  • effector cells include T cells as discussed above, T lymphocytes (such as CD8 + cytotoxic T lymphocytes and CD4 + T-helper tumor- infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine- activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein.
  • a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated ex vivo for transplant back into the same patient.
  • Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.
  • immobilization refers to both noncovalent association, such as adso ⁇ tion, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adso ⁇ tion to a well in a microtiter plate or to a membrane is preferred. In such cases, adso ⁇ tion may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day.
  • the detection reagent is then incubated with the immobilized antibody- polypeptide complex for an amount of time sufficient to detect the bound polypeptide.
  • An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time.
  • Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group.
  • the method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme).
  • T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with polypeptide (e.g., 5 - 25 ⁇ g/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of lung tumor polypeptide to serve as a control.
  • activation is preferably detected by evaluating proliferation of the T cells.
  • activation is preferably detected by evaluating cytolytic activity.
  • a level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20%) greater than in disease-free patients indicates the presence of a cancer in the patient.
  • a cancer may also, or alternatively, be detected based on the level of mRNA encoding a lung tumor protein in a biological sample.
  • at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a lung tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (i.e., hybridizes to) a polynucleotide encoding the lung tumor protein.
  • PCR polymerase chain reaction
  • the amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis.
  • oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%o, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a lung tumor protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length.
  • oligonucleotide primers and/or probes will hybridize to a polynucleotide encoding a polypeptide disclosed herein under moderately stringent conditions, as defined above.
  • kits for use within any of the above diagnostic methods.
  • Such kits typically comprise two or more components necessary for performing a diagnostic assay.
  • Components may be compounds, reagents, containers and/or equipment.
  • one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a lung tumor protein.
  • Such antibodies or fragments may be provided attached to a support material, as described above.
  • One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay.
  • Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.
  • a human lung tumor directional cDNA expression library was constructed employing the Lambda ZAP Express expression system (Stratagene, La Jolla. CA). Total RNA for the library was taken from a late SCID mouse passaged human squamous epithelial lung carcinoma and poly A+ RNA was isolated using the Message Maker kit (Gibco BRL, Gaithersburg, MD). The resulting library was screened using E.
  • the determined cDNA sequences of these clones are provided in SEQ ID NO: 290-362.
  • the sequences of SEQ ID NO: 289-292. 294. 296-297, 300, 302, 303. 305. 307-315, 317-320, 322-325. 327-332, 334, 335, 338- 341, 343-352, 354-358, 360 and 362 were found to show some homology to previously isolated genes.
  • the sequences of SEQ ID NO: 293, 295, 298. 299, 301, 304. 306, 316, 321, 326, 333. 336. 337, 342, 353, 359 and 361 were found to show some homology to previously identified ESTs.
  • This example illustrates the isolation of cDNA sequences encoding lung tumor antigens by screening of lung tumor cDNA libraries with mouse anti-tumor sera.
  • two directional cDNA libraries (referred to as LT46-90 and LT86-21) were prepared from two late passaged lung squamous carcinomas grown in SCID mice and screened with sera obtained from SCID mice implanted with human squamous lung carcinomas.
  • the determined cDNA sequences for the isolated clones are provided in SEQ ID NO: 217-237 and 286-289.
  • SEQ ID NO: 286 was found to be a longer sequence of LT4690-71 (SEQ ID NO: 237). Comparison of these sequences with those in the public databases revealed no known homologies to the sequences of SEQ ID NO: 219, 220. 225, 226, 287 and 288. The sequences of SEQ ID NO: 218.
  • a lung tumor directional cDNA expression library was constructed employing the Lambda ZAP Express expression system (Stratagene, La Jolla, CA). Total RNA for the library was taken from a pool of two human squamous epithelial lung carcinomas and poly A+ RNA was isolated using oligo-dT cellulose (Gibco BRL, Gaithersburg, MD). Phagemid were rescued at random and the cDNA sequences of isolated clones were determined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne des compositions et des méthodes de thérapie et de diagnostic du cancer, tel que le cancer du poumon. Les compositions peuvent renfermer au moins une protéine de tumeur pulmonaire, des parties immunogéniques de cette protéine, ou des polynucléotides codant pour ces parties. Dans un autre mode de réalisation, une composition thérapeutique peut renfermer une cellule présentatrice d'antigène exprimant une protéine de tumeur pulmonaire, ou un lymphocyte T spécifique à des cellules exprimant une telle protéine. Ces compositions peuvent, par exemple, être utilisées pour prévenir et traiter des maladies, telles que le cancer du poumon. L'invention concerne également des méthodes diagnostiques basées sur la détection d'une protéine de tumeur pulmonaire, ou un ARNm codant pour cette protéine, dans un échantillon.
EP00921551A 1999-04-02 2000-03-30 Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation Withdrawn EP1187915A2 (fr)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US476235 1983-03-17
US28532399A 1999-04-02 1999-04-02
US285323 1999-04-02
US370838 1999-08-09
US09/370,838 US6444425B1 (en) 1999-04-02 1999-08-09 Compounds for therapy and diagnosis of lung cancer and methods for their use
US47623599A 1999-12-30 1999-12-30
US51880900A 2000-03-03 2000-03-03
US518809 2000-03-03
PCT/US2000/008560 WO2000060077A2 (fr) 1999-04-02 2000-03-30 Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation

Publications (1)

Publication Number Publication Date
EP1187915A2 true EP1187915A2 (fr) 2002-03-20

Family

ID=27501392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00921551A Withdrawn EP1187915A2 (fr) 1999-04-02 2000-03-30 Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation

Country Status (5)

Country Link
EP (1) EP1187915A2 (fr)
JP (1) JP2002540790A (fr)
AU (1) AU4185100A (fr)
HK (1) HK1045332A1 (fr)
WO (1) WO2000060077A2 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759508B2 (en) 2000-09-01 2004-07-06 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
GB9924060D0 (en) * 1999-10-11 1999-12-15 Chiron Spa VIP54 protein
AU2001261007A1 (en) * 2000-03-29 2001-10-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO2002018562A1 (fr) * 2000-08-28 2002-03-07 Teijin Limited Enzymes de type trypsine propres aux voies respiratoires et leur procede d'utilisation
WO2003000727A2 (fr) 2001-06-21 2003-01-03 Isis Innovation Limited Atopie
AU2007216892B2 (en) * 2002-08-16 2011-02-10 Agensys, Inc. Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
WO2004016643A2 (fr) * 2002-08-16 2004-02-26 Yeda Research And Development Co. Ltd. Antigene specifique de tumeurs, peptides associes et utilisation de ceux-ci en tant que vaccins antitomoraux
WO2004016733A2 (fr) 2002-08-16 2004-02-26 Agensys, Inc. Acides nucleiques et proteines correspondantes connues sous 251p5g2 que l'on utilise dans le traitement et la detection de cancers
JP5648261B2 (ja) * 2006-12-20 2015-01-07 東レ株式会社 癌の検出方法
CN102171570B (zh) 2008-08-05 2014-10-15 东丽株式会社 用于检测癌的方法
EP2322221B1 (fr) 2008-08-05 2014-07-09 Toray Industries, Inc. Composition pharmaceutique pour le traitement et la prévention du cancer
AU2011211699B2 (en) 2010-02-04 2015-01-22 Toray Industries, Inc. Pharmaceutical composition for treating and/or preventing cancer
US8709418B2 (en) 2010-02-04 2014-04-29 Toray Industries, Inc. Pharmaceutical composition for treating CAPRIN-1 expressing cancer
MX342291B (es) 2010-02-04 2016-09-23 Toray Industries Composicion farmaceutica para el tratamiento y/o prevencion del cancer.
RU2607366C2 (ru) 2010-02-04 2017-01-10 Торэй Индастриз, Инк. Фармацевтическая композиция для лечения и/или профилактики рака
WO2011096517A1 (fr) * 2010-02-04 2011-08-11 東レ株式会社 Composition pharmaceutique pour le traitement et/ou la prévention du cancer
RU2624029C2 (ru) 2010-02-04 2017-06-30 Торэй Индастриз, Инк. Лекарственный препарат для лечения и/или профилактики рака
ES2618026T3 (es) 2011-08-04 2017-06-20 Toray Industries, Inc. Composición farmacológica para el tratamiento y/o la prevención del cáncer
CA2844042C (fr) 2011-08-04 2019-06-18 Toray Industries, Inc. Composition pharmaceutique destinee a traiter ou a prevenir le cancer
US9175074B2 (en) 2011-08-04 2015-11-03 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prophylaxis of cancer
JP6065591B2 (ja) 2011-08-04 2017-01-25 東レ株式会社 癌の治療及び/又は予防用医薬組成物
WO2013018885A1 (fr) 2011-08-04 2013-02-07 東レ株式会社 Procédé de détection du cancer du pancréas
ES2609846T3 (es) 2011-08-04 2017-04-24 Toray Industries, Inc. Composición farmacéutica para el tratamiento y/o prevención del cáncer pancreático
PT2740793T (pt) 2011-08-04 2018-02-23 Toray Industries Composição de fármacos para o tratamento e/ou a prevenção de cancro
MX360211B (es) 2012-02-21 2018-10-24 Toray Industries Composicion farmaceutica para el tratamiento y/o prevencion del cancer.
PT2818481T (pt) 2012-02-21 2019-10-25 Toray Industries Composição farmacêutica para tratamento e/ou prevenção de cancro
PT2818482T (pt) 2012-02-21 2019-08-06 Toray Industries Composição farmacêutica para o tratamento de cancro
HUE034736T2 (en) 2012-02-21 2018-02-28 Toray Industries A pharmaceutical composition for the treatment and / or prevention of cancer
RU2649802C2 (ru) 2012-03-30 2018-04-04 Торэй Индастриз, Инк. Фармацевтическая композиция для лечения и/или предотвращения рака желчного пузыря
RU2640245C2 (ru) 2012-03-30 2017-12-27 Торэй Индастриз, Инк. Фармацевтическая композиция для лечения и/или предотвращения рака печени
MX358772B (es) 2012-07-19 2018-09-04 Toray Industries Metodo para detectar cancer.
DK2876446T3 (en) 2012-07-19 2019-03-11 Toray Industries Method for detecting cancer
BR112016001753B1 (pt) 2013-08-09 2023-10-03 Toray Industries, Inc Anticorpo, composição de anticorpo, composição farmacêutica, dna e uso de um anticorpo

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589579A (en) * 1994-07-19 1996-12-31 Cytoclonal Pharmaceutics, Inc. Gene sequence and probe for a marker of non-small cell lung carinoma
ID27813A (id) * 1998-01-28 2001-04-26 Corixa Corp Senyawa-senyawa untuk terapi dan diagnosa kanker paru-paru dan metoda untuk penggunaannya

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0060077A2 *

Also Published As

Publication number Publication date
WO2000060077A3 (fr) 2002-01-17
AU4185100A (en) 2000-10-23
WO2000060077A2 (fr) 2000-10-12
HK1045332A1 (zh) 2002-11-22
JP2002540790A (ja) 2002-12-03

Similar Documents

Publication Publication Date Title
EP1183348B1 (fr) Compositions pour le traitement et le diagnostic du cancer du sein et leurs procedes d'utilisation
WO2000060077A2 (fr) Composes utilises dans la therapie et le diagnostic du cancer du poumon et methodes d'utilisation
EP1141290B1 (fr) Compositions et procedes destines a la therapie et au diagnostic du cancer de l'ovaire
EP1169347B1 (fr) Composes et procedes de therapie et de diagnostic du cancer du poumon
EP1870466A2 (fr) Compositions et procédés pour le traitement et le diagnostic du cancer de la prostate
WO2001025272A2 (fr) Compositions et methodes de therapie et de diagnostic du cancer de la prostate
EP1767636A2 (fr) Composés destinés à l'immunothérapie et au diagnostic du cancer du colon et méthodes d'utilisation
JP2010239970A (ja) 乳癌の処置および診断のための組成物ならびにそれらの使用方法
WO2001073027A2 (fr) Compositions et procedes pour la therapie et le diagnostic du cancer du colon
EP1242598A2 (fr) Composes pour l'immunotherapie et le diagnostic du cancer du colon et procedes d'utilisation
JP2002540789A5 (fr)
WO2001051513A2 (fr) Sequences associees a une tumeur ovarienne
US20050260177A1 (en) Compounds for immunotherapy and diagnosis of colon cancer and methods for their use
US20020058292A1 (en) Ovarian tumor antigen and methods of use therefor
US6933363B1 (en) Compositions and methods for therapy and diagnosis of lung cancer
US6489101B1 (en) Compositions and methods for therapy and diagnosis of breast cancer
US20020064815A1 (en) Ovarian tumor antigen and methods of use therefor
US20020155468A1 (en) Ovarian tumor antigen and methods of use therefor
US20020110547A1 (en) Compounds for immunotherapy and diagnosis of colon cancer and methods for their use
US20020155125A1 (en) Compositions and methods for therapy and diagnosis of breast cancer
AU2003271300B2 (en) Compositions and methods for therapy and diagnosis of ovarian cancer
WO2001027276A2 (fr) Sequences de tumeur du sein et leurs procedes d'utilisation
CA2613125A1 (fr) Compositions et methodes de therapie et de diagnostic du cancer de la prostate
AU2007216683A1 (en) Compositions and methods for therapy and diagnosis of ovarian cancer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011102

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041001

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1045332

Country of ref document: HK