AU2007216892B2 - Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer - Google Patents

Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer Download PDF

Info

Publication number
AU2007216892B2
AU2007216892B2 AU2007216892A AU2007216892A AU2007216892B2 AU 2007216892 B2 AU2007216892 B2 AU 2007216892B2 AU 2007216892 A AU2007216892 A AU 2007216892A AU 2007216892 A AU2007216892 A AU 2007216892A AU 2007216892 B2 AU2007216892 B2 AU 2007216892B2
Authority
AU
Australia
Prior art keywords
protein
cancer
cell
peptide
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2007216892A
Other versions
AU2007216892A1 (en
Inventor
Pia M. Challita-Eid
Mary Faris
Wangmao Ge
Aya Jakobovits
Arthur B. Raitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agensys Inc
Original Assignee
Agensys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003258269A external-priority patent/AU2003258269B2/en
Application filed by Agensys Inc filed Critical Agensys Inc
Priority to AU2007216892A priority Critical patent/AU2007216892B2/en
Publication of AU2007216892A1 publication Critical patent/AU2007216892A1/en
Application granted granted Critical
Publication of AU2007216892B2 publication Critical patent/AU2007216892B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

AUSTRALIA FB RICE & CO Patent and Trade Mark Attorneys Patents Act 1990 AGENSYS, INC. COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Nucleic acids and corresponding proteins entitled 2 73P4B 7 useful in treatment and detection of cancer The following statement is a full description of this invention including the best method of performing it known to us:- NUCLEIC ACIDS AND CORRESPONDING PROTEINS ENTITLED 273P4B7 USEFUL IN TREATMENT AND DETECTION OF CANCER This is a divisional of AU 2003258269, the entire contents of which are incorporated herein by reference. FIELD OF THE INVENTION The invention described herein relates to genes and their encoded proteins, termed 273P4B7 and variants thereof, expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that express 273P4B7. BACKGROUND OF THE INVENTION Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death. Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence. 1A Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease-second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences. On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the serum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects. 1B Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate _Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al, 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-1 (Su et at., 1996, Proc. NatI. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep 2 (9): 1445 51), STEAP (Hubert, et al., Proc Natl Acad Sci U S A. 1999 Dec 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter at a!., 1998, Proc. NatI. Acad. Sc. USA 95: 1735). While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy. Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma Is estimated at more than 29,000 cases In the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States. Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastatic disease has been refractory to any systemic therapy. With recent developments In systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients. Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent In men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and eight per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking pattems in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly. Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and, intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective-means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients. An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600'from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths. At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy 2 (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer. There were an estimated 164,100 new cases of lung and bronchial cancer In 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000, Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer Incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concem, although the declines in adult tobacco use have slowed, tobacco use In youth is increasing again. Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice: Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers. An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed In men in 2000. After Increasing about 4% per year in the 1980s, breast cancer Incidence rates in women have leveled off in the I 990s to about 110.6 cases per 100,000. In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during 1992-1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment. Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy. Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments, There is, therefore, a need for efficacious breast cancer treatments. There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynecologic cancers. During 1992-1996, ovarian cancer incidence 3 rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system, Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). in some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer. There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined In men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 In the United States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men (about -0.9% per year) while rates have increased slightly among women. Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer. SUMMARY OF THE INVENTION The present invention relates to a gene, designated 273P4B87, that has now been found to be over-expressed in the cancer(s) listed in Table 1. Northem blot expression analysis of 273P4B7 gene expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and amino acid (Figure 2, and Figure 3) sequences of 273P487 are provided. The tissue-related profile of 273P4B7 in normal adult tissues, combined with the over-expression observed In the tissues listed in Table 1, shows that 273P4B7 is aberrantly over-expressed in at least some cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed In Table I. The invention provides polynucleotides corresponding or complementary to all or part of the 273P487 genes, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 273P4B7-related proteins and fragments of 4, 5, 6, 7, 8, 9,10, 11, 12, 13,14, 15, 16,17,18, 19, 20, 21, 22, 23, 24, 25, or more than 25 contiguous amino acids; at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a 273P4B7-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the 273P487 genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 273P4B7 genes, mRNAs, or to 273P487-encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding 273P4B7. Recombinant DNA molecules containing 273P487 polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 273P4B7 gene products are also provided. The invention further provides antibodies that bind to 273P4B7 proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent. In certain embodiments, there is a proviso that the entire nucleic acid sequence of Figure 2 is not encoded and/or the entire amino acid sequence of Figure 2 Is not prepared. In certain embodiments, the entire nucleic acid sequence of Figure 2 is encoded and/or the entire amino acid sequence of Figure 2 is prepared, either of which are in respective human unit dose forms. The Invention further provides methods for detecting the presence and status of 273P4B7 polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 273P4B7. A typical embodiment of this 4 invention provides methods for monitoring 273P4B7 gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulaton such as cancer. The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 273P4B7 such as cancers of tissues listed in Table 1, including therapies aimed at inhibiting the transcription, translation, processing or function of 273P4B7 as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses 273P4B7 in a human subject wherein the composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent that inhibits the production or function of 273P4B7. Preferably, the carrier Is a uniquely human carrier. In another aspect of the invention, the agent is a moiety that is immunoreactive with 273P4B7 protein. Non-limiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein. In another aspect, the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 273P4B7 and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class I molecule in a human to elicit an HTL response. The peptides of the invention may be on the same or on one or more separate polypeptide molecules. In a further aspect of the invention, the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 273P4B7 as described above. The one or more than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of 273P4B7. Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 273P4B7 (e.g. antisense sequences or molecules that form a triple helix with a nucleotide double helix essential for 273P4B7 production) or a ribozyme effective to lyse 273P4B7 mRNA. Note that to determine the starting position of any peptide set forth in Tables VIII-XXI and XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides of a particular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, If a Search Peptide begins at position "X", one must add the value "X -1" to each position in Tables Vill-XXI and XXII to XLIX to obtain the actual position of the HLA peptides in their parental molecule. For example, if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 -1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule. - One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables VIII-XXI and XXII to XLIX collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention comprises an HLA peptide that occurs at least once in Tables Vill-XXI and at least once in tables XXII-to XLIX, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention is antibody epitopes, which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one two, three, four, or five of the following characteristics: I) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure 5; 5 ii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6; 5 iii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of Figure 7; iv) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any 10 whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of Figure 8; or v) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid 15 position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of Figure 9. Moreover, the invention comprises 273P4B7 nucleic acid and amino acid sequences. Further, the invention comprises variants of 273P4B7, and fragments thereof. In an embodiment of the invention a protein fragment is: a subsequence of at least 158, or 262, or 420 contiguous amino 20 acids of a protein of 273P4B7 v. 1; is an amino acid subsequence of a protein of 273P4B7 v. I with a proviso that 273P4B7 v. I protein is such that it does not include an valine (V) or methionine (M) at position 145; arginine (R) or glycine (G) at position 172; isoleucine (I) or valine (V) at position 889; or, lysine (K) or arginine (R) at position 989. An embodiment of an amino acid sequence of the invention is a fragment of a protein of 273P4B7 v. I with a proviso that it is not a protein of 25 273P4B7 v. 9, v. 10 or v.11. In an embodiment, an amino acid fragment of the invention is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110,115, 120, 125, 130, 135, 140, 145, 150, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 170, 175, 180, 185, 190,195,200,225,250,260,261,262,263,264, 265, 270, 275, 300, 325, 350, 375, 400, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 30 430, 431, 432, 422, 434, 435, 450, 475, 500, 525, 550, 575, 600, 650, 675, 700, 705, 710, 715, 716, 717, 718, 719, 720, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1127, 1150, 1175, 1200, 1025, or 1250 contiguous amino acids of a protein of Figure 2; in certain embodiments the fragment/subsequence comprises a functional or structural motif, e.g., as set forth herein, or comprises an immune system (antibody or T cell) epitope. Embodiments of a 35 nucleic acid sequence of the invention comprise a sequence that encodes an amino acid sequence as set forth herein. 6 According to the invention there is also provided an isolated polynucleotide that encodes a protein comprising the amino acid sequence selected from the groups consisting of SEQ ID NO: 13, 14, 15, 16 , 17,and 18, and 19. According to the invention there is also provided an isolated protein comprising the amino acid sequence selected from the groups consisting of SEQ ID NO: 13, 14, 15, 16, 17,and 18, and 19. Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group 5 of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present 10 invention as it existed before the priority date of each claim of this application. BRIEF DESCRIPTION OF THE FIGURES Figure 1. The 273P4B7 SSH sequence of 170 nucleotides. Figure 2. A) The cDNA and amino acid sequence of 273P4B7 variant 1 (also called 15 "273P4B7 v.1" or "273P4B7 variant I ") is shown in Figure 2A. The start methionine is underlined. The open reading frame extends from nucleic acid 95-3847 including the stop codon. B) The cDNA and amino acid sequence of 273P4B7 variant 2 (also called "273P4B7 v.2") is shown in Figure 2B. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 604-3987 including the stop codon. 20 C) 273P4B7 v.3 through v.8, SNP variants of 273P4B7 v.1. The 273P4B7 v.3 through v.8 are variants with single nucleotide difference from 273P4B7 v.1. 273P4B7 v.3, v.7, and v.8 code for the same protein as v.1. 273P4B7 v.4, v.5, and v.6 proteins differ from 273P4B7 v.1 by one amino acid. Though these SNP variants are shown separately, they can also occur in any combinations and in any of the transcript variants listed above in Figures 2A and 2B. 6A D) The cDNA and amino acid sequence of 273P487 variant 9 (also called "273P4B7 v.9") is shown In Figure 2D. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 4-3324 including the stop codon. E) The cDNA and amino acid sequence of 273P4B7 variant 10 (also.called "273P4B7 v.10") Is shown in Figure 2E. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 688-1947 including the stop codon. F) The cDNA and amino acid sequence of 273P4B7 variant 11 (also called "273P4B7 v.11") is shown in Figure 2F. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 114-1373 including the stop codon. Figure 3. A) The amino acid sequence of 273P4B7 v.1 is shown in Figure 3A; it has 1250 amino acids. B) The amino acid sequence of 273P4B7 v.2 is shown in Figure 38; it has 1127 amino acids. C) The amino acid sequence of 273P4B7 v.4 is shown in Figure 3C; it has 1250 amino acids. D) The amino acid sequence of 273P4B7 v.5 is shown in Figure 3D; it has 1250 amino acids. E) The amino acid sequence of 273P4B7 v.6 is shown in Figure 3E; it has 1250 amino acids. F) The amino acid sequence of 273P4B7 v.9 is shown in Figure 3F; it has 1106 amino acids. G) The amino acid sequence of 273P4B7 v.10 is shown in Figure 3G; it has 419 amino acids. H) The amino acid sequence of 273P4B7 v.11 is shown in Figure 3H; it has 419 amino acids. As used herein, a reference to 273P4B7 includes all variants thereof, including those shown in Figures 2, 3, 10, and 11, unless the context clearly indicates otherwise. Figure 4. Alignment of 273P4B7 with known homologs. Figure 4(A) Alignment of 273P4B7 with human un named protein (gil22760345). Figure 4(B) Alignment of 273P4B7 with human BJ-HCC-15 tumor antigen (gi122002580). Figure 4(C) Alignment of 273P4B7 with Mouse Protein (gi27706852). Figure 5. Hydrophilicity amino acid profile of 273P4B7 v.1 determined by computer algorithm sequence analysis using the method of Hopp and Woods (Hopp T.P., Woods KR., 1981. Proc. Nat. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website located on the World Wide Web at (expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 6. Hydropathicity amino acid profile of 273P4B7 v.1 determined by computer algorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.p) through the ExPasy molecular biology server. Figure 7. Percent accessible residues amino acid profile of 273P4B7 v.1 determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 8. Average flexibility amino acid profile of 273P4B7 v.1 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 9. Beta-tum amino acid profile of 273P4B7 v.1 determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website located on the World Wide Web at (.expasy.ch/cgi-bln/protscale.p) through the ExPasy molecular biology server. Figure 10. Structures of transcript variants of 273P4B07. Variant 273P4B07 v.2 was identified as a transcript variant of 273P4B07 v.1. Variant 273P4B07 v.2 extended exon 1 by 22 bp as compared to v.1 and added an exon in 7 between exons 1 and 2 of variant v.1. Variants v.9, v.10 and v.11 were part of the last exon of v.1 or v.2. Poly A tails and SNP are not shown here. Numbers in "()" underneath the boxes correspond to those of 273P4B07 v.1, Lengths of introns and exons are not proportional. Figure I1. Schematic alignment of protein variants of 273P4B07. Protein variants correspond to nucleotide variants. Nucleotide variants 273P4B07 v.3, v.7, and v.8 coded for the same protein as v.1. Variant v.2 coded a protein that was 123 amino acids shorter than v.1. Nucleotide variant 273P4B07 v.2 was a transcript variant of v.1, as shown in Figure 10. Variants v.9 and v.10 were shorter and had some different amino acid as compared with v.1 in the corresponding positions shown in the figure. Variant v.11 was the same as the C-terminal part of v.1 and different from v.10 by one amino acid at position 158. SNP In v.1 could also appear in v.2. Single amino acid differences were indicated above the boxes. Black boxes represent the same sequence as 273P4B07 v.1. Numbers underneath the box correspond to 273P4B07 v.1. Figure 12. Schematic alignment of SNP variants of 273P4B07. Variants 273P4B07 v.3 through v.8 were variants with single nucleotide differences as compared to variant v.1 (ORF:29-1858). Though these SNP variants were shown separately, they could also occur In any combinations and in any transcript variants that contained the base pairs, such as v.2 shown in Fig. 10. Numbers correspond to those of 273P4B07 v.1. Black box shows the same sequence as 273P4807 v.1. SNPs are indicated above the box. Figure 13. Secondary structure and transmembrane domains prediction for 273P4B7 protein variant 1. Figure 13A: The secondary structure of 273P4B7 protein variant 1 (Figure 13A) (SEQ ID NO: 134) was predicted using the HNN - Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291]:147-150 Combet C., Blanchet C., Geoujon C. and Del6age G., http://pbil.ibcp.fr/cgi bin/npsaautomat.pl?page=npsann.html), accessed fmm the ExPasy molecular biology server located on the World Wide Web at (www.expasy.chltools/). This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence. The percent of the protein in a given secondary structure is also listed. Figure 13B: Schematic representation of the probability of existence of transmembrane regions of 273P4B7 variant I based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE (K. Hofmann, W. Stoffel. TMBASE -A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). Figure 13C: Schematic representation of the probability of the existence of transmembrane regions of 273P4B7 variant 1, based on the TMHMM algorithm of Sonnhammer, von Heijne, and Krogh (Erik LL Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998). The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server located on the World Wide Web at (www.expasy.chltools/). Figure 14. 273P4B7 expression by RT-PCR. First strand cDNA was prepared from normal tissues (bladder, brain, heart,kidney, liver, lung, prostate, spleen, skeletal muscle, testis, pancreas, colon and stomach), and from pools of patient cancer specimens (prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, prostate cancer xenograft pool, prostate metastasis to lymph node, bone and melanoma cancer pool, cervical cancer pool, lymphoma cancer pool, stomach cancer pool, uterus cancer pool, and multi-xenograft pool). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 22, 26 and 30 cycles of amplification. In (Figure 14A) picture of the RT-PCR agarose gel is shown. In (Figure 14B) PCR products were quantitated using the Alphalmager software. Results show strong of expression of 273P4B7 in prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, prostate cancer xenograft pool, prostate metastasis to lymph node, bone and melanoma cancer pool, cervical cancer pool, 8 lymphoma cancer pool, stomach cancer pool, uterus cancer pool and multi-xenograft pool (prostate cancer, kidney cancer and bladder cancer xenograft pool). In normal tissues, 273P4B7 is predominantly expressed in testis and not in any other normal tissue tested. Figure 15. 273P4B7 expression in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 273P4B7 sequence. Size standards In kilobases (kb) are indicated on the side. Results show expression of an approximately 7kb 273P4B7 transcript in normal testis but not in the other normal tissues tested. Figure 16. Expression of 273P4B7 in pancreas, ovary, and testis cancer patient specimens. RNA was extracted from normal pancreas (NPa), normal ovary (NO), normal tests (NTe), pancreas cancer patient specimen (P1), ovary cancer patient specimen (P2,P3,P4), and testis cancer patient specimen (P5,P6,P7). Northern blot with 10 ug of total RNA/lane was probed with 273P4B7 SSH sequence. Size standards in kilobases (kb) are indicated on the side. 273P4B7 transcript was detected in the patient specimens, but not In the normal tissues. Figure 17. Expression of 273P487 In cervical cancer patient specimens. Figure 17(A): Total RNA was extracted from cervical cancer patient specimens (T1-T7), and HeLa cell line. Northern blot with 10 ug of total RNAlane was probed with 273P487 SSH sequence. Size standards in kilobases (kb) are indicated on the side. 273P4B7 transcript was detected in all patient specimens tested as well as in the Hela cell line. Figure 17(B): First strand cDNA was prepared from a panel -of cervical cancer patient specimens, normal cervix and HeLa cervical cell line. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated using the Alphalmager software. Expression was -recorded as absent, low, medium or high. Results show expression of 273P4B7 in most of the cervical cancer tissues tested. Figure 18. Expression of 273P4B7 in bladder cancer patient specimens. First strand cDNA was prepared from a panel of bladder cancer patient specimens, normal bladder (N) and bladder cancer cell lines (UM-UC-3, TCCSUP, J82). Normalization was performed by PCR using primers to acting. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel (Figure 18(A)), and PCR products were quantitated using the Alphalmager software (Figure 18(B)). Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 in most of the bladder cancer tissues tested, but not in the normal bladder tissues. Figure 19. Expression of 273P4B7 in colon cancer patient specimens. First strand cDNA was prepared from a panel of colon cancer patient specimens, normal colon, and colon cancer cell lines (LoVo, CaCo-2, SK-CO1,'Colo205, and T284). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated usingthe Alphalmager software. Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 In the majority of the colon cancer tissues tested, but not in the normal colon tissues. Expression was also detected in the cell lines LoVo, CaCo-2, SK-CO1, Colo205, but not in the T284 cell line. Figure 20. Expression of 273P4B7 in ovary cancer patient specimens. First strand cDNA was prepared from a panel of ovarian cancer patient specimens, normal ovary and ovarian cancer cell lines (OV-1 063, PA-1, SW626). Normalization was performed by PCR using primers to acting. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated using the Alphalmager software. Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 in the majority of ovary cancer tissues tested as well as in the cell lines, but not In normal ovary. DETAILED DESCRIPTION OF THE INVENTION Outline of Sections 9 I.) Definitions 11.) 273P4B7 Polynucleotides lI.A.) Uses of 273P4B7 Polynucleotides lI.A.1.) Monitoring of Genetic Abnormalities Il.A.2.) Antisense Embodiments lI.A.3.) Primers and Primer Pairs lI.A.4.) Isolation of 273P4B7-Encoding Nucleic Acid Molecules II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems lil.) 273P4B7-related Proteins ilI.A.) Motif-bearing Protein Embodiments lIl.B.) Expression of 273P4B7-related Proteins lIl.C.) Modifications of 273P4B7-related Proteins ilI.D.) Uses of 273P4B7-related Proteins IV.) 273P4B7 Antibodies V.) 273P4B7 Cellular Immune Responses VI.) 273P4B7 Transgenic Animals VII.) Methods for the Detection of 273P4B7 Vill.) Methods for Monitoring the Status of 273P4B7-related Genes and Their Products IX.) Identification of Molecules That Interact With 273P487 X.) Therapeutic Methods and Compositions X.A.) Anti-Cancer Vaccines X.B.) 273P4B7 as a Target for Antibody-Based Therapy X.C.) 273P4B7 as a Target for Cellular Immune Responses X.C.1. Minigene Vaccines X.C.2. Combinations of CTL Peptides with Helper Peptides X.C,3. Combinations of CTL Peptides with T Cell Priming Agents X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides X.D.) Adoptive immunotherapy X.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes XI.) Diagnostic and Prognostic Embodiments of 273P487. XII.) Inhibition of 273P487 Protein Function XII.A.) Inhibition of 273P4B7 With Intracellular Antibodies XII.B.) Inhibition of 273P4B7 with Recombinant Proteins XII.C.) Inhibition of 273P4B7 Transcription or Translation XIi.D.) General Considerations for Therapeutic Strategies XIII.) Identification, Characterization and Use of Modulators of 273P4B7 XIV.) KITSlArticles of Manufacture I.) Definitions: Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill In the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion 10 of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et aL., Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted. The terms "advanced prostate cancer", "locally advanced prostate cancer", "advanced disease" and "locally advanced disease" mean prostate cancers that have extended through the prostate capsule, and are meant to Include stage C disease under the American Urological Association (AUA) system, stage C1 -C2 disease under the Whitmore-Jewett system, and stage T3 -T4 and N+ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penetrates the prostatic capsule, extends into the surgical margin, or Invades the seminal vesicles. "Altering the native glycosylation patten" is Intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 273P4B7 (either by removing the undedying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 273P4B7. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. The term "analog" refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (e.g. a 273P4B7-related protein). For example, an analog of a 273P4B7 protein can be specifically bound by an antibody or T cell that specifically binds to 273P4B7. The term "antibody" is used in the broadest sense. Therefore, an "antibody" can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. Anti-273P4B7 antibodies comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies. An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-273P4B7 antibodies and clones thereof (including agohist antagonist and neutralizing antibodies) and anti-273P4B7 antibody compositions with polyepitopic specificity. The term "codon optimized sequences" refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an "expression enhanced sequences." A "combinatorial library" is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids In every possible way for a given compound length (i.e., the number of amino acids in a 11 polypeptide compound). Numerous chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., J. Med. Chem. 37(9): 1233-1251 (1994)). Preparation and screening of combinatorial libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptolds (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random blo- oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sc. USA 90:6909-6913 (1993)), vinylogous polypeptides (Haglhara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbarnates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3): 309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Uang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506, 337; benzodiazepines, U.S. Patent No. 5,288,514; and the like). Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 NIPS, 390 NIPS, Advanced Chem Tech, Louisville KY; Symphony, Rainin, Wobum, MA; 433A, Applied Biosystems, Foster City, CA; 9050, Plus, Millipore, Bedford, NIA). A number of well-known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations such as the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate H, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are theinselves commercially available (see, e.g., ComGenex, Princeton, NJ; Asinex, Moscow, RU; Tripos, Inc., St. Louis, MO; ChemStar, Ltd, Moscow, RU; 3D Pharmaceuticals, Exton, PA; Martek Biosciences, Columbia, MD; etc.). The term "cytotoxic agent" refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to auristatins; auromycins, maytansinoids, yttrium, bismuth, ricin, ricin A-chain, combrestatin, duocarmycins, dolostatins, doxorubicin, daunorubicin, taxol, cisplatin, cc1065, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, Sapaonaria officinalls inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as At2ll, 1131, 115 Y9, Ret 8 6, ReiO, Sm 5 3 , Bi212or213, p3z and radioactive isotopes of Lu including Lu'm. Antibodies may also be conjugated to an anti cancer pro-drug activating enzyme capable of converting the pro-drug to its active form. The "gene product is sometimes referred to herein as a protein or mRNA. For example, a "gene product of the invention" is sometimes referred to herein as a "cancer amino acid sequence", "cancer protein", "protein of a cancer listed in 12 Table I", a "cancer mRNA", "mRNA of a cancer listed in Table I", etc. In one embodiment, the cancer protein is encoded by a nucleic acid of Figure 2. The cancer protein can be a fragment, or alternatively, be the full-length protein to the fragment encoded by the nucleic acids of Figure 2. In one embodiment, a cancer amino acid sequence is used to determine sequence identity or similarity. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Figure 2. In another embodiment, the sequences are sequence variants as further described herein. "High throughput screening" assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins; U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays); while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligandlantibody binding. In addition, high throughput screening systems are commercially available (see, e.g., Amersham Biosciences, Piscataway, NJ; Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA; etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions. "Human Leukocyte Antigen" or "HLA" is a human class I or class i Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, CA (1994). The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6XSSC/0.1 % SDS/1 00 pg/ml ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in 0.IXSSC/0.1 % SDS are above 55 degrees C. .The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 273P4B7 genes or that encode polypeptides other than 273P4B7 gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 273P4B7 polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical or chemical methods are employed to remove the 273P4B7 proteins from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ standard purification methods to obtain an isolated 273P4B7 protein. Alternatively, an isolated protein can be prepared by chemical means. The term "mammal" refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal Is a human. The terms "metastatic prostate cancer" and "metastatic disease" mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage 13 TxNxM+ under the TNM system. As is the case with locally advanced prostate cancer, surgery is generally not Indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy Is a preferred treatment modality. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status. The most common site for prostate cancer metastasis Is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation). Bone metastases are found most frequently In the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy. The term "modulator" or test compound" or "drug candidate" or grammatical equivalents as used herein describe any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc,, to be tested for the capacity to directly or indirectly alter the cancer phenotype or the expression of a cancer sequence, e.g., a nucleic acid or protein sequences, or effects of cancer sequences (e.g., signaling, gene expression, protein interaction, etc.) In one aspect, a modulator will neutralize the effect of a cancer protein of the invention. By "neutralize" is meant that an activity of a protein is Inhibited or blocked, along with the consequent effect on the cell. In another aspect, a modulator will neutralize the effect of a gene, and its corresponding protein, of the invention by normalizing levels of said protein. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein, or downstream effector pathways. In one embodiment, the modulator suppresses a cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a cancer phenotype. Generally, a plurality of assay mixtures Is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection. Modulators, drug candidates or test compounds encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 Daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Modulators also comprise biomolecules such as peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides. One class of modulators are peptides, for example of from about five to about 35 amino acids, with from about five to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. Preferably, the cancer modulatory protein is soluble, includes a non-transmembrane region, and/or, has an N terminal Cys to aid in solubility. In one embodiment, the C-termInus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine. In one embodiment, a cancer protein of the invention is conjugated to an Immunogenic agent as discussed herein. In one embodiment, the cancer protein is conjugated to BSA. The peptides of the invention, e.g., of preferred lengths, can be linked to each other or to other amino acids to create a longer peptide/proteln. The modulatory peptides can be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides, In a preferred embodiment, peptide/protein-based modulators are antibodies, and fragments thereof, as defined herein. Modulators of cancer can also be nucleic acids. Nucleic acid modulating agents can be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be used in an approach analogous to that outlined above for proteins. 14 The term "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, .e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts. A "motif", as in biological motif of a 273P4B7-related protein, refers to any pattern of amino acids forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein-protein Interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or localization (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or cellularly. A motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, motif refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class 11 HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues. A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like. "Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals. ' The term "polynucleotide" means a polymeric form of nucleotides of at least 10 bases or base pairs In length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in Figure 2, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thymidine (T). The term "polypeptide" means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with "peptide" or "protein". An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif for an immunogenic peptide. These residues are understood to fit In close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the Invention. Alternatively, in another embodiment, the primary anchor residues of a peptide binds an HLA class I molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are set forth in Table IV. For example, analog peptides can be created by altering the presence or absence of particular residues In the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermbtif. 'Radioisotopes" include, but are not limited to the following (non-limiting exemplary uses are also set forth): Examples of Medical Isotopes: Isotope Description of use Actinium-225 See Thorium-229 (Th-229) 15 (AC-225) Actinium-227 Parent of Radium-223 (Ra-223) which Is an alpha emitter used to treat metastases in the (AC-227) skeleton resulting from cancer (i.e., breast and prostate cancers), and cancer radlolmmunotherapy Bismuth-21 2 See Thorium-228 (Th-228) (Bi-212) Bismulh-213 See Thorium-229 (Th-229) (BI-2I 3) Cadmium-109 Cancer detection (Cd-i 09) Cobalt-60 Radiation source for radiotherapy of cancer, for food irradiators, and for sterilization of (Co-60) medical supplies Copper-64 A positron emitter used for cancer therapy and SPECT imaging Copper-67 Beta/gamma emitter used in cancer radloimmunotherapy and diagnostic studies (i.e., breast (Cu-67) and colon cancers, and lymphoma) Dysprosum-166 Cancer radioimmunotherapy Erblum-169 Rheumatoid arthritis treatment, particularly for the small joints associated with fingers and (Er-169) toes Europium-152 Radiation source for food irradiation and for sterilization of medical supplies (Eu-i 52) Europium-154 Radiation source for food irradiation and for sterilization of medical supplies '(Eu-i 54) Gadolinium-153 Osteoporosis detection and nuclear medical quality assurance devices (God-l 98 (Au- 98 Implant and intracavity therapy of ovarian, prostate, and brain cancers Holmium-166 Multiple myeloma treatment in targeted skeletal therapy, cancer radiolmmunotherapy, bone (Ho-166) marrow ablation, and rheumatoid arthritis treatment Osteoporosis detection, diagnostic imaging, tracer drugs, brain cancer treatment, Iodine-125 radiolabeling, tumor imaging, mapping of receptors in the brain, interstitial radiation therapy, (1-125) brachytherapy for treatment of prostate cancer, determination of glomerular filtration rate (GFR), determination of plasma volume, detection of deep vein thrombosis of the legs Thyroid function evaluation, thyroid disease detection, treatment of thyroid cancer as well as iodine-131 other non-malignant thyroid diseases (i.e., Graves disease, goiters, and hyperthyroidism), (1-131) treatment of leukemia, lymphoma, and other forms of cancer (e.g., breast cancer) using radioimmunotherapy Iridium-192 Brachytherapy, brain and spinal cord tumor treatment, treatment of blocked arteries (i.e., (Ir-192) arteriosclerosis and restenosis), and implants for breast and prostate tumors Lutetium-177 Cancer radioimmunotherapy and treatment of blocked arteries (i.e., arteriosclerosis and (Lu-177) restenosis) Parent of Technetium-99m (Tc-99m) which is used for imaging the brain, liver, lungs, heart, Molybdenum-99 and other organs. Currently, Tc-99m is the most widely used radioisotope used for diagnostic (Mo-99) imaging of various cancers and diseases involving the brain, heart, liver, lungs; also used in detection of deep vein thrombosis of the legs Os un-194 Cancer radioimmunotherapy Palladium-103 Prostate cancer treatment (Pd-i 03) Platinum- 195m Studies on biodistribution and metabolism of cisplatin, a chemotherapeutic drug (Pt-I 95m) Phosphorus-32 Polycythemia rubra vera (blood cell disease) and leukemia treatment, bone cancer 16 (P-32) diagnosis/treatment; colon, pancreatic, and liver cancer treatment; radiolabeling nucleic acids for In vitro research, diagnosis of superficial tumors, treatment of blocked arteries (i.e., arteriosclerosis and restenosis), and intracavity therapy Phosphorus-33 Leukemia treatment, bone disease diagnosis/treatment, radiolabeling, and treatment of. (P-33) blocked arteries (i.e., arteriosclerosis and restenosis) Radium-223 See Actinium-227 (Ac-227) (Ra-223) Rhenium-186 Bone cancer pain relief, rheumatoid arthritis treatment, and diagnosis and treatment of (Re-186) lymphoma and bone, breast, colon, and liver cancers using radloimmunotherapy Rhenium-188 Cancer diagnosis and treatment using radioimmunotherapy, bone cancer pain relief, (Re-188) treatment of rheumatoid arthritis, and treatment of prostate cancer Rhodium-105 Cancer radioimmunotherapy (Rh-i 05) Samanum-145 Ocular cancer treatment Samarium-153 Cancer radioimmunotherapy and bone cancer pain relief (Sm-I 53) Scandium47 Cancer radioimmunotherapy and bone cancer pain relief (Sc-47) Selenium-75 Radiotracer used in brain studies, imaging of adrenal cortex by gamma-scintigraphy, lateral (Se-75) locations of steroid secreting tumors, pancreatic scanning, detection of hyperactive parathyroid glands, measure rate of bile acid loss from the endogenous pool Strontium-85 Bone cancer detection and brain scans (Sr-85) Strontium-89 Bone cancer pain relief, multiple myeloma treatment, and osteoblastic therapy (Sr-89) Technetium-99mSee Molybdenum-99 (Mo-99) (Tc-99m) (Th-228) Parent of Bismuth-212 (Bi-212) which is an alpha emitter used in cancer radioimmunotherapy Thorium-229 Parent of Actinium-225 (Ac-225) and grandparent of Bismuth-213 (Bi-213) which are alpha (Th-229) emitters used in cancer radioimmunotherapy Thuliu 170 Gamma source for blood irradiators, energy source for implanted medical devices in-1i7m Cancer immunotherapy and bone cancer pain relief (Sn-i 17m) Tungsten-188 Parent for Rhenium-1 88 (Re-1 88) which is used for cancer diagnostics/treatment, bone T -i88) cancer pain relief, rheumatoid arthritis treatment, and treatment of blocked arteries (i.e., arteriosclerosis and restenosis) Xenon-1 27 Neuroimaging of brain disorders, high resolution SPECT studies, pulmonary function tests, (Xe-127) and cerebral blood flow studies Ytterbium-175 Cancer radloimmunotherapy (Yb-175) Yttrium-90 Microseeds obtained from irradiating Yttrium-89 (Y-89) for liver cancer treatment (Y-90) Yttrium-91 A gamma-emitting label for Yttrium-90 (Y-90) which is used for cancer radioimmunotherapy (Y-91) (i.e., lymphoma, breast, colon, kidney, lung, ovarian, prostate, pancreatic, and inoperable liver cancers) 17 By "randomized" or grammatical equivalents as herein applied to nucleic acids and proteins Is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. These random peptides (or nucleic acids, discussed herein) can incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents. In one embodiment, a library is "fully randomized," with no sequence preferences or constants at any position. In another embodiment, the library is a "biased random" library. That is, some positions within the sequence either are held constant, or are selected from a limited number of possibilities. For example, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc. A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro. Non-limiting examples of small molecules include compounds that bind or interact with 273P4B7, ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 273P4B7 protein function. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa. In certain embodiments, small molecules physically associate with, or bind, 273P4B7 protein; are not found In naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally Is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995). "Stringent conditions" or "high stringency conditions", as defined herein, are identified by, but not limited to, those that: (1) employ low Ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 500C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1 % polyvinylpyrrolldone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42 OC; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardts solution, sonicated salmon sperm DNA (50 pg/ml), 0.1% SDS, and 10% dextran sulfate at 42 OC, with washes at 420C in 0.2 x SSC (sodium chloride/sodium. citrate) and 50% formamide at 55 OC, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55 OC. "Moderately stringent conditions" are described by, but not limited to, those in Sambrook et a., Molecular Cloning: A Laboratory Manual, New York Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent than those described above. An example of moderately stringent conditions is ovemight incubation at 370C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCi, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x 18 Denhard's solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like. An HLA "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Overall phenotypic frequencies of HLA-supertypes in different ethnic populations are set forth in Table IV (F). The non limiting constituents of various supetypes are as follows: A2: A*0201, A*0202, A*0203, A*0204, A* 0205, A*0206, A*6802, A*6901, A*0207 A3: A3, All, A31, A*3301, A*6801, A*0301, A*1101, A*3101 87: B7, B*3501-03, B*51, B*5301, 8*5401, 8*5501, 8*5502, 8*5601, 8*6701, 8*7801, 8*0702, B*5101, B*5602 B44: B*3701, B*4402, B*4403, B*60 (B*4001), B61 (B*4006) Al: A*0102, A*2604, A*3601, A*4301, A*8001 A24: A*24, A*30, A*2403, A*2404, A*3002, A*3003 B27: 8*1401-02, 8*1503, 8*1509, B*1510, 8*1518, B*3801-02, B*3901, B*3902, B*3903-04, B*4801-02, B*7301, B*2701 -08 B58: *1516, B*1517, B*5701, B*5702, B58 B62: B*4601, B52, B*1501 (B62), B*1502 (875), B*1513 (B77) Calculated population coverage afforded by different HLA-supertype combinations are set forth in Table IV (G). As used herein "to treat" or "therapeutic" and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required. A "transgenic animal" (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A "transgene" is a ONA that is Integrated into the genome of a cell from which a transgenic animal develops. As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1-150 or more, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13,14,15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I peptides of the invention can be admixed with, or linked to, HLA class il peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells. The term "variant" refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 273P4B7 protein shown in Figure 2 or Figure 3. An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants. The "273P4B7-related proteins" of the invention include those specifically identified herein, as well as alleic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 273P4B7 proteins or fragments thereof, as well as fusion proteins of a 273P4B7 protein and a heterologous polypeptide 19 are also Included. Such 273P4B7 proteins are collectively referred to as the 273P4B7-related proteins, the proteins of the Invention, or 273P4B7. The term "273P4B7-related protein" refers to a polypeptide fragment or a 273P4B7 protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, or 576 or more amino acids. II.) 273P4B7 Polynucleotides One aspect of the Invention provides polynucleotides corresponding or complementary to all or part of a 273P4B7 gene, mRNA, and/or coding sequence, preferably In Isolated form, including polynucleotides encoding a 273P4B7-related protein and fragments thereof, DNA, RNA, DNAIRNA hybrid, and related molecules, polynucleotides or oligonucleotides complementary to a 273P4B7 gene or mRNA sequence or a part thereof, and polynucleotides or oligonucleotides that hybridize to a 273P487 gene, mRNA, or to a 273P4B7 encoding polynucleotide (collectively, "273P4B7 polynucleotides"). In all Instances when referred to in this section, T can also be U In Figure 2. Embodiments of a 273P4B7 polynucleotide include: a 273P4B7 polynucleotide having the sequence shown in Figure 2, the nucleotide sequence of 273P4B7 as shown In Figure 2 wherein T is U; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2 where T is U. For example, embodiments of 273P4B7 nucleotides comprise, without limitation: (1) a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown In Figure 2, wherein T can also be U; (II) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown In Figure 2A, from nucleotide residue number 95 through nucleotide residue number 3847, Including the stop codon, wherein T can also be U; (ill) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2B, from nucleotide residue number 604 through nucleotide residue number 3987, including the stop codon, wherein T can also be U; (IV) a polynucleotide that encodes a 273P4B7-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in Figure 2A-F; (V) a polynucleotide that encodes a 273P487-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identical to an entire amino acid sequence shown In Figure 2A-F; (VI) a polynucleotide that encodes at least one peptide set forth in Tables VIII-XXI and XXII-XLIX; (VII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figures 3A and 3C-3E in any whole number increment up to 1250 that Includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5; (Vill) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A and 3C-3E in any whole number increment up to 1250 that Includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6; (IX) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A and 3C-3E In any whole number increment up to 1250 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7; (X) a polynucleotide that encodes apeptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A and 3C-3E in any whole number increment up to 1250 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8; (XI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12,13,14, 15,16, 17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3A and 3C-3E in any whole number increment up to 1250 that includes 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12,13,14,15,16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta-turn profile of Figure 9; (XII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3B in any whole number increment up to 1127 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5; (XIII) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3B in any whole number increment up to 1127 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6; (XIV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3B in any whole number increment up to 1127 that Includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 In the Percent Accessible Residues profile of Figure 7; (XV) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3B in any whole number increment up to 1127 that includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12,13, 14, 15, 16,17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexbility profile of Figure 8; (XVI) a polynucleotide that encodes a peptide region of at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a peptide of Figure 3B in any whole 21 number increment up to 1127 that includes 1, 2, 3,4, 5, 6,7, 8, 9,10,11,12,13,14,15,16,17,18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Beta turn profile of Figure 9; (XVII) a polynucleotide that Is fully complementary to a polynucleotide of any one of (I)-(XVI); (XVIII) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XVII); (XIX) a peptide that is encoded by any of (1) to (XVIII); and; (XX) a composition comprising a polynucleotide of any of (I)-(XVIII) or peptide of (XIX) together with a pharmaceutical excipient and/or in a human unit dose form; (XXI) a method of using a polynucleotide of any (l)-(XViII) or peptide of (XIX) or a composition of (XX) in a method to modulate a cell expressing 273P487; (XXII) a method of using a polynucleotide of any (I)-(XVIII) or peptide of (XIX) or a composition of (XX) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 273P487; (XXIII) a method of using a polynucleotide of any (l)-(XVIII) or peptide of (XIX) or a composition of (XX) in a 'method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 273P4B7, said cell from a cancer of a tissue listed in Table I; (XXIV) a method of using a polynucleotide of any (l)-(XXVIII) or peptide of (XIX) or a composition of (XX) in a method to diagnose, prophylax, prognose, or treat a a cancer; (XXV) a method of using a polynucleotide of any (I)-(XXVill) or peptide of (XIX) or a composition of (XX) in a method to diagnose, prophylax, prognose, or treat a a cancer of a tissue listed in Table I; and; (XXVI) a method of using a polynucleotide of any (I)-(XXVIII) or peptide of (XIX) or a composition of (XX) in a method to identify or characterize a modulator of a cell expressing 273P4B7. As used herein, a range is understood to disclose specifically all whole unit positions thereof. Typical embodiments of the invention disclosed herein include 273P417 polynucleotides that encode specific portions of 273P487 mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: . (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17,18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,105,110,115,120,125,130,135,140, 145,150,155, 160,165,170,175, 180, 185, 190,195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425,450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825,850, 875,900, 925, 950, 975,1000,1025, 1050,1075,1100,1125,1150,1175,1200,1225,1235,1240,1245 1250 or more contiguous amino acids of 273P4B7 variant 1; the maximal lengths relevant for other variants are: variant 2, 1127 amino acids; variant 4, 1250 amino acids, variant 5, 1250 amino acids, variant 6, 1250 amino acids, variant 9, 1106 amino acids; variant 10, 419 amino acids; and variant 11, 419 amino acids. For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 273P4B7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 273P4B7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 273P4B7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 30 to about amino acid 40 of the 273P4B7 protein shown In Figure 2 or Figure 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 273P487 protein shown in Figure 22 2 or Figure 3, polynucleotides encoding about amino acid 50 to about amino acid 60 of the 273P487 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 70 of the 273P4B7 protein shown In Figure 2 or Figure 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 273P4B7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 80 to about amino acid 90 of the 273P4B7 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 90 to about amino acid 100 of the 273P4B7 protein shown in Figure 2 or Figure 3, In Increments of about 10 amino acids, ending at the carboxyl terminal amino acid set forth in Figure 2 or Figure 3. Accordingly, polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids, 100 through the carboxyl terminal amino acid of the 273P4B7 protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues. Polynucleotides encoding relatively long portions of a 273P4B7 protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of the 273P4B7 protein "or variant" shown in Figure 2 or Figure 3 can be generated by a variety of techniques well known in the art. These polynucleotide fragments can include any portion of the 273P4B7 sequence as shown in Figure 2. Additional Illustrative embodiments of the invention disclosed herein include 273P4B7 polynucleotide fragments encoding one or more of the biological motifs contained within a 273P487 protein "or variant" sequence, including one or more of the motif-bearing subsequences of a 273P4B7 protein "or variant" set forth In Tables Vill-XXI and XXII-XLIX. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of 273P4B7 protein or variant that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 273P4B7 protein or variant N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase Il phosphorylation sites or N-myristoylation site and amidation sites. Note that to determine the starting position of any peptide set forth in Tables Vill-XXI and Tables XXII to XLIX (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides listed in Table VII. Generally, a unique Search Peptide is used to obtain HLA peptides for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table VII. Accordingly, if a Search Peptide begins at position "X", one must add the value "X minus 1' to each position in Tables VIII-XXI and Tables XXII-IL to obtain the actual position of the HLA peptides in their parental molecule. For example if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 - 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule. II.A.) Uses of 273P4B7 Polynucleotides ll.A.1.) Monitoring of Genetic Abnormalities The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 273P4B7 gene maps to the chromosomal location set forth in the Example entitled "Chromosomal Mapping of 273P4B7." For example, because the 273P4B7 gene maps to this chromosome, polynucleotides that encode different regions of the 273P487 proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic et aL., Mutat. Res. 382(3-4): 81-83 (1998); Johansson et aL., Blood 86(10): 3905-3914 (1995) and Finger et aL., P.N.A.S. 85(23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the 273P4B7 proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 273P4B7 that may contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to identify more 23 subtle and less common chromosomal abnormalities (see e.g. Evans et al., Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)). Furthermore, as 273P4B7 was shown to be highly expressed in prostate and other cancers, 273P4B7 polynucleotides are used in methods assessing the status of 273P4B7 gene products in normal versus cancerous tissues. Typically, polynucleotides that encode specific regions of the 273P4B7 proteins are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 273P4B7 gene, such as regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g., Marrogi et al., J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein. ii.A.2.) Antisense Embodiments Other specifically contemplated nucleic acid related embodiments of the Invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or Including altemative bases, whether derived from natural sources or synthesized, and Include molecules capable of Inhibiting the RNA or protein expression of 273P4B7. For example, antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothioate derivatives that specifically bind DNA or RNA in a base pair-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 273P4B7 polynucleotides and polynucleotide sequences disclosed herein. Antisense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 273P4B7. See for example, Jack Cohen, Ollgodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 273P4B7 antisense oligonucleotides of the present Invention include derivatives such as S-oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (0-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the present invention can be prepared by treatment of the corresponding 0-oligos with 3H-1,2 benzodithiol-3-one-1 ,1-dioxide, which is a sulfur transfer reagent. See, e.g., lyer, R. P. etaf., J. Org. Chem. 55:4693-4698 (1990); and lyer, R. P. et aL., J. Am. Chem. Soc. 112:1253-1254 (1990). Additional 273P4B7 antisense oligonucleotides of the present invention include morpholino antisense oligonucleotides known in the art (see, e.g., Partridge et at., 1996, Antisense & Nucleic Acid Drug Development 6: 169-175). The 273P487 antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5' codons or last 100 3' codons of a 273P4B7 genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 273P4B7 mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 273P4B7 antisense oligonucleotides of the present invention are 15 to 30-mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 273P4B7 mRNA. Optionally, 273P4B7 antisense oligonucleotide is a 30-mer oligonucleotide that is complementary to a region in the first 10 5' codons or last 103' codons of 273P4B7. Alternatively, the antisense molecules are modified to employ ribozymes in the Inhibition of 273P4B7 expression, see, e.g., L. A. Couture & D. T. Stinchcomb; Trends Genet 12: 510-515 (1996). II.A.3.) Primers and Primer Pairs 24 Further specific embodiments of these nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a 273P4B7 polynucleotide in a sample and as a means for detecting a cell expressing a 273P4B7 protein. Examples of such probes include polypeptides comprising all or part of the human 273P487 cDNA sequence shown in Figure 2, Examples of primer pairs capable of specifically amplifying 273P4B7 mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 273P4B7 mRNA. The 273P4B7 polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 273P4B7 gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 273P4B7 polypeptides; as tools for modulating or inhibiting the expression of the 273P4B7 gene(s) and/or translation of the 273P4B7 transcript(s); and as therapeutic agents. The present invention includes the use of any probe as described herein to identify and isolate a 273P4B7 or 273P4B7 related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found In the probe used. IL.A.4.) Isolation of 273P4B7-Encoding Nucleic Acid Molecules The 273P4B7 cDNA sequences described herein enable the isolation of other polynucleotides encoding 273P4B7 gene product(s), as well as the isolation of polynucleotides encoding 273P4B7 gene product homologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 273P4B7 gene product as well as polynucleotides that encode analogs of 273P4B7-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 273P4B7 gene are well known (see, for example, Sambrook, J. et al., Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel et al., Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commercially available cloning systems (e.g., Lambda ZAP Express, Stratagene). Phage clones containing 273P4B7 gene cDNAs can be identified by probing with a labeled 273P4B7 cDNA or a fragment thereof. For example, in one embodiment, a 273P4B7 cDNA (e.g., Figure 2) or a portion thereof can be synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a 273P4B7 gene. A 273P487 gene itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 273P4B7 DNA probes or primers. II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems The invention also provides recombinant DNA or RNA molecules containing a 273P4B7 polynucleotide, a fragment, analog or homologue thereof, Including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra). The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 273P4B7 polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell.' Examples of . suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an Insect cell (e.g., a baculovirus-infectible cell such as an Sf9 or HighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU145 and TsuPrl, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, 25 CHO, 293, 293T cells). More particularly, a polynucleotide comprising the coding sequence of 273P4B7 or a fragment analog or homolog thereof can be used to generate 273P4B7 proteins or fragments thereof using any number of host-vector systems routinely used and widely known In the art. A wide range of host-vector systems suitable for the expression of 273P4B7 proteins or fragments thereof are available, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His-tag (Invitrogen) and the retroviral vector pSRalkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, 273P4B7 can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NIH 3T3 and TsuPrl. The host-vector systems of the invention are useful for the production of a 273P4B7 protein or fragment thereof. Such host-vector systems can be employed to study the functional properties of 273P4B7 and 273P4B7 mutations or analogs. Recombinant human 273P4B7 protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 273P4B7-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 273P487 or fragment, analog or homolog thereof, a 273P4B7-related protein is expressed in the 293T cells, and the recombinant 273P4B7 protein is isolated using standard purification methods (e.g., affinity purification using anti-273P4B7 antibodies). In another embodiment, a 273P4B7 coding sequence is subcloned into the retroviral vector pSRaMSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPrl, 293 and rat-1 in order to establish 273P4B7 expressing cell lines. Various other expression systems well known in the art can also be employed. Expression constructs encoding a leader peptide joined in frame to a 273P4B7 coding sequence can be used for the generation of a secreted form of recombinant 273P4B7 protein. As discussed herein, redundancy in the genetic code permits variation in 273P4B7 gene sequences. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET such as at URL dna.affrc.go.jp/-nakamuralcodon.html. Additional sequence modifications are known to enhance protein expression in a cellular host, These include elimination of sequences encoding spurious polyadenylation signals, exonlintron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence Is modified to avoid predicted hairpin secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus sequence at the start of the open reading frame, as described in Kozak, Mol. Cell Biol., 9:5073-5080 (1989). Skilled artisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 8125-8148 (1987)). Ill.) 273P4B7-related Proteins Another aspect of the present invention provides 273P4B7-related proteins. Specific embodiments of 273P4B7 proteins comprise a polypeptide having all or part of the amino acid sequence of human 273P4B7 as shown in Figure 2 or Figure 3. Alternatively, embodiments of 273P4B7 proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 273P4B7 shown in Figure 2 or Figure 3. Embodiments of a 273P4B7 polypeptide include: a 273P4B7 polypeptide having a sequence shown in Figure 2, a peptide sequence of a 273P4B7 as shown in Figure 2 wherein T is U; at least 10 contiguous nucleotides of a polypeptide 26 having the sequence as shown in Figure 2; or, at least 10 contiguous peptides of a polypeptide having the sequence as shown in Figure 2 where T is U. For example, embodiments of 273P4B7 peptides comprise, without limitation: (I) a protein comprising, consisting essentially of, or consisting of an amino acid sequence as shown In Figure 2A-F or Figure 3A-H; (I1) a 273P4B7-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% homologous to an entire amino acid sequence shown in Figure 2A-F or 3A-H; (ii) a 273P4B7-related protein that is at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% Identical to an entire amino acid sequence shown in Figure 2A-F or 3A-H; (IV) a protein that comprises at least one peptide set forth in Tables Vil to XLIX, optionally with a proviso that it Is not an entire protein of Figure 2; (V) a protein that comprises at least one peptide set forth in Tables VIII-XXI, collectively, which peptide is also set forth in Tables XXII to XLIX, collectively, optionally with a proviso that it Is not an entire protein of Figure 2; (VI) a protein that comprises at least two peptides selected from the peptides set forth in Tables VIII-XLIX, optionally with a proviso that It Is not an entire protein of Figure 2; (VII) a protein that comprises at least two peptides selected from the peptides set forth in Tables VillI to XLIX collectively, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of Figure 2; (Vill) a protein that comprises at least one peptide selected from the peptides set forth in Tables VilI-XXI; and at least one peptide selected from the peptides set forth in Tables XXII to XLIX, with a proviso that the protein is not a contiguous sequence from an amino acid sequence of Figure 2; (IX) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3C-3E in any whole number increment up to 1250 respectively that includes at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5; (X) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3C-3E, in any whole number increment up to 1250 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6; (XI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3C-3E, In any whole number increment up to 1250 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, )2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 In the Percent Accessible Residues profile of Figure 7; (XII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3A, 3C-3E, in any whole number increment up to 1250 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 27 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8; (XIII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of Figure 3A, 3C-3E in any whole number Increment up to 1250 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 In the Beta-turn profile of Figure 9; (XIV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3B, in any whole number increment up to 1127 respectively that includes at least 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Hydrophilicity profile of Figure 5; (XV) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3B, in any whole number increment up to 1127 respectively that Includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16,17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value less than 0.5 in the Hydropathicity profile of Figure 6; (XVI) a polypeptide comprising at least 5, 6, 7, 8, 9, 10,11,12,13, 14, 15, 16,17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 3B, in any whole number increment up to 1127 respectively that Includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7; (XVII) a polypeptide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acids of a protein of Figure 38, in any whole number increment up to 1127 respectively that includes at least at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 in the Average Flexibility profile of Figure 8; (XVIII) a polypep.ide comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, amino acids of a protein of Figure 3B In any whole number increment up to 1127 respectively that Includes at least at least 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 amino acid position(s) having a value greater than 0.5 In the Beta-tum profile of Figure 9; (XIX) a peptide that occurs at least twice in Tables VIII-XXI and XXII to XLIX, collectively; (XX) a peptide that occurs at least three times in Tables Vill-XXI and XXII to XLIX, collectively; (XXI) a peptide that occurs at least four times in Tables VIII-XXI and XXII to XLIX, collectively; (XXII) a peptide that occurs at least five times In Tables VIII-XXI and XXII to XLIX, collectively; (XXIII) a peptide that occurs at least once in Tables Vill-XXI, and at least once in tables XXII to XLIX; (XXIV) a peptide that occurs at least once in Tables VIII-XXI, and at least twice In tables XXII to XLIX; 28 (XXV) a peptide that occurs at least twice in Tables Vill-XXI, and at least once in tables XXII to XLIX; (XXVI) a peptide that occurs at least twice in Tables VII-XXI, and at least twice in tables XXII to XLIX; (XXVII) a peptide which comprises one two, three, four, or five of the following characteristics, or an oligonucleotide encoding such peptide: 1) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein In Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure 5; ii) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6; iii) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of Figure 7; iv) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of Figure 8; or, v) a region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein In Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of Figure 9;; (XXVIII) a composition comprising a peptide of (I)-(XXVii) or an antibody or binding region thereof together with a pharmaceutical excipient and/or in a human unit dose form. (XXIX) a method of using a peptide of (l)-(XXVII), or an antibody or binding region thereof or a composition of (XXVIII) in a method to modulate a cell expressing 273P4B7,; (XXX) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 273P4B7; (XXXI) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition (XXVIII) in a method to diagnose, prophylax, prognose, or treat an individual who bears a cell expressing 273P4B7, said cell from a cancer of a tissue listed in Table I; (XXXII) a method of using a peptide of (l)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat a a cancer; (XXXIII) a method of using a peptide of (I)-(XXVII) or an antibody or binding region thereof or a composition of (XXVIII) in a method to diagnose, prophylax, prognose, or treat a a cancer of a tissue listed in Table 1; and; (XXXiV) a method of using a a peptide of (I)-(XXViI) or an antibody or binding region thereof or a composition (XXVIII) in a method to identify or characterize a modulator of a cell expressing 273P4B7 As used herein, a range is understood to specifically disclose all whole unit positions thereof. 29 Typical embodiments of the invention disclosed herein include 273P4B7 polynucleotides that encode specific portions of 273P4B7 mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: (a) 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30,35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,,95, 100, 105,110, 115,120,125, 130,135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190,195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025,1050,1075,1100,1125,1150,1175,1200,1225,1235,1240,1245, and 1250, or more contiguous amino acids of 273P487 variant 1; the maximal lengths relevant for other variants are: variant 2, 1127 amino acids; variant 4, 1250 amino acids, variant 5, 1250 amino acids; variant 6, 1250 amino acids; variant 9, 1106 amino acids; variant 10, 419 amino acids; and variant 11, 419 amino acids. . In general, naturally occurring allelic variants of human 273P4B7 share a high degree of structural identity and homology (e.g., 90% or more homology). Typically, allelic variants of a 273P4B7 protein contain conservative amino acid substitutions within the 273P4B7 sequences described herein or contain a substitution of an amino acid from a corresponding position In a homologue of 273P4B7. One class of 273P4B7 allelic variants are proteins that share a high degree of homology with at least a small region of a particular 273P4B7 amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift, In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family In one organism to the members of the same family in other organisms. Amino acid abbreviations are provided in Table i. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any of isoleucine (1), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and serine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pKs of these two amino acid residues are not significant. Still other changes can be considered "conservative'in particular environments (see, e.g. Table Ill herein; pages 13-15 "Blochemistry" 2"d ED. Lubert Stryer ed (Stanford University); Henikoff et al., PNAS 1992 Vol 89 10915-10919; Lei et al., J Blol Chem 1995 May 19; 270(20):11882-6). Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 273P4B7 proteins such as polypeptides having amino acid insertions, deletions and substitutions. 273P487 variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Site directed mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nuc. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et a., Gene, 34:315 (1985)), restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be performed on the cloned DNA to produce the 273P4B7 variant DNA. Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein Interaction. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, seine, and cysteine. 30 Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used. As defined herein, 273P4B7 variants, analogs or homologs, have the distinguishing attribute of having at least one epitope that Is "cross reactive" with a 273P4B7 protein having an amino acid sequence of Figure 3. Asused in this sentence, "cross reactive" means that an antibody or T cell that specifically binds to a 273P4B7 variant also specifically binds to a 273P4B7 protein having an amino acid sequence set forth in Figure 3. A polypeptide ceases to be a variant of a protein shown in Figure 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the starting 273P487 protein. Those skilled in the art understand that antibodies that recognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino acids In a minimal epitope. See, e.g., Nair et a., J. Immunol 2000 165(12): 6949-6955; Hebbes et al., Mol Immunol (1989) 26(9):865-73; Schwartz et a., J Immunol (1985) 135(4):2598-608. Other classes of 273P4B7-related protein variants share 70%, 75%, 80%, 85% or 90% or more similarity with an amino acid sequence of Figure 3, or a fragment thereof. Another specific class of 273P4B7 protein variants or analogs comprises one or more of the 273P4B7 biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 273P4B7 fragments (nucleic or amino acid) that have altered functional (e.g. immunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of Figure 2 or Figure 3. As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 273P4B7 protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids of a 273P4B7 protein shown in Figure 2 or Figure 3. Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 1 to about amino acid 10 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 10 to about amino acid 20 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 40 to about amino acid 50 of a 273P4B7 protein shown In Figure 2 or Figure 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 70 of a 273P4B7 protein shown In Figure 2 or Figure 3, polypeptides consisting of about amino acid 70 to about amino acid 80 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 80 to about amino acid 90 of a 273P4B7 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 to about amino acid 100 of a 273P4B7 protein shown in Figure 2 or Figure 3, etc. throughout the entirety of a 273P4B7 amino acid sequence. Moreover, polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of a 273P4B7 protein shown in Figure 2 or Figure 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues, 273P4B7-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 31 273P4B7-related protein, In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 273P4B7 protein (or variants, homologs or analogs thereof). Moreover the invention comprises 273P487 nucleic acid and amino acid sequences. Further, the invention comprises variants of 273P487, and fragments thereof. In an embodiment of the invention a protein fragment is: a subsequence of at least 158, or 262, or 420 contiguous amino acids of a protein of 273P4B7 v, 1; is an amino acid subsequence of a protein of 273P4B7 v. 1 with a proviso that 273P4B7 v. 1 protein is such that it does not include an valine (V) or methionine (M) at position 145; arginine (R) or glycine (G) at position 172; Isoleucine (1) or valine (V) at position 889; or, lysine (K) or arginine (R) at position 989. An embodiment of an amino acid sequence of the invention is a fragment of a protein of 273P4B7 v. I with a proviso that it is not a protein of 273P417 v. 9, v. 10 or v.11. In an embodiment, an amino acid fragment of the invention is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 260, 261, 262, 263, 264, 265, 270, 275, 300, 325, 350, 375, 400, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 422, 434, 435, 450, 475, 500, 525, 550, 575, 600, 650, 675, 700, 705, 710, 715, 716,717, 718,719, 720, 725, 750, 775, 800, 825, B50, 875,900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1127, 1150, 1175, 1200, 1025, or 1250 contiguous amino acids of a protein of Figure 2; in certain embodiments the fragment/subsequence comprises a functional or structural motif, e.g., as set forth herein, or comprises an immune system (antibody or T cell) epitope. Embodiments of a nucleic acid sequence of the invention comprise a sequence that encodes an amino acid sequence as set forth herein. Ill.A.) Motif-bearing Protein Embodiments Additional illustrative embodiments of the Invention disclosed herein include 273P487 polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 273P4B7 polypeptide sequence set forth in Figure 2 or Figure 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., URL addresses: pfam.wust.edul; searchlauncher.bcm.tnc.edu/seq search/struc-predict.html; psort.ims.u-tokyo.ac.jp/; cbs.dtu.dkl; ebi.ac.uklinterpro/scan.html; expasy.ch/tools/scnpsitl.html; EpimatrixT 4 and EpimerTM, Brown University, brown.edu/ReseanchfrB-HIV_Lab/epimatrix/epimatrix.html; and BIMAS, bImas.dcrt.nlh.gov/.). Motif bearing subsequences of all 273P4B7 variant proteins are set forth and identified in Tables Vill-XXI and XXII XLIX. Table V sets forth several frequently occurring motifs based on pfam searches (see URL address pfam.wustl.edu/). The columns of Table V list (1) motif name abbreviation, (2) percent Identity found amongst the different member of the motif family, (3) motif name or description and (4) most common function; location information is included if the motif is relevant for location. Polypeptides comprising one or more of the 273P4B7 motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 273P4B7 motifs discussed above are associated with growth dysregulation and because 273P487 is overexpressed in certain cancers (See, e.g., Table 1). Casein kinase 1I, cAMP and camp-dependent protein kinase, and Protein Kinase C, for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen et a/., Lab Invest., 78(2): 165-174 (1998); Gaiddon et al., Endocrinology 136(10):-4331-4338 (1995); Hall et al., Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel et al., Oncogene 18(46): 6322-6329 (1999) and O'Brian, Oncol. Rep. 5(2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis et al, Biochem. Biophys. Acta 1473(1):21-34 (1999); Raju et a, Exp. Cell Res. 235(1): 145-154 (1997)). Amidation is another protein 32 modification also associated with cancer and cancer progression (see e.g. Treston et a., J. NatI. Cancer Inst. Monogr. (13): 169-175 (1992)). In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables Vill-XXI and XXII-XLIX. CTL epitopes can be determined using specific algorithms to identify peptides within a 273P4B7 protein that are capable of optimally binding to specified HLA alleles (e.g., Table IV; Epimatrix T M and EpimerTM, Brown University, URL brown.edu/Research/TB HIV.Labepimarix/epmatrx.htm; and BIMAS, URL bimas.dcrt.nih.gov.) Moreover, processes for Identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for identifying peptides that are Immunogenic epitopes, are well known in the art, and are carried out without undue experimentation either in vitro or in vivo. Also known in the art are principles for creating analogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class 1i motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position. For example, on the basis of residues defined in Table IV, one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue; substitute a less preferred residue with a preferred residue; or substitute an originally-occurring preferred residue with another preferred residue. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV. A variety of references reflect the art regarding the identification and generation of epitopes In a protein of interest as well as analogs thereof. See, for example, WO 97/33602 to Chesnut et al.; Sette, Immunogenetics 1999 50(3-4): 201 212; Sette et al., J. Immunol. 2001 166(2): 1389-1397; Sidney et al., Hum. Immunol. 1997 58(1): 12-20; Kondo et al., Immunogenetics 1997 45(4): 249-258; Sidney et a., J. Immunol. 1996 157(8): 3480-90; and Falk et a., Nature 351: 290-6 (1991); Hunt et aL, Science 255:1261-3 (1992); Parker et a., J. Immunol. 149:3580-7 (1992); Parker et a., J. Immunol. 152:163-75 (1994)); Kast et al., 1994 152(8): 3904-12; Borras-Cuesta et al, Hum. Immunol. 2000 61(3): 266-278; Alexander et al., J.. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., PMID: 7895164, UI: 95202582; O'Sullivan et al., J. Immunol. 1991 147(8): 2663-2669; Alexander et al., Immunity 1994 1(9): 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92. Related embodiments of the invention include polypeptides comprising combinations of the different motifs set forth in Table VI, and/or, one or more of the predicted CTL epitopes of Tables Vill-XXI and XXil-XLIX, and/or, one or more of the predicted HTL epitopes of Tables XLVl-XLX, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or within the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically, the number of N-terminal and/or C-terminal amino acid residues on either side of a motif Is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues. 273P4B7-related proteins are embodied in many forms, preferably in isolated form. A purified 273P4B7 protein molecule will be substantially free of other proteins or molecules that impair the binding of 273P487 to antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of a 273P4B7 related proteins include purified 273P4B7-related proteins and functional, soluble 273P4B7-related proteins. In one embodiment, a functional, soluble 273P4B7 protein or fragment thereof retains the ability to be bound by antibody, T cell or other ligand. The invention also provides 273P4B7 proteins comprising biologically active fragments of a 273P487 amino acid sequence shown in Figure 2 or Figure 3. Such proteins exhibit properties of the starting 273P4B7 protein, such as the ability 33 to elicit the generation of antibodies that specifically bind an epitope associated with the starting 273P4B7 protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein. 273P4B7-related polypeptides that contain particularly Interesting structures can be predicted and/or Identified using various-analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Garnier-Robson, Kyte Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or based on Immunogenicity. Fragments that contain such structures are particularly useful In generating subunit-specific anti-273P4B7 antibodies or T cells or In identifying cellular factors that bind to 273P4B7. For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Nati. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and Immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues proles can be generated, and Immunogenic peptide fragments Identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-tum profiles can be generated, and immunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. CTL epitopes can be determined using specific algorithms to identify peptides within a 273P4B7 protein that are capable of optimally binding to specified HLA alleles (e.g., by using the SYFPEITHI site at World Wide Web URL syfpeithi.bmi heidelberg.com/; the listings in Table IV(A)-(E); Epimatrix T and EpimerTM, Brown University, URL (brown.edu/Research/TB HIV-Labepimatrix/epimatix.html); and BIMAS, URL bimas.dcrtnih.gov). Illustrating this, peptide epitopes from 273P4B7 that are presented in the context of human MHC Class I molecules, e.g., HLA-A1, A2, A3, All1, A24, B7 and B35 were predicted (see, e.g., Tables VIII-XXI, XXII-XLIX). Specifically, the complete amino acid sequence of the 273P4B7 protein and relevant portions of other variants, i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation or exon juction, and for HLA Class Il predictions 14 flanking residues on either side of a point mutation or exon junction corresponding to that variant, were entered into the HLA Peptide Motif Search algorithm found in the Bloinformatics and Molecular Analysis Section (BIMAS) web site listed above; in addition to the site SYFPEITHI, at URL syfpeIthi.bmi heidelberg.com/. The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, e.g., Falk et at., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 8-, 9-, 10 or I 1-mers. For example, for Class I HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker et al., J. Immunol. 149:3580-7 (1992)). Selected results of 273P4B7 predicted binding peptides are shown in Tables VIII-XXI and XXII-XLIX herein. In Tables Vill XXI and XXII-XLVII, selected candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. In Tables XLVI-XLIX, selected candidates, 15-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the estimated half time of dissociation of complexes containing the peptide at 370C at pH 6.5. Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of time and thus represent the best immunogenic targets for T-cell recognition. 34 Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigen processing defective cell line T2 (see, e.g., Xue et a., Prostate 30:73-8 (1997) and Peshwa et a., Prostate 36:129-38 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8+ cytotoxic T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells. It is to be appreciated that every epitope predicted by the BIMAS site, EpimerTM and EpimatdxTm sites, or specified by the HLA class I or class I1 motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web site URL syfpelthi.bmi-heidelberg.com/, or BIMAS, bimas.dcrt.nih.gov/) are to be "applied" to a 273P4B7 protein in accordance with the invention. As used in this context "applied" means that a 273P4B7 protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a 273P4B7 protein of 8, 9, 10, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class 11 motif are within the scope of the invention. IlI.B.) Expression of 273P4B7-related Proteins In an embodiment described in the examples that follow, 273P4B7 can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 273P4B7 with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville TN). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 273P4B7 protein in transfected cells. The secreted HIS-tagged 273P4B7 in the culture media can be purified, e.g., using a nickel column using standard techniques. 111.C.) Modifications of 273P4B7-related Proteins Modifications of 273P4B7-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification Includes reacting targeted amino acid residues of a 273P4B7 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of a 273P4B7 protein. Another type of covalent modification of a 273P4B7 polypeptide included within the scope of this invention comprises altering the native glycosylation patten of a protein of the invention. Another type of covalent modification of 273P4B7 comprises linking a 273P4B7 polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. The 273P4B7-related proteins of the present Invention can also be modified to form a chimeric molecule comprising 273P4B7 fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a 273P4B7 sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in Figure 2 or Figure 3. Such a chimeric molecule can comprise multiples of the same subsequence of 273P4B7. A chimeric molecule can comprise a fusion of a 273P4B7-related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors, The epitope tag is generally placed at the amino- or carboxyl- terminus of a 273P4B7 protein. In an alternative embodiment, the chimeric molecule can comprise a fusion of a 273P4B7-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 273P4B7 polypeptide in place of at least 35 one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule. For the production of immunoglobulin fusions see, e.g., U.S. Patent No. 5,428,130 issued June 27,1995. Ill.D.) Uses of 273P4B7-related Proteins The proteins of the invention have a number of different specific uses. As 273P4B7 Is highly expressed in prostate and other cancers, 273P4B7-related proteins are used in methods that assess the status of 273P487 gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a 273P4B7 protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs). Exemplary assays utilize antibodies or T cells targeting 273P4B7-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 273P4B7 polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 273P4B7-related proteins that contain the amino acid residues of one or more of the biological motifs in a 273P4B7 protein are used to screen for factors that interact with that region of 273P4B7. 273P4B7 protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epitope of a 273P4B7 protein), for identifying agents or cellular factors that bind to 273P4B7 or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines. Proteins encoded by the 273P4B7 genes, or by analogs, homologs or fragments thereof, have a variety of uses, including but not limited to generating antibodies and in methods for Identifying ligands and other agents and cellular constituents that bind to a 273P4B7 gene product. Antibodies raised against a 273P487 protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 273P4B7 protein, such as those listed in Table 1. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. 273P4B7-related nucleic acids or proteins are also used in generating HTL or CTL responses. Various immunological assays useful for the detection of 273P4B7 proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological Imaging reagents capable of detecting 273P4B7-expressing cells (e.g., in radioscintigraphic imaging methods). 273P4B7 proteins are also particularly useful in generating cancer vaccines, as further described herein. IV.) 273P4B7 Antibodies Another aspect of the invention provides antibodies that bind to 273P4B7-related proteins. Preferred antibodies specifically bind to a 273P4B7-related protein and do not bind (or bind weakly) to peptides or proteins that are not 273P4B7 related proteins under physiological conditions, In this context, examples of physiological conditions include: 1) phosphate buffered saline; 2) Tris-buffered saline containing 25mM Tris and 150 mM NaCl; or normal saline (0.9% NaC); 4) animal serum such as human serum; or, 5) a combination of any of 1) through 4); these reactions preferably taking place at pH 7.5, alternatively in a range of pH 7.0 to 8.0, or alternatively in a range of pH 6.5 to 8.5; also, these reactions taking place at a temperature between 40C to 370C. For example, antibodies that bind 273P4B7 can bind 273P4B7-related proteins such as the homologs or analogs thereof. 36 273P4B7 antibodies of the invention are particularly useful in cancer (see, e.g., Table I) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosis, and/or prognosis of other cancers, to the extent 273P487 is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 273P4B7 is involved, such as advanced or metastatic prostate cancers. The invention also provides various immunological assays useful for the detection and quantification of 273P4B7 and mutant 273P4B7-related proteins. Such assays can comprise one or more 273P4B7 antibodies capable of recognizing and binding a 273P4B7-related protein, as appropriate. These assays are performed within various immunological assay formats well known In the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like. Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays. In addition, immunological imaging methods capable of detecting prostate cancer and other cancers expressing 273P4B7 are also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled 273P4B7 antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of 273P4B7 expressing cancers such as prostate cancer. 273P4B7 antibodies are also used in methods for purifying a 273P4B7-related protein and for isolating 273P4B7 homologues and related molecules. For example, a method of purifying a 273P4B7-related protein comprises incubating a 273P4B7 antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 273P4B7-related protein under conditions that permit the 273P4B7 antibody to bind to the 273P487-related protein; washing the solid matrix to eliminate impurities; and eluting the 273P4B7-related protein from the coupled antibody. Other uses of 273P4B7 antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a 273P4B7 protein. Various methods for the preparation of antibodies are well known in the art For example, antibodies can be prepared by immunizing a suitable mammalian host using a 273P4B7-related protein, peptide, or fragment in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Halow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 273P4B7 can also be used, such as a 273P4B7 GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 273P4B7-related protein is synthesized and used as an immunogen. In addition, naked DNA immunization techniques known in the art are used (with or without purified 273P4B7-related protein or 273P4B7 expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648). The amino acid sequence of a 273P4B7 protein as shown in Figure 2 or Figure 3 can be analyzed to select specific regions of the 273P4B7 protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 273P4B7 amino acid sequence are used to identify hydrophific regions in the 273P4B7 structure. Regions of a 273P4B7 protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Gamier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schult or Jameson-Wolf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Nati. Acad. Sci. U.S.A. 78:3824 3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105 132. Percent (%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein 37 Engineering 1:289-294. Thus, each region Identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 273P4B7 antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing Immunogenic conjugates of a protein with a canier, such as BSA, KLH or other carder protein. In some circumstances, direct conjugation using, for example, carbodilmide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 273P4B7 immunogen Is often conducted by Injection over a suitable time period and with use of a suitable adjuvant as is understood in the art. During the Immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation. 273P4B7 monoclonal antibodies can be produced by various means well known In the art For example, Immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Immortalized cell lines that secrete the desired antibodies are screened by Immunoassay in which the antigen is a 273P4B7-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid. The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 273P4B7 protein can also be produced in the context of chimeric or complementarity determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 273P4B7 antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et at., 1986, Nature 321: 522-525; Riechmann et a., 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534-1536). See also, Carter et al., 1993, Proc. Nati. Acad. Sci. USA 89: 4285 and Sims et al., 1993, J. Immunol. 151: 2296. Methods for producing fully human monoclonal antibodies Include phage display and transgenic methods (for review, see Vaughan et a., 1998, Nature Biotechnology 16: 535-539). Fully human 273P4B7 monoclonal antibodies can be generated using cloning technologies employing large human Ig gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenboom, Building an in vitro immune system: human antibodies from phage display libraries, In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications In Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. Id., pp 65-82). Fully human 273P4B7 monoclonal antibodies can also be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described In PCT Patent Application W098/24893, Kucherapati and Jakobovits et al., published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7(4): 607-614; U.S. patents 6,162,963 issued 19 December 2000; 6,150,584 issued 12 November 2000; and, 6,114598 issued 5 September 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies. Reactivity of 273P4B7 antibodies with a 273P4B7-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 273P4B7-related proteins, 273P4B7-expressing cells or extracts thereof. A 273P4B7 antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 273P4B7 epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known In the art (e.g., Wolff et al., Cancer Res. 53: 2560-2565). V.) 273P4B7 Cellular Immune Responses 38 The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the world wide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided. A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell47:1071, 1986; Babbitt, B. P. et aL., Nature 317:359,1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403,1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, et al., J. Immunol. 160:3363,1998; Rammensee, et aL., Immunogenetics 41:178,1995; Rammensee et al., SYFPEITHI, access via World Wide Web at URL (134.2.96.221/scripts.haserver.dllhome.htm); Sette, A. and Sidney, J. Curr. Opin, Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Blol. 6:52,1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93,1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov; 50(3-4):201-12, Review). Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleft/groove of HLA molecules which accommodate, in an allele-specific mode, residues bome by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et a., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stem at al., Structure 2:245,1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Nati. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., J. Mol. SBiol. 219:277, 1991.) Accordingly, the definition of class I and class I allele-specific HLA binding motifs, or class I or class I supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s). Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity. Various strategies can be utilized to evaluate cellular immunogenicity, including: 1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. at al., Mol, Immunol. 32:603, 1995; Celis, E. at al., Proc. NatL. Acad. Sc. USA 91:2105, 1994; Tsai, V. at al., J. Immunol. 158:1796,1997; Kawashima, I. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T.cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine- or 51Cr-release assay involving peptide sensitized target cells. 2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. at al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. 39 Peptide-specific T cells are detected using, e.g., a 51 Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen. 3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. et aL., J. Exp. Med. 181:1047, 1995; Doolan, D. L. etal., Immunity 7:97, 1997; Berton], R. et at., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immuno. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an Immune response "naturally", or from patients who were vaccinated against the antigen. PBL from subjects are cultured in vitro for 1-2 weeks In the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including 51 Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release. Vi.) 273P4B7 Transgenic Animals Nucleic acids that encode a 273P4B7-related protein can also be used to generate either transgenic animals or "knock out" animals that, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, cDNA encoding 273P4B7 can be used to clone genomic DNA that encodes 273P4B7. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 273P4B7. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional In the art and are described, for example, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for 273P4B7 transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding 273P4B7 can be used to examine the effect of increased expression of DNA that encodes 273P4B7. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition. Alternatively, non-human homologues of 273P4B7 can be used to construct a 273P4B7 "knock out" animal that has a defective or altered gene encoding 273P487 as a result of homologous recombination between the endogenous gene encoding 273P4B7 and altered genomic DNA encoding 273P4B7 introduced Into an embryonic cell of the animal. For example, cDNA that encodes 273P4B7 can be used to clone genomic DNA encoding 273P4B7 in accordance with established techniques. A portion of the genomic DNA encoding 273P4B7 can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5'and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., el, :915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knock out animals can be characterized, 40 for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 273P4B7 polypeptide. V1l.) Methods for the Detection of 273P487 Another aspect of the present invention relates to methods for detecting 273P4B7 polynucleotides and 273P4B7-related proteins, as well as methods for identifying a cell that expresses 273P4B7. The expression profile of 273P4B7 makes it a diagnostic marker for metastasized disease. Accordingly, the status of 273P4B7 gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 273P4B7 gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northem blotting techniques including In situ hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Westem blot analysis and tissue array analysis. More particularly, the invention provides assays for the detection of 273P4B7 polynucleotides in a biological sample, such as serum, bone, prostate, and other Uissues, urine, semen, cell preparations, and the like. Detectable 273P4B7 polynucleotides include, for example, a 273P4B7 gene or fragment thereof, 273P4B7 mRNA, alternative splice variant 273P4B7 mRNAs, and recombinant DNA or RNA molecules that contain a 273P4B7 polynucleotide. A number of methods for amplifying and/or detecting the presence of 273P4B7 polynudeotides are well known in the art and can be employed in the practice of this aspect of the invention. In one embodiment, a method for detecting a 273P4B7 mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 273P487 polynucleotides as sense and antisense primers to amplify 273P4B7 cDNAs therein; and detecting the presence of the amplified 273P4B7 cDNA. Optionally, the sequence of the amplified 273P4B7 cDNA can be determined. In another embodiment, a method of detecting a 273P4B7 gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 273P4B7 polynucleotides as sense and antisense primers; and detecting the presence of the amplified 273P4B7 gene. Any number of appropriate sense and antisense probe combinations can be designed from a 273P487 nucleotide sequence (see, e.g., Figure 2) and used for this purpose. The invention also provides assays for detecting the presence of a 273P4B7 protein In a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a 273P4B7-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Westem blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of detecting the presence of a 273P4B7-related protein In a biological sample comprises first contacting the sample with a 273P4B7 antibody, a 273P4B7-reactive fragment thereof, or a recombinant protein containing an antigen-binding region of a 273P4B7 antibody; and then detecting the binding of 273P4B7-related protein in the sample. Methods for identifying a cell that expresses 273P4B7 are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 273P487 gene comprises detecting the presence of 273P487 mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 273P4B7 riboprobes, Northem blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 273P4B7, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Alternatively, an assay for identifying a cell that expresses a 273P4B7 gene comprises detecting the presence of 273P4B7-related protein in the 41 cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 273P4B7-related proteins and cells that express 273P4B7-related proteins. 273P4B7 expression analysis is also useful as a tool for identifying and evaluating agents that modulate 273P4B7 gene expression. For example, 273P4B7 expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits 273P4B7 expression or over expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 273P4B7 expression by RT-PCR, nucleic acid hybridization or antibody binding. VIII.) Methods for Monitoring the Status of 273P4B7-related Genes and Their Products Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et a., Lab invest. 77(5): 437-438 (1997) and Isaacs et al., Cancer Surv. 23:19-32 (1995)). In this context, examining a biological sample for evidence of dysregulated cell growth (such as aberrant 273P4B7 expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of 273P4B7 in a biological sample of interest can be compared, for example, to the status of 273P4B7 in a corresponding normal sample (e.g. a sample from that Individual or alternatively another individual that Is not affected by a pathology). An alteration in the status of 273P4B7 in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et al., J. Comp. Neurol. 1996 Dec 9; 376(2): 306-14 and U.S. Patent No. 5,837,501) to compare 273P4B7 status In a sample. The term "status" in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its products. These include, but are not limited to the location of expressed gene products (including the location of 273P4B7 expressing cells) as well as the level, and biological activity of expressed gene products (such as 273P4B7 mRNA, polynucleotides and polypeptides). Typically, an alteration in the status of 273P4B7 comprises a change in the location of 273P4B7 and/or 273P4B7 expressing cells and/or an increase in 273P4B7 mRNA and/or protein expression. 273P4B7 status in a sample can be analyzed by a number of means well known In the art, including without limitation, immunohistochemical analysis, in situ hybridization, RT-PCR analysis on laser capture micro-dissected samples, Westem blot analysis, and tissue array analysis. Typical protocols for evaluating the status of a 273P4B7 gene and gene products are found, for example in Ausubel et a. eds., 1995, Current Protocols In Molecular Biology, Units 2 (Northem Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). Thus, the status of 273P4B7 in a biological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southem analysis (to examine, for example perturbations in a 273P4B7 gene), Northern analysis and/or PCR analysis of 273P4B7 mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 273P4B7 mRNAs), and, Western and/or immunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 273P4B7 proteins and/or associations of 273P4B7 proteins with polypeptide binding partners). Detectable 273P4B7 polynucleotides include, for example, a 273P4B7 gene or fragment thereof, 273P4B7 mRNA, alternative splice variants, 273P4B7 mRNAs, and recombinant DNA or RNA molecules containing a 273P4B7 polynucleotide. The expression profile of 273P4B7 makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of 273P4B7 provides 42 Information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for determining 273P4B7 status and diagnosing cancers that express 273P4B7, such as cancers of the tissues listed in Table 1. For example, because 273P4B7 mRNA is so highly expressed in prostate and other cancers relative to normal prostate tissue, assays that evaluate the levels of 273P4B7 mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 273P4B7 dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options, The expression status of 273P4B7 provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 273P4B7 in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer. As described above, the status of 273P4B7 In a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 273P4B7 in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 273P4B7 expressing cells (e.g. those that express 273P4B7 mRNAs or proteins). This examination can provide evidence of dysregulated cellular growth, for example, when 273P4B7-expressing cells are found In a biological sample that does not normally contain such cells (such as a lymph node), because such alterations In the status of 273P4B7 in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth Is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, e.g., Murphy et al., Prostate 42(4): 315-317 (2000);Su et a., Semin. Surg. Oncol. 18(1): 17-28 (2000) and Freeman et al., J Urol 1995 Aug 154(2 Pt 1):474-8). In one aspect, the invention provides methods for monitoring 273P4B7 gene products by determining the status of 273P4B7 gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 273P4B7 gene products in a corresponding normal sample. The presence of aberrant 273P4B7 gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual. In another aspect, the invention provides assays useful In determining the presence of cancer in an individual, comprising detecting a significant increase in 273P4B7 mRNA or protein expression in a test cell or tissue sample relative to. expression levels in the corresponding normal cell or tissue. The presence of 273P4B7 mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table 1. The presence of significant 273P4B7 expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the'corresponding normal tissues do not express 273P4B7 mRNA or express It at lower levels. In a related embodiment, 273P4B7 status Is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of 273P4B7 protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 273P4B7 expressed In a corresponding normal sample. In 'one embodiment, the presence of 273P4B7 protein is evaluated, for example, using immunohistochemical methods. 273P4B7 antibodies or binding partners capable of detecting 273P4B7 protein expression are used in a variety of assay formats well known In the art for this purpose. 43 In a further embodiment, one can evaluate the status of 273P4B7 nucleotide and amino acid sequences In a biological sample in order to identify perturbations In the structure of these molecules. These perturbations can Include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed In a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogi et al., 1999, J. Cutan. Pathol. 26(8):369-378). For example, a mutation in the sequence of 273P4B7 may be indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation In 273P4B7 indicates a potential loss of function or increase In tumor growth. A wide variety of assays for observing perturbations In nucleotide and amino acid sequences are well known In the art. For example, the size and structure of nucleic acid or amino acid sequences of 273P487 gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the ad (see, e.g., U.S. Patent Nos. 5,382,510 issued 7 September 1999, and 5,952,170 Issued 17 January 1995). Additionally, one can examine the methylation status of a 273P4B7 gene in a biological sample. Aberrant demethylation and/or hypermethylation of CpG Islands in gene 5' regulatory regions frequently occurs in immortalized and transformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation of the pi-class glutathlone S-transferase (a protein expressed in normal prostate but not expressed in >90% of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo et a., Am. J. Pathol. 155(6): 1985-1992 (1999)). In addition, this alteration is present in at least 70% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brooks et al., Cancer Epidemiol. Biomarkers Prev., 1998, 7:531-536). In another example, expression of the LAGE-I tumor specific gene (which is not expressed In normal prostate but Is expressed in 25-50% of prostate cancers) is induced by deoxy-azacytidine in lymphoblastold cells, suggesting that tumoral expression is due to demethylation (Lethe et a., Int. J. Cancer 76(6): 903-908 (1998)). A variety of assays for examining methylation status of a gene are well known in the art. For example, one can utilize, in Southern hybridization approaches, methylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisufite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation Interference can also be found for example In Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel et a. eds., 1995. Gene amplification is an additional method for assessing the status of 273P487. Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Nati. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 273P4B7 expression. The presence of RT-PCR amplifiable 273P4B7 mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik et 44 al., 1997, Urol. Res. 25:373-384; Ghossein et al., 1995, J. Clin. Oncol. 13:1195-2000; Heston et al., 1995, Clin. Chem. 41:1687 1688). A further aspect of the Invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment a method for predicting susceptibility to cancer comprises detecting 273P4B7 mRNA or 273P4B7 protein in a tissue sample, Its presence indicating susceptibility to cancer, wherein the degree of 273P487 mRNA expression correlates to the degree of susceptibility. In a specific embodiment, the presence of 273P4B7 in prostate or other tissue is examined, with the presence of 273P4B7 In the sample providing an indication of prostate cancer susceptibility (or the emergence or existence of a prostate tumor). Similarly, one can evaluate the integrity 273P4B7 nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations in 273P4B7 gene products in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor). The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of 273P4B7 mRNA or 273P4B7 protein expressed by tumor cells, comparing the level so determined to the level of 273P4B7 mRNA or 273P4B7 protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of 273P4B7 mRNA or 273P4B7 protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which 273P4B7 is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors. Another embodiment is the evaluation of the Integrity of 273P4B7 nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors. Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time comprise determining the level of 273P487 mRNA or 273P4B7 protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 273P4B7 mRNA or 273P4B7 protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 273P4B7 mRNA or 273P4B7 protein expression In the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining 273P4B7 expression in the tumor cells over time, where Increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 273P487 nucleotide and amino acid sequences In a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer. The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention Is directed to methods for observing a coincidence between the expression of 273P4B7 gene and 273P4B7 gene products (or perturbations in 273P4B7 gene and 273P4B7 gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSA, PSCA and PSM expression for prostate cancer etc.) as well as gross cytological observations (see, e.g., Bocking et al., 1984, Anal. Quant. Cytol. 6(2):74-88; Epstein, 1995, Hum. Pathol. 26(2):223-9; Thorson et aL., 1998, Mod. Pathol. 11(6):543-51; Baisden et a., 1999, Am. J. Surg. Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of 273P4B7 gene and 273P487 gene products (or perturbations in 273P4B7 gene and 273P4B7 gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample. 45 In one embodiment methods for observing a coincidence between the expression (f 273P4B7 gene and 273P4B7 gene products (or perturbations in 273P4B7 gene and 273P4B7 gene products) and another factor associated with malignancy entails detecting the overexpresslon of 273P487 mRNA or protein in a tissue sample, detecting the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 273P4B7 mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a specific embodiment, the expression of 273P4B7 and PSA. mRNA in prostate tissue is examined, where the coincidence of 273f4B7 and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor. Methods for detecting and quantifying the expression of 273P4B7 mRNA or protein are described herein, and standard nucleic acid and protein detection and quantification technologies are well known in the art Standard methods for the detection and quantification of 273P4B7 mRNA include in situ hybridization using labeled 273P4B7 riboprobes, Northem blot and related techniques using 273P487 polynucleotide probes, RT-PCR analysis using primers specific for 273P4B7, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like, In a specific embodiment, semi quantitative RT-PCR Is used to detect and quantify 273P4B7 mRNA expression. Any number of primers capable of amplifying 273P4B7 can be used for this purpose, including but not limited to the various primer sets specifically described herein. In a specific embodiment, polyclonal or monoclonal antibodies specifically reactive with the wild-type 273P4B7 protein can be used in an immunohistochemical assay of biopsied tissue. IX.) Identification of Molecules That Interact With 273P4B7 The 273P487 protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 273P4B7, as well as pathways activated by 273P4B7 via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-protein interactions In vivo through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Patent Nos. 5,955,280 issued 21 September 1999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 issued 21 December 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, et al., Nature 402: 4 November 1999, 83-86). Alternatively one can screen peptide libraries to identify molecules that interact with 273P4B7 protein sequences. In such methods, peptides that bind to 273P4B7 are identified by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 273P4B7 proteln(s). Accordingly, peptides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents, are thus Identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide libraries and screening methods that can be used to identify molecules that interact with 273P4B7 protein sequences are disclosed for example In U.S. Patent Nos. 5,723,286 issued 3 March 1998 and 5,733,731 Issued 31 March 1998. Alternatively, cell lines that express 273P4B7 are used to Identify protein-protein interactions mediated by 273P4B7. Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B.J., et al. Blochem. Biophys. Res. Commun. 1999, 261:646-51). 273P4B7 protein can be immunoprecipitated from 273P4B7 expressing cell lines using anti-273P4B7 antibodies. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of 273P487 and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, 3 5 S-methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis. 46 Small molecules and ligands that interact with 273P4B7 can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interfere with protein function, including molecules that interfere with 273P4B7's ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate 273P4B7-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 273P4B7 (see, e.g., Hille, B., Ionic Channels of Excitable Membranes 20d Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate 273P4B7 function can be identified based on their ability to bind 273P487 and activate a reporter construct. Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods for forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells engineered to express a fusion protein of 273P4B7 and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators, which activate or inhibit 273P487. An embodiment of this invention comprises a method of screening for a molecule that Interacts with a 273P4B7 amino acid sequence shown in Figure 2 or Figure 3, comprising the steps of contacting a population of molecules with a 273P4B7 amino acid sequence, allowing the population of molecules and the 273P4B7 amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 273P4B7 amino acid sequence, and then separating molecules that do not interact with the 273P4B7 amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 273P4B7 amino acid sequence. The Identified molecule can be used to modulate a function performed by 273P4B7. In a preferred embodiment, the 273P4B7 amino acid sequence is contacted with a library of peptides. 2 Therapeutic Methods and Compositions The identification of 273P4B7 as a protein that is normally expressed in a restricted set of tissues, but which Is also expressed in cancers such as those listed in Table I, opens a number of therapeutic approaches to the treatment of such cancers. Of note, targeted antitumor therapies have been useful even when the targeted protein is expressed on normal tissues, even vital normal organ tissues. A vital organ is one that is necessary to sustain life, such as the heart or colon. A non-vital organ is one that can be removed whereupon the individual is-still able to survive. Examples of non-vital organs are ovary, breast, and prostate. For example, Herceptin@ is an FDA approved pharmaceutical that has as its active ingredient an antibody which is immunoreactive with the protein variously known as HER2, HER2/neu, and erb-b-2. It is marketed by Genentech and has been a commercially successful antitumor agent. Herceptin sales reached almost $400 million in 2002. Herceptin is a treatment for HER2 positive metastatic breast cancer. However, the expression of HER2 is not limited tosuch tumors. The same protein is expressed in a number of normal tissues. In particular, it is known that HER2/neu Is present in normal kidney and heart, thus these tissues are present in all human recipients of Herceptin. The presence of HER2/neu in normal kidney is also confirmed by Latif, Z., et al., B.J.U. International (2002) 89:5-9. As shown in this article (which evaluated whether renal cell carcinoma should be a preferred indication for anti-HER2 antibodies such as Herceptin) both protein and mRNA are produced in benign renal tissues. Notably, HER2/neu protein was strongly overexpressed in benign renal tissue. 47 Despite the fact.that HER2/neu is expressed in such vital tissues as heart and kidney, Herceptin is a very useful, FDA approved, and commercially successful drug. The effect of Herceptin on cardiac tissue, i.e., "cardiotoxicity," has merely been a side effect to treatment. When patients were treated with Herceptin alone, significant cardiotoxicity occurred in a very low percentage of patients. Of particular note, although kidney tissue is indicated to exhibit normal expression, possibly even higher expression than cardiac tissue, kidney has no appreciable Herceptin side effect whatsoever. Moreover, of the diverse array of normal tissues In which HER2 is expressed, there is very little occurrence of any side effect. Only cardiac tissue has manifested any appreciable side effect at all. A tissue such as kidney, where HER2/neu expression is especially notable, has not been the basis for any side effect. Furthermore, favorable therapeutic effects have been found for antitumor therapies that target epidermal growth factor receptor (EGFR). EGFR is also expressed in numerous normal tissues. There have been very limited side effects in normal tissues following use of anti-EGFR therapeutics. Thus, expression of a target protein in normal tissue, even vital normal tissue, does not defeat the utility of a targeting agent for the protein as a therapeutic for certain tumors in which the protein is also overexpressed. Accordingly, therapeutic approaches that inhibit the activity of a 273P487 protein are useful for patients suffering from a cancer that expresses 273P4B7. These therapeutic approaches generally fall into two classes. One class comprises various methods for inhibiting the binding or association of a 273P4B7 protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a 273P4B7 gene or translation of 273P4B7 mRNA. X.A.) Anti-Cancer Vaccines The invention provides cancer vaccines comprising a 273P4B7-related protein or 273P4B7-related nudeic acid. In view of the expression of 273P4B7, cancer vaccines prevent and/or treat 273P4B7-expressing cancers with minimal or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immunogens (Hodge et al., 1995, Int J. Cancer 63:231-237; Fong et a., 1997, J. Immunol. 159:3113-3117). Such methods can be readily practiced by employing a 273P4B7-related protein, or a 273P4B7-encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 273P487 immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, eg., HeryIn et al., Ann Med 1999 Feb 31(1):66-78; Maruyama et a., Cancer ImmunolImmunother 2000 Jun 49(3):123-32) Briefly, such methods of generating an immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.g. an epitope present in a 273P4B7 protein shown in Figure 3 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a preferred method, a 273P4B7 immunogen contains a biological motif, see e.g., Tables Vill-XXI and XXiI-XLIX, or a peptide of a size range from 273P4B7 indicated in Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9. The entire 273P4B7 protein, immunogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g.,Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et a., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873 875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., 48 Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413,1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et a., In: Concepts In vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabartl, S. et aL., Nature 320:535, 1986; Hu, S. L. et a., Nature 320:537,1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et a/., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et a., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofier, N. et al., J. ImmunoL. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16,1993; Falo, L. D., Jr. et a., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cONA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L, Hunt, L. A., and Webster, R. G., Vaccine 11:957,1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used. In patients with 273P4B7-associated cancer, the vaccine compositions of the invention can also be used In conjunction with other treatments used for cancer, eg., surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like. Cellular Vaccines: CTL epitopes can be determined using specific algorithms to identify peptides within 273P4B7 protein that bind corresponding HLA alleles (see e.g., Table IV; EpimerTM and EpimatrixTM, Brown University (URL brown.edu/ResearchfrB HIV-Lab/epimatixlepimatrix.html); and, BIMAS, (URL bimas.dcrt.nih.gov; SYFPEITHI at URL syfpeithi.bmi-heidelberg.com). In a preferred embodiment, a 273P4B7 immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables VIII-XXI and XXIl-XLIX or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class Il motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated In the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class It binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class Il molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, i.e., position two of a Class I motif Is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class I motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class Il epitopes are often 9,10,11, 12,13, 14,15,16,17,18,19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids. Antibody-based Vaccines A wide variety of methods for generating an immune response in a mammal are known in the art (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. a 273P4B7 protein) so that an Immune response is generated. A typical embodiment consists of a method for generating an immune response to 273P4B7 in a host, by contacting the host with a sufficient amount of at least one 273P4B7 B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 273P4B7 B cell or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 273P4B7 related protein or a man-made multiepitopic peptide comprising: administering 273P4B7 immunogen (e.g. a 273P4B7 protein or a peptide fragment thereof, a 273P4B7 fusion protein or analog etc.) In a vaccine preparation to a human or 49 another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Patent No. 6,146,635) or a universal helper epitope such as a PADRETmpeptide (Epimmune Inc., San Diego, CA; see, e.g., Alexander et a., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., Immunity 1994 1(9): 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92). An alternative method comprises generating an immune response in an Individual against a 273P4B7 immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 273P487 immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Patent No. 5,962,428). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered, In addition, an anfiidlotypic antibody can be administered that mimics 273P4B7, in order to generate a response to the target antigen. Nucleic Acid Vaccines: Vaccine compositions of the Invention include nucleIc acid-mediated modalities. DNA or RNA that encode protein(s) of the Invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 273P487. Constructs comprising DNA encoding -a 273P4B7-related proteinimmunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 273P4B7 proteinrimmunogen. Alternatively, a vaccine comprises a 273P4B7-related protein. Expression of the 273P4B7-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 273P4B7 protein. Various prophylactic and therapeutic genetic immunization techniques known in the art can be used (for review, see information and references published at Intemet address genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720. Examples of DNA based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687). For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et al. J. Nall. Cancer Inst 87:982-990 (1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a 273P4B7-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti-tumor response. Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or Immunization of the peptides of the Invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein. Thus, gene delivery systems are used to deliver a 273P4B7-related nucleic acid molecule. In one embodiment the full length human 273P4B7 cDNA is employed. In another embodiment 273P4B7 nuclelc acid molecules encoding specc cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed. Ex Vivo Vaccines 50 Various ex vivo strategies can also be employed to generate an Immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present 273P4B7 antigen to a patient's immune system. Dendritic cells express MHC class I and I molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa et aL., 1996, Prostate 28:65 69; Murphy et al., 1996, Prostate 29:371-380). Thus, dendritic cells can be used to present 273P4B7 peptides to T cells in the context of MHC class I or 11 molecules. In one embodiment, autologous dendritic cells are pulsed with 273P4B7 peptides capable of binding to MHC class I and/or class Il molecules. In another embodiment, dendritic cells are pulsed with the complete 273P4B7 protein. Yet another embodiment Involves engineering the overexpression of a 273P4B7 gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et aL., 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated virus, DNA transfection (Ribas et al., 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection (Ashley et aL., 1997, J. Exp. Med. 186:1177-1182). Cells that express 273P4B7 can also be engineered to express immune modulators, such as GM CSF, and used as immunizing agents. X.B.) 273P4B7 as a Target for Antibody-based Therapy 273P4B7 is an attractive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and Intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies). Because 273P4B7 is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 273P4B7-immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domains of 273P4B7 are useful to treat 273P4B7-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function. 273P4BT antibodies can be introduced into a patient such that the antibody binds to 273P4B7 and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 273P487, inhibition of ligand binding or signal transduction pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis. Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 273P4B7 sequence shown in Figure 2 or Figure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers et a; Blood 93:11 3678 3684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 273P4B7), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells. A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known In the art. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent (e.g. an anti 273P4B7 antibody) that binds to a marker (e.g. 273P4B7) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 273P4B7, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 273P4B7 epitope, and, 51 exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent. Cancer Immunotherapy using anti-273P4B7 antibodies can be done in accordance with various approaches that have been successfully employed In the treatment of other types of cancer, including but not limited to colon cancer (Aden et al., 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et a., 1997, Blood 90:3179-3186, Tsunenarl et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al, 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi eta/., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong et a., 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun et al., 1994, Cancer Res. 54:6160-6166; Velders et a., 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al., 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y91 or 1131 to anti-CD20 antibodies (e.g., ZevalinTM, IDEC Pharmaceuticals Corp. or BexxarTM, Coulter Pharmaceuticals), while others involve co-administration of antibodies and other therapeutic agents, such as HerceptinTm (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic agent. To treat prostate cancer, for example, 273P4B7 antibodies can be administered In conjunction with radiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin (e.g., Mylotarg"M, Wyeth-Ayerst, Madison, NJ, a recombinant humanized IgG4 kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, MA, also see e.g., US Patent 5,416,064). Although 273P4B7 antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the Invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res, 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents. Although 273P4B7 antibody therapy Is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the Invention Is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the Invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Cancer patients can be evaluated for the presence and level of 273P4B7 expression, preferably using immunohistochemical assessments of tumor tissue, quantitative 273P4B7 imaging, or other techniques that reliably indicate the presence and degree of 273P4B7 expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art. Anti-273P4B7 monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, anti-273P4B7 monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, anti-273P4B7 mAbs that exert a direct biological effect on tumor growth 52 are useful to treat cancers that express 273P4B7. Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-273P487 mAb exerts an anti-tumor effect is evaluated using any number of in vtro assays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art. In some patients, the use of murine or other non-human monoclonal antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 273P4B7 antigen with high affinity but exhibit low or no antigenicity in the patient Therapeutic methods of the invention contemplate the administration of single anti-273P4B7 mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti 273P4B7 mAbs can be administered concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation. The anti 273P4B7 mAbs are administered In their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them. Anti-273P4B7 antibody formulations are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-273P4B7 antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose In the range of about 0.1, .2, .3,.4,.5,.6,.7,.8,.9., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg mAb per week are effective and well tolerated. Based on clinical experience with the HerceptinTM mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti 273P4B7 mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90-minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 273P4B7 expression in the patient, the extent of circulating shed 273P4B7 antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient. Optionally, patients should be evaluated for the levels of 273P4B7 in a given sample (e.g. the levels of circulating 273P4B7 antigen and/or 273P4B7 expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the.evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy). Anti-idlotypic anti-273P4B7 antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 273P4B7-related protein. In particular, the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted to generate anti-idiotypic anti-273P4B7 antibodies that mimic 53 an epitope on a 273P4B7-related protein (see, for example, Wagner et a/., 1997, Hybridoma 16: 33-40; Foon et a., 1995, J. Clin. Invest. 96:334-342; Herlyn et al., 1996, Cancer immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used In cancer vaccine strategies. X.C.) 273P4B7 as a Target for Cellular Immune Responses Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present In a vaccine Individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, eg., recombinantly or by chemical synthesis. Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTIL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P 3 CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000)) Upon immunization with a peptide composition In accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleurai, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 273P4B7 antigen, or derives at least some therapeutic benefit when the antigen was tumor-associated. In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class Il epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRETM (Epimmune, San Diego, CA) molecule (described e.g., in U.S. Patent Number 5,736,142). A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo. Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by 54 nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous In sequence in the native antigen from which the epitopes are derived. 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class 11 a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see, e.g., Rosenberg et aL, Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs. 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC5o of 500 nM or less, often 200 nM or less; and for Class il an ICso of 1000 nM or less. 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage. 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. 5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class 11 epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties. 6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concem is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed. 7.) Where the sequences of multiple variants of the same target protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class 11 binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen. X.C.1. Minigene Vaccines A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of 55 administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention. The use of multi-epitope minigenes is described below and in, Ishioka at al., J. Immunol. 162:3915-3925, 1999; An, L and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Viol. 67:348,1993; Hanke, R. etal., Vaccine 16:426,1998. For example, a multi-epitope DNA plasmid encoding supermotif and/or motif-bearing epitopes derived 273P4B7, the PADRE@ universal helper T cell epitope or multiple HTL epitopes from 273P4B7 (see e.g., Tables VIII-XXI and XXII to XLIX), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs. The immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the Immunogenicity of DNA-encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the Induced CTLs recognized cells expressing the encoded epitopes. For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or Immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and Included in the minigene sequence include: HLA class I epitopes, HLA class Il epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by Including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the Invention. The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector. Standard regulatory sequences well known to those of skill in the art are preferably included In the vector to ensure expression In the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E coli selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences. Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression. Once an expression vector is selected, the minigene Is cloned into the polylinker region downstream of the promoter, This plasmid is transformed into an appropriate E coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank. 56 In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance Immunogenicity. In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADREm, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HIA class Il pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-p) may be beneficial in certain diseases. Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E coi, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation In shaker flasks or a bloreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anian-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercolled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods. Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Feigner, et al., Proc. Nat'lA cad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types. Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51 Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity. In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA). Twenty-one days after Immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 6tCr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, 57 corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner. Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253: Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles. Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia. X.C.2. Combinations of CTL Peptides with Helper Peptides Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity. For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer Is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. .In certain embodiments, the T helper peptide Is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class Il molecules. Examples of such amino acid bind many HLA Class 11 molecules include sequences from antigens such as tetanus toxoid at positions.830-843 (QYIKANSKFIGITE; SEQ ID NO: 26), Plasmodium falciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: 27), and Streptococcus 18kD protein at positions 116-131 (GAVDSILGGVATYGAA; SEQ ID NO: 28). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs. Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADREm, Epimmune, Inc., San Diego, CA) are designed, most preferably, to bind most HLA-DR (human HLA class 11) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAa (SEQ ID NO: 29), where "X"is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanlne, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HILA type. An alternative of a pan-DR binding epitope comprises all "L' natural amino acids and can be provided In the form of nucleic acids that encode the epitope. HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini. X.C.3. Combinations of CTL Peptides with T Cell Priming Agents 58 In some embodiments it may be desirable to include In the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo. For example, palmitic acid residues can be attached to the e-and a- amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an Immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified In an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to s- and a- amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide. As another example of lipid priming of CTL responses, E coli lipoproteins, such as tripalmitoyl-S glycerylcysteinlyseryl- serine (P3CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to prime specifically an immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with PaCSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses. X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL andlor HTL Peptides An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patients blood. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoiein T M (Pharmacia-Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces. The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 273P4B7. Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class Il peptide, can be Included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 273P4B7. X.D. Adoptive Immunotherapy Antigenic 273P4B7-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate Immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), In which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells. X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 273P4B7. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as 59 "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician. For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 273P4B7. The peptides or DNA encoding them can be administered Individually or as fusions of one or more peptide sequences. Patients can be treated with the Immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate. For therapeutic use, administration should generally begin at the first diagnosis of 273P4B7-associated cancer. This Is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., Including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 273P4B7, a vaccine comprising 273P4B7-specific CTL may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments. It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient fo stimulate effectively a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention. The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 pg. Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient. Boosting dosages of between about 1.0 Ig to about 50,000 jpg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patients response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art. In certain embodiments, the peptides and compositions of the present invention are employed In serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts. The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 pg. Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient This is followed by boosting dosages of between about 1.0 jig to about 50,000 pg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood. The pharmaceutical compositions for therapeutic treatment are Intended for parenteral, topical, oral, nasal, Intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the Invention provides compositions for parenteral administration which comprise a solution of the Immunogenic peptides dissolved or suspended In an acceptable carrier, preferably an aqueous carrier. 60 A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc. The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected. A human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volume/quantity that Is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985). For example a peptide dose for initial immunization can be from about i to about 50,000 ig, generally 100-5,000 pg; for a 70 kg patient, For example, for nucleic acids an Initial immunization may be performed using an expression vector In the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 pg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5x109 pfu. For antibodies, a treatment generally involves repeated administration of the anti-273P487 antibody preparation, via an acceptable route of administration such as Intravenous injection (IV), typically at a dose in the range of about 0.1 to about 10 mg/kg body weight. In general, doses in the range of 10-500 mg mAb per week are effective and well tolerated. Moreover, an Initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mglkg IV of the anti- 273P4B7 mAb preparation represents an acceptable dosing regimen. As appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 273P487 expression in the patient, the extent of circulating shed 273P4B7 antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient Non-limiting preferred human unit doses are, for example, 500pg - 1mg, 1mg - 50mg, 50mg - 100mg, 100mg - 200mg, 200mg -300mg, 400mg - 500mg, 500mg - 600mg, 600mg - 700mg, 700mg 800mg 800mg - 900mg, 900mg - 1g, or 1mg - 700mg. In certain embodiments, the dose is in a range of 2-5 mg/kg body weight, e.g., with follow on weekly doses of 1-3 mg/kg; 0.5mg, 1, 2, 3,4, 5, 6, 7, 8, 9, 10mg/kg body weight followed, e.g., in two, three or four weeks by weekly doses; 0.5 - 10mg/kg body weight, e.g., followed in two, three or fourweeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400mg m 2 of body area weekly; 1-600mg m 2 of body area weekly; 225-400mg m 2 of body area weekly; these does can be followed by weekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks. In one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selected lower limit 61 such as about 0.1, 0.25, 0.5,1, 2, 5,10, 20, 30, 40, 50,60,70, 80, 90,100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg. For example, a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to 25 mg/kg, 0.1 to 10 mg/kg, I to 500 mg/kg, 100 to 400 mg/kg, 200 to 300 mg/kg, 1 to 100 mg/kg, 100 to 200 mg/kg, 300 to 400 mg/kg, 400 to 500 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg. Generally, parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length. In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art, a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known In the art, such as severity of symptoms, history of the patient and the like. A dose may be about 104 cells to about 106 cells, about 106 cells to about 108 cells, about 108 to about 1011 cells, or about 108 to about 5 x 1010 cells. A dose may also about 106 cells/m 2 to about 1010 cells/m 2 , or about 106 cells/m 2 to about 108 cells/m 2 . Proteins(s) of the Invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Uposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or In conjunction with a molecule which binds to a receptor prevalent among lymphold cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions, Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids Is generally guided by consideration of,-e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369. For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells, A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alla, the manner of administration, the peptide being delivered, and the stage of the disease being treated. For solid compositions, conventional nontoxic solid carriers may be used which Include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10 95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%. For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about 0.1 %-20% by weight of the 62 composition, preferably about 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery. XI.) Diagnostic and Prognostic Embodiments of 273P4B7. As disclosed herein, 273P4B7 polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antibodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled "Expression analysis of 273P4B7 in normal tissues, and patient specimens"). 273P4B7 can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill et at., J. Urol. 163(2): 503-5120 (2000); Polascik et al., J. Urol. Aug; 162(2):293-306 (1999) and Fortier et al., J. Nat. Cancer Inst. 91(19): 1635 1640(1999)). A variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g., Tulchinsky et at., Int J Mol Med 1999 Jul 4(l):99-102 and Minimoto et al., Cancer Detect Prev 2000;24(1):1-12). Therefore, this disclosure of 273P4B7 polynucleotides and polypeptides (as well as 273P4B7 polynucleotide probes and anti-273P487 antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer. Typical embodiments of diagnostic methods which utilize the 273P4B7 polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from well-established diagnostic assays, which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int 33(3):567-74(1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol. 163(4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 273P4B7 polynucleotides described herein can be utilized in the same way to detect 273P4B7 overexpression or the metastasis of prostate and other cancers expressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan et al., Urology 55(4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3):233-7 (1996)), the 273P4B7 polypeptides described herein can be utilized to generate antibodies for use in detecting 273P4B7 overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene. Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 273P4B7 polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normally contain 273P4B7-expressing cells (lymph node) is found to contain 273P4B7-expressing cells such as the 273P4B7 expression seen in LAC4 and LAPC9, xenografts isolated from lymph hode and bone metastasis, respectively, this finding is. indicative of metastasis. Alternatively 273P4B7 polynucleotides and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 273P4B7 or express 273P4B7 at a different level are found to express 273P4B7 or have an increased expression of 273P487 (see, e.g., the 273P4B7 expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the biological sample for the presence of a second tissue 63 restricted marker (in addition to 273P4B7) such as PSA, PSCA etc. (see, e.g., Alanen et aL., Pathol. Res. Pract. 192(3): 233 237 (1996)). The use of immunohistochemistry to Identify the presence of a 273P4B7 polypeptide within a tissue section can indicate an altered state of certain cells within that tissue. It is well understood in the art that the ability of an antibody to localize to a polypeptide that is expressed in cancer cells is a way of diagnosing presence of disease, disease stage, progression and/or tumor aggressiveness. Such an antibody can also detect an altered distribution of the polypeptide within the cancer cells, as compared to corresponding non-malignant tissue. The 273P4B7 polypeptide and immunogenic compositions are also useful in view of the phenomena of altered subcellular protein localization in disease states. Alteration of cells from normal to diseased state causes changes in cellular morphology and is often associated with changes in subcellular protein localization/distribution. For example, cell membrane proteins that are expressed in a polarized manner In normal cells can be altered in disease, resulting in distribution of the protein in a non-polar manner over the whole cell surface. The phenomenon of altered subcellular protein localization in a disease state has been demonstrated with MUC1 and Her2 protein expression by use of immunohistochemical means. Normal epithelial cells have a typical apical distribution of MUC1, in addition to some supranuclear localization of the glycoprotein, whereas malignant lesions often demonstrate an apolar staining pattern (Diaz 'et a, The Breast Journal, 7; 40-45 (2001); Zhang et al, Clinical Cancer Research, 4; 2669-2676 (1998): Cao, et al, The Journal of Histochemistry and Cytochemistry, 45:1547-1557 (1997)). In addition, normal breast epithelium is either negative for Her2 protein or exhibits only a basolateral distribution whereas malignant cells can express the protein over the whole cell surface (De Potter, et al, Intemational Journal of Cancer, 44; 969-974 (1989): McCormick, et a/, 117; 935-943 (2002)). Alternatively, distribution of the protein may be altered from a surface only localization to include diffuse cytoplasmic expression in the diseased state. Such an example can be seen with MUCI (Diaz, et a!, The Breast Journal, 7: 40-45 (2001)). Alteration in the localizationldistribution of a protein in the cell, as detected by immunohistochemical methods, can also provide valuable information concerning the favorability of certain treatment modalities. This last point is illustrated by a situation where a protein may be intracellular in normal tissue, but cell surface in malignant cells; the cell surface location makes the cells favorably amenable to antibody-based diagnostic and treatment regimens. When such an alteration of protein localization occurs for 273P4B7, the 273P4B7 protein and immune responses related thereto are very useful. Accordingly, the ability to determine whether alteration of subcellular protein localization occurred for 24P4C12 make the 273P487 protein and immune responses related thereto very useful. Use of the 273P4B7 compositions allows those skilled in the art to make important diagnostic and therapeutic decisions. Immunohistochemical reagents specific to 273P4B7 are also useful to detect metastases of tumors expressing 273P4B7 when the polypeptide appears in tissues where 273P4B7 is not normally produced. Thus, 273P4B7 polypeptides and antibodies resulting from immune responses thereto are useful In a variety of Important contexts such as diagnostic, prognostic, preventative and/or therapeutic purposes known to those skilled In the art. Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use in methods of monitoring PSA, 273P4B7 polynucleotide fragments and polynucleotide variants are used in an analogous manner, In particular, typical PSA polynucleotides used In methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Blotechniques 25(3): 472-476,478-480 (1998); Robertson etal., Methods Mol. Biol. 98:121-154 (1998)). An additional 64 illustration of the use of such fragments is provided in the Example entitled "Expression analysis of 273P4B7 In normal tissues, and patient specimens," where a 273P4B7 polynucleotide fragment is used as a probe to show the expression of 273P4B7 RNAs in cancer cells, In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et at., Fetal Diagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel et a. eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 273P4B7 polynucleotide shown in Figure 2 or variant thereof) under conditions of high stringency. Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA. 273P4B7 polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Patent No. 5,840,501 and U.S. Patent No. 5,939,533). For example it may be preferable to utilize a polypeptide comprising one of the 273P4B7 biological motifs discussed herein or a motif-bearing subsequence which is readily Identified by one of skill In the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. a 273P4B7 polypeptide shown in Figure 3). As shown herein, the 273P4B7 polynucleotides and polypeptides (as well as the 273P4B7 polynucleotide probes and anti-273P4B7 antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 273P4B7 gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA. Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen et a., Pathol. Res. Pract. 192(3): 233-237 (1996)), and consequently, materials such as 273P487 polynucleotides and polypeptides (as well as the 273P4B7 polynucleotide probes and anti 273P4B7 antibodies used to identify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin. Finally, in addition to their use in diagnostic assays, the 273P4B7 polynucleotides disclosed herein have a number of other utilities such as their use in the Identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 273P4B7 gene maps (see the Example entitled "Chromosomal Mapping of 273P4B7" below). Moreover, in addition to their use in diagnostic assays, the 273P487-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun 28;80(1-2): 63-9). Additionally, 273P4B7-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 273P4B7. For example, the amino acid or nucleic acid sequence of Figure 2 or Figure 3, or fragments of either, can be used to generate an immune response to a 273P4B7 antigen. Antibodies or other molecules that react with 273P4B7 can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit. 65 XIl.) Inhibition of 273P4B7 Protein Function The invention includes various methods and compositions for inhibiting the binding of 273P4B7 to Its binding partner or its association with other protein(s) as well as methods for inhibiting 273P4B7 function. XiI.A.) Inhibition of 273P4B7 With Intracellular Antibodies In one approach, a recombinant vector that encodes single chain antibodies that specifically bind to 273P4B7 are introduced into 273P487 expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti 273P4B7 antibody is expressed intracellularly, binds to 273P4B7 protein, and thereby inhibits its function. Methods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as 'intrabodles", are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson et al., 1995, Proc. Nall. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, J. Blol. Chem. 289: 23931-23936; Deshane et a., 1994, Gene Ther. 1: 332-337). Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies In order to target precisely the intrabody to the desired intracellular compartment. For example, intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity In the nucleus are engineered to Include a nuclear localization signal. Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosolic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination. In one embodiment, Intrabodies are used to capture 273P4B7 in the nucleus, thereby preventing its activity within the nucleus. Nuclear targeting signals are engineered into such 273P4B7 intrabodies in order to achieve the desired targeting. Such 273P4B7 intrabodies are designed to bind specifically to a particular 273P4B7 domain. In another embodiment, cytosoic intrabodies that specifically bind to a 273P4B7 protein are used to prevent 273P4B7 from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 273P4B7 from forming transcription complexes with other factors). In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the Intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999). XII.B.) Inhibition of 273P4B7 with Recombinant Proteins In another approach, recombinant molecules bind to 273P4B7 and thereby inhibit 273P4B7 function. For example, these recombinant molecules prevent or inhibit 273P4B7 from accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for example, contain the reactive part(s) of a 273P4B7 specific antibody molecule. In a particular embodiment, the 273P4B7 binding domain of a 273P4B7 binding partner Is engineered into a dimeric fusion protein, whereby the fusion protein comprises two 273P4B7 ligand binding domains linked to the Fc portion of a human 66 IgG, such as human IgGi. Such IgG portion can contain, for example, the CH 2 and CH3 domains and the hinge region, but not the C1 domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 273P4B7, whereby the dimeric fusion protein specifically binds to 273P4B7 and blocks 273P4B7 interaction with a binding partner. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies. XII.C.) Inhibition of 273P4B7 Transcription or Translation The present invention also comprises various methods and compositions for inhibiting the transcription of the 273P4B7 gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 273P4B7 mRNA Into protein. In one approach, a method of inhibiting the transcription of the 273P4B7 gene comprises contacting the 273P4B7 gene with a 273P4B7 antisense polynucleotide. In another approach, a method of inhibiting 273P4B7 mRNA translation comprises contacting a 273P4B7 mRNA with an antisense polynucleotide. In another approach, a 273P4B7 specific ribozyme is used to cleave a 273P4B7 message, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 273P4B7 gene, such as 273P4B7 promoter and/or enhancer elements. Similarly, proteins capable of inhibiting a 273P4B7 gene transcription factor are used to inhibit 273P4B7 mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation Is well known in the art. Other factors that inhibit the transcription of 273P4B7 by interfering with 273P4B7 transcriptional activation are also useful to treat cancers expressing 273P4B7. Similarly, factors that interfere with 273P4B7 processing are useful to treat cancers that express 273P4B7. Cancer treatment methods utilizing such factors are also within the scope of the Invention. XII.D.) General Considerations for Therapeutic Strategies Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 273P4B7 (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 273P487 inhibitory molecules). A number of gene therapy approaches are known In the art. Recombinant vectors encoding 273P4B7 antisense polynucleotides, ribozymes, factors capable of interfering with 273P4B7 transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches. The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well. The anti-tumor activity of a particular composition (e.g., antisense, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various in vitro and in vivo assay systems. In vitro assays that evaluate therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 273P4B7 to a binding partner, etc. In vivo, the effect of a 273P4B7 therapeutic composition can be evaluated in a suitable animal model For example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (KleIn et at., 1997, Nature Medicine 3: 402-408). For example, PCT Patent Application W098/16628 and U.S. Patent 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of 67 osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like. In vivo assays that evaluate the promotion of apoptosis are useful In evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an Indication of the therapeutic efficacy of the composition. The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carder suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16e, Edition, A. Osal., Ed., 1980). Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, Intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted In polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to Injection. Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the art. XIIl.) Identification, Characterization and Use of Modulators of 273P4B7 Methods to Identify and Use Modulator In one embodiment, screening is performed to identify modulators that induce or suppress a particular expression profile, suppress or induce specific pathways, preferably generating the associated phenotype thereby. In another embodiment, having identified differentially expressed genes important in a particular state; screens are performed to identify modulators that alter expression of individual genes, either increase or decrease. In another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product. In addition, screens are done for genes that are Induced in response to a candidate agent. After identifying a modulator (one that suppresses a cancer expression patten leading to a normal expression pattern, or a modulator of a cancer gene that leads to expression of the gene as in normal tissue) a screen is performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent-treated cancer tissue reveals genes that are not expressed in normal tissue or cancer tissue, but are expressed in agent treated tissue, and vice versa. These agent-specific sequences are Identified and used by methods described herein for cancer genes or proteins. In particular these sequences and the proteins they encode are used in marking or identifying agent treated cells. In addition, antibodies are raised against the agent-induced proteins and used to target novel therapeutics to the treated cancer tissue sample. 68 Modulator-related Identification and Screening Assays Gene Expression-related Assays Proteins, nucleic acids, and antibodies of the invention are used In screening assays. The cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing these sequences are used in screening assays, such as evaluating the effect of drug candidates on a "gene expression profile," expression profile of polypeptides or alteration of biological function. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Davis, GF, et al, J Biol Screen 7:69 (2002); Zlokamik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986 94,1996). The cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified cancer proteins or genes are used in screening assays. That is, the present invention comprises methods for screening for compositions which modulate the cancer phenotype or a physiological function of a cancer protein of the invention. This is done on a gene itself or by evaluating the effect of drug candidates on a "gene expression profile" or biological function. In one embodiment, expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring after treatment with a candidate agent, see Zlokamik, supra. A variety of assays are executed directed to the genes and proteins of the invention. Assays are run on an individual nucleic acid or protein level. That is, having identified a particular gene as up regulated in cancer, test compounds are screened for the ability to modulate gene expression or for binding to the cancer protein of the Invention. "Modulation" in this context includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold Increase in cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in cancer tissue compared to normal tissue a target value of a 1 0-fold increase in expression by the test compound Is often desired. Modulators that exacerbate the type of gene expression seen in cancer are also useful, e.g., as an upregulated target in further analyses. The amount of gene expression is monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, a gene product itself Is monitored, e.g., through the use of antibodies to the cancer protein and standard immunoassays. Proteomics and separation techniques also allow for quantification of expression. Expression Monitoring to Identify Compounds that Modify Gene Expression In one embodiment, gene expression monitoring, i.e., an expression profile, is monitored simultaneously for a number of entities. Such profiles will typically involve one or more of the genes of Figure 2. In this embodiment, e.g., cancer nucleic acid probes are attached to biochips to detect and quantify cancer sequences in a particular cell. Alternatively, PCR can be used. Thus, a series, e.g., wells of a microtiter plate, can be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well. Expression monitoring Is performed to identify compounds that modify the expression of one or more cancer associated sequences, e.g., a polynucleotide sequence set out in Figure 2. Generally, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate cancer, modulate cancer proteins of the Invention, bind to a cancer protein of the invention, or interfere with the binding of a cancer protein of the invention and an antibody or other binding partner. In one embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired 69.
characteristic activity. The compounds thus identified can serve as conventional "lead compounds," as compounds for screening, or as therapeutics. In certain embodiments, combinatorial libraries of potential modulators are screened for an ability to bind to a cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis. As noted above, gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the celis allowed to incubate for a period, the sample containing a target sequence to be analyzed is, e.g., added to a blochip. If required, the target sequence is prepared using known techniques. For example, a sample is treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5. The target sequence can be labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that is detected. Alternatively, the label is a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis. As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5, 681,702; 5,597,909; 5,545,730; 5,594,117; 5,591,584; 5,571,670; 5,580,731; 5,571,670; 5,591,584; 5,624,802; 5,635,352; 5,594,118; 5,359,100; 5,124, 246; and 5,681,697. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex. A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc. These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus, it can be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding. The reactions outlined herein can be accomplished in a variety of ways. Components of the reaction can be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which can be used to facilitate optimal hybridization and detection, and/or reduce nonspecific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target. The assay data 70 are analyzed to determine the expression levels of individual genes, and changes in expression levels as between states, forming a gene expression profile. Biological Activity-related Assays The invention provides methods identify or screen for a compound that modulates the activity of a cancer-related gene or protein of the Invention. The methods comprise adding a test compound, as defined above, to a cell comprising a cancer protein of the invention. The cells contain a recombinant nucleic acid that encodes a cancer protein of the invention. In another embodiment, a library of candidate agents is tested on a plurality of cells. In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e., cell-cell contacts). In another example, the determinations are made at different stages of the cell cycle process. In this way, compounds that modulate genes or proteins of the invention are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the cancer protein of the invention. Once identified, similar structures are evaluated to identify critical structural features of the compound. In one embodiment, a method of modulating (e.g., inhibiting) cancer cell division is provided; the method comprises administration of a cancer modulator. In another embodiment, a method of modulating ( e.g., inhibiting) cancer is provided; the method comprises administration of a cancer modulator. In a further embodiment, methods of treating cells or individuals with cancer are provided; the method comprises administration of a cancer modulator. In one embodiment, a method for modulating the status of a cell that expresses a gene of the invention is provided. As used herein status comprises such art-accepted parameters such as growth, proliferation, survival, function, apoptosis, senescence, location, enzymatic activity, signal transduction, etc. of a cell. In one embodiment, a cancer inhibitor is an antibody as discussed above. In another embodiment, the cancer inhibitor is an antisense molecule. A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described herein. High Throughput Screening to Identify Modulators The assays to identify suitable modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity. In one embodiment, modulators evaluated in high throughput screening methods are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, o( random or directed digests of proteinaceous cellular extracts, are used. In this way, libraries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred, Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes, or ligands and receptors. Use of Soft Agar Growth and Colony Formation to Identify and Characterize Modulators Normal cells require a solid substrate to attach and grow. When cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, can regenerate normal phenotype and once again require a solid substrate to attach to and grow. Soft agar growth or colony formation in assays are used to identify modulators of cancer sequences, which when expressed in host cells, inhibit 71 abnormal cellular proliferation and transformation. A modulator reduces or eliminates the host cells' ability to grow suspended in solid or semisolid media, such as agar. Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994). See also, the methods section of Garkavtsev et al. (1996), supra. Evaluation of Contact Inhibition and Growth Density Limitation to Identify and Characterize Modulators Normal cells typically grow in a flat and organized pattern in cell culture until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. Transformed cells, however, are not contact Inhibited and continue to grow to high densities In disorganized foci. Thus, transformed cells grow to a higher saturation density than corresponding normal cells. This is detected morphologically by the formation of a disoriented monolayer of cells or cells in foci. Allematively, labeling index with ( 3 H)-thymidine at saturation density is used to measure density limitation of growth, similarly an MTT or Alamar blue.assay will reveal proliferation capacity of cells and the the ability of modulators to affect same. See Freshney (1994), supra. Transformed cells, when transfected with tumor suppressor genes, can regenerate a normal phenotype and become contact inhibited and would grow to a lower density. In this assay, labeling Index with 3 H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with ( 3 H)-thymidine is determined by Incorporated cpm. Contact independent growth is used to Identify modulators of cancer sequences, which had led to abnormal cellular proliferation and transformation. A modulator reduces or eliminates contact independent growth, and returns the cells to a normal phenotype. Evaluation of Growth Factor or Serum Dependence to Identify and Characterize Modulators Transformed cells have lower serum dependence than their normal counterparts (see, e.g., Temin, J. Nati. Cancer Inst. 37:167-175 (1966); Eagle et al., J. Exp. Med 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. The degree of growth factor or serum dependence of transformed host cells can be compared with that of control. For example, growth factor or serum dependence of a cell is monitored in methods to identify and characterize compounds that modulate cancer-associated sequences of the invention. Use of Tumor-specific Marker Levels to Identify and Characterize Modulators Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses In Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor Angiogenesis Factor (TAF) is released at a higher level In tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)), while bFGF is released from endothelial tumors (Ensoli, B et al). Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Blot. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, Tumor Vascularization, and Potential Interference with Tumor Growth, in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney, Anticancer Res. 5:111-130 (1985). For example, tumor specific marker levels are monitored In methods to identify and characterize compounds that modulate cancer-associated sequences of the invention. Invasiveness Into Matrigel to Identify and Characterize Modulators The degree of Invasiveness into Matrigel or an extracellular matrix constituent can be used as an assay to identify and characterize compounds that modulate cancer associated sequences. Tumor cells exhibit a positive correlation 72 between malignancy and invasiveness of cells Into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells. Techniques described in Cancer Res. 1999; 59:6010; Freshney (1994), supra, can be used. Briefly, the level of invasion of host cells is measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with 1251 and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra. Evaluation of Tumor Growth In Vivo to Identify and Characterize Modulators Effects of cancer-associated sequences on cell growth are tested in transgenic or immune-suppressed organisms. Transgenic organisms are prepared in a variety of art-accepted ways. For example, knock-out transgenic organisms, e.g., mammals such as mice, are made, in which a cancer gene is disrupted or in which a cancer gene is inserted. Knock-out transgenic mice are made by insertion of a marker gene or other heterologous gene Into the endogenous cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous cancer gene with a mutated version of the cancer gene, or by mutating the endogenous cancer gene, e.g., by exposure to carcinogens. To prepare transgenic chimeric animals, e.g., mice, a DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells some of which are derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric mice can be derived according to US Patent 6,365,797, issued 2 April 2002; US Patent 6,107,540 issued 22 August 2000; Hogan et al., Manipulating the Mouse Embryo: A laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987). Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, a genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Nat. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 106 cells) injected into isogenic hosts produce invasive tumors in a high proportion of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing cancer-associated sequences are injected subcutaneously or orthotopically. Mice are then separated into groups, including control groups and treated experimental groups) e.g. treated with a modulator). After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions, or weight) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth. In Vitro Assays to Identify and Characterize Modulators Assays to identify compounds with modulating activity can be performed in vitro. For example, a cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as Westem blotting, ELISA and the like with an antibody that selectively binds to the cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e. g., Northern hybridization, RNAse protection, dot blotting, are preferred. The level of 73 protein or mRNA Is detected using directly or Indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein. Alternatively, a reporter gene system can be devised using a cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or P-gal. The reporter construct is typically. transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity Is measured according to standard techniques known to those of skill in the art (Davis GF, supra; Gonzalez, J. & Negulescu, P. Curr. Opin. Blotechnol. 1998: 9:624). As outlined above, in vitro screens are done on Individual genes and gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself is performed. In one embodiment, screening for modulators of expression of specific gene(s) Is performed. Typically, the expression of only one or a few genes is evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships. Binding Assays to Identify and Characterize Modulators in binding assays in accordance with the invention, a purified or isolated gene product of the invention Is generally used. For example, antibodies are generated to a protein of the invention, and immunoassays are run to determine the amount and/or location of protein. Alternatively, cells comprising the cancer proteins are used in the assays. Thus, the methods comprise combining a cancer protein of the invention and a candidate compound such as a ligand, and determining the binding of the compound to the cancer protein of the invention. Preferred embodiments utilize the human cancer protein; animal models of human disease of can also be developed and used. Also, other analogous mammalian proteins also can be used as appreciated by those of skill in the art. Moreover, in some embodiments variant or derivative cancer proteins are used. Generally, the cancer protein of the invention, or the ligand, is non-diffusibly bound to an Insoluble support. The support can, e.g., be one having isolated sample receiving areas (a microtiter plate, an array, etc.). The insoluble supports can be made of any composition to which the compositions can be bound, Is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports can be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharide, nylon, nitrocellulose, or Teflon',, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition to the support is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies which do not sterically block either the ligand binding site or activation sequence when attaching thie protein to the support, direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or ligand/binding agent to the support, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety. Once a cancer protein of the invention is bound to the support, and a test compound is added to the assay. Alternatively, the candidate binding agent is bound to the support and the cancer protein of the invention is then added. 74 Binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are assays to identify agents that have a low toxicity for human cells. A wide variety of assays can be used for this purpose, Including proliferation assays, cAMP assays, labeled in vitm protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like. A determination of binding of the test compound (ligand, binding agent, modulator, etc.) to a cancer protein of the invention can be done in a number of ways. The test compound can be labeled, and binding determined directly, e.g., by attaching all or a portion of the cancer protein of the invention to a solid support, adding a labeled candidate compound (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps can be utilized as appropriate. In certain embodiments, only one of the components is labeled, e.g., a protein of the invention or ligands labeled. Alternatively, more than one component is labeled with different labels, e.g., 1125, for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful. Competitive Binding to Identify and Characterize Modulators In one embodiment, the binding of the "test compound" is determined by competitive binding assay with a "competitor." The competitor is a binding moiety that binds to the target molecule (e.g., a cancer protein of the invention). Competitors include compounds such as antibodies, peptides, binding partners, ligands, etc. Under certain circumstances, the competitive binding between the test compound and the competitor displaces the test compound. In one embodiment, the test compound is labeled. Either the test compound, the competitor, or both, is added to the protein for a time sufficient to allow binding. Incubations are performed at a temperature that facilitates optimal activity, typically between four and 40*C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening; typically between zero and one hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding. In one embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the cancer protein and thus is capable of binding to, and potentially modulating, the activity of the cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the post-test compound wash solution indicates displacement by the test .compound. Alternatively, if the test compound Is labeled, the presence of the label on the support indicates displacement. In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor indicates that the test compound binds to the cancer protein with higher affinity than the competitor. Thus, if the test compound is labeled, the presence of the label on the support, coupled ith a lack of competitor binding, indicates that the test compound binds to and thus potentially modulates the cancer protein of the invention. Accordingly, the competitive binding methods comprise differential screening to identity agents that are capable of modulating the activity of the cancer proteins of the invention. In this embodiment, the methods comprise combining a cancer protein and a competitor in a first sample. A second sample comprises a test compound, the cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the cancer protein. 75 Alternatively, differential screening is used to identify drug candidates that bind to the native cancer protein, but cannot bind to modified cancer proteins. For example the structure of the cancer protein is modeled and used In rational drug design to synthesize agents that interact with that site, agents which generally do not bind to site-modified proteins. Moreover, such drug candidates that affect the activity of a native cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of such proteins. Positive controls and negative controls can be used in the assays. Preferably control and test samples are performed In at least triplicate to obtain statistically significant results. Incubation of all samples occurs for a time sufficient to allow for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples can be counted in a scintillation counter to determine the amount of bound compound. A variety of other reagents can be included In the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., can be used. The mixture of components is added in an order that provides for the requisite binding. Use of Polynucleotides to Down-regulate or Inhibit a Protein of the Invention. Polynucleotide modulators of cancer can be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand-binding molecule, as described in WO 91/04753. Suitable ligand-binding molecules Include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of cancer can be Introduced into a cell containing the target nucleic acid sequence, e.g., by formation of a polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment. Inhibitory and Antisense Nucleotides In certain embodiments, the activity of a cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide or inhibitory small nuclear RNA (snRNA), i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a cancer protein of the invention, mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA. In the context of this invention, antisense polynucleotides can comprise naturally occurring nucleotides, or synthetic species formed from naturally occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or Inter-sugar linkages. Exemplary among these are the phosphorothloate and other sulfur containing species which are known for use in the art. Analogs are comprised by this Invention so long as they function effectively to hybridize with nucleotides of the invention. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA. Such antisense polynucleotides dan readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, Including Applied Blosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives Is also well known to those of skill in the art 76 Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 12 nucleotides, preferably from about 12 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described In, e.g., Stein &Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)). Ribozymes In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of cancer associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes). The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0360257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Nat. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad Sci. USA 92:699- 703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205:121-126 (1994)). Use of Modulators in Phenotypic Screeninq In one embodiment, a test compound is administered to a population of cancer cells, which have an associated cancer expression profile. By "administration" or "contacting" herein is meant that the modulator is added to the cells in such a manner as to allow the modulator to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, a nucleic acid encoding a proteinaceous agent (i.e., a peptide) is put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used. Once the modulator has been administered to the cells, the cells are washed If desired and are allowed to incubate under preferably physiological conditions for some period. The cells are then harvested and a new gene expression profile is generated. Thus, e.g., cancer tissue is screened for agents that modulate, e.g., induce or suppress, the cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on cancer activity. Similarly, altering a biological function or a signaling pathway Is indicative of modulator activity. By defining such a signature for the cancer phenotype, screens for new drugs that alter the phenotype are devised. With this approach, the drug target need not be known and need not be represented in the original gene/protein expression screening platform, nor does the level of transcript for the target protein need to change. The modulator Inhibiting function will'serye as a surrogate marker As outlined above, screens are done to assess genes or gene products. That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself is performed. Use of Modulators to Affect Peptides of the Invention Measurements of cancer polypeptide activity, or of the cancer phenotype are performed using a variety of assays. For example, the effects of modulators upon the function of a cancer polypeptide(s) are measured by examining parameters described above. A physiological change that affects activity Is used to assess the influence of a test compound on the 77 polypeptides of this invention. When the functional outcomes are determined using intact cells or animals, a variety of effects can be assesses such as, in the case of a cancer associated with solid tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., by Northem blots), changes In cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGNIP. Methods of Identifying Characterizing Cancer-associated Sequences Expression of various gene sequences is correlated with cancer. Accordingly, disorders based on mutant or variant cancer genes are determined. In one embodiment, the invention provides methods for identifying cells containing variant cancer genes, e.g., determining the presence of, all or part, the sequence of at least one endogenous cancer gene in a cell. This Is accomplished using any number of sequencing techniques. The invention comprises methods of identifying the cancer genotype of an individual, e.g., determining all or part of the sequence of at least one gene of the invention in the Individual. This is generally done in at least one tissue of the individual, e.g., a tissue set forth in Table I, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced gene to a known cancer gene, i.e., a wild-type gene to determine the presence of family members, homologies, mutations or variants. The sequence of all or part of the gene can then be compared to the sequence of a known cancer gene to determine if any differences exist. This is done using any number of known homology programs, such as BLAST, Bestfit, etc. The presence of a difference in the sequence between the cancer gene of the patient and the known cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein. In a preferred embodiment, the cancer genes are used as probes to determine the number of copies of the cancer gene in the genome. The cancer genes are used as probes to determine the chromosomal localization of the cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the cancer gene locus. XIV.) Kits/Artlcles of Manufacture For use in the laboratory, prognostic, prophylactic, diagnostic and therapeutic applications described herein, kits are within the scope of the invention. Such kits can comprise a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method, along with a label or insert comprising instructions for use, such as a use described herein. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a protein or a gene or message of the invention, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence. Kits can comprise a container comprising a reporter, such as a biotin binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, fluorescent, or radioisotope label; such a reporter can be used with, e.g., a nucleic acid or antibody. The kit can include all or part of the amino acid sequences in Figure 2 or Figure 3 or analogs thereof, or a nucleic acid molecule that encodes such amino acid sequences. The kit of the invention will typically comprise the container described above and one or more other containers associated therewith that comprise materials desirable from a commercial and user standpoint including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or Instructions for use, and package inserts with instructions for use. 78 A label can be present on or with the container to indicate that the composition is used for a specific therapy or non therapeutic application, such as a prognostic, prophylactic, diagnostic or laboratory application, and can also indicate directions for either in vivo or in vitro use, such as those described herein. Directions and or other information can also be Included on an insert(s) or label(s) which is Included with oron the kit The label can be on or associated with the container. A label a can be on a container when letters, numbers or other characters forming the label are molded or etched Into the container itself; a label can be associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. The label can indicate that the composition is used for diagnosing, treating, prophylaxing or prognosing a condition, such as a neoplasia of a tissue set forth in Table I. The terms "kit" and "article of manufacture" can be used as synonyms. In another embodiment of the invention, an article(s) of manufacture containing compositions, such as amino acid sequence(s), small molecule(s), nucleic acid sequence(s), and/or antibody(s), e.g., materials useful for the diagnosis, prognosis, prophylaxis and/or treatment of neoplasias of tissues such as those set forth In Table I is provided. The article of manufacture typically comprises at least one container and at least one label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers can be formed from a variety of materials such as glass, metal or plastic. The container can hold amino acid sequence(s), small molecule(s), nucleic acid sequence(s), cell population(s) and/or antibody(s). In one embodiment, the container holds a polynucleotide for use in examining the mRNA expression profile of a cell, together with reagents used for this purpose. In another embodiment a container comprises an antibody, binding fragment thereof or specific binding protein for use in evaluating protein expression of282P1 G3 in cells and tissues, or for relevant laboratory, prognostic, diagnostic, prophylactic and therapeutic purposes; indications and/or directions for such uses can be included on or with such container, as can reagents and other compositions or tools used for these purposes. In another embodiment, a container comprises materials for eliciting a cellular or humoral immune response, together with associated indications and/or directions. In another embodiment, a container comprises materials for adoptive immunotherapy, such as cytotoxic T cells (CTL) or helper T cells (HTL), together with associated indications and/or directions; reagents and other compositions or tools used for such purpose can also be included. The container can alternatively hold a composition that Is effective for treating, diagnosis. prognosing or prophylaxing a condition and can have a sterile access port (for example the container can be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agents in the composition can be an antibody capable of specifically binding 282P1 G3 and modulating the function of 282P1 G3. The article of manufacture can further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and/or dextrose solution. It can further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, stirrers, needles, syringes, and/or package Inserts with Indications and/or instructions for use. EXAMPLES: Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which is intended to limit the scope of the invention. Example 1: SSH-Generated Isolation of cDNA Fragment of the 273P4B7 Gene To isolate genes that are over-expressed in lung cancer the Suppression Subtractive Hybridization (SSH) procedure was used using cDNA derived from lung cancer tissues. The 273P487 SSH cONA sequence was derived from lung tumor minus cDNAs derived from normal lung. The 273P4B7 cDNA was identified as highly expressed in cancer. Materials and Methods 79 Human Tissues: The patient cancer and normal tissues were purchased from different sources such as the NDRI (Philadelphia, PA). mRNA for some normal tissues were purchased from Clontech, Palo Alto, CA. RNA Isolation: Tissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using 10 mIl g tissue isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. 2601280 nm) and analyzed by gel electrophoresis. Oligonucleotides: The following HPLC purified oligonucleotides were used. DPNCDN (cDNA synthesis primer): 5'TTTTGATCAAGCTT3o3' (SEQ ID NO: 30) Adaptor 1: . 5'CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3'(SEQ ID NO: 31) 3'GGCCCGTCCTAG5' (SEQ IQ NO: 32) Adaptor 2: 5'GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAG3'(SEQ ID NO: 33) 3'CGGCTCCTAG5' (SEQ ID NO: 34) PCR primer 1: 5'CTAATACGACTCACTATAGGGC3' (SEQ ID NO: 35) Nested primer (NP)1: 5TCGAGCGGCCGCCCGGGCAGGA3' (SEQ ID NO: 36) Nested primer (NP)2: 5'AGCGTGGTCGCGGCCGAGGA3' (SEQ ID NO: 37) Suppression Subtractive Hybridization: Suppression Subtractive Hybridization (SSH) was used to identify cDNAs corresponding to genes that may be differentially expressed in cancer. The SSH reaction utilized cDNA from lung cancer and normal tissues. The gene 273P4B7 sequence was derived from lung cancer minus normal lung and a mix of 9 normal tissues cDNA subtraction. The SSH DNA sequence (Figure 1) was Identified. The cDNA derived from normal lung mixed with a pool of 9 normal tissues was used as the source of the "driver" cDNA, while the cDNA from lung cancer was used as the source of the "tester" cDNA. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 pg of poly(A)+ RNA isolated from the relevant tissue, as described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PTI117-1, Catalog No. K1804 1). The resulting cDNA was digested with Dpn Il for 3 hrs at 370C. Digested cDNA was extracted with phenollchloroform (1:1) and ethanol precipitated. Driver cDNA was generated by combining in a 1:1 ratio Dpn 11 digested cDNA from normal lung with a mix of digested cDNAs derived from the nine normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine, and heart. Tester cDNA was generated by diluting 1 pl of Dpn I digested cDNA from the relevant tissue source (see above) (400 ng) in 5 pl of water. The diluted cDNA (2 pd, 160 ng) was then ligated to 2 pl of Adaptor I and Adaptor 2 (10 pM), in separate 80 ligation reactions, in a total volume of 10 Ipl at 160C overnight, using 400 u of T4 DNA ligase (CLONTECH). Ligation was terminated with 1. p of 0.2 M EDTA and heating at 720C for 5 min. The first hybridization was performed by adding 1.5 p (600 ng) of driver cDNA to each of two tubes containing 1.5 pl (20 ng) Adaptor 1- and Adaptor 2- ligated tester cDNA. In a final volume of 4 p, the samples were. overlaid with mineral oil, denatured in an MJ Research thermal cycler at 980C for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 680C. The two hybridizations were then mixed together with an additional 1 pl of fresh denatured driver cDNA and were allowed to hybridize overnight at 680C. The second hybridization was then diluted in 200 pl of 20 mM Hepes, pH 8.3, 50 mM NaCI, 0.2 mM EDTA, heated at 700C for 7 min. and stored at -20oC. PCR Amplification, Cloning and Sequencing of Gene Fragments Generated from SSH: To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1 pl of the diluted final hybridization mix was added to 1 pil of PCR primer 1 (10 iM), 0.5 pl dNTP mix (10 pM), 2.5 pl 10 x reaction buffer (CLONTECH) and 0.5 pl 50 x Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25 pl. PCR 1 was conducted using the following conditions: 750C for 5 min., 940C for 25 sec., then 27 cycles of 940C for 10 sec, 660C for 30 sec, 720C for 1.5 min. Five separate primary PCR reactions were performed for each experiment. .The products were pooled and diluted 1:10 with water. For the secondary PCR reaction, i p from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 (10 pM) were used instead of PCR primer 1. PCR 2 was performed using 10-12 cycles of 940C for 10 sec, 680C for 30 sec, and 720C for 1.5 minutes. The PCR products were analyzed using 2% agar6se gel electrophoresis. The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture ovemight. To identify inserts, PCR amplification was performed on 1 pi of bacterial culture using the conditions of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis. Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases. RT-PCR Expression Analysis: First strand cDNAs can be generated from 1 pg of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturers protocol was used which included an incubation for 50 min at 420C with reverse transcriptase followed by RNAse H treatment at 370C for 20 min. After completing the reaction, the volume can be increased to 200 pl with water prior to normalization. First strand cDNAs from 16 different normal human tissues can be obtained from Clontech. Normalization of the first strand cDNAs from multiple tissues was performed by using the primers 5'atatcgccgcgctcgtcgtcgacaa3' (SEQ ID NO: 38) and 5'agccacacgcagctcattgtagaagg 3' (SEQ ID NO: 39) to amplify P-actin. First strand cDNA (5 pl) were amplified in a total volume of 50 pl containing 0.4 pM primers, 0.2 pM each dNTPs, IXPCR buffer (Clontech, 10 mM Tris-HCL, 1.5 mM Mg32, 50 mM KCl, pH8.3) and 1X Klentaq DNA polymerase (Clontech). Five pl of the PCR reaction can be removed at 18, 20, and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thermal cycler under the following conditions: Initial denaturation can be at 940C for 15 sec, followed by a 18, 20, and 22 cycles of 9400 for 15, 650C for 2 min, 720C for 5 sec. A final extension at 720C was carried out for 2 min. After agarose gel electrophoresis, the band intensities of the 283 b.p. p-actin bands from multiple tissues were compared by visual inspection. Dilution factors for the first strand cDNAs were calculated to result in equal p-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles of PCR. 81 To determine expression levels of the 273P4B7 gene,.5 l of normalized first strand cDNA were analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities. The primers used for RT-PCR are listed below: 273P4B7.1 5'- GCTAGTGCTCAGAATACCAGACTATGG -3' (SEQ ID NO: 40) 273P4B7.2 5'- CGCTTGACATAAAAAGTGCAGATCC -3' (SEQ ID NO: 41) A typical RT-PCR expression analysis is shown in Figure 14(A) and 14(B). First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), normal pancreas, ovary cancer pool, and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Expression of 273P4B7 was detected in ovary cancer pool, pancreas cancer pool vital pool 1, but not in vital pool 2 nor in normal pancreas. Example 2: Full Length Cloning of 273P4B7 The 273P4B7 SSH cDNA sequence was derived from a subtraction consisting of lung cancer minus a normal tissues. The SSH cDNA sequence of 170 bp (Figure 1).was designated 273P4B7. 273P4B7 v.1 of 4194 bp was cloned from lung cancer, revealing an ORF of 1250 amino acids (Figure 2 and Figure 3). Other variants of 273P4B7 were also identified and these are listed in Figure 2 and Figure 3. 273P487 v.1, v.3, v.7, and v.8 code for identical proteins of 1250 amino acids in length. 273P4B7 v.4, v.5 and v.6 differ from 273P4B7 v.1 by one amino acid as shown in Figure 2. 273P4B7 v.2 is a splice variant of 273P4B7 v.1 and code for a protein of 1127 amino acids. 273P4B7 v.1 shows 99% over only 1106 amino acids to the unnamed protein AK074719. The nucleic acid sequence of 273P4B7 v.1 aligns with 99% identity to the nucleotide position 159-4194, to cDNA FLJ31932 fis, clone NT2RP7006296, weakly similar to EXCISION REPAIR PROTEIN ERCC-6. 273P4B7 v.1 shows 72% identity to the mouse protein BC004701 shown to be a member of the family of DEAD-like helicase superfamily. Members of this family include the DEAD and DEAH box helicases. Helicases are involved in unwinding nucleic acids. The DEAD box helicases are involved in various aspects of RNA metabolism, including nuclear transcription, pre mRNA splicing, ribosome biogenesis, nucleocytoplasmic transport, translation, RNA decay and organellar gene expression. Example 3: Chromosomal Mapping of 273P4B7 Chromosomal localization can implicate genes In disease pathogenesis. Several chromosome mapping approaches are available including fluorescent In situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Al), human-rodent somatic cell hybrid panels such as is available from the Coriell Institute (Camden, New Jersey), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland). 273P4B7 maps to chromosome Xq13.1 using 273P4B7 sequence and the NCBI BLAST tool located on the World Wide Web at (.ncbi.nlm.nih.gov/genome/seqlpage.cgi?F=HsBast.html&&ORG=Hs). Example 4: Expression Analysis of 273P4B7 in Normal Tissues and Patient Specimens 82 Expression analysis by RT-PCR demonstrated that 273P4B7 is strongly expressed in patient cancer specimens (Figure 14). First strand cDNA was prepared from normal tissues (bladder, brain, heart, kidney, liver, lung, prostate, spleen, skeletal muscle, testis, pancreas, colon and stomach), and from pools of patient cancer specimens (pancreas cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, prostate cancer xenograft pool, prostate metastasis to lymph node, bone and melanoma cancer pool, cervical cancer pool, lymphoma cancer pool, stomach cancer pool, uterus cancer pool, and multi xenograft pool). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 22, 26 and 30 cycles of amplification. In Figure 14(A) picture of the RT-PCR agarose gel is shown. In Figure 14(B) PCR products were quantitated using the Alphalmager software. Results show strong of expression of 273P4B7 in prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, prostate cancer xenograft pool, prostate metastasis to lymph node, bone and melanoma cancer pool, cervical cancer pool, lymphoma cancer pool, stomach cancer pool, uterus cancer pool and multi-xenograft pool (prostate cancer, kidney cancer and bladder cancer xenograft pool). In normal tissues, 273P4B7 is predominantly expressed in testis and not in any other normal tissue tested. Extensive expression of 273P4B7 in normal tissues Is shown in Figure 15. Two multiple tissue northem blots (Clontech) both with 2 pg of mRNAlane were probed with the 273P4B7 sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 7kb 273P4B7 transcript in normal testis but not in the other normal tissues tested. Expression of 273P4B7 in pancreas, ovary and testis cancer patient specimens is shown in Figure 16. RNA was extracted from normal pancreas (NPa), normal ovary (NO), normal testis (NTe), pancreas cancer patient specimen (P1), ovary cancer patient specimen (P2,P3,P4), and tests cancer patient specimen (P5,P6,P7). Northern blot with 10 pg of total RNAlane was probed with 273P4B7 SSH sequence. Size standards in kilobases (kb) are indicated on the side. 273P4B7 transcript was detected in the patient specimens, but not in the normal tissues. Figure 17 shows 273P487 expression in cervical cancer patient specimens. In Figure 17(A), total RNA was extracted from cervical dancer patient specimens (T1-T7), and HeLa cell line. Northem blot with 10 pg of total RNA/lane was probed with 273P4B7 SSH sequence. Size standards in kilobases (kb) are indicated on the side. 273P4B7 transcript was detected in all patient specimens tested as well as in the Hela cell line. In Figure 17(B), first strand cDNA was prepared from a panel of cervical cancer patient specimens, normal cervix and HeLa cervical cell line. Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated using the Alphalmager software. Expression was recorded as absent, low, medium or strong. Results show expression of 273P4B7 In most of the cervical cancer tissues tested. Expression of 273P4B7 in bladder cancer patient specimens is shown in figure 18. First strand cDNA was prepared from a panel of bladder cancer patient specimens, normal bladder (N) and bladder cancer cell lines (UM-UC-3, TCCSUP, J82). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel Figure 18(A), and PCR products were quantitated using the Alphalmager software Figure 18(B). Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 in most of the bladder cancer tissues tested, but not in the normal bladder tissues. Expression of 273P4B7 in colon cancer patient specimens is shown In figure 19. First strand cDNA was prepared from a panel of colon cancer patient specimens, normal colon, and colon cancer cell lines (LoVo, CaCo-2, SK-CO1, Colo205, and T284). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 83 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated using the Alphalmager software. Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 in the majority of the colon cancer tissues tested, but not in the normal colon tissues. Expression was also detected in the cell lines LoVo, CaCo-2, SK-CO1, Colo205, but not in the T284 cell line. Figure 20 shows 273P4B7 expression in ovary cancer patient specimens. First strand cDNA was prepared from a panel of ovarian cancer patient specimens, normal ovary and ovarian cancer cell lines (OV-1 063, PA-1, SW626). Normalization was performed by PCR using primers to actin. Semi-quantitative PCR, using primers to 273P4B7, was performed at 26 and 30 cycles of amplification. Samples were run on an agarose gel, and PCR products were quantitated using the Alphalmager software. Expression was recorded as absent, low, medium or high. Results show expression of 273P4B7 in the majority of ovary cancer tissues tested as well as in the cell lines, but not in normal ovary. The restricted expression of 273P4B7 in normal tissues and the expression detected in cancer patient specimens suggest that 273P4B7 is a therapeutic target and a diagnostic marker for human cancers. Example 5: Transcript Variants of 273P4B7 As used herein, the term variant comprises Transcript variants and Single Nucleotide Polymorphisms (SNPs). Transcript variants are variants of mature mRNA from the same gene which arise by alternative transcription or alternative splicing. Alternative transcripts are transcripts from the same gene but start transcription at-different points. Splice variants are mRNA variants spliced differently from the same transcript. in eukaryotes, when a multi-exon gene is transcribed from genomic DNA, the Initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5' or 3' end) portions, from the original transcript. Transcript variants can code for the same, similar or different proteins with the same or a similar function or can encode proteins with different functions, and can be expressed in the same tissue at the same time, or in different tissues at the same time, or in the same tissue at different times, or in different tissues at different times. Proteins encoded by transcript variants can have similar or different subcellular or extracellular localizations, e.g., secreted versus intracellular. Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified by full-length cloning experiments, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or Indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene. Even when a variant is identified that is not yet a full-length clone, that portion of the variant is very useful as a research tool, e.g., for antigen generation and for further cloning of the full-length splice variant, using techniques known to those skilled In the art. Moreover, computer programs are available to those skilled in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, "Ab initio gene finding in Drosophila genomic DNA," Genome Research. 2000 April;10(4):516-22); Grail (URL compbio.ornl.gov/Grail-bin/EmptyGrailForm) and GenScan (URL genes.mit.edu/GENSCAN.html). For a general discussion of splice variant Identification protocols see., e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214-8; de Souza, S.J., et aL., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. NaU. Acad. Sci U S A. 2000 Nov 7; 97(23):12690-3. 84 To further confirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full-length cloning, proteomic validation, PCR-based validation, and 5' RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S.O., et aL., Albumin banks peninsula: a new termination variant characterized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; Ferranti P, et aL, Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(s1)-casein, Eur J Biochem. 1997 Oct 1;249(1):1-7. For PCR-based Validation: Wellmann S, et aL., Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 Apr;47(4):654-60; Jia, H.P., et al., Discovery of new human beta defensins using a genomics-based approach, Gene. 2001 Jan 24; 263(1-2):211-8. For PCR-based and 5' RACE Validation: Brigle, K.E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug 7; 1353(2): 191-8). It Is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed herein is that 273P4B7 has a particular expression profile related to cancer (See, e.g., Table 1). Alternative transcripts and splice variants of 273P4B7 are also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens. Using the full-length gene and EST sequences, four additional transcript variants were identified, designated as 273P4B7 v.2, v.9 and v.10. The boundaries of exons in the original transcript, 273P4B7 v.1 are shown in Table LI. The structures of the transcript variants are shown in Figure 10. Variant 273P487 v.2 added 22 bases to the 5'end of exoni and an additional exon in the first intron of variant v.1. Variants v.9 and v.10 were shorter and matched part of the last exon of v.1, with a few different base pairs. Tables Ll(a)-(d) through LV(a)-(c) are set forth on a variant-by-variant bases. Tables Lll(a)-(d) show nucleotide sequence of the transcript variants. Tables LIII(a)-(d) show the alignment of the transcript variant with nucleic acid sequence of 273P4B7 v.1. Table LIV(a)-(d) lay out amino acid translation of the transcript variant for the identified reading frame orientation. Table LV(a)-(d) display alignments of the amino acid sequence encoded by the splice variant with that of 273P4B7 v.1. Example 6: Sngle Nucleotide Polymorphisms of 273P4B7 A Single Nucleotide Polymorphism (SNP) is a single base pair variation in a nucleotide sequence at a specific location. At any given point of the genome, there are four possible nucleotide base pairs: A/T, C/G, G/C and T/A. Genotype refers to the specific base pair sequence of one or more locations in the genome of an individual. Haplotype refers to the base pair sequence of more than one location on the same DNA molecule (or the same chromosome in higher organisms), often in the context of one gene or in the context of several tightly linked genes. SNP that occurs on a cDNA is called cSNP. This cSNP may change amino acids of the protein encoded by the gene and thus change the functions of the protein. Some SNP cause inherited diseases; others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNP and/or combinations of alleles (called haplotypes) have many applications, including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for diseases, and analysis of the genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goate, " SNP analysis to dissect human traits," Curr. Opin. Neurobiol. 2001 Oct; 11 (5):637-641; M. Pirmohamed and B. K. Park, "Genetic susceptibility to adverse drug reactions," Trends Pharmacol. Sci. 2001 Jun; 22(6):298-305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, "The use of single nucleotide polymorphisms in the isolation of common disease genes," Pharmacogenomics. 2000 Feb; l(l):39-47; R. Judson, J. C. Stephens 85 and A. Windemuth, "The predictive power of haplotypes in clinical response," Pharmacogenomics. 2000 Feb; 1(1):15-26). SNP are identified by a variety of art-accepted methods (P. Bean, "The promising voyage of SNP target discovery," Am. Clin. Lab. 2001 Oct-Nov; 20(9):18-20; K. M. Weiss, "In search of human variation," Genome Res. 1998 Jul; 8(7):691-697; M. M. She, "Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies," Clin. Chem. 2001 Feb; 47(2):164-172). For example, SNP can be identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different individuals or by comparing sequences from different DNA samples. With the rapid accumulation-of sequence data in public and private databases, one can discover SNP by comparing sequences using computer programs (Z. Gu, L. Hillier and P. Y. Kwok, "Single nucleotide polymorphism hunting in cyberspace," Hum. Mutat. 1998; 12(4):221-225). SNP can be verified and genotype or haplotype of an individual can be determined by a variety of methods including direct sequencing and high throughput microarrays (P. Y. Kwok, "Methods for genotyping single nucleotide polymorphisms," Annul. Rev. Genomics Hum. Genet. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, "High-throughput SNP genotyping with the Masscode system," Mol. Diagn. 2000 Dec; 5(4):329-340). Using the methods described above, six SNP were identified in the transcript, 273P4B7 v.1, as shown in Table LVI. The transcripts or proteins with alternative allele were designated as variant 273P4B7 v.3 through v.8, as shown in Table LVI and Figure 12. These alleles of the SNP, though shown separately here, can occur in different combinations (haplotypes) and in any one of the transcript variants (such as 273P4B7 v.2, as listed in table LVI) that contains the site of the SNP, as laid out in Figures 11 and 12. Example 7: Production of Recombinant 273P4B7 In Prokarvotic Systems To express recombinant 273P4B7 and 273P4B7 variants in prokaryotic cells, the full or partial length 273P4B7 and 273P4B7 variant cDNA sequences are cloned Into any one of a variety of expression vectors known in the art. One or more of the following regions of 273P4B7 variants are expressed: the full length sequence presented in Figures 2 and 3, or any 8, 9,10, 11, 12,13, 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 273P4B7, variants, or analogs thereof. A. In vitro transcription and translation constructs: pCRI: To generate 273P4B7 sense and anti-sense RNA probes for RNA in situ investigations, pCRIl constructs (Invitrogen, Carlsbad CA) are generated encoding either all or fragments of the 273P4B7 cDNA. The pCRII vector has Sp6 and T7 promoters flanking the insert to drive the transcription of 273P4B7 RNA for use as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 273P4B7 at the RNA level. Transcribed 273P4B7 RNA representing the cDNA amino acid coding region of the 273P4B7 gene is used in in vitro translation systems such as the TnTm Coupled Reticulolysate System (Promega, Corp., Madison, WI) to synthesize 273P4B7 protein. B. Bacterial Constructs: pGEX Constructs: To generate recombinant 273P4B7 proteins in bacteria that are fused to the Glutathione S transferase (GST) protein, all or parts of the 273P4B7 cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant 273P4B7 protein sequences with GST fused at the amino-terminus and a six histidine epitope (6X His) at the carboxyl-terminus. The GST and 6X His tags permit purification of the recombinant fusion protein from induced-bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies. The 6X His 86 tag is generated by adding 6 histidine codons to the cloning primer at the 3' end, e.g., of the open reading frame (ORF). A proteolytic cleavage site, such as the PreScissionTm recognition site In pGEX-6P-1, may be employed such that it permits cleavage of the GST tag from 273P4B7-related protein. The ampicillin resistance gene and pBR322 origin permits selection and maintenance of the pGEX plasmids in E coli. pMAL Constructs: To generate, in bacteria, recombinant 273P4B7 proteins that are fused to maltose-binding protein (MBP), all or parts of the 273P4B7 cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, MA). These constructs allow controlled expression of recombinant 273P4B7 protein sequences with MBP fused at the amino-terminus and a 6X His epitope tag at the carboxyl terminus. The MBP and 6X His tags permit purification of the recombinant protein from Induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6X His epitope tag is generated by adding 6 histidine codons to the 3 cloning primer. A Factor Xa recognition site permits cleavage of the pMAL tag from 273P4B7. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds. PET Constructs: To express 273P4B7 in bacterial cells, all or parts of the 273P4B7 cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI). These vectors allow tightly controlled expression of recombinant 273P4B7 protein In bacteria with and without fusion to proteins that enhance solubility, such as NusA and thioredoxin (Trx), and epitope tags, such as 6X His and S-Tag Tm that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 273P4B7 protein are expressed as amino-terminal fusions to NusA. C. Yeast Constructs: DESC Constructs: To express 273P4B7 in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 273P4B7 cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP1, LEU2, and URA3 (Stratagene, La Jolla, CA). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either FlagTM or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein Interactions of 273P4B7. In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations that are found when expressed in eukaryotic cells. pESP Constructs: To express 273P4B7 in the yeast species Saccharomyces pombe, all or parts of the 273P4B7 cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 273P4B7 protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagTM epitope tag allows detection of the recombinant protein with anti FlagTM antibody. Example 8: Production of Recombinant 273P4B7 in Higher Eukarvotic Systems A. Mammalian Constructs: To express recombinant 273P4B7 in eukaryotic cells, the full or partial length 273P4B7 cDNA sequences were cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 273P4B7 were expressed in these constructs, amino acids 1 to 1250 or any 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 273P4B7 v.1, v.4, v.5, and v.6; amino acids I to 1127 of v.2 or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 273P4B7 variants, or analogs thereof. 87 The constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells. Transfected 293T cell lysates can be probed with the anti-273P4B7 polyclonal serum, described herein. pcDNA4/HisMax Constructs: To express 273P4B7 in mammalian cells, a 273P4B7 ORF, or portions thereof, of 273P4B7 are cloned into pcDNA4lHisMax Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has XpressTM and six histidine (6X His) epitopes fused to the amino-terminus, The pcDNA4lHisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColEI origin permits selection and maintenance of the plasmid in E coli. pcDNA3.1/MycHlis Constructs: To express 273P4B7 in mammalian cells, 273P4B7 ORF, or portions thereof, of 273P4B7 with a consensus Kozak translation initiation site was cloned into pcDNA3.1/MycHis Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the myc epitope and 6X His epitope fused to the carboxyl-terminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene can be used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE1 origin permits selection and maintenance of the plasmid in E coli. pcDNA3.1/CT-GFP-TOPO Construct: To express 273P4B7 in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 273P4B7 ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into pcDNA3.1ICT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell biology studies. The pcDNA3.1 CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and CoE1 origin permits selection and maintenance of the plasmid in E. coli. Additional constructs with an amino terminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a 273P4B7 protein. PAPtaq: A 273P4B7 ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, TN). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 273P4B7 protein while fusing the IgGr, signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino terminal IgGK signal sequence is fused to the amino-terminus of a 273P4B7 protein. The resulting recombinant 273P4B7 proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 273P4B7 proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6X His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present In the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid In E. col. PTa5: A 273P487 ORF, or portions thereof, Is cloned into pTag-5. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generates 273P4B7 protein with an amino-terminal IgGr, signal sequence and myc and 6X His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 273P4B7 protein is optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with the 273P4B7 proteins. Protein 88 expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid In E. coll. PsecFc: A 273P4B7 ORF, or portions thereof, is also cloned into psecFc. The psecFc vector was assembled by cloning the human immunoglobulin GI (IgG) Fc (hinge, CH2, CH3 regions) into pSecTag2 (Invitrogen, Califomia). This construct generates an IgG1 Fc fusion at the carboxyl-terminus of the 273P4B7 proteins, while fusing the lgGK signal sequence to N-terminus. 273P4B7 fusions utilizing the murine IgG1 Fc region are also used. The resulting recombinant 273P4B7 proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 273P4B7 protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli. pSRac Constructs: To generate mammalian cell lines that express 273P4B7 constitutively, 273P4B7 ORF, or portions thereof, of 273P4B7 were cloned into pSRa constructs. Amphotropic and ecotropic retroviruses were generated by transfection of pSRa constructs into the 293T-1OA1 packaging line or co-transfection of pSRa and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 273P4B7, into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColEl origin permit selection and maintenance of the plasmid in E. coli. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPr1, 293 or rat-1 cells. Additional pSRa constructs were made that fuse an epitope tag such as the FLAGTM tag to the carboxyl-terminus of 273P4B7 sequences to allow detection using anti-Flag antibodies. For example, the FLAGTM sequence 5' gat tac aag gat gac gac gat aag 3' (SEQ ID NO: 42) is added to cloning primer at the 3' end of the ORF. Additional pSRa constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/6X His fusion proteins of the full-length 273P4B7 proteins. Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 273P4B7. High virus titer leading to high level expression of 273P4B7 is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 273P4B7 coding sequences or fragments thereof are amplified by PCR and subdoned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Aternatively, 273P4B7 coding sequences or fragments thereof are cloned Into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells. Requlated Expression Systems: To control expression of 273P4B7 in mammalian cells, coding sequences of 273P4B7, or portions thereof, are cloned into regulated mammalian expression systems such as the TTRex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 273P4B7. These vectors are thereafter used to control expression of 273P4B7 in various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells. B. Baculovirus Expression Systems To generate recombinant 273P4B7 proteins in a baculovirus expression system, 273P4B7 ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus. Specifically, pBlueBac-273P4B7 is co-transfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (Spodoptera frugiperda) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supernatant and purified by plaque assay. 89 Recombinant 273P4B7 protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 273P4B7 protein can be detected using ani-273P4B7 or anti-His-tag antibody. 273P4B7 protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 273P4B7. Example 9: Antigenicity Profiles and Secondary Structure Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9 depict graphically five amino acid profiles of 273P4B7 variant 1, each assessment available by accessing the ProtScale website located on the World Wide Web at (www.expasy.ch/cgi bin/protscale.pl) on the ExPasy molecular biology server. These profiles: Figure 5, Hydrophilicity, (Hopp T.P., Woods K.R., 1981. Proc. Nati. Acad. Sci. U.S.A. 78:3824 3828); Figure 6, Hydropathicity, (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132); Figure 7, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); Figure 8, Average Flexibility, (Bhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255); Figure 9, Beta-tum (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were used to identify antigenic regions of each of the 273P4B7 variant proteins. Each of the above amino acid profiles of 2731P4B7 variants were generated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the window edges compared to the window center; and, 3) amino acid profile values normalized to lie between 0 and 1. Hydrophilicity (Figure 5), Hydropathicity (Figure 6) and Percentage Accessible Residues (Figure 7) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies. Average Flexibility (Figure 8) and Beta-turn (Figure 9) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained In secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies. Antigenic sequences of the 273P4B7 variant proteins indicated, e.g., by the profiles set forth in Figure 5, Figure 6, Figure 7, Figure 8, and/or Figure 9 are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-273P4B7 antibodies. The immunogen can be any 5, 6, 7, 8, 9, 10,11, 12,13,14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 273P4B7 protein variants listed in Figures 2 and 3. In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number Increment that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of Figure 5; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figures 6; a peptide region of at least 5 amino acids of Figures 2 and 3 In any whole number increment that Includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of Figure 7; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number Increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 8; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number Increment that includes an amino acid position having a value greater than 0.5 in the Beta-tum profile of Figures 9 . Peptide Immunogens of the Invention can also comprise nucleic acids that encode any of the forgoing. 90 All immunogens of the invention, peptide or nucleic acid, can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology. The secondary structure of 273P4B7 protein variant 1, namely the predicted presence and location of alpha helices, extended strands, and random coils, is predicted from the primary amino acid sequence using the HNN Hierarchical Neural Network method (NPS@: Network Protein Sequence Analysis TIBS 2000 March Vol. 25, No 3 [291j:147 150 Combet C., Blanchet C., Geourjon C. and Delbage G., http:llpbil.ibcp.fr/cgi-bin/npsaautomat.pl?page=npsann.html), accessed from the ExPasy molecular biology server located on the World Wide Web at (www.expasy.ch/tools/). The analysis indicates that 273P4B7 variant 1 is composed of 41.60% alpha helix, 11.12% extended strand, and 47.28% random coil (Figure 13A). Analysis for the potential presence of transmembrane domains in the 273P4B7 variant protein 1 was carded out using a variety of transmembrane prediction algorithms accessed from the ExPasy molecular biology server located on the World Wide Web at (www.expasy.ch/tools/). Shown graphically in Figure 13B and Figure 13C are the results of analysis of variant 1 using the TMpred program (Figure 138) and TMHMM program (Figure 13C). The TMpred program predicts the presence of 2 transmembrane domains, whereas the TMHMM program does not predict transmembrane domains. Taken together with analysis using other programs summarized in Table VI and Table L, the data suggest that 273P4B7 is most likely a soluble protein. Example 10: Generation of 273P4B7 Polyclonal Antibodies Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 273P4B7 protein variant, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled "Antigenicity Profiles and Secondary Structure"). Such regions would be predicted to be hydrophilic, flexible, in beta-tum conformations, and be exposed on the surface of the protein (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9 for amino acid profiles that indicate such regions of 273P4B7 protein variant 1). For example, recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-turn regions of 273P4B7 protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits or monoclonal antibodies as described (see the Example entitled "Generation of 273P4B7 Monoclonal Antibodies (mAbs)"). For example, in 273P4B7 variant 1, such regions include, but are not limited to, amino acids 1-16, amino acids 23-43, amino acids 170-194, amino acids 324-368, amino acids 430-461, amino acids 735-753, amino acids 774-792, amino acids 1002 1043, and amino acids 1105-1158. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. In one embodiment, a peptide encoding amino acids 1-16 of 273P4B7 variant 1 was conjugated to KLH and used to immunize a rabbit. Alternatively the immunizing agent may include all or portions of the 273P4B7 variant proteins, analogs or fusion proteins thereof. For example, the 273P4B7 variant I amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. In another embodiment, amino acids.1000-1250 of 273P4B7 variant 1 is fused to GST using recombinant techniques and the pGEX expression vector, expressed, purified and used to immunize a rabbit. Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix. 91 Other recombinant bacterial fusion proteins that may be employed Include maltose binding protein, LacZ, thioredoxin, NusA, or an Immunoglobulin constant region (see the Example entitled 'Production of 273P4B7 in Prokaryotic Systems" and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Unsley, P.S., Brady, W., Urnes, M., Grosmaire, L., Damle, N., and Ledbetter, L. (1991) J.Exp. Med. 174, 561-566). In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the Example entitled "Production of Recombinant 273P457 in Eukaryotic Systems"), and retain post-translational modifications such as glycosylatlons found in native protein. In one embodiment, the complete cDNA of 273P4B7 variant 1 is cloned Into the Tag5 mammalian secretion vector, and expressed in 293T cells. The recombinant protein is purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector. The purified Tag5 273P4B7 protein is then used as immunogen. During the immunization protocol, it is useful to mix or emulsify the antigen In adjuvants that enhance the Immune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). In a typical protocol, rabbits are initially Immunized subcutaneously with up to 200 Rg, typically 100-200 stg, of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to 200 sg, typically 100-200 sg, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to monitor the titer of the antiserum by ELISA. To test reactivity and specificity of Immune serum, such as the rabbit serum derived from immunization with the GST-fuslon of 273P4B7 variant 1 protein, the full-length 273P4B7 variant 1 cDNA is cloned into pCDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled "Production of Recombinant 273P4B7 in Eukaryotic Systems"). After transfection of the constructs Into 293T cells, cell lysates are probed with the anti-273P4B7 serum and with anti-His antibody (Santa Cruz Biotechnologies, Santa Cruz, CA) to determine specific reactivity to denatured 273P4B7 protein using the Westem blot technique. In addition, the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T and other recombinant 273P4B7-expressing cells to determine specific recognition of native protein. Westem blot, Immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 273P4B7 are also carried out to test reactivity and specificity. Anti-serum from rabbits Immunized with 273P4B7 variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein. For example, antiserum derived from a GST 273P4B7 variant 1 fusion protein Is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP 273P487 fusion protein covalently coupled to Affigel matrix, The serum is then further purified by protein G affinity chromatography to isolate the IgG fraction. Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein Immunogen or free peptide. Example 11: Generation of 273P4B7 Monoclonal Antibodies (mAbs) In one embodiment, therapeutic mAbs to 273P417 variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or modulate the biological function of the 273P4B7 variants, for example those that would disrupt the interaction with ligands and binding partners. 92 Immunogens for generation of such mAbs include those designed to encode or contain the entire 273P4B7 protein variant sequence, regions predicted to contain functional motifs, and regions of the 273P4B7 protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9, and the Example entitled "Antigenicity Profiles"). Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins. In addition, cells engineered to express high levels of a respective 273P4B7 variant, such as 293T-273P4B7 variant I or 300.19-273P4B7 variant 1murine Pre-B cells, are used to immunize mice. To generate mAbs to a 273P4B7 variant, mice are first immunized intraperitoneally (IP) with, typically, 10-50 pag of protein immunogen or 107 273P4B7-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 jig of protein immunogen or 107 cells mixed in incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used In'immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a 273P4B7 variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, the complete cDNA of 273P4B7 of variant 1 is cloned into the Tag5 mammalian secretion vector and the recombinant vector will then be used as immunogen. In another example the same amino acids are cloned into an Fc-fuslon secretion vector in which the 273P4B7 variant 2 sequence is fused at the amino-terminus to an lgK leader sequence and at the carboxyl terminus to the coding sequence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing the respective 273P4B7 variant. During the immunization protocol, test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity Is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988). In one embodiment for generating 273P4B7 monoclonal antibodies, a GST-fusion of variant 1 antigen encoding amino acids 1000-1250 is expressed and purified from bacteria. Balb C mice are initially immunized intraperitoneally with 25 pg of the GST-273P487 variant i protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 pg of the antigen mixed inincomplete Freund's adjuvant for a total of three immunizations. ELISA using the GST-fusion antigen and a cleavage product from which the GST portion is removed determines the titer of serum from immunized mice. Reactivity and specificity of serum to full length 273P4B7 variant I protein is monitored by Western blotting, Immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the 273P4B7 variant 1 cDNA (see e.g., the Example entitled 'Production of Recombinant 273P4B7 in Eukaryotic Systems"). Other recombinant 273P487 variant 1-expressing cells or cells endogenously expressing 273P4B7 variant 1 are also used. Mice showing the strongest reactivity are rested and given a final injection of antigen In PBS and then sacrificed four days later. The spleens of the sacrificed mice are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988). Supernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 273P4B7 specific antibody-producing clones. The binding affinity of a 273P4B7 variant monoclonal antibody is determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 273P4B7 variant monoclonal antibodies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art. The BlAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BlAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1998, Methods in Enzymology 295: 268) to 93 monitor biomolecular interactions in real time. BlAcore analysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation constants, and affinity constants. Example 12: HLA Class I and Class I Binding Assays HLA class I and class I binding assays using purified HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and 1-10 nM 1 2 5 1-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes are separated from free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10 20% of the total radioactivity. All subsequent inhibition and direct binding assays are performed using these HLA concentrations. Since under these conditions Pabel]<[HLAI and IC5ot[HLA], the measured ICso values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 pg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the ICso of a positive control for inhibition by the ICso for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide).. For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into ICso nM values by dividing the IC5o nM of the positive controls for Inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC. Binding assays as outlined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides (see Table IV). Example 13: Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes HLA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below. Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes The searches performed to identify the motif-bearing peptide sequences in the Example entitled "Antigenicity Profiles" and Tables Vill-XXI and XXII-XLIX employ the protein sequence data from the gene product of 273P4B7 set forth in Figures 2 and 3, the specific search peptides used to generate the tables are listed in Table VII. Computer searches for epitopes bearing HLA Class I or Class Il supermotifs or motifs are performed as follows. All translated 273P4B7 protein sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally. Identified A2-, A3-, and DR-supermotif sequences are scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class il molecules. These polynomial algorithms account for the impact of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or AG) of peptide-HLA molecule Interactions can be approximated as a linear polynomial function of the type: 94 "AG"= av x a2x a3 ...... x ani where ap is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount ji to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et aL, Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363 3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of ],. For Class I peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired. Selection of HLA-A2 supertype cross-reactive peptides Protein sequences from 273P4B7 are scanned utilizing motif identification software, to identify 8-, 9- 10- and 11 mer sequences containing the HLA-A2-supermotif main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA-A*0201 is considered a prototype A2 supertype molecule). These peptides are then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deemed A2 supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA A2 supertype molecules. Selection of HLA-A3 supermotif-bearinq epitopes The 273P4B7 protein sequence(s) scanned above is also examined for the presence of peptides with the HLA-A3 supermotif primary anchors. Peptides corresponding to the HLA A3 supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the molecules encoded by the two most prevalent A3 supertype alleles. The peptides that bind at least one of the two alleles with binding affinities of 500 nM, often s 200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (e.g., A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested. Selection of HLA-B7 supermotif bearing epitopes The 273P4B7 protein(s) scanned above is also analyzed for the presence of 8-, 9- 10-, or 1 1-mer peptides with the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the molecule encoded by the most common B7-supertype allele (i.e., the prototype 87 supertype allele). Peptides binding B*0702 with iCso of s500 nM are identified using standard methods. These peptides are then tested for binding to other common B7-supertype molecules (e.g., B*3501, B*5101, B*5301, and B*5401). Peptides capable of binding to three or more of the five B7 supertype alleles tested are thereby identified. 95 Selection of Al and A24 motif-bearing epitopes To further increase population coverage, HLA-A1 -and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 273P4B7 protein can also be performed to identify HLA-A1- and A24-motif-containing sequences. High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology. Example 14: Confirmation of lmmunogenicity Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described herein are selected to confirm in vitro immunogenicity. Confirmation is performed using the following methodology: Target Cell Lines for Cellular Screening: The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line Is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-specific CTLs to recognize endogenous antigen. Primary CTL Induction Cultures: Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 ptg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L glutamine and penicillin/streptomycin). The monocytes are purified by plating 10 x 106 PBMC/well in a 6-well plate. After 2 hours at 37*C, the non-adherent cells are removed by gently shaking the plates and aspirating the supematants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 UlmI of IL-4 are then added to each well. TNFa is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7. Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads@ M-450) and the detacha-bead@ reagent. Typically about 200-250x1 06 PBMC are processed to obtain 24x10 6 CD8+ T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed In RPMI with 30pg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20x1O 6 cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140pl beads/20x10 6 cells) and incubated for 1 hour at 4 0 C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 1 00x1 06 cells/ml (based on the original cell number) in PBS/AB serum containing 100pi/mi detacha-bead@ reagent and 30 pg/mI DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40pg/ml of peptide at a cell concentration of 1-2x10 6 /ml in the presence of 3pg/ml 12- microglobulin for 4 hours at 20"C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again. Setting up induction cultures: 0.25 ml cytokine-generated DC (at 1x105 cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (at 2x10 6 cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL-10 Is added the next day at a final concentration of 10 ng/ml and rhuman IL-2 Is added 48 hours later at 10 IU/ml. Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thawed apd washed twice 96 with RPMI and DNAse. The cells are resuspended at 5x1 06 cells/ml and irradiated at -4200 rads. The PBMCs are plated at 2x10 6 in 0,5 ml complete medium per well and incubated for 2 hours at 37"C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 1Opg/ml of peptide in the presence of 3 pg/ml 112 microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at 3700. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the Induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 Is added at a final concentration of 10 ng/ml and recombinant human IL2 is added the next day and again 2-3 days later at 501U/ml (Tsai et al., Critical Reviews In Immunology 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a 5 1 Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFNy ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison. Measurement of CTL lytic activity by 61 Cr release. Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) 5 1 Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with lOpg/ml peptide overnight at 370C. Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with 200pCi of 5 1 Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37*C. Labeled target cells are resuspended at 106 per ml and diluted 1:10 with K562 cells at a concentration of 3.3x10 6 1mi (an NK-sensitive erythroblastoma cell line used to reduce non specific lysis). Target cells (100 pl) and effectors (100pl) are plated in 96 well round-bottom plates and incubated for 5 hours at 37"C. At that time, 100 pl of supernatant are collected from each well and percent lysis is determined according to the formula: [(cpm of the test sample- cpm of the spontaneous 5 1 Cr release sample)/(cpm of the maximal 5 1 Cr release sample cpm of the spontaneous 5 1 Cr release sample)] x 100. Maximum and spontaneous release are determined by incubating the labeled targets with 1% Triton X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample- background) is 10% or higher in the case of individual wells and is 15% or more at the two highest E:T ratios when expanded cultures are assayed. In situ Measurement of Human IFNy Production as an indicator of Peptide-specific and Endogenous Recognition Immulon 2 plates are coated with mouse anti-human IFNy monoclonal antibody (4 pg/ml 0.1M NaHCO3, pH8.2) overnight at 4*C. The plates are washed with Ca 2 +, Mg 2 +-free PBSIO.05% Tween 20 and blocked with PBSi0% FCS for two hours, after which the CTLs (100 il/well) and targets (100 i/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of lxi06 cells/mi. The plates are incubated for 48 hours at 37*C with 5% C0 2 . Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or 1200pg100 microlitertwell and the plate incubated for two hours at 370C. The plates are washed and 100 p11 of biotinylated mouse anti-human IFN gamma monoclonal antibody (2 microgram/ml in PBS/3%FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microllter HRP-streptavidin (1:4000) are added and the plates incubated for one hour at room temperature. The plates are then washed 6x with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 microllter/well IM H3PO 4 and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression. 97 CTL Expansion. Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5x1 04 CD8+ cells are added to a T25 flask containing the following: xI 06 Irradiated (4,200 rad) PBMC (autologous or allogenec) per ml, 2x105 irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml In RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25pM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of 200lU/ml and every three days thereafter with fresh media at 501Ulml. The cells are split if the cell concentration exceeds 1x10 6 /ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 5 1 Cr release assay or at 1x1O 6 /ml in the in situ IFNy assay using the same targets as before the expansion. Cultures are expanded in the absence of anti-CD3+ as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5x10 4 CD8+ cells are added to a T25 flask containing the following: 1x10 6 autologous PBMC per ml which have been peptide-pulsed with 10 pg/ml peptide for two hours at 37*C and irradiated (4,200 rad); 2x10 5 Irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamine and gentamicin. Immunogenicity of A2 supermotif-bearing peptides A2-supermotif crbss-reactive binding peptides are tested in the cellular assay for the ability to induce peptide specific CTL in normal Individuals. in this analysis, a peptide is typically considered to be an epitope if it induces peptide specific CTLs In at least individuals, and preferably, also recognizes the endogenously expressed peptide. Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 273P4B7. Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen. Evaluation of A*03/A1 I immunogenicity HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for Immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides, Evaluation of B7 immunogenicity Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirmation of A2-and A3-supermotif-bearing peptides. Peptides bearing other supermoifs/motifs, e.g., HLA-A1, HLA-A24 etc. are also confirmed using similar methodology Example 15: Implementation of the Extended Supermotif to Improve the Binding Caacity of Native Epitopes by Creating Analogs HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by Identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example. Analogin at Primary Anchor Residues Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to Introduce a preferred L, 1, V, or M at position 2, and I or V at the C-terminus. 98 To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity. Alternatively, a peptide is confirmed as binding one or all supertype members and then analoged to modulate binding affinity to any one (or more) of the supertype members to add population coverage. The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, i.e., bind at an IC5o of 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross reactivity by T cells specific for the parent epitope (see, e.g., Parkhurst et aL., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Nat. Acad. Sci. USA 92:8166,1995). In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope. Analoginq of HLA-A3 and B7-supermotif-bearinq peptides Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to 3/5 of the A3-supertype molecules are engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2. The analog peptides are then tested for the ability to bind A*03 and A*1 I (prototype A3 supertype alleles). Those peptides that demonstrate s 500 nM binding capacity are then confirmed as having A3-supertype cross-reactivity. Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles can be Improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996). Analoging at primary anchor residues of other motif and/or supermotif-bearing epitopes is performed In a like manner. The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay. Again, it Is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, targets that endogenously express the epitope. Analoginq at Secondary Anchor Residues Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide with an F residue at position I Is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1. The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity. Such a procedure identifies analoged peptides with enhanced properties. Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be tested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PBMC from patients with 273P4B7 expressing tumors. Other analoging strategies 99 Another form of peptide analoging, unrelated to anchor positions, Involves the substitution of a cysteine with a amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of a-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and 1. Chen, John Wiley & Sons, England, 1999). Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated. Example 16: Identification and confirmation of 273P4B7-derived sequences with HLA-DR binding motifs Peptide epitopes bearing an HLA class 1i supermotif or motif are identified and confirmed as outlined below using methodology similar to that described for HLA Class I peptides. Selection of HLA-DR-suoermotif-bearing epitopes: To identify 273P4B7-derived, HLA class I HTL epitopes, a 273P4B7 antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DR supermotif, comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total). Protocols for predicting peptide binding to DR molecules have been developed (Southwood et aL., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking,-of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally; it has been found that performing these protocols in tandem, specifically those for DRI, DR4w4; and DR7, can efficiently select DR cross-reactive peptides. The 273P4B7-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DRI, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 P1, DR2w2 p2, DR6wi9, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4wi5, DR5w1 1, and DR8w2 molecules in tertiary assays. Peptides binding at least seven of the ten DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. 273P4B7-derived peptides found to bind common HLA-DR alleles are of particular interest. Selection of DR3 motif peptides Because HLA-DR3 Is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for Inclusion In a vaccine formulation. To efficiently identify peptides that bind DR3, target 273P4B7 antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of 1p4M or better, i.e., less than 1 pM. Peptides are found that meet this binding criterion and qualify as HLA class If high affinity binders. DR3 binding epitopes Identified in this manner are included in vaccine compositions with DR supermotif-bearing peptide epitopes. 100 Similarly to the case of HLA class I motif-bearing peptides, the class 11 motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence Is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding. Example 17: Immunogenicity of 273P487-derived HTL epitopes This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology set forth herein. Immunogenicity of HTL epitopes are confirmed in a manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from patients who have 273P4B7-expressing tumors. Example 18: Calculation of phenotypic frequencies of HLA-supertypes in various ethnic back-grounds to determine breadth of population coverage This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised -of multiple epitopes comprising multiple supermotifs and/or motifs. In order to analyze population coverage, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1-(SQRT(1 af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf) 2 ]. Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations are made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A1l, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B'5602). Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the Al and A24 motifs. On average, Al is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when Al and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%, see, e.g., Table IV (G). An analogous approach can be used to estimate population coverage achieved with combinations of class Il motif-bearing epitopes. immunogenicity studies in humans (e.g., Bertoni et aL., J. Clin. invest. 100:503, 1997; Doolan et al., Immunity 7:97, 1997; and Threlkeld et al., J. Immunol. 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population. 101 With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% In each of five major ethnic populations. The game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osborne, M.J. and Rubinstein, A. "A course In game theory" MIT Press, 1994), can be used to estimate what percentage of the Individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described herein. A preferred percentage is 90%. A more preferred percentage is 95%. Example 19: CTL Recognition Of Endogenously Processed Antigens After Priming This example confirms-that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, i.e., native antigens. Effector cells isolated from transgenic mice that are immunized with peptide epitopes, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on 5 1Cr labeled Jurkat-A2.1I/Kb target cells in the absence or presence of peptide, and also tested on 51 Cr labeled target cells bearing the endogenously synthesized antigen, I.e. cells that are stably transfected with 273P4B7 expression vectors. The results demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized 273P4B7 antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models induding mice with human Al1, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes. Example 20: Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a 273P4B7-derived CTL and HTL peptide vaccine compositions. The vaccine composition used herein comprise peptides to be administered to a patient with a 273P4B7-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one that binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peptides may be lipidated, if desired. Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et a., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the Immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS activated lymphoblasts coated with peptide. Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007,1991) 102 In vitro CTL activation: One week after priming, spleen cells (30x1 06 cells/flask) are co-cultured at 370C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10 6 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity. Assay for cytotoxic activity: Target cells (1.0 to 1.5x1 06) are incubated at 37*C in the presence of 200 pl of 5 1 Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 pg/ml. For the assay, 104 51 Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 pl) in U-bottom 96-well plates. After a six hour incubation period at 37'C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamna counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % 5 1Cr release data is expressed as lytic units/10 6 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour 5 1 Cr release assay. To obtain specific lytic units/I 06, the lytic units/1 06 obtained in the absence of peptide is subtracted from the lytic units/1 06 obtained in the presence of peptide. For example, if 30% 6 1 Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5x10 5 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5x10 4 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)-(1/500,000)] x 106 = 18 LU. The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outlined above In the Example entitled 'Confirmation of Immunogenicity." Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures, it is found that a CTL response is induced, and concomitantly that an HTL response is Induced upon administration of such compositions. Example 21: Selection of CTL and HTL epitopes for Inclusion in a 273P4B7-specific vaccine. This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides. The following principles are utilized when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection. Epitopes are selected which, upon administration, mimic immune responses that are correlated with 273P4B7 clearance. The number of epitopes used depends on observations of patients who spontaneously clear 273P4B7. For example, if it has been observed that patients who spontaneously clear 273P4B7-expressing cells generate an immune response to at least three (3) epitopes from 273P4B7 antigen, then at least three epitopes should be included for HLA class 1. A similar rationale Is used to determine HLA class I epitopes. Epitopes are often selected that have a binding affinity of an IC5o of 500 nM or less for an HLA class I molecule, or for class 11, an ICso of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL blmas.dcrt.nih.gov/. In order to achieve broad coverage of the vaccine through out a diverse population, sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. In one embodiment, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage. 103 When creating polyepitopic compositions, or a minigene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, If not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, I.e., it has a high concentration of epitopes. Epitopes may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 1 0-mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possibility that an as yet undiscovered aspect of Immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic Immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in 273P4B7, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress 273P4B7. Example 22: Construction of "Minigene" Multi-Epitope DNA Plasmids This example discusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein. A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -87 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived 273P4B7, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class 11 epitopes are selected from 273P4B7 to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then Incorporated into a minigene for expression In an expression vector. Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the Ii protein may be fused to one or more HTL epitopes as described In the art, wherein the CLIP sequence of the 1I protein Is removed and replaced with an HLA class Il epitope sequence so that HLA class 11 epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class 11 molecules. This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art. The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector. 104 Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine Is used and a total of 30 cycles are performed using the following conditions: 95 0 C for 15 sec, annealing temperature (50 below the lowest calculated Tm of each primer pair) for 30 sec, and 72*C for 1 min. For example, a minigene is prepared as follows. For a first PCR reaction, 5 pg of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 pl reactions containing Pfu polymerase buffer (1x= 10 mM KCL, 10 mM (NH4)2SO4, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO4, 0.1% Triton X-100, 100 pg/mI BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactionsare then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing. Example 23: The Plasmid Construct and the Degree to Which It Induces Immunogenicity. The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, Is able to induce immunogenicity is confirmed in vitro by deterniining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et aL, J. Immunol. 156:683-692,1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995). Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in Alexander et a/., Immunity 1:751-761, 1994. For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/Kb transgenic mice, for example, are immunized intramuscularly with 100 pg of naked cDNA. As a means of comparing the level of CTLs Induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene. Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a 5 1 Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes, whereby it Is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes. 105 To confirm the capacity of a class Il epitope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, I-Ab-restricted mice, for example, are immunized Intramuscularly with 100 pg of plasmid DNA. As a means of comparing the level of HTLs Induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a 3 H-thymidine incorporation proliferation assay, (see, e.g., Alexander et at. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo Immunogenicity of the minigene. DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retoviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et at, Vaccine 16:439 445, 1998; Sedegah et al., Proc. Nati. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, immunol. Letters 66:177 181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999). For example, the efficacy of the DNA minigene used in a prime boost protocol Is initially evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with 100 Ig of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3 9 weeks), the mice are boosted IP with 107 pfulmouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 pg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional Incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA. It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-Al1 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Example entitled "Induction of CTL Responses Using a Prime Boost Protocol." Example 24: Peptide Compositions for Prophylactic Uses Vaccine compositions of the present invention can be used to prevent 273P4B7 expression in persons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the above Examples, which are also selected to target greater than 80% of the population, is administered to individuals at risk for a 273P4B7-associated tumor. For example, a peptide-based composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as Incomplete Freunds Adjuvant. The dose of peptide for the initial Immunization is from about 1 to about 50,000 pag, generally 100-5,000 jig, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope specific CTLpopulations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against 273P4B7-associated disease. Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acid based vaccine in accordance with methodologies known In the art and disclosed herein. 106 Example 25: Polvepitopic Vaccine Compositions Derived from Native 273P4B7 Sequences A native 273P4B7 polyprotein sequence is analyzed, preferably using computer algorithms defined for each class I and/or class 11 supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes. The "relatively short" regions are preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct or overlapping, "nested" epitopes can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids In length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one I 0-mer epitope can be present In a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. The vaccine composition will include, for example, multiple CTL epitopes from 273P4B7 antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic Immune response-inducing vaccine compositions. Additionally, such an embodiment provides for the possibility of motif bearing epitopes for an HLA makeup(s) that is presently unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native 273P4B7, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions. Related to this embodiment, computer programs are available in the art which can be used to identify in a target sequence, the greatest number of epitopes per sequence length. Example 26: Polvepitopic Vaccine Compositions from Multiple Antigens The 273P4B7 peptide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses 273P4B7 and such other antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 273P487 as well as tumor-associated antigens that are often expressed with a target cancer associated with 273P4B7 expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro. Example 27: Use of peptides to evaluate an immune response Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 273P4B7. Such an analysis can be performed in a manner described by Ogg et al., Sc/ence 279:2103-2106, 1998. In this Example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen. 107 In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross sectional analysis of, for example, 273P487 HLA-A*0201-specific CTL frequencies from HLA A*0201-positive Individuals at different stages of disease or following immunization comprising a 273P4B7 peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et at., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and p2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, 02-microglobulin, and peptide are refolded by dilution, The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BIrA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin-phycoerythrin conjugate Is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer phycoerythrn. For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 pl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CDB-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the 273P4B7 epitope, and thus the status of exposure to 273P4B7, or exposure to a vaccine that elicits a protective or therapeutic response. Example 28: Use of Peptide Epitopes to Evaluate Recall ResDonses The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acut or recall responses, In patients. Such an analysis may be performed on patients who have recovered from 273P4B7-assoclated disease or who have been vaccinated with a 273P4B7 vaccine. For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 273P4B7 vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type. PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 pLg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the Invention Is added at 10 pg/ml to each well and HBV core 128-140 epitope is added at I pg/ml to each well as a source of T cell help during the first week of stimulation. In the microculture format, 4 x 105 PBMC are stimulated with peptide In 8 replicate cultures in 96-well round bottom plate in 100 p/well of complete RPMI. On days 3 and 10, 100-pl of complete RPMI and 20 U/ml final concentration of rlL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rlL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific 5 1 Cr release, based on comparison with non-diseased control subjects as previously described (Rehermann, et a., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432 1440,1996). 108 Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992). Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetc peptide epitope of the invention at 10 pM, and labeled with 100 pCi of 51 Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS. Cytolytic activity is determined in a standard 4-h, split well 5 1 Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-1 00; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments. The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 273P4B7 or a 273P487 vaccine. Similarly, Class 11 restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5x10 5 cells/well and are stimulated with 10 pag/mi synthetic peptide of the invention, whole 273P4B7 antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing IOUlml IL-2. Two days later, 1 jpCi 3 H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of 3
H
thymidine incorporation in the presence of antigen divided by the 3 H-thymidine incorporation in the absence of antigen. Example 29: Induction Of Specific CTL Resoonse In Humans A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows: A total of about 27 individuals are enrolled and divided into 3 groups: Group 1: 3 subjects are injected with placebo and 6 subjects are injected with 5 jig of peptide composition; Group I1: 3 subjects are injected with placebo and 6 subjects are injected with 50 gg peptide composition; Group 1I: 3 subjects are injected with placebo and 6 subjects are injected with 500 ig of peptide composition. After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage. The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints. Safety: The incidence of adverse events is monitored in the placebo and drug treatment grodp and assessed in terms of degree and reversibility. Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity. The vaccine is found to be both safe and efficacious. 109 Example 30: Phase 11 Trials In Patients Expressing 273P4B7 Phase il trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having cancer that expresses 273P4B7. The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express 273P4B7, to establish the safety of Inducing a.CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows: The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded. There are three patient groupings. The first group is Injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them have a tumor that expresses 273P4B7. Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 273P4B7 associated disease. Example 31: Induction of CTL Responses Using a Prime Boost Protocol A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example entitled "The Plasmid Construct and the Degree to Which It Induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant. For example, the initial immunization may be performed using an expression vector, such as that constructed in the Example entitled "Construction of "Minigene" Multi-Epitope DNA Plasmids" in the form of naked nucleic acid administered IM (or SC or ID) In the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 pIg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5x10 9 pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity. Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunity against 273P4B7 is generated. Example 32: Administration of Vaccine Compositions Using Dendritic Cells (DC) Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, peptide-pulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL 110 and HTL then destroy or facilitate destruction, respectively, of the target cells that bear the 273P4B7 protein from which the epitopes in the vaccine are derived. For example, a cocktail of epitope-comprising peptides is administered ex vivo to PBMC, or isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as Progenipoietin TM (Monsanto, St. Louis, MO) or GM CSF/IL-4. After pulsing the DC with peptides, and prior to reinfusion into patients, the DC are washed to remove unbound peptides. As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of DC reinfused Into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50 x 106 DC per patient are typically administered, larger number of DC, such as 107 or 108 can also be provided. Such cell populations typically contain between 50-90% DC. In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC generated after treatment with an agent such as ProgenipoietinTM are Injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 108 to 1010. Generally, the cell doses Injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if ProgenipoietinTM mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5 x 106 DC, then the patient will be injected with a total of 2.5 x 108 peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin TM is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art. Ex vivo activation of CTL/HTL responses Alternatively, ex vivo CTL or HTL responses to 273P4B7 antigens can be induced by incubating, in tissue culture, the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), In which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, I.e., tumor cells. Example 33: An Alternative Method of Identifying and Confirming Motif-Bearing Peptides Another method of identifying and confirming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigen of interest, e.g. 273P4B7. Peptides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an altemative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell. Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, i.e., they can then be transfected with nucleic acids that encode 273P4B7 to isolate peptides corresponding to 273P4B7 that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell. 111 As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell. Example 34: Complementary Polvnucleotides Sequences complementary to the 273P4B7-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring 273P4B7. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Biosciences) and the coding sequence of 273P487. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to a 273P4B7-encoding transcript. Example 35: Purification of Naturally-occurring or Recombinant 273P4B7 Using 273P4B7-Specific Antibodies Naturally occurring or recombinant 273P4B7 Is substantially purified by immunoaffinity chromatography using antibodies specific for 273P4B7. An immunoaffinity column is constructed by covalently coupling anti-273P4B7 antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions. Media containing 273P4B7 are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of 273P4B7 (e.g., high Ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/273P4B7 binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GCR.P is collected. Example 36: Identification of Molecules Which Interact with 273P4B7 273P4B7, or biologically active fragments thereof, are labeled with 121 1 Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled 273P4B7, washed, and any wells with labeled 273P4B7 complex are assayed. Data obtained using different concentrations of 273P4B7 are used to calculate values for the number, affinity, and association of 273P4B7 with the candidate molecules. Example 37: In Vivo Assay for 273P4B7 Tumor Growth Promotion The effect of the 273P4B7 protein on tumor cell growth is evaluated in vivo by evaluating tumor development and growth of cells expressing or lacking 273P4B7. For example, SCID mice are injected subcutaneously on each flank with 1 x 106 of either 3T3, cancer cell lines expressing 273P4B7 (Table 1), or cancer cell lines containing tkNeo empty vector. At least two strategies may be used: (1) Constitutive 273P4B7 expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin pronyoter, provided such promoters are compatible with the host cell systems, and (2) Regulated expression under control of an inducible vector system, such as ecdysone, tetracycline, etc., provided such promoters are compatible with the host cell systems. Tumor volume is then monitored by caliper measurement at the appearance of palpable tumors 112 and followed over time to determine if 273P4B7-expressing cells grow at a faster rate and whether tumors produced by 273P4B7-expressing cells demonstrate characteristics of altered aggressiveness (e.g. enhanced metastasis, vascularization, reduced responsiveness to chemotherapeutic drugs). Additionally, mice can be implanted with I x 105 of the same cells orthotopically to determine if 273P4B7 has an effect on local growth, and whether 273P4B7 affects the ability of the cells to metastasize, specifically to lymph nodes, and bone (Azuma H et al, J Urol. 2003, 169:2372; Fu X et al, Int J Cancer. 1991, 49:938). The effect of 273P4B7 on bone tumor formation and growth may be assessed by injecting tumor cells intratibially. The assay is also useful to determine the 273P4B7 inhibitory effect of candidate therapeutic compositions, such as for example, 273P4B7 intrabodies, 273P4B7 antisense molecules and ribozymes. Example 38: 273P4B7 Monoclonal Antibody-mediated Inhibition of Tumors In Vivo The significant expression of 273P4B7 in cancer tissues, together with its restricted expression In normal tissues, makes 273P4B7 an excellent target for antibody therapy. In cases where the monoclonal antibody target is a cell surface protein, antibodies have been shown to be efficacious at inhibiting tumor growth (See, e.g., (Saffran, D., et aL., PNAS 10:1073-1078 or on the World Wide Web at (.pnas.org/cgildoi/10.1073/pnas.05162 4 698). In cases where the target is not on the cell surface, such as for 273P4B7, and including PSA and PAP in prostate cancer, antibodies have still been shown to recognize and inhibit growth of cells expressing those proteins (Saffran, D.C., et aL., Cancer and Metastasis Reviews, 1999. 18: p. 437-449). As with any cellular protein with a restricted expression profile,. 273P4B7 is a target for T cell-based immunotherapy. Accordingly, the therapeutic efficacy of anti-273P4B7 mAbs in human xenograft mouse models, including bladder, pancreas, cervix, lung and the other cancers set forth in Table I, is modeled In 273P4B7-expressing cancer xenografts or cancer cell lines, such as those described in the Example entitled "In Vivo Assay for 273P4B7 Tumor Growth Promotion", that endogenously express-273P4B7 or that have been engineered to express 273P4B7. Antibody efficacy on tumor growth and metastasis formation is confirmed, e.g., in a mouse orthotopic cancer xenograft model. The antibodies can be unconjugated, as discussed in this Example, or can be conjugated to a therapeutic modality, as appreciated in the art. It is confirmed that anti-273P4B7 mAbs inhibit formation of 273P4B7-expressing tumors: Anti-273P4B7 mAbs also retard the growth of established orthotopic tumors and prolong survival of tumor-bearing mice. These results indicate the utility of anti-273P4B7 mAbs in the treatment of local and advanced stages of cancer. (See, e.g., Saffran, D., et al., PNAS 10:1073-1078 or on the World Wide Web at (.pnas.org/cgildoi/O.1073/pnas.051624698). Administration of anti-273P4B7 mAbs retard established orthotopic tumor growth and inhibit metastasis to distant sites, resulting in a significant prolongation in the survival of tumor-bearing mice. These studies indicate that 273P4B7 is an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-273P4B7 mAbs for the treatment of local and metastatic cancer. This example demonstrates that unconjugated 273P4B7 monoclonal antibodies effectively to inhibit the growth of human bladder tumors grown in SCID mice; accordingly a combination of such efficacious monoclonal antibodies is also effective. Tumor inhibition using multiple unconjugated 273P4B7 mAbs Materials and Methods 273P4B7 Monoclonal Antibodies: Monoclonal antibodies are raised against 273P4B7 as described in the Example entitled "Generation of 273P4B7 Monoclonal Antibodies (mAbs)." The antibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation, in accordance with techniques known in the art, for their capacity to bind 273P4B7. Epitope mapping data for the anti 113 273P4B7 mAbs, as determined by ELISA and Western analysis, recognize epitopes on the 273P4B7 protein. Immunohistochemical analysis of cancer tissues and cells with these antibodies is performed. The monoclonal antibodies are purified from ascites or hybridoma tissue culture supernatants by Protein-G Sepharose chromatography, dialyzed against PBS, filter sterilized, and stored at -20"C, Protein determinations are performed by a Bradford assay (Bio-Rad, Hercules, CA). A therapeutic monoclonal antibody or a cocktail comprising a mixture of Individual monoclonal antibodies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of bladder tumor xenografts. Cancer Cell Lines Cancer cell lines expressing 273P4B7 are generated by retroviral gene transfer as described in Hubert, R.S., et al., STEAP: a prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc Nati Acad Sci U S A. 1999. 96(25):14523-8. Cancer cell lines endogenously expressing 273P4B7, including prostate, bladder, kidney, and the other tissues set forth in Table I are also used for in vivo and in vitro models. Anti-273P4B7 staining is detected by using an FITC-conjugated goat anti-mouse antibody (Southern Biotechnology Associates) followed by analysis on a Coulter Epics-XL flow cytometer. In Vvo Mouse Models. Subcutaneous (s.c.) tumors are generated by injection of 1 x 10 6 273P4B7-expressing cancer cells, mixed at a 1:1 dilution with Matrigel (Collaborative Research) In the right flank of male SCID mice. To test antibody efficacy on tumor formation, I.p. antibody injections are started on the same day as tumor-cell Injections. As a control, mice are injected with either purified mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an Irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between mouse IgG or PBS on tumor growth. Tumor sizes are determined by vernier caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. tumors greater than 1.5 cm in diameter are sacrificed. Circulating levels of anti-273P4B7 mAbs are determined by a capture ELISA kit (Bethyl Laboratories, Montgomery, TX). (See, e.g., (Saffran, D., et al., PNAS 10:1073 1078) Orthotopic injections are performed, for example, in two alternative embodiments, under anesthesia by, for example, use of ketamine/xylazine. In a first embodiment, an intravesicular injection of cancer cells is administered directly (Peralta, E. A., et aL., J. Urol., 1999. 162:1806-1811). In a second embodiment, an Incision is made through the abdominal wall, the tissue is exposed, and tumor tissue pieces (1-2 mm in size) derived from a s.c. tumor are surgically glued onto the exterior wall , termed 'onplantation" (Fu, X., et al., Int J. Cancer, 1991. 49: 938-939; Chang, S., at al., Anticancer Res., 1997. 17: p. 3239-3242). Antibodies can be administered to groups of mice at the time of tumor injection or onplantation, or after 1 2 weeks to allow tumor establishment. Anti-273P4B7 mAbs Inhibit Growth of 273P4B7-Expressing Tumors In one embodiment, the effect of anti-273P4B7 mAbs on tumor formation is investigated in subcutaneous models of the cancers listed in Table 1, by Inoculating the right flank of SCID mice with the appropriate 273P4B7-expressing cell line, and comparing its growth in the presence or absence of anti-273P4B7 mAb, as described below, In another embodiment, the effect of anti-273P4B7 mAbs on tumor formation is tested by using the orthotopic model. As compared with the s.c. tumor model, the orthotopic model, which requires surgical attachment of tumor tissue directly, results in a local tumor growth, development of metastasis in distal sites, and subsequent death (Fu, X., et aL., Int. J. Cancer, 1991. 49: p. 938-939; Chang, S., et al., Anticancer Res., 1997. 17: p. 3239-3242). This feature make the orthotopic model more representative of human disease progression and allows one to follow the therapeutic effect of mAbs, as well as other therapeutic modalities, on clinically relevant end points. 114 Accordingly, 273P4B7-expressing tumor cells are onplanted orthotopically, and 2 days later, the mice are segregated into two groups and treated with either: a) 50-2000pg, usually 200-500pg, of anti-273P4B7 Ab, or b) PBS, three times per week for two to five weeks. Mice are monitored weekly for indications of tumor growth. As noted, a major advantage of the orthotopic cancer model is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studied by histological analysis of Ussue sections, including lung and lymph nodes (Fu, X., et al., Int. J. Cancer, 1991. 49:938-939; Chang, S., et aL., Anticancer Res., 1997. 17:3239-3242). Additionally, IHC analysis using anti-273P4B7 antibodies can be performed on the tissue sections. Mice bearing established orthotopic 273P4B7-expressing tumors are administered I 000pg injections of either anti 273P4B7 mAb or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden (1-2 weeks growth), to ensure a high frequency of metastasis formation in mouse lungs and lymph nodes. Mice are then sacrificed and their local tumor and lung and lymph node tissue are analyzed for the presence of tumor cells by histology and IHC analysis. These studies demonstrate a broad anti-tumor efficacy of anti-273P4B7 antibodies on initiation and progression of cancers in mouse models. Anti-273P4B7 antibodies inhibit tumor formation and retard the growth of already established tumors and prolong the survival of treated mice. Moreover, anti-273P4B7 mAbs demonstrate a dramatic Inhibitory effect on the spread of local tumor to distal sites, even in the presence of a large tumor burden. Thus, anti-273P4B7 mAbs are efficacious on major clinically relevant end points including lessened tumor growth, lessened metastasis, and prolongation of survival. Example 39: Therapeutic and Diagnostic use of Anti-273P4B7 Antibodies In Humans. Anti-273P4B7 monoclonal antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-273P4B7 mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of 273P4B7 in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti-273P4B7 antibodies are therefore used in diagnostic applications such as immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients. As determined by flow cytometry, anti-273P4B7 mAb specifically binds to carcinoma cells. Thus, anti-273P4B7 antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, e.g., Potamianos S., et. al. Anticancer Res 20(2A):925-948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of 273P4B7. Shedding or release of an extracellular domain of 273P4B7 into the extracellular milieu, such as that seen for alkaline phosphodiesterase B1O (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 273P4B7 by anti-273P4B7 antibodies in serum and/or urine samples from suspect patients. Anti-273P4B7 antibodies that specifically bind 273P4B7 are used in therapeutic applications for the treatment of cancers that express 273P487. Anti-273P4B7 antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In preclinical studies, unconjugated and conjugated anti-273P4B7 antibodies are tested for efficacy of tumor prevention and growth Inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entitled '273P4B7 Monoclonal Antibody-mediated Inhibition of Bladder and Lung Tumors In Vivo"). Either conjugated and unconjugated anti-273P4B7 antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples. 115 Example 40: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Anti-273P4B7 Antibodies In vivo Antibodies are used in accordance with the present invention which recognize an'epitope on 273P4B7, and are used In the treatment of certain tumors such as those listed in Table 1. Based upon a number of factors, Including 273P4B7 expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued. 1.) Adjunctive therapy: In adjunctive therapy, patients are treated with anti-273P4B7 antibodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table 1, are treated under standard protocols by the addition anti-273P4B7 antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses, of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent. Anti-273P4B7 antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and doxorubicin (preclinical). 11.) Monotherapy: In connection with the use of the anti-273P4B7 antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some disease stabilization. Trials demonstrate an effect In refractory patients with cancerous tumors. Ill.) Imaging Agent: Through binding a radionuclide (e.g., iodine or yttrium (1131, Y 9 0) to anti-273P4B7 antibodies, the radiolabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled antibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing 273P4B7. In connection with the use of the anti-273P4B7 antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a postoperative follow-up to determine what tumor remains and/or returns. In one embodiment, a (M In)-273P4B7 antibody Is used as an imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses 273P4B7 (by analogy see, e.g., Divgi et al. J. Nati. Cancer Inst. 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are identified. Dose and Route of Administration As appreciated by those of ordinary skill In the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-273P4B7 antibodies can be administered with doses in the range of 5 to 400 mg/m 2, with the lower doses used, e.g., in connection with safety studies. The affinity of anti-273P4B7 antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-273P4B7 antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti-273P4B7 antibodies can be lower, perhaps in the range of 50 to 300 mg/m 2 , and still remain efficacious. Dosing in mg/m 2 , as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to Include patients of all sizes from Infants to adults. Three distinct delivery approaches are useful for delivery of anti-273P4B7 antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid 116 tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody. Clinical Development Plan (CDP) Overview: The CDP follows and develops treatments of anti-273P4B7 antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus anti-273P4B7 antibodies. As will be appreciated, one criteria that can be utilized in connection with enrollment of patients is 273P4B7 expression levels In their tumors as determined by biopsy. As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (il) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 273P4B7. Standard tests and follow-up are utilized to monitor each of these safety concerns. Anti 273P4B7 antibodies are found to be safe upon human administration. Example 41: Human Clinical Trial Adlunctive Therapy with Human Anti-273P4B7 Antibody and Chemotherapeutic Agent A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-273P4B7 antibody in connection with the treatment of a solid tumor, e.g., a cancer of a tissue listed in Table 1. In the study, the safety of single doses of anti-273P4B7 antibodies when utilized as an adjunctive therapy to an antineoplastic or chemotherapeutic agent as defined herein, such as, without limitation: cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-273P4B7 antibody with dosage of antibody escalating from approximately about 25 mg/m 2 to about 275 mg/m 2 over the course of the treatment in accordance with the following schedule: Day 0 Day 7 Day 14 Day 21 'Day 28 Day 35 mAb Dose 25 75 125 175 225 275 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 Chemotherapy + + + + + + (standard dose) Patients are closely followed for one-week following each administration of antibody and chemotherapy. in particular, patients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the human antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 273P4B7. Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction in tumor mass as evidenced by MRI or other imaging. The anti-273P4B7 antibodies are demonstrated to be safe and efficacious, Phase 11 trials confirm the efficacy and refine optimum dosing. 117 Example 42: Human Clinical Trial: Monotherapy with Human Anti-273P4B7 Antibody Anti-273P4B7 antibodies are safe in connection with the above-discussed adjunctive trial, a Phase 11 human clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-273P4B7 antibodies. Example 43: Human Clinical Trial: Diagnostic Imaging with Anti-273P4B7 Antibody Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-273P487 antibodies as a diagnostic Imaging agent. The protocol Is designed in a substantially similar manner to those described in the art, such as in Divgi et aL. J. Nat. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality. Example 44: Homology Comparison of 273P4B7 to Known Sequences: The 273P4B7 protein of Figure 3 has 1250 amino acids with calculated molecular weight of 141.1 kDa, and pl of 5.19. 273P4B7 is predicted to be a nuclear protein (65% by PSORT) with a possibility of being a cytoplasmic protein (50% PSORT). Although some prediction programs indicate that 273P4B7 may have a transmembrane domain, it is equally likely that the 273P4B7 protein is a soluble intracellular protein. By use of the PubMed website of the N.C.B.I. available on the World Wide Web at(.ncbi.nIm.nih.gov/entrez) , it was found at the protein level that 273P4B7 shows best homology to an un-named protein (g1122760345) of unknown function, with 99% Identity and 99% homology over the entire length of the protein (Figure 4A). The 273P4B7 protein demonstrates similarity to a hypothetical human protein named BJ-HCC-15 tumor antigen (gij22002580) with 99% identity and 100% homology over the last 419aa of the 273P4B7 protein (Figure 4B). The mouse ortholog of 273P4B7 has been identified showing 72% identity and 81% homology to 273P4B7 (Figure 4C). Bioinformatic analysis revealed the presence of a SNF2 motif at aa 99-417 and a helicase motif at aa 490-574 of the 273P4B7 protein. These motifs are also found in the mouse SNF2/RAD54 family protein (gil27414501) which carries 72% identity to 273P4B7. The SNF2 domain is often found in proteins involved in transcription regulation, DNA repair, DNA recombination, and chromatin unwinding (Alexeev A, Mazin A, Kowalczykowski SC. Nat Struct Biol. 2003, 10:182; Solinger JA, Kianltsa K, Heyer WD. Mol Cell. 2002, 10:1175; Martens JA, Winston F. : Genes Dev. 2002, 16:2231). By remodeling DNA complexes, SNF2 makes nucleosomal DNA accessible to regulatory factors, thereby regulating gene expression (Fan HY et at, Mol Cell. 2003, 11:1311). Evidence in Saccharomyces cerevisiae indicates that SNF2 regulates transcription in these organisms. It has been shown that SNF complexes with SWI and the SWIISNF is recruited to the promoter of specific genes inducing their transcriptional activation (Kingston, R.E. and Narlikar, G.J. Genes & Dev. 1999, 13: 2339-2352). A similar chromatin remodeling complex has been Identified in mammalian cells, known as Brm/ Brgl. This complex was found to regulate gene expression as well as cell cycle (Muchardt C and Yaniv M, Oncogene 2001, 20:3067). Finally, a "proliferation-associated SNF2-like gene" which contains SNF2 motifs has been associated with AML (Lee D et al, Cancer Res. 2000, 60:3612). Our findings that 273P4B7 Is highly expressed in several cancers while showing a restricted expression pattern in normal tissues suggests that the 273P4B7 gene may play an important role in various cancers, Including the cancers set forth in Table L.. It is provided by the present invention that 273P4B7 controls tumor growth and progression by regulating proliferation, cell cycle, gene expression as well as cell survival. Accordingly, when 273P4B7 functions as a regulator of proliferation, cell cycle, gene expression, and cell survival, 273P4B7 is used for therapeutic, diagnostic, prognostic or preventative purposes. 118 Example 45: Identification and Confirmation of Signal Transduction Pathways Many mammalian proteins have been reported to interact with signaling molecules and to participate in regulating signaling pathways. (J Neurochem. 2001; 76:217-223). In particular, transcription factors have been shown to regulate mitogenic and survival pathways (Neeley K, Biochim Biophys Acta. 2002,1603:19). Using immunoprecipitation and Western blotting techniques, proteins are identified that associate with 273P4B7 and mediate signaling events. Several pathways known to play a role in cancer biology can be regulated by 273P4B7, including phospholipid pathways such as P13K, AKT, etc, adhesion and migration pathways, including FAK, Rho, Rac-1, etc, as well as mitogenic/survival cascades such as ERK, p38, etc (Cell Growth Differ. 2000,11:279; J Biol Chem. 1999, 274:801; Oncogene. 2000,19:3003, J. Cell Biol. 1997, 138:913.). Biolnformatic analysis revealed that 273P4B7 can become phosphorylated by serine/threonine as well as tyrosine kinases. Thus, the phosphorylation of 273P4B7 is provided by the present invention to lead to activation of the above listed pathways. Using, e.g., Western blotting techniques the ability of 273P4B7 to regulate these pathways is confirmed. Cells expressing or lacking 273P4B7 are left untreated or stimulated with cytokines, hormones and anti-integrin antibodies. Cell lysates are analyzed using anti-phospho-specific antibodies (Cell Signaling, Santa Cruz Biotechnology) in order to detect phosphorylation and regulation of ERK, p38, AKT, P13K, PLC and other signaling molecules. To confirm that 273P4B7 directly or indirectly activates known signal transduction pathways in cells, luciferase (luc) based transcriptional reporter assays are carried out in cells expressing individual genes. These transcriptional reporters contain consensus-binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways. The reporters and examples of these associated transcription factors, signal transduction pathways, and activation stimuli are listed below. 1. NFkB-luc, NFkB/Rel; Ik-kinase/SAPK; growth/apoptosis/stress 2. SRE-luc, SRFITCF/ELK1; MAPK/SAPK; growth/differentiation 3. AP-1-luc, FOS/JUN; MAPKISAPKIPKC; growth/apoptosis/stress 4. ARE-luc, androgen receptor; steroids/MAPK; growth/differentiation/apoptosis 5. p53-luc, p53; SAPK; growth/differentiationlapoptosis 6. CRE-luc, CREB/ATF2; PKA/p38; growth/apoptosis/stress Gene-mediated effects can be assayed in cells showing mRNA expression. Luciferase reporter plasmids can be introduced by lipid-mediated transfection (TFX-50, Promega). Luciferase activity, an indicator of relative transcriptional activity, Is measured by incubation of cell extracts with luciferin substrate and luminescence of the reaction is monitored in a luminometer. Signaling pathways activated by 273P4B7 are mapped and used for the identification and validation of therapeutic targets. When 273P4B7 plays a role in the regulation of signaling pathways, mitogenic and survival pathways, phospholipid pathways and adhesion and migration pathways whether Individually or communally, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes. Additionally, when 273P4B7 is involved in cell signaling, it is used as target for diagnostic, prognostic, preventative and therapeutic purposes. Example 46: Involvement in Tumor Progression The 273P4B7 gene can contribute to the growth of cancer cells. The role of 273P4B7 in tumor growth is confirmed in a variety of primary and transfected cell lines including pancreas, cervix, bladder, lung, prostate, kidney, colon, ovary, breast, bone, skin, lymph node, stomach, and uterus cell lines as well as NIH 3T3 cells engineered to stably express 119 273P4B7. Parental cells lacking 273P4B7 and cells expressing 273P4B7 are evaluated for cell growth using a well documented proliferation assay (Fraser SP, Grimes JA, Djamgoz MB. Prostate. 2000;44:61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs. 1996, 7:288). To confirm the role of 273P4B7 in the transformation process, its effect in colony forming assays Is Investigated. Parental NIH3T3 cells lacking 273P4B7 are compared to NHI-3T3 cells expressing 273P4B7, using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000, 60:6730). To confirm the role of 273P4B7 in invasion and metastasis of cancer cells, a well-established assay is used, e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999, 59:6010). Control cells, Including, but not limited to prostate, colon, bladder and kidney cell lines lacking 273P4B7 are compared to cells expressing 273P4B7. Cells are loaded with the fluorescent dye, calcein, and plated in the top well of the Transwell insert coated with a basement membrane analog. Invasion is determined by fluorescence of cells In the lower chamber relative to the fluorescence of the entire cell population. 273P4B7 can also play a role In cell cycle and apoptosis. Parental cells and cells expressing 273P4B7 are compared for differences In cell cycle regulation using a well-established BrdU assay (Abdel-Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the G1, S, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 273P4B7. Engineered and parental cells are treated with various chemotherapeutic agents, such as paclitaxel, gemcitabine, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 273P4B7 can play a critical role in regulating tumor progression and tumor load. When 273P4B7 plays a role in cell growth, transformation, invasion and metastasis,, and cell cycle and apoptosis, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes. Example 47: Involvement in Angiogenesis Angiogenesis or new capillary blood vessel formation is necessary for tumor growth (Hanahan D, Folkman J. Cell. 1996, 86:353; Folkman J. Endocrinology. 1998 139:441). Several assays have been developed to measure angiogenesis in vitro and in vivo, such as the tissue culture assays, endothelial cell tube formation, and endothelial cell proliferation. Using these assays as well as in vitro neo-vascularization, the effect of 273P4B7 on angiogenesis is confirmed. For example, endothelial cells engineered to express 273P4B7 are evaluated using tube formation and proliferation assays. The effect of 273P4B7 is also confirmed in animal models in vivo. For example, cells either expressing or lacking 273P4B7 are Implanted subcutaneously in immunocompromised mice. Endothelial cell migration and angiogenesis are evaluated 5-15 days later using immunohistochemistry techniques. When 273P4B7 affects angiogenesis, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes. Example 48: Regulation of Transcription The localization of 273P4B7 to the nucleus and its similarity to SNF2 containing proteins known to regulate gene expression and chromatin structure, support the present invention use of 273P4B7 based on its role in the transcriptional regulation of eukaryotic genes. Regulation of gene expression is confirmed, e.g., by studying gene expression in cells expressing or lacking 273P4B7. For this purpose, two types of experiments are performed. 120 In the first set of experiments, RNA from parental and 273P4B7-expressing cells are extracted and hybridized to commercially available gene arrays (Clontech) (Smid-Koopman E et al. Br J Cancer. 2000. 83:246). Resting cells as well as cells treated with FBS or androgen are compared. Differentially expressed genes are identified in accordance with procedures known in the art. The differentially expressed genes are then mapped to biological pathways (Chen K et al., Thyroid. 2001, 11:41.). In the second set of experiments, specific transcriptional pathway activation is evaluated using commercially available (Stratagene) luciferase reporter constructs Including: NFkB-luc, SRE-luc, ELK1-luc, ARE-luc, p53-luc, and CRE-luc. These transcriptional reporters contain consensus binding sites for known transcription factors that lie downstream of well characterized signal transduction pathways, and represent a good tool to ascertain pathway activation and screen for positive and negative modulators of pathway activation. Thus, when 273P4B7 plays a role in gene regulation, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes. Example 49: Protein-Protein Association SNF2 containing proteins have been shown to Interact with other proteins, thereby forming protein complexes that can regulate protein localization, chromatin structure, gene transcriplon, and cell transformation (Papoulas et al, Development, 1998,125:3955; Cao et al, Mol. Cell. Biol. 1997,17:3323). Using immunoprecipitation techniques as well as two yeast hybrid systems, proteins are identified that associate with 273P4B7. Immunoprecipitates from cells expressing 273P4B7 and cells lacking 273P4B7 are compared for specific protein-protein associations. Studies are performed to determine the extent of the association of 273P4B7 with receptors, such as the EGF and IGF receptors, and with intracellular proteins, such as IGF-BP, cytoskeletal proteins etc. Studies comparing 273P4B7 positive and 273P4B7 negative cells, as well as studies comparing unstimulated/resting cells and cells treated with epithelial cell activators, such as cytokines, growth factors and anti-integrin Ab reveal unique interactions. In addition, protein-protein Interactions are confirmed using two yeast hybrid methodology (Curr Opin Chem Biol. 1999, 3:64). A vector carrying a library of proteins fused to the activation'domain of a transcription factor is introduced into yeast expressing a 273P4B7-DNA-binding domain fusion protein and a reporter construct. Protein-protein interaction Is detected by colorimetric reporter activity. Specific association with surface receptors and effector molecules directs one of skill to the mode of action of 273P4B7, and thus identifies therapeutic, prognostic, preventative and/or diagnostic targets for cancer. This and similar assays are also used to identify and screen for small molecules that Interact with 273P4B7. When 273P4B7 associates with proteins to regulate protein localization, chromatin structure, gene transcription, and cell transformation or associates with small molecules it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes. Throughout this application, various website data content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.) The disclosures of each of these references are hereby incorporated by reference herein in their entireties. The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the-scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention. 121 TABLES: TABLE I: Tissues that Express 273P4B7: Malignant Tissues a. Prostate b. Bladder c. Kidney d. Colon e. Lung f. Ovary g. Breast h. Pancreas i. Bone j. Skin k. Cervix 1. Lymph Node m. Stomach n. Uterus TABLE II: Amino Acid Abbreviations SINGLE LETTER THREE LETTER FULL NAME F Phe phenylalanine L Leu leucine S Ser serine Y Tyr tyrosine C Cys cysteine W Trp tryptophan P Pro proline H His histidine 0 Gin glutamine R Arg arginine lie Isoleucine M Met methionine T Thr threonine N Asn asparagine K Lys lysine V Val valine A Ala alanine D Asp aspartic acid E Glu glutamic acid G Gly glycine 122 TABLE III: Amino Acid Substitution Matrix Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution Is found in related, natural proteins. (See world wide web URL ikp.unibe.chlmanual/blosum62.html) A C D E F G H I K L M N P Q R S T V W Y. 4 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 1 0 0 -3 -2 A 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -2 C 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -1 -3 -4 -3 D 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -2 E 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 3 F 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -3 G 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 2 H 4 -3 2 1 -3 -3 -3 -3 -2 -1 3 -3 -1 I 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -2 K 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1 L 5 -2 -2 0 -1 -1 -1 1 -1 -1 M 6 -2 0 0 1 0 -3 -4 -2 N 7 -1 -2 -1 -1 -2 -4 -3 P 5 1 0 -1 -2 -2 -1 Q 5 -1 -1 -3 -3 -2 R 4 1 -2 -3 -2 S 5 0 -2 -2 T 4 -3 -1 V 11 2 W 7 Y 123 TABLE IV: HLA Class 1111 Motifs!Supermotifs TABLE IV (A): HLA Class I SupermotfsMotlifs SUPERMOTIF POSITION POSITION POSITION 2 (Primary Anchor) 3 (Primary Anchor) C Terminus (Primary Anchor) Al TIL VMS FWY A2 LIVMATQ IVMATL A3 VSMATLI RK A24 YFWIVLMT FIYWLM B7 P VILFMWYA B27 RHK FYLWMIVA B44 ED FWYLIMVA B58 ATS FWYLIVMA B62 QLIVMP FWYMIVLA MOTIFS Al TSM Y Al IDEAS Y A2.1 LMVQIAT VLIMAT A3 LMVISATFCGD KYRHFA All VTMLISAGNCDF KRYH A24 YFWM FLIW A*3101 MVTALIS RK A*3301 MVALFJST RK A*6801 AVTMSLI RK B*0702 P LMFWYAIV B*3501 P LMFWYIVA B51 P -_, LIVFWYAM B*5301 P IMFWYALV B*5401 P ATIVLMFWY Bolded residues are preferred, italicized residues are less preferred: A pepUde is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table. TABLE IV (B): HLA Class It Supermotif 1 6 9 W, F, Y, V,.[, L A, V, I, L, P, C, S, T A, V, I, L, C, S, T, M, Y 124 TABLE IV (C): HLA Class I Motifs MOTIFS 1* anchor 1 2 3 4 5 1* anchor 6 7 8 9 DR4 preferred FMYLIVW M T I VSTCPALIM MH MH deleterious W R WDE DR1 preferred MFLIVWY PAMQ VMATSPLIC M AVM deleterious C CH FD OWD GDE D DR7 preferred MFLVWY M W A IVMSACTPL M IV deleterious C G GRD N G DR3 MOTIFS 1* anchor 1 2 3 1" anchor 5 1anchor6 Motif a preferred LIVMFY D Motif b preferred LIVMFAY DNQEST KRH DR Supermotif MFLVWY VMSTACPLI Italicized residues indicate less preferred or "tolerated" residues TABLE IV (D): HLA Class I Supermotifs POSITION: 1 2 3 4 5 6 7 8 C-terminus
SUPER
MOTIFS Al 1' Anchor 1* Anchor TILVVMS FWY A2 1" Anchor 1* Anchor LIVMATQ LIVMAT A3 Preferred 1* Anchor YFW YFW YFW P 1* Anchor VSMATLI (4/5) (3/5) (4/5) (4/5) RK deleterious DE (3/5); DE P (5/5) (4/5) A24 1* Anchor 1* Anchor Y FWIVLMT FIYWLM B7 Preferred FWY (5/5) 1* Anchor FWY FWY 1 *Anchor LIVM (3/5) P (4/5) (3/5) VILFMWYA deleterious DE (3/5); DE G QN DE P(5/5); (3/5) (4/5) (4/5) (4/5) G(4/5); A(3/5); QN(315) B27 1" Anchor 1*Anchor RHK FYLWMIVA B44 1* Anchor 1* Anchor ED FWYLIMVA B58 1* Anchor 1* Anchor ATS FWYLIVMA 862 1* Anchor 10 Anchor QUVMP FWYMIVLA Italicized residues indicate less preferred or "tolerated" residues 125 TABLE IV (E): HLA Class I Motifs POSITION1 2 3 4 5 6 7 8 9 C terminus or C-terminus Al preferred GFYW 1 *Anchor DEA YFW P DEQN YFW I*Anchor 9-mer STM y deleterious DE RHKLIVMP A G A Al preferred GRHK ASTCUVM 1*Anchor GSTC ASTC LIVM DE 1 Anchor 9-mer DE AS Y deleterious A RHKDEPYFW DE PQN RHK PG GP Al preferred YFW 1*Anchor DEAQN A YFWQN PAST GDE P 1 Anchor 10- STM Y mer deleterious GP RHKGLIVM DE RHK QNA RHKYFW RHK A Al preferred YFW STCLIVM 1 0 Anchor A YFW PG G YFW I*Anchor 10- DEAS Y mer deleterious RHK RHKDEPYFW P G PRHK QN A2.1 preferred YFW 1 *Anchor YFW STC YFW A P 1*Anchor 9-mer LMIVQAT VUMAT deleterious DEP DERKH RKH DERKH POSITION:1 2 3 4 5 6 7 8 9 0 Tenminus A2.1 preferred AYFW 1*Anchor LVIM G G FYWL I Anchor 10- LMIVQAT vim VUMAT mer deleterious DEP DE RKHA P RKH DERKHRKH A3 preferred RHK 1 *Anchor YFW PRHKYF A YFW P 1 Anchor LMVISATFCGD W <YRHFA deleterious DEP DE All preferred A 1'Anchor YFW YFW A YFW YFW P 1Anchor VTLMISAGNCD KRYH F deleterious DEP A G A24 preferred YFWRHK 1*Anchor STC YFW YFW VAnchor 9-mer YFWM FLIW deleterious DEG DE G QNP DERHKG AQN A24 Preferred 1 *Anchor P YFWP P 1*Anchor 10- YFWM FLIW mer Deleterious GDE QN RHK DE A QN DEA A3101Preferred RHK 1 *Anchor YFW P YFW YFW AP VAnchor MVTAUS RK Deleterious DEP DE ADE DE DE DE A3301 Preferred 1 *Anchor YFW AYFW 1Anchor MVALFIST RK Deleterious GP DE A6801 Preferred YFWSTC 1 *Anchor YFWLIV YFW P 1Anchor AVTMSLI M RK deleterious GP DEG RHK A B0702Preferred RHKFWY 1"Anchor RHK RHK RHK RHK PA 1 0 Anchor p LMFW'IAI V deleterious DEQNP DEP DE DE GDE QN DE B3501 Preferred FWYLIVM I Anchor FWY FWY I 0 chor P LMFWYV A 126 POSITION1 2 3 4 5 6 7 8 9 C terminus or C-terminus Al preferred GFYW 1"Anchor DEA YFW P DEQN YFW I*Anchor 9-mer STM Y deleterious DE RHKLIVMP A G A Al preferred GRHK ASTCLIVM 1*Anchor GSTC ASTC LIVM DE 1 0 Anchor 9-mer DEAS Y deleterious A RHKDEPYFW DE PQN RHK PG GP deleterious AGP G G B51 Preferred LIVMFWY 1*Anchor FWY STC FWY G FWY 1 0 Anchor P LIVFWYA M deleterious AGPDER DE G DEQN GDE HKSTC B5301 preferred LIVMFWY 1 *Anchor FWY STC FWY LIVMFWYFWY 1 0 Anchor P IMFWYAL V deleterious AGPQN G RHKQN DE B5401 preferred FWY 1"Anchor FWYLIVM LIVM ALIVM FWYA I*Anchor P P ATIVLMF WY deleterious GPQNDE GDESTC RHKDE DE QNDGE DE 127 TABLE IV (F): Summary of HLA-supertypes Overall phenotypic frequencies of HLA-supertypes In different ethnic populations Specificity Phenotypic frequency SupertypePosition 2 C-Terminus CaucasianN.A. Black Japanes Chinese Ispani Average B7 P AILMVF 3.2 55.1 57.1 43.0 9.3 49.5 A3 AILMVST RK 7.5 42.1 5.8 52.7 3.1 44.2 AILMVT AILMVT 5.8 39.0 2.4 45.9 3.0 42.2 24 F (WIVLMT) Fl (YWLM) 3.9 38.9 58.6 40.1 8.3 40.0 B44 E (D) FWYLIMV 3.0 21.2 2.9 39.1 39.0 7.0 1 TI (LVMS) FWY 47.1 16.1 1.8 14.7 6.3 25.2 27 RHK FYL WMI 28.4 6.1 13.3 13.9 35.3 23.4 B62 QL (IVMP) FWY (Mi 12.6 4.8 36.5 25.4 11.1 18.1 B58 ATS FWY (LIV) 10.0 25.1 1.6 .0 5.9 10.3 TABLE IV (G): Calculated population coverage afforded by different HLA-supertype combinations HLA-supertypes Phenotypic frequency Caucasian N.A Blacks Japanese Chinese Hispanic Average 3.0 '6.1 87.5 88.4 86.3 86.2 2, A3 and B7 9.5 98.1 100.0 99.5 99.4 99.3 A2, A3, B7, A24, B4499.9 99.6 100.0 99.8 99.9 99.8 and Al A2, A3, B7, A24, B44, Al, B27, B62, and B 58 Motifs indicate the residues defining supertype specificites, The motifs Incorporate residues determined on the basis of published data to be recognized by multiple alleles within the supertype. Residues within brackets are additional residues also predicted to be tolerated by multiple alleles within the supertype. Table V: Frequently Occurring Motifs Name avrg. % Description Potential Function _________________________identity __________ Nucleic acid-binding protein functions as transcription factor, nuclear location d-C2H2 34% Zinc finger, C2H2 type probable Cytochrome b(N- membrane bound oxdase, generate cytochrome bN 68% terminal)/b6/petB superoxide domains are one hundred amino acids long and Include a conserved Ig - 19% Immunoglobulin domain intradomain disulfide bond. tandem repeats of about 40 residues, each containing a Trp-Asp motif. Function in signal transduction and WD40 18% WD domain, G-beta repeat protein'interaction may function in targeting signaling PDZ 23% PDZ domain molecules to sub-membranous sites LRR 28% Leucine Rich Repeat short sequence motifs Involved in protein-protein interactions conserved catalytic core common to both serinelthreonline and tyrosine protein kinases containing an ATP Pkinase 23% Protein kinase domain binding site and a catalytic site 128 pleckstrin homology involved in intracellular signaling or as constituents PH 16% PH domain of the cytoskeleton 30-40 amino-acid long found in the extracellular domain of membrane EGF 34% EGF-like domain bound proteins or in secreted proteins Reverse transcriptase (RNA-dependent DNA Rvt 49% polymerase) Cytoplasmic protein, associates Integral Ank 25% k repeat membrane proteins to the cytoskeleton NADH- membrane associated. Involved in Ubiquinone/plastoquinone proton translocation across the Oxidored.q1 32% (complex 1), various chains membrane cium-binding domain, consists of al 2 residue loop flanked on both sides by a Efhand 24% EF hand 12 residue alpha-helical domain Retroviral aspartyl %spartyl or acid proteases, centered on Rvp 79% protease a cataltc aspartyl residue extracellular structural proteins involved n formaion of connecive tissue. The Collagen triple helix repeat equence consists of the G-X-Y and the Collagen 42% (20 copies) polypeptde chains forms a triple helix. -ocated in the extracellular ligand binding region of receptors and is about 200 amino acid residues long with two pairs of cysteines involved in disulfide Fn3 20% Fibronectin type Ill domain bonds even hydrophobic transmembrane Ceglons, with the N-terminus located transmembrane receptor mxtracellulay while the C-terminus is 7tm_1 19% _(rhodopsin family) ;ytoplasmic. Signal through G proteins Table VI: Post-translational modifications of 273P4B7 N-glycosylation site 795 - 798 NVTT (SEQ ID NO: 43) 827 - 830 NSSL (SEQ ID NO: 44) 903 - 906 NESQ (SEQ ID NO: 45) 911 - 914 NVSI (SEQ ID NO: 46) 966 - 969 NFSS (SEQ ID NO: 47) 1047 - 1050 NTSL (SEQ ID NO: 48) 1084 - 1087 NKSM (SEQ ID NO: 49) 1155 -1158 NKSS (SEQ ID NO: 50) Tyrospne sulfation site 1119 -1133 EAKGPEDYPEEGVEE (SEQ ID NO: 51) 1134 -1148 SSGEASKYTEEDPSG (SEQ ID NO: 52) 1193 -1207 AAEATNDYETLVKRG (SEQ ID NO: 53) cAMP- and cGMP-dependent protein kinase phosphorylation site 335 -338 KKKS (SEQ ID NO: 54) 336 - 339 KKSS (SEQ ID NO: 55)I Protein kinase C phosphorylation site 4-6 SRR 214 -216 SFR 237 -239 STK 250 -252 SNR 282 -284 TLK 129 285-287 TFK 362-364 SRK 418-420 SAR 459-461 SGK 503-505 TLR 683-685 SVK 739-741 STK 740-742 TKK 769-771 SSK 791 -793 SIK 872-874 STK 1004-1006 SEK 1036-1038 SFK 1055-1057 SVK 1063-1065 TPK 1089-1091 SRR 1095-1097 SRR 1162-1164 TSK Casein kinase Il phosphorylation site 180- 183 SKDE (SEQ ID NO: 56) 269- 272 SLFD (SEQ ID NO: 57) 303- 306 TPGE (SEQ ID NO: 58) 329-332 TKED (SEQ ID NO: 59) 339 - 342 SNPE (SEQ ID NO: 60) 431 -434 SAQD (SEQ ID NO: 61) 454-457 TLME (SEQ ID NO: 62) 589- 592 TVEE (SEQ ID NO: 63) 608-611 TTGE (SEQ ID NO: 64) 620- 623 SKQE (SEQ ID NO: 65) 629 - 632 TIED (SEQ ID NO: 66) 672- 675 SDHD (SEQ ID NO: 67) 683 - 686 SVKE (SEQ ID NO: 68) 724 - 727 TRNE (SEQ ID NO: 69) 763 - 766 TQEE (SEQ ID NO: 70) 798-801 TLQD (SEQ ID NO: 71) 820 - 823 SVEE (SEQ ID NO: 72) 838- 841 TKNE (SEQ ID NO: 73) 847-850 TLQE (SEQ ID NO: 74) 873- 876 TKAD (SEQ ID NO: 75) 913- 916 SHE (SEQ ID NO: 76) 1004- 1007 SEKD (SEQ ID NO: 77) 1028- 1031 SDGE (SEQ ID NO: 78) 1036-1039 SFKD (SEQ ID NO: 79) 1134-1137 SSGE (SEQ ID NO: 80) 1142- 1145 TEED (SEQ ID NO: 81) 1188 - 1191 SPQD (SEQ ID NO: 82) Tyrosine kinase phosphorylaUon site 655 - 662 KLDEHIAY (SEQ ID NO: 83) N-myristoylaion site 117-122 GGILAD (SEQ ID NO: 84) 125 - 130 GLGKTV (SEQ ID NO: 85) 138- 143 GMFDAS (SEQ ID NO: 86) 196-201 GVIITT (SEQ ID NO: 87) 277 - 282 GSLLGT (SEQ ID NO: 88) 281 - 286 GTLKTF (SEQ ID NO: 89) 428-433 GTFSAQ (SEQ ID NO: 90) 540-545 GVGLTL (SEQ ID NO: 91) 542 -547 GLTLTA (SEQ ID NO: 92) 574 - 579 GQKENV (SEQ ID NO: 93) 804-809 GTGSAD (SEQ ID NO: 94) 130 806 - 811 GSADSI (SEQ ID NO: 95) 831 -836 GMEKSF (SEQ ID NO: 96) 983 -988 GSAPNS (SEQ ID NO: 97) 1130-1135 GVEESS (SEQID NO: 98) Amidation 113 - 116 DGRK (SEQ ID NO: 99) Table VII: Search Peptides 273P4B7 vacant 1 for 9-mers, 10mers and 15-mers (SEQ ID NO: 100) MEASRRFPEA EALSPEQAAH YLRYVKEAKE ATKNGDLEEA FKLFNLAKDI FPNEKVLSRI 60 QKIQEALEEL AEQGDDEFTD VCNSGLLLYR ELHNQLFEHQ KEGIAFLYSL YRDGRKGGIL 120 ADDMGLGKTV QIIAFLSGMF DASLVNHVLL IMPTNLINTW VKEFIKWTPG MRVKTFHGPS 180 KDERTRNLNR IQQRNGVIIT TYQMLINNWQ QLSSFRGQEF VWDYVILDEA HKIKTSSTKS 240 AICARAIPAS NRLLLTGTPI QNNLQELWSL FDFACQGSLL GTLKTFKMEY ENPITRAREK 300 DATPGEKALG FKISENLMAI IKPYFLRRTK EDVQKKKSSN PEARLNEKNP DVDAICEMPS 360 LSRKNDLIIW IRLVPLQEEI YRKFVSLDHI KELLMETRSP LAELGVLKKL CDHPRLLSAR 420 ACCLLNLGTF SAQDGNEGED SPDVDHIDQV TDDTLMEESG KMIFLMDLLK RLRDEGHQTL 480 VFSQSRQILN IIERLLKNRH FKTLRIDGTV THLLEREKRI NLFQQNKDYS VFLLTTQVGG 540 VGLTLTAATR VVIFDPSWNP ATDAQAVDRV YRIGQKENVV VYR-LITCGTV EEKIYRRQVF 600 KDSLIRQTTG EKKNPFRYFS KQELRELFTI EDLQNSVTQL QLQSLHAAQR KSDIKLDEHI 660 AYLQSLGIAG ISDHDLMYTC DLSVKEELDV VEESHYIQQR VQKAQFLVEF ESQNKEFLME 720 QQRTRNEGAW LREPVFPSST KKKCPKLNKP QPQPSPLLST HHTQEEDISS KMASVVIDDL 780 PKEGEKQDLS SIKVNVTTLQ DGKGTGSADS IATLPKGFGS VEELCTNSSL GMEKSFATKN 840. EAVQKETLQE GPKQEALQED PLESFNYVLS KSTKADIGPN LDQLKDDEIL RHCNPWPIIS 900 ITNESQNAES NVSIIEIADD LSASHSALQD AQASEAKLEE EPSASSPQYA CDFNLFLEDS 960 ADNRQNFSSQ SLEHVEKENS LCGSAPNSRA GFVHSKTCLS WEFSEKDDEP EEVVVKAKIR 1020 SKARRIVSDG EDEDDSFKDT SSINPFNTSL FQFSSVKQFD ASTPKNDISP PGRFFSSQIP 1080 SSVNKSMNSR RSLASRRSLI NMVLDHVEDM EERLDDSSEA KGPEDYPEEG VEESSGEASK 1140 YTEEDPSGET LSSENKSSWL MTSKPSALAQ ETSLGAPEPL SGEQLVGSPQ DKAAEATNDY 1200 ETLVKRGKEL KECGKIQEAL NCLVKALDIK SADPEVMLLT LSLYKQLNNN 1250 273P4B7 v.4 9-mers, aa 164-180 FIKWTPGMGVKTFHGPS (SEQ ID NO: 101) 10-mers, aa 163-181 EFIKWTPGMGVKTFHGPSK (SEQ ID NO: 102) 15-mers, aa 158-186 NTWVKEFIKWTPGMGVKTFHGPSKDERTR (SEQ ID NO:- 103) 273P4B7 v.5 9-mers, aa 356-372 CEMPSLSRRNDLIIWIR (SEQ ID NO: 104) 10-mers, aa 355-373 ICEMPSLSRRNDLIIWIRL (SEQ ID NO: 105) 15-mers, aa 350-378 PDVDAICEMPSLSRRNDLIIWIRLVPLQE (SEQ ID NO: 106) 273P487 v.6 9-mers, aa 881-897 LDQLKDDEVLRHCNPWP (SEQ ID NO: 107) 10-mers, aa 880-898 NLDQLKDDEVLRHCNPWPI (SEQ ID NO: 108) 15-mers, aa 875-903 ADIGPNLDQLKDDEVLRHCNPWPIISITN (SEQ ID NO: 109) 131 Tables Vil - XXI: VIleVI -HLA-A1-9mers- I VIII-V1-HLA-A1-9mers-l 273P273P44B7 V7 3
PB
7 Each peptide Is a portion of Each peptide is a portion of Each peptide Is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position Is specified, the positon is specified, the position is specified, the length of peptide is 9 amino length of peptide is 9 amino length of peptide is 9 amino acids, and the end position for acids, and the end position for acids, and the end position for each peptide Is the start each peptide is the start each peptide is the start position plus eight. position plus eight position plus eight Start Subsequence So Ltar Subse uence Iscore [~ir I Subsequence I [] 0.LAELGVLKK 00 VKEAKEATK 1.800 L 9LII NAESNVS I F 0 ____ -83_ [. FGIGE KS FAT K I10 [11301I GVEESSGEA 0.90 EO L:D LIZI.0L- EAEALSPEQ 1.8001 [3941LMETRsPLA1 6.966J DDMGLGK 0_ 45,0 F9-1[WEHI 1.8001 16511 K SDIKLDEH E1.750] CEPSLSR [ESFYVLSK =1.500 F1 0 D 25.001 F11 SEA.H .011 33 LESSGE ASK .5 Fl- ____ _ I15] NSWL 11.350 F _6- I-1E ELRE LFT 0.675Z~ 1231] SADPEVMLL 25.00 376] QEY F 3441] DVDQ Fjj.625] -ii_____ 0 857 CQ-ED=PLESF 1.35 i459.j !pT=LMEE FO 625I 707] LVEFESQNKfIrio01508 T 1.250 [1077 [SQIPSSVNKJ 0.6001 F ____ 18. 36 4 KNDIIWIR 1.25 [1703 ]L Y SLYJ 0.500 9 0 8TVEEKIYRR ]LLPKGFGS_]E0 F1 LTI . [1197HTDETLVK 120 ~ 8I FTVSG 1,12501 F892] HNW PIIS 0.50 _________ 10 [ 2j[GT EKP(RII20 D453 jDTLME_ SGKj[~O [ j KEGAFLY 0l DPEMLLTL =.125s 563]1_PRAQYD VY 1K00 -_ LJL7P? L.IFLMDLL ]1.000 [K3 i LD Si F500 RLDDSSEAK [L1 D. [~ [l~~~lK111.00 655 KLDEHIAYL:) oj L0 0 1 E 1LLFQQNKDY] [0.5001 [__ 7 1LLTLSLYK I1.000_R21 [901 S .5009P Ig ~ ~ 77=4 [ ~1 VD DLPK( 1.00 38_6 SDIELos [0Fj[LAEQGDDEF I F1 067 D373 0.500 36 90DLEEAFKLF 0 [49[L 0.900 687 34 287NGDLEEAFK 0[ [ E 09T. [ j K06NPEARLNEK] EMEEJL 0.900 [s0s] I2500 1 3.ISDHDLMYT f4][ D 0.900 446[ 763 7TQEEDISSKL 76 313 73ISENLMA21 443] 0.50 81] 20VNSGLLLY 0 [20 L 0.900 F1 AFLYSLyRjIO0500 KNDISPPGR i E E Q 00510 V .5 410 F5LCDHPRLLS200] [971 9 1 N I 0.500 67 5GISDHDLMY 00 820 E 0.900 99 465[ 56LMDLLKRLR [E47 KD E 1029][ DGEDEDDSF F5 7-5- Q 0.900 1921KETNDY 0.500 456 23MEESGKMIF 20[I1 VQKKK 09 F1 E 065 117611 APEPSGEQ 2.2S01L ED=I1~LQNSV 10.00 [ E1IM 7(ITNj 0.74501 132 Table Vill-V1-HLA-A1-9mers- able Vi-V5-HLA-AI- 1l -HLA-AI-1Omers 273P4B7 P 9mers-273P j t 73
P
4
B
7 Each peptide is a portion of Each peptide is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the position is specified, the position is specified, the length length of peptide is 9 amino length of peptde is 9 amino of pepide is 10 amino acids, acids, and the end position for acids, and the end position and the end position for each each peptide Is the start for each peptide is the start peptide Is the start position position plus eight. position plus eight plus nine. Subsequence [tar F1 Star [Subs 1 [455 ILMEESGKMI 1 g:: Sc 89 YRELHNQLF LSRRNDLII 0.001 [12 SADPEVMLLT [f-70D~l 9-.00 = F4_____0 F-] _1 EFESQNKEF MPSLSRRND [67IELDWEESHY] 25.0001 L..i[T]E0.m01E 8 K EEPT]2.0 Table VIII-V4-HLA-A1 9mers-273P4B7 Table VilI-V6-HLA-AI- 1ffl E Each peptide is a portion of 9mers-273P4B7 100 SEQ ID NO: 3; each start Each peptide is a portion of 1 D7_7_ position Is specified, the SEQ ID NO: 3; each start E M 1000 length of peptide is 9 amino position Is specified, the acids, and the end position length o peptide Is9 amino 1E.5[ 0 for each peptide is the start acds, and the end position position plus eight for each peptide Is the start 1LSPQAY1.000 Start [Subsequence Score position plus eight 264 E GOLKWTPGMGVK 0.100 [ce 609 N 5.625 f7~WTPGMGVKT .51 015f32RVLEI 500 [I] TPGMGVKTF 0E 0.045 DLEEAFKLFN 1 4.500] DLVK~FHGIPS J_ _ _ [1 L KDVLH 0.0251 1 SPE QAAHYLRjJ4.50] - 0020DGEDEDDSFK] 4.500] FKWTPGMG F 00 F 0.000________K 4.500 =6 KPGMGVKTFH 0.000 L EI] D 0D 0 V E00 Li IMGVKFHGjLP 6:6 F Q DE 0.000 9 Table VIII-V5-HLA-A1- 1914LIEIADDLSA 9mers-273P4B7 690 ESHYIQ TbeI-VI-HL-Ilms. 193IGANSRAGFI3.0 Each peptide is a portion of Table 1960 SA SEQ ID NO: 3; each start 2343 96O position is specified, the Each peptide is portion of 386 [ R.HIKELLM 2.500 length of peptide Is 9 amino SEQ ID NO: 3; each start 1226 acids, and the end position position is specified, the length for each peptide is the start of peptide Is 10 amino acids, 874D position plus eight and the end position for each 1 peptide is the start position92.0 ubsequenceS plus nine. 9L LRND VCSGLY I2.0 [Sarj ubeqeneair 8_____0_ L-i1LD LllW 1.25 Subsequence Scr 91oNSLMK 2.500 1 FCEMP SLSRR IF [TCMSLR 0F5 313]1 ISENLMAIIK 13.003511 =[VAIEPI2500 2J LSRRNj 0.005 ill[ 4102 8 RRNDLIIWI 0 3 ' SSEAKGPEDY SPSLSRRNDL 1 F-4abl 8li-V5-HLA-A1-] [II RRNDLI Jl114i j87I ASALK 000EE=DPSGET 133 Table IX-V1-HLA-AI-10mers- able IX-Vi-HLA-A1-1omers Table IX-VI-HLA-A10mers1 273P4B7 r 273P4B7 273P4B7 Each peptide Is a portion of Each peptide is a portion of Each peptde is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position Is specified, the length position is specified, the length of peptide is 10 amino acids, of pepdde is 10 amino acids, of peptide Is 10 amino acids, and the end position for each and the end position for each and the end position for each peptide Is the start position peptide Is the start position peptide Is the start position plus nine. plus nine, plus nine. Star Subsequence Score en ce S 6IAPEPLSGEQL 6E250 473 RDEGHQTLVF 25 EQGDDEFT 0.900 553 FDPSWNPAT 5 876 DIGPNLDQLK 2.000 VSDGEDEDDS 113 10E 3731[LVLQEIY 0.500 18VEESSGEASK 8 ISPPGRFFSS Fr I801 Table IX-V4-HLA-A1 -1 Omers IIAAEATNDYET 1.800 651KSDIKLDEHI 0.750 I 273P417 L37 1_ 621KQELRELFTI 067 Each peptide Is a portion of SEQ 3 7NGDLEEAFKL ID NO: 3; each start position is 944 ASSPQYACDF 1500 ___ ___ 1 =.625 specified, the length of peptide Is 1773 1 1.5E0 10 amino acids, and the end F73 Afj Q QS _ IDLK .0 364aKDI LFi .625]1 position for each peptide is the 928 l!QD L 1:500 F66 AGISO OLMY start position plus nine. 671 JSDHDLMYTC 1.500 EHvE S ubsequence score SSENKSSWLM 1.30 11] GVKTF 0.0 [ _ TD __ 1.5 1W6 10G1GVKTFN 0250i FTDVCNSGLLI 4 M M0 0[0G 4501 VTDDTLMEES I L RMI LADGLKT 0.500 IjT KE] 0500 KNDISPPGRF 1.250 D N561 5ATDAQAVDRVL1200 F5-1 TTGEKKNPFRI =.50 I (PGMGVK 0.001 ATPGEKALGF[ 1.250E0 GMGVK 10.001 119 ILADDMGLGiD 1.000 EfL KLDEHIAYLQ I 1.000 0EFIWG G 000] 104 SINPFNTSLF 586 TE Y 0.500 RLDDSSEAK 100 RL DS EA G 1 000 jjJM IK YF RJ o s o Table lX-V5-HLA-AI0mers.1 488 ILNIIERLLK 19000_HN SI j Each peptide is a portion of SEQ 1913 ID NO: 3; each start position Is 0.900TVRG6 VLLLLK .0 specified, the length of peptide is LiDELVKRGK L YKI ] I F__________ 10 amino acids, and the end 401 LAELGVLKKL 0.900 position for each peptide is the 589 TVEEKYRRQ 0.900 103 start position plus nine. [91 EAEALSPEQA 0900 679 DL E oStartj Subsequence Score 844 QKETLQEGPK 0900 F .00 GVEESSGEAS 123 0DU00 _____________ 5_________ EEI RRNDLIIWIR 0.5 971 SLEHVEKENS 0.900 762 HTQEEDISSK 0.500 R.005 629 TIEDLQNSVT 0.900 [9l IADDLSASHS 820 s -vEELCTNSs_ L~o.-966 F 46 HIQVDTLL-CE 111MPSLSIRRN 134 Table IX-VS-HLA-A1-10mers- able X-V1-HLA-A0201-9mers- 1-HLAA0201-9mers 273PB7 J273P4137 J273P4137I 273P4B7 I al Each peptide Is a portion of SEQ Each peptide is a portion of SEQ Each peptide Is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position Is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptde is specified, the length of peptde is 10 amino acids, and the end 9 amino acids, and the end 9 amino acids, and the end position for each peptide is the position for each peptde is the position for each peptide is the start position plus nine, start position plus eight start position plus eight. Start Subsequence SStart] S ue ce Start score =5l orPSLSRRNDLI0.002 j 148 VLLIMPTNL I1345769 110921 10.433] I7j LSNDLW 0.001 9 YACDFNLFL 1 QELRELFTI 1 W3EMPSLSRRND F 50.001 1IQEALNCL IF 7 69.873 LjfiI__lSRRNDLIlWL0.000 [36811 IIWIRLVPL 195.325] 125 T.838 Fl-i11 _WLMTSKPSA a5:4 ±L~i1~ Table IX-V6-HLA-A1-10mers- F04] M61.7371 126jj N8QE51 273P4B7 KLCDHPRLL 1 L385j E Each peptide is a portion of SEQ F46__]_F__9_7__________ ID NO: 3; each start position is specified, the length of peptide is F9 1 ALNCLVKAL 49.134] 867 YVLSKSTKA 7.399 10 amino acids, and the end position for each peptide is the start position plus nine. F627 1 KIQEALEEL 47.504 830 FT7276 Subsequence 1. ILNIIERLL Lj~j NLDQLKDDEV 0500 [252]1 RLLLTGTPI Il5P2.1 6 LKDDEVLRH 5 25] VILDEAHKI 3695l4 LTLTAATRV 6.076 621 KDDELRHCN 0u0os [4176[ LLSAACCL II36.316] 131 Q FS 5970 SQLKDDEVLRHF 3 i DDEVLRHCN 10.00[ 32T FW L DQLKDDEVLR oN6L! EDSPDV 5 1 VLRHCNPWPj o.o1' 829] SLGMEKSF F801 E F 0 DEVURHCNPW [.L 9! 1 7 512 HLLEREKRI ]15381 W-21 LDQLKDDEVL [o.0 0 F16o[ LMTSKPSAL [ 706 FLVEFESQN 53 L~Z~~~~N~w~o.00I i~~[ SVNHLL!23.995 j788 DLSKN 5.1 91EVLRHCNPWP =.0 .5216 530O] SFTTV 22.517 710 FESQNKEFL 5.4 Table X-VI-HLA-A0201-9mers- 1 2[ TLVKRGKELF21.362 372 RLVPLQEEI 5.112 273P4B7 06 273P47 I [si][ PTN I -104 6 SLSRKNDLI I.5.1127 Each peptide is a portion of SEQ 1 6-][ WVKEFKWT 2639 Q ID NO: 3; each start position is specified, the length of peptide is [5 I RLLSARA 18.382 213 S 4.527 9 amino acids, and the end (1099[ LINMVLDHV 18.323 [269[SLFDFAC F4.296-] position for each peptide is the start position plus eight. - - I F3 876 1 8 L D H gE:__TF_4_18_ 7 [trtSubsequence | Score [61 LQSLGIAGI 1 -~~ EF1LDF 1976j 16 ATNDYETLV ]Fa~ FLMDLLKRL 3282 KTVQIIAF 572 EW 6 5511 KLDEHIAYL 1551.14 41102] MVLDHVEDM ] 12634 I 632][ DLQNSVTQL 11_____ II 1 1-4787 QINIR 4 I12.247108j i6][ SMNSRRSLA 358 F39-3I LLMETRSPL |550.915 325 FLRR EDV 11.915 [05 3V5 F344J[ RLNEKNPDV ||285.16311042 SINPFNTS 11.162 [455 LMEESGKMI 113.361 LMYTCDLSV 273.262 11181 GlLDDMGL][10868 1 KL 44 135 Table X-VI-HLA-A0201-9mers- 201 273P4B7 V A0201-9mers Each peptide Is a portion of SEQ2 Each peptIde is a portion of SEQ ID NO: 3; each start position is Each peptide is a portion of SEQ ID NO: 3; each start position Is specified, the length of peptide Is ID NO: 3; each start position is specified, the length of peptide is 9 amino acids, and the end specified, the length of peptide is 10 amino acids, and the end position for each peptide is the 9 amino acids, and the end position for each peptide is the start position plus eight. position for each peptide Is the start position plus nine. start position plus eight Start I Subsequence c [148[ 3.192 [..t!][ISubsequence F~oi[ 88 2 LTLSLYKQL I 2.799 [ FLLTTQVGGV 159 MAIlKPYFL 2 RRNDLIIWI 0.075 RIDGTVTHL ][ .702 PSLSRRNDL 0.011 RLLKNRHFKT 159.9 F35.1 GDLEEAFKL ITI 1jJ LSRRNDLII 0.0 - 2] 491 LLKNRHFKT 2.572 054 TLMEESGKMI L.5J 6 2 9 fI jEDLQNSVJT .509 2 11 EMPSLSRRN 0.001 L = QAAHYLRYV [6 E@2.4 39]SRQiLNI [3 MPSLSRRND 137,2 [36I DLIIWIRLV 2.4007. LLMERSPA 20 F9 QSR FSSQSLEHV 1 .33 Table X-V6-HL1 [§~][FSSSLHVII .34]273PB [87] LLYRELHNQLIF6 ]LRLRDEGHQT Each peptide is a portion of SEQ - _ 9 1[ RQNFSSQSL F2.166 ID NO: 3; each startposition Is 662 ifYLSLGIAGI I 1075[ FSSQPSSV ~2.088specified, the length of peptide is ____ [051F.SSQIPSSV]F20817 GQEFVWDYV9 amino acids, and the end position foreac peptide is the 14231 F LNGSA 1136 KGFGSVEEL 35 start position plus eight. [1230 ~K~p~vv1 IL2.001]Start FS Susqe c ore P03] MIN Q 537 7 QVGGVGLTL 9] F 2 -] 0.121 ] [ I] RLLSARACCL [L~fj RELFTIEDL 123 i [ 1 LDQLKDDEV 0.080 41 1 -~~ .. . KDE H Po [198_SINV H U 7 8 . 3 8 Table X-V4-HLA-A0201-9mers- 1 9 LH FPP 0.011 _________ 51 273P4B7 i3][QLKDDEvjRq0.02 [ E 705 Each peptide Is a portion of SEQ 87 ERH P 0002 F9 JM ID NO: 3; each start position is GLTLTAATR 6 specified, the length of peptide is L4L1 LKDDEVLRH I[ -0 0 __ _]_2__ 9 amino acids, and the end = 1 DEVLRHCNP ] = position for each peptide is the 266 ELWSLFDFAC start position plus eight. DDEVLRHCN 0 0 FsLttI Subsequence ___ 48] VLLIMPTNLI F 12 F 3___ _6_ 3I - T b e l V -A 0201-10m er-] K MFW fll 60.8 L.IWTPGMGVKT I0zj2347 SQ_____ F41 GMGVKTFHG 0.312 peptide is a portion of ____ 7 FFJi ] 0312IDNO: 3; each start position is 12381 LLTLSLYKQLF5.47 STPGMGVKTF 0.001 specified, the length of peptide is Ji 10 amino acids, and the end531 1 MGVKTFHGP 000 position for each peptide is the Fl 1PGMGVKTFH 0.000 start position plus nine. jF 11 FIKWTPGMG 0.000 S u er] LLGTLKTFKM 97 1 GVKTFHGPS 0 000 F [829 ]F43E.2A [3[KWTPGMGVI( ]. 0.0070 115 WLTKPA 3635] -- _______ l 5- H A1 -e 2734B Table XI-V1-HLA-A0201-10mers-T XI-VI-HLA-A0201-1 Omers- Table XI-VI-HLA-A0201-10m 1 273P4B7 273P417 273P4B7 Each peptide is a portion of SEQ Each peptide is a portion of SEQ Each peptide is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position is ID NO: 3; each start position Is specified, the length of peptide is specified, the length of peptide is specified, the length of peptide Is 10 amino acids, and the end 10 amino acids, and the end 10 amino acids, and the end position for each peptide is the position for each peptide is the position for each peptide Is the start position plus nine. start position plus nine. start position plus nine. FStart Subsequence ] Start [ Subsequence cStart Subsequence [16] LLSARACCLL- ____ 36.31 1 33] F5.7901 5 ]T 2.088 F _____ 61 F- 7i[SEQAY 5.3461 1 5581] WN PATDAQAV 2.088 VIFDPSWNPA I ] 5 LSSEN 5 479I1TLVFSQSRQI ]t2.2!7 6877 F1 DL-SKEELDVg 5.26212 19SFRQF 200 [226] ILDEAHKIKT 717 FLMEQQRTRN 5.200 [ N8E 4 L DA SE 67 ALAQETSLGAF68 =2 _____ 88 MEYENPITRA 4.956 3867 SDIELJI97 8477 T2QE.3QE 480 L=SQRIL 4.2 I 8 GMFDASLVNH j1.878 TLQEGPKQEA 4.2 -]KIQEALEEL 4.7803175 KFMQR 186 384][ FVSLDHIKEL [14311 SLVNHVLLIM 465 638 TQLQLQSLHA18 F ______ - i3-0]1 KSADPEVMLL 14.6031 1,047f NTIFFSS 1835 12 2113KISENLMA66 T26l5 1.830 DLMYTCDLSV F 9L MTR4I 1142777 F3]5V1LYHKL 111.7621 - I S11 I-]RKNDLII4.277 [3 95][ METRSPLAEL71.6241 F628] FTIEDLQNSV 5__2____________________ II [1773 F2241 YVILDE-AHKI I4.199 __________ 868 F VLSKSTKADI[ ] EQGDDEFTJ 201-1 Omers tLl 1k~~. NMLHVD IF4 134B7 1.0LQEEFYRKFVI 57 Each peptide is a portion of SEQ -F L....] IGKN--V3.2 ID NO: 3; each start position is [150 LIMPTNLINT [178 1633 Q T6 821 specified, the length of peptide Is 4 .=80 J VVYIRLITCGT .74 10 amino acids, and the end K E I Y L FI.-2-7 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ po sitio n for each p eptid e is th e KQE1R1LFT6 3. 6 1 start position plus nine. [ KEGIAFLYSL16 S QQNKDYSVFLFPNEKVLSR 294 [Sri Subsequence co -36 GIAGISO 2.79371 [II1 IKWTPGMGV 11.540 [36 FF 111.48 F2461 AIPASNRLLL 2.937j8] GMGVKFG 0.0201 _:71LllWIRLVPL -- ~~ 1 [L. EII.34] I F2AKNA 28811 7~wrPGMGVKTF JKE QLQLQSLHAA 196 GVIITTYQML Z804 0.00 10.46 70 FESQNKEFLM7 VQ8IIAFLSGM _PGGVTF EL 8 4-86-11 RQiLNIIERL 2.7441 [jJMVTHP .0 LN197TVE VIITTYQMLI F2.439 ________ 9_ F11841 QLVGSPQDKA 2.434 10 GVKTFHGPSK 0.000 [641 ILDHIYLI9.679 56FQVRYI2. 433 = IKWTPGMV 0.00 [216][ RGQEFVWDYV 8.528 F495-] LLKNRHFKT 2.415 LJEKTPM 1.01 130I[ VQIIAFLSGM- 7.484 261-] . QNNLQELWSL 2.405 _____________ 471[ RLRDEGHQTL T513 LLEREKRINL- 2.324 Table XI-V-HLA-A0201-10mers 15-6] L I F265727 3P8 7 273P4B7 1 160l1 LMTSKPS 6100 [536 [QGVLL .6 137 Each peptide is a portion of SEQ Table Xll-V1-HLA-A3-9mers- Table Xll-V-HLA-A-9mers1 ID NO: 3; each start position Is 273P467 F 273P487 specified, the length of peptide is Each peptide Is a portion of SEQ Each peptide Is a portion of SEQ 10 amIno acids, and the end positinfor achtide, Isd the ID NO: 3; each start position is ID NO: 3; each start position is poitonfo echpetie s specified, the length of peptide is specified, the length of peptide Is start position plus nine 9 amino acids, and the end 9 amino acids, and the end [c o1 position for each peptide is the stajrtj start position plus eight. start position plus eight. _ W SLSRRNDLII] 4.2771 [Start[ Subsequence ScorEe] [tr ISbeune cre Subsequenceuene Sor MPSLSRRNDLJ 0 [ 80.0 FI125 GLGKTVQII 1.400 F11011 IRNDLIlW1RL 0.095 1 1 00 K 5 160.00 F-427 KLFLAKDIE__ IiiEiL PSLSRRNDLI 3 8 CLSWEFSEK Ll0 [5851 TCGTVEEK714.5001 SRRNDLIFWI328 RE 4.500 CEMPSLSRRN E 0.001 S 655 KLDEHIAYL EMPSLSRRND1 0.000 RRNDLIlWIR 0.000 E 9 1 LEDSANR .00 [H=LLLSRRNDLWIIO.0lW 0 22 CLVKALDI( 45.00 j ICEMPSLSRR 278 3.375 4 RLLKNRHFK [00 224] YVILDEA-K 3.-!F00-0 Table X-V6-HLA-A0201-10mers- - 0 273P4B3793 IRQF 300 Each peptide is a portion of SEQ L [7] 317 LMAIIKPYF 3.000 ID NO: 3; each start position is [77] 263 NLQELWSLF3000 specified, the length of peptide is 0_[ GLLLYR E2. 10 amino acids, and the end 2400 position for each peptide Is the 282 TLKTFKMEY 863 ESFN SK [700 statposition plus nine. 2 589 TVEEKIY = Start Subsequence scre MIFLMDLLK IE 0 LNLD V LLGTLKTFK 10 VLRHCNPWPI ql[*io 1 L I 1 0 27 F47LQLKDDEVLRIH 0.025 E ] SEK [000 1 GISDI-IDLMY 2.00 F2]LDQLKDDEVL0 L1L9.~sppA71 0.10 W. ____ U [EE[ NVTLQDGK 12.000 F, LKDDEVLRHC 0 9707 LVEFESQNK 2.000 a7] EVLRHCNPWP 0.002 676 LMYTCDLSV ll KDDEVLRHCN [.00] ILDEAHKIK [ 1203 LVKRGKELk 2.000 1211 QLOPDDEVLR 0 7 1 DEVLRHCNPW .000 0 1 574-J GQ 1.62 [~ DEVR~ =p0.000 F42~ GLTLTAATRJ 12.00J [734][ PVFPSSTKK150 Table XII-VI-HLA-A3-9mers. L2rIIKPYFLRR 1i0[4.80IMTNI 1.5 273141370 F36 1 DLEEAFKLF 1.350 Each peptide is a portion of SEQ F73[ TQEEDISS 1 ID NO: 3; each start position Is 1057K763S]P 9.00 ____ RLVPQEE specified, the length of peptide is =5 1 91.350 9 amino acids, and the end 1236 VMLLTLSLY 9.000 position for each pepide is the 88 01 LAELGVLK start position plus eight Start Subsequence Score 316 | 1 IAFLYSLYR 1.200 1049 SLFQFSSVK 300.0 519] RINLFQQNK 6.000 103i~ GIAFLYSLY 1.2001 [00 F774 SIDDLPK 6000831.000 143 L 7 3 7 SLVNHVI 2 73P407 138 Table XIl-V1-HLA-A3-9mers- able XX-V4HLkA3-9mers- Table XX-V6-HLA-A3-9mers 273P4B37 P 7P17 1 1 7P17 - Each peptide is a portion of SEQ Each peptide Is a portion of SEQ Each pepde is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptide is specified, the length of peptide is 9 amino acids, and the end 9 amino acids, and the end 9 amino acids, and the end position for ach peptide is the position for each peptide is the position for each peptide Is the start position plus eight. start position plus eight star position plus eight Subse uence ore] [ta] Subsequence [S] tart Subsequence Score F-3:86 HILKELL 090 7 GMGVKTFHG 01 7 j-2o4-T MLINNWQQL 0.900 Fj-J KWTPGMGV 0.041 F4I[ LKDDE 48 ]09VLLIMPTNL [00 Li PGMGVKTfJ 030 5 0.000 ~[- -FLMEQQRTR 901 Y H0 11 = 1 LDQLKDDEV 000 FThy fl LINTWVKEF - W WTPGMGVKT 0007 = 1 DEVLRHCNP 000 F 47Th1 QTLVFSQSR .0 [ 2Z E. 0.000 S _ELWSLFDFA 900 [ 1219]ALNCLVKAL 0.900 F able Xi-VI-HLA-A3-1mers PGM5KTF 0.00 700B 52 RLLLTGTP[ ] Each peptide'is a portion of SEQ 7 WLREPVFPS O. 8101 ID NO: 3; each start position Is 312 KISENLMAI Table XX-V5-HLA-A3-9mers- specified, the length of peptide Is FLMDLLKRL F 675 2731417 . 10 amino acids, and the end Each peptide is a portion of SEQ position for each peptide is the [.i. 1 HLLEREKRI 675 start position plus nine. [iii] USVNKSMNSR 0.6001 specified, the length of peptide Is poiinfor each peptide is the 46 LLARACCL 0609aioais n h n ja sL 0 position plus eightG MF DAV1N ALL6S0S=SND I 0 [402 ]LsRKPs l 0.600 _[]iiIIL RN676WI 150005 ~LASRRLiI L Z RL i MLLL 1 11LLNLGTFSA 0601 [ ] RNDIW 0.21 AAHYLRYVK [01 ! RSND SRRNR 0000 1L~ i~l GILADDMGL 0.60 [IL] _________ ffFL 42=41 RQILNIER .5401 ______ 06F6_ __________ 45.00RNL~ .00 [~i[PLESFNYVLJ .4)________ ___8_1_________0540_-2- I EMPSLSRRN 0.001[~L~R L~~F [71[KMASVID .41 ___________ F-321 DLQNSVTQL 0.640 Table XX-V6-HLA-A3-mers I 1 56 ]04KSSWLMTSK 273P4B7 Fl-027 TLKRGEL-F0-50 Each peptide is a portion of SEQ 421 F NAKDIF 0~ S] TVKRGKEL 50ID NO: 3; each start position is FI0--lFQFSSVKQF O.50 I .ii. FQSSVKF 0450specified, the length of peptide is [1tiGKE K][ 3 DTLMEESGK 4509 amino acids, and the end 5 LMEESGKM 0.450 position for each peptide is the2 - 70 L ~start position plus eight. 27 KEEPT 368ll IIWIRLVPL 0.45 Str S q 55 0 40KVLSRIQKI0405 Q01 P 62 j~ KIQEALEEL J .405 ____5 8IELC fEiZ7 VLRHCNPW7 0.009 139 Table XIll-V1-HLA-A3-10mers-' Table XIII-VI-HL-A3-1Omers- le XIl-VI-HLA-A3-l0mers 273P4B7 273P417 273P4B7 Each peptide Is a portion of SEQ Each peptide is a portion of SEQ Each peptide is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position Is ID NO: 3; each start position Is specified, the length of peptide is specified, the length of peptide Is specified, the length of peptide Is 10 amino acids, and the end 10 amino acids, and the end 10 amino acids, and the end position r each peptide is the position for each peptide is the position for each peptide is the start position plus nine. start position plus nine, start position plus nine. S ubsequenc [ Start Subsequence Sco1 [Stat] Susqe c r 1 Subsequence ] 9 AIIKPYFLRR 110.80 148 VLLIMPTNLI 1.350542J[ GLTLTMTRV 060 ______1____ 374 FPQEYK 1.7350 183fi lKDELHI06 [37][ RLVPLQEEIY 9.000 3 :I- 1[80 [603]SURQTTGEK F700 513 LLERE 1.200 LLGTLKTFKM 0.600! [J[GIAFLYSLYR L~I 11 QANLK 12016 [LKTAI 060 ALQEDPLESF687 ELDVVEESHY 1.200 27 CQGSLLGTLK 0.600 [7 GEE lFYRR 6775 [-7[RTKEDVQKKK 2 LITCGTVEEK 66 [862[ E S [0801 217 E0.486 F98-] LMEESGKMI F 600 [01 0.900 847 TLQEGPKQEA 045 [4E5 MEGM F 6.0 00 [20-3][ QMINWQ 09f121 NCLVKALDIK7 0.450 4621 EMlFLMDLLK 0 i] T A 900 393 E F1 .ALSPEQAAHY 6000 691 ELAEQGDDEF 10.900 1044N 0.450 1 GTLKTFKMEY_ ] 44 RLLKNRHFKT0.5 138 GMFDASLVNH 4.500 [ YLQSL Ig E316]! NLMAIIKPYF 4.500 S S I:1]LFHQKEGI 948500 0.0 KMASVVIDDL 405 4 Table XIII-V4-HLA-A3-l0m 415 1 ]ILLSRACTL .900~ 273P4137 L~i[ 4 QLQSLHAAQR 4.000 389 HIKELLMER 0 Each peptide is a portion of SEQ __ _ _ V L K K L C D H PR__ _ _ _ _ 1 ID N O : 3 ; e ach sta rt p o sitio n is I~ ~ ~ ~ ~ ~ ~ ~ ~ ~0 46VKKDHRIPI 30[AGFIEL 0900! specified, the length of peptide is F24ALYVKEAKEATK F3.:9P0I D Q 0900 10 amino acids, and the end 7 LLYRELHNQL position for each peptide is the 3.000 F42-31 start position plus nine. j I ~ IELWSLFDFAC 270 ~ jHKGAL .1! [tr usqec cr 135] FILSGMFIDASLJ L9IF810 sati;*i cr F32.70! I__3 LVPLQEEYR 0.800! 10 GVKTFHGPSK 6.0 F577 IGQKENVVVYR 2.430 F02 176211 HTQEEDISSK 2.250 F7-34][ S 0.75[ FHGP0.80 2111 QLSSFRGQEF2.000 F 0.0 l12i1 RVKTFHGPSK 2.000 4 0.675 r27 ATNDYETLVK 2.0 IHMI[ Q 37 IWPM K 0.045 F1196j[ ____________ F4io] N-l IIELR 0 675 6 PMVTH003 825 CTNSSLGMEK2.000 -64 It TPGMGVKT 0.000 1604]1 LIRQTTGEKK 2.000 F64 0.600 [9][ MGVK T 1 SGLGKTVQIIA.6001 F371LMAllKPYFL787 13171~~~~ LAIPF 18088 _NLDQLKDbEl I E0.6001 Dit EFIWPGM~g Aoo 8891 IlRHCNPWPI 1.800 723 RR 0.60 F341 ITbEMPSLSR -1.800 17 -HL Table XIII-V-HLA-A3-1mers 277LLSARACCLL00 I 273P417 1~~Iit~2!~L~ 1.501 ~ I ~LAATRWI 13FSLn-HvLL-m 1.350 41 LDEHQLL6 g 140 Each peptide is a portion of SEQ Table XIV-V1-HLA-AI 101-9mers- Table XIV-V1-HLA-AI1O1-9mers ID NO: 3; each start position is 273P417 [ 273P4B7 specified, the length of peptide is Each peptde Is a portion of SEQ Each peptide is a portion of SEQ 10 amino acids, and the end ID NO: 3; each start position is ID NO: 3; each start position is position for each peptide is the specified, the length of peptide is specified the length of peptide is start position plus nine. 9 cids, and the acs, Fs~tar II Subsequence ]I score] position for each peptide is the position for each peptide Is the [W j SSR1D2I00 start position plus eight. start position plus eight. FJ IEPSus 1 Star Subsequece start Subsequence ] score RRNLIWI J.0 t J7 F224 1 YVILDEH 3.0 401 AFKLFNLAK 0.0 [E111 MSLSRRNDLl]03E 0.400 RRN4i7l 0.027593 1KYE 3002 F107 1 RNDLIIWIRL l5f1 J2.400 6 M S 0 LSRRNDLIIW .003 F 1 LE 2401 L0.400 L1L.7RRNDLlWI 00 NVTTLQDGK 2.00 [ 613 I[ KNPFRYFSK 03 3 EPSLSRRND7 ]I LVEFESQNK 2.0 13191 AIIKPYFLR 0.36 F571 PSLSRRNDLI Io.ooo] [1811 GTVEEKIYR J4 Q S 0.300 11 ICEMPSLSRRN ] ] [- 4 1 ][1.800 [__ GLTLTMTR 0.240 ________________ BOO 1581GTTLERI.00 014 ]1 WKAKIRSK 020 iTableXll-V6-HLA-A3-10mers- I L-LII MIFLMDLLK ]0226 1 ILD 0200 __ 273P4B7 F 598 QVFKDSLIR =.600 237 J STKSAICAR Each peptide is a portion of SEQ F83 EF 11.200 [340 1 NPEARLNEK_200 ID NO: 3; each start position is specified, the length of peptide is 10 amino acids, and the end 111 RLDDSSEAK [[ 1 ATDAQAVDR 0.200 position for each peptide is the ___120____________ start position plus nine. -- ]Eg [1 0.180 IStartSbsequence | Score- 100 1 10if I -837 KNEPvQK l1- _ VLRHCNPWPI [ 1.800I - ]11.031 EES 0.180 U7DEVLRHL L1 .200 I I E SN 0.180 NLDQLKDDEV F 0.200 L L 0.10 [][LDQLKDEVLR JL0.054 38 FSDIJpoj32 L~YLR j 6 11EVLRHCNPWP 0.000 j [4 EY 1 L~~iI LDLDELl1049][SFQSV 0.8001 [883][ QLKDDEILR 10160 Liii DEVLRHCNPF00001 F8 -66 NYVLSKSTK [ 0.6001 [32211j KPYFLRRTK 0.1A2-01 6 DDEVLRHCN || 0.000 12221 CLVKALDIK0.6001 [7411 KKKCPKLNK 0.120 F-c] LKDVRC 0.000 F7631 TQEEDISSK ]0.6001 F1R-iI TNLINTWVK 0F.71201 5 LKDDEVLRHC [96911 SQSLEHEK 004891 LNIIERLLK 01200. DDEVLRHCNP 0.00095 HYIQQRVQK 0 356 CEMPSLSRK 0120 Table XIV-V1-HLA-A1101-9mers- 1184 QLVGSPQDK 0.600 463 IE0 273P4B7 617 RYFSKQELR 0.480 11217 QEAL 0.120 Each peptide Is a portion of SEQ F453I DTLME 0314 XI ID NO: 3; each start position Is _________ 040________ specified, the length of peptide is Li6±04] PVPSTKK 0.400 I. & QS I AQRR 0.120 9 amino acids, and the end position for each peptide is the [ 0 1 LADDMGLGI( 0.400 1 747I VPLQEEIYR start position plus eight. str osto lus eight. __ 998-] CLSWEFSEK 0.400 1 735 1[ VFPSSTKKK 010 Start Subsequence Score E§5E 1 774-11 SWIDDLPK ]EM 1 SVNKSMNSR 040 KVLSRIQKI 0.90 -158- NTWVKEFIK 6.000 11 AAHYLRYVK 0LCH 141 Table XIV-V1-HLA-A1101-9mers- le XIV-V4-HLA-A 101-9mers- Table XIV-V6-HLA-AI 101-9mers 273P4B73P417 273P4B7 Each peptide Is a portion of SEQ Each peptide Is a portion of SEQ Each peptide is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position Is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptide Is specified, the length of peptide is 9 amino acids, and the end 9 amino acids, and the end 9 amino acids, and the end position for each peptide Is the position for each peptide Is the position for each peptide is the start position plus eight. start position plus eight. start p ition Plus eight. [st i }[ Subsequence cStart Subsequence Scor Etr Score 1101-2 1EVVVKAKIR j 0.0_0 e I [ E H 0 RWIFW FIKWTPGMMG R] __ _ F733]( EVSSKI.090 =6 GGKFH1PP Table XV-Vi -HLA-AII10 [164.08 LLWTG-11~ I8IGKFGP1aoo 0mers-273P4BL_____ FPNEKVLSREach peptide is a portion of SEQ ____ F6abe6786-L.A 019er ID NO: 3; each start position is ICEMPSLSR 273P47 specified, the lengthof peptide is 11 TNDYETLVK0.810aioaisanthed __19___11 Each peptide is a portion of SEQ posaitnfor achide, isd the 956-11 FLEDSADNR j 0.080 ID NO: 3; each start position is position pus nie _ 6____ specified, the length of peptide is start__positionplusnine. 821TNSSLGMEK00 9 amino acids, and the end S ubeuec So LYSLYRDGRition for each peptide is the 172 F GPK 5 I PLQEE1YRK start position pluseiht [ K46T0 S KEFLMEQQR[start ] Score 24 E .000 [327 L RRTKEDVQK 0.666 R I ][ E 8S T GME 1207 00GKELKECGK 60 CEMPSLSRj 2 _ _ 1561 KSSWLMTSK 004.j I 540 IGVGLTLTAAJ ,o60 ] NR 0.001 [588 DT13 jfGVEESSGEA 06 2 j 11 0.000_, 28IRTKEDVQKKKI Ji !6 ILKAKIRSKARi.060 SRRNDLIIW [ RTRNEGAWL I 364 L KNDL0lW.R 048 4 110.00o] 1_ R I 288 L MEYENPITR 0.048 3 LLTLSL ~~ 0.045 Lii E~~MPSLSRRND[ o] 126i9ANLK .0 L_2KTLRIDGTV 005 ET P-SRN - il=Q LT--K .0 2 KTVQIIAFL 45 597 Q D 1.8 [KV][ LCGSAPNSRJ 0040 Table XIV-V6-HLA-A 101-9mersH L762 AAEEDS1SK 273P4B7 2 73P7.0 Table XIV-V4-HLA-A1 101 Each peptide Is a portion of SEQ 676 27314B7 ID NO: 3; each start position is 119 ILADMGLGK specified, the length of peptide is Each peptide is a portion of SEQ 9 amino acids, and the end F373 ]LLVPL1 'lV' 0.800 ID NO: 3; each start position is position for each peptide is the 28SLLGTKTFK0.0 specified, the length of peptide is start position pus eight, ____278 _________ 9 amino acids, and the end position for each peptide is the start position plus eight. QLKDDEVLR 0.8 HYLR F1F~~~icor F8 1 EVLRHCNPW 0.009 [[EIR I060 Star Subequence F603SU0.0 KiL~~ceL.N W2- DQLKDDEVL 003[~ISI~GKI~~ 3211 KWTPGMGVK |0.060 5 CQGS1±GTLKI=.6 92I~ GVKTFHGPS |0.006] 01202 LK 0.600 GMGVKTFHG 0.004 |] LD 60.600 _____________F_1 LQLKDDEV 00076FVFSN .0 51~Z TPGMGVKTF 0001) FVf _____________FT] DEVLRHCNp000____________ WTPGMGVKT 87 KMEYENPITR 0.480 WTPGMGVKT ~~~ ~ ~ ~ 10 0. 0G__ _ _ _ _ _ _ _ _ 2~ L IFL -YSLYR 10.480 142 Table XV-V1-HLA-A1101- Table XV-V1-HLA-AI 101- -HLA-AI101 10mers-273P4B7 1Omers-273P4B7 213P417 Each peptide is a portion of SEQ Each peptideis a portion of SEQ Each peptide is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptide Is specified, the length of peptide is 10 amino acids, and the end 10 amino acids, and the end 10 amino acids, and the end position for each peptide Is the position for each peptide is the position for each peptide is the start position plus nine. start position plus nine, start position plus nine. Str ][Subsequence Rs tart Subse uence SrStart Subsequence SVNKSMNSR 0.400 10.120 F339 SNPARLEK 5'084 R LIOTVEJ 157 0lITVKF~.1201 [ 694- SIQVK0.040 0.404 F-1 0-1 65I [=,120 1 9=2 [Y=HSKTCLSW1 .4 17 QAAHYLRYVK ] g=TLVFSQSR =.120 87 SADSIATLPK0.0] [1['vsIKI020[al 4HL-1-mr-1 107 LYSLYRDGRK 0.400 ] [876] DIGSNRDQLK 0.120 604 ~ ~ ~ ~ F- 6 IQTEKj~040I r- 0.2 Each peptide is a portion of SEQ L-]RQ-TTGEKK 1
-
-6- - o :4 862 ID NO: 3; each start position Is 574]0.3601 F8-8][DLDEL 108 specified, the length of peptide is RFl..J [1 FKILQNI 00 10 amino acids, and the end 1AMF-46 L~l = .320 F518E I~ position for each peptide Is the F39-- 0F0 2-8 -I L - 0.9I start position plus nine. 1221 =0 NCLVKALDIK o196- VTM 0,090 [ Subs Score 1013 LV IRSK 0.300 733E0 1101 GVKTFHGPSK:600 F22-J E iI10.300 F406- VLKLCHP I'oopj [ [ KTGMV .04-01 121VILDEAHKIK]_______________ S[ 300TCLSWEFSEK[ EQAAHYLR 02j FIKWTPGMGV 0.008 EQ SQLQSLHQ jJj~~LGSQDI0.270] L..._____LL1.IGVTH 002 FL1-9.[AIlKPYFLRR L 9.=E0 0.080 L0.001 S]EAFKLFNLAK [ooJ F]FL SANR0.8 LTL§]['rvri.I-WKIoo] 13~I FNEVS .8 EFIKWTPGMG I =0.00 5LVHLLEREK F 0.080 0 [1 53-]PmuNwvK 200] F81 -IVCNGLR 0.080 EOl MGKTHGS11.0 ]N7 GEKKNPFR R F60 11 ] 1UGEK PFR I0.200] 38 111 LELER0o[ 7[PMVTHJ0.000 I 6HAAQRKSDIK .200 F389 ] SICEMPSLSRK0.060 -V5-HLA-A 1- Omers 3 FATKNEAVQK 0 j 10060 SVTHLLEREKR .200 K Eachpeptide is a portion of SEQ F-5 ________0_ 137 RRTKEDVQK 006 ID NO: 3; each start position is 46 LAKDIFPNEK 0.20 K _____ specified, the length of peptide is 303 TPGEKALGFK .200 06 0 10 amino acids, and the end 734 ~.I~~TVk' .20 f O5 lI~I~s~f~NII i position for each peptide is the F-734-]. F--55- FLLESD .6 start position plus nine. _ 612 KKNPFRYFSK0180 [131[0 [StartI Subsequence Score 318 A0.180 [495][ N106 ICEMPSLSRl 0P.0Y40F 223 DYVILDEAHK0.180 [.054] [ I 0 784 7GEKQDLSSIK 5 [6] SLSRRNDLII 1[0.08 298 REKDATPGEK0.180 313 E [o IIWIR ][ 25i 732 REPVFPSSTK0243 I 0.040 FT [0 IIFLYSLYRDGRII010 5 TVEIW000[j RN~II1ooo [~AICEMPSLSR1016]40 LFQRLLiI]7[LSNDIWl9l 1500Tabl XV-V1-HAA11 -] 0.000 143 Table XV-V5-HLA-A11-10mers- Table XVI-VI-HLAA24-9mers- VI-HLA-A24-9mers 273487 273P4B7 273P4B7 Each peptide is a portion of SEQ Each peptide isa portion of SEQ ech peptide is a portion of SEQ ID NO: 3; each start position Is ID NO: 3; each start position is ID NO: 3; each start position Is specified, the length of peptide Is specified, the length of peptide is specified, the length of peptide Is 10 amino acids, and the end 9 amino acids, and the end 9 amino acids, and the end position for each peptide is the position for each peptide Is the position for each peptide is the start position plus nine. start position plus eight start position plus eight. [Star jSubsequence Score I Start Ss e score Sta S n Scor F3-] EMPSLSRRND I 0.000 2 DFACQGSL 20.00 j 723 RTEW OO F CEMPSLSRRNj 0.000] 0 _ 0505 RIDGrVTHL K ________________ [21~fKIEANC I17.28 L87~KGLYE 17.920 Table XV-V6-HLA-A11-10mers- L 0_ -85 VSLDHIKEL 7920 273P4B7 245 17.28 F LE E0 Each peptide is a portion of SEQ - - 661 Q ID NO: 3; each start position is [ gl RIQKIQEA I 1 specified, the length of peptide Is L] 0 28971 EYENPITRA 7.50 10 amino acids, and the end F 7 F 76.80 3931 LLMETRSPL 7.200 position for each peptide is the r [__7 start position plus nine. I 16. II V TL SL FOR_23__16.5____ ____ MLINNWQQL ff2]001 0.04 71]RYKEKEA[~50 1 SINPFNTSL 17.20 SQLKDDEVLRH 08 0 E1 8 F1 VLRHCNPWPI6.84 1239 LTLSLYKQL 7.200 I NLDQLKDDEV 0 1 - 1106]l HVEDMEERL ]7.200 EVLRHCNPWP .00 43 0 97 7.200 [101DEVLRHCNPW 01 7.200 LDQLKDDEVLTCGT E L KDEVLC OO 0F-8 L DDEVLRHCNP l.0 .I-111221TVRKL .0 ______ =0.0001 14.40 =j66 ISA Q E=000 FTKDDEVLRHC ~KQQSL__ [T D § 0 F1 42 ASLVNHVLL_]16.0001 Table XVI-V1-HLA-A24-9mers- KSMNSRRSL 1________K 273P4B7 - ______ I NLLWSL ]P.0 Each peptide is a portion of SEQ RSLASRSL 12.00 EGIAFLYSL 6.000 ID NO: 3; each start position isFo 101 specified, the length of peptide is 201 10.80 1152 SSENKSSWL .00 9 amino acids, and the end 0 __882 DQLKDDEIL 6.000 position for each peptide is the 1 .___ start position plus eight. 0 SIIEIADO I.S.ait Subsequence Score [1230 KSADPEVML E0 632 DLQNSVTQL 6.000 887 61 409 LEKLCL 9.600 88] . J 0 I6551 KDEHIAYL 9.00 111 SPEQMAHYL 6.000 F ~ ~ ~ ~~00F65][KDHALE P V9481 QYACDFNLF 1816 KGFGSVEEL 800 E 6 _____00__ ii_____________399 SLELV 6.000 30.00 F46471 FLMDLLKRL j8.640 123 DEMLT .0 E004FWDYVIL o ____ GFVHSKTCL I QLI E 853 56 F-91F207j HYIRYVKEA 8.2501 TVGGI600 [2- XV.]00 F -V1-HLA -22464-m AIPASNRLL E8V]FSQSRQIL 1260 L________ 97F50 4
-
337] KSSNPEARL 80001 144 Table XVI-VI-HLA-A24-9mers- Each peptide is a portion of SEQ T-HLAA24-0mers 273P4B7 I NO: 3; each start position is [Tab1e Each peptide Is a portion of SEQ specified, the length of pephde is Each peptide is a portion of SEQ ID NO: 3; each start position is 9 amino acids, and the end ID NO: 3; each start position is specified, the length of peptide is position for each peptide is the specified, the length of peptide Is 9 amino acids, and the end start position plus eight. 9 amino acids, and the end position for each peptide is the [tart] Subsequence o position for each peptde is the start position plus eight 1 5 T 2.000 start position plus eight. Start Subsequence Iscore [E T0Start Subsequence score 772 =MASIDDL1 QLKDDEVLR [.2 ECGKIQEAL 5 L] KTGV 0.10. 1212 DASLVNHV5.600 F 0.018 VLRHCNP00 [ 1GFKSENL 5GMGVK .01R [ -5377 QVGGVGLTL 5.600 [T I I 0.010 If-- SLDHIKELL 52L. IKWTP F31417 S]QEEIYRKF 5.544 Each peptide Is a portion of 1 VRIGQKE 500 SEQ ID NO: 3; each start =I28 ~ DYSVFLLTT IL5.l [ae ILA-A24-l0mers- position is specified, the length F525QNKDYSVFL 4 347 of peptide is 10 amino acids, 275]CQGSLLGTL Each peptide is a portion of SEQ ppde es position IF4:.8010 ~ ID NO: 3; each start position ispetdIshetatoiin =9 ~ I .D.PFPNEKVL I480 specified, the length of peptde is plus nine. HQKEGIAFL 4.800 9 amino ads, and the end c re 1231 SADPEVMLLposition for each peptide is the it j F23511SADPEVMLL4.0200 start position plus eight QYACDFNLFL 00 [E SKKce 144,0 FSKQ ELREL N 88 LYRELHNQLF0 [F876GP DQ 14.8001 HiIiSRDI fooJ LiLRGK 00 LDLEEAFKL 9491 ACFNFLJ4.00 7 1R Nlw ii 0.42 COO1ILM R 6.001 720RLVPL DSKCL C 4 I -ND 699~ QSVQLEL 4.4001 E018 SE L.F IIIRVP 4.002 [TableIW 2734B 4= 27 0FCS 263l XVNLQE4-HLF24-9mers-A-2-lmes _______ 7Each peptide is a portion of SEQ 920 DLSASHSAL 4.000 ID NO: 3; each start position is - ______ specified, the ength of peptide is [~ILQSVQ I~ 47 AR.009 amino acids, and the endEL 668 J IAGISOHOL I4.OO~j position for each peptide is the i YKKA I~o if QNSVTQLQL 4.000] start position plus eight.23j______[j SMSubsequence Table871 P8 AIKDK EV4.4C0P 0.18 EF24][ AIP SRL 2[4.0 F-619 K22.R00.04- 1r [i~~~i]618 DDVRHN 0.11 KQELELE0] F-36I- LDQLDDE 12P17 I 1 9il20 _ TPGMGV14 F-36-8- 3~WPMGVKT10er F-791 4.000 Each pGVtFHGi aptofSEQRiNI F-920]l LSSHAL R~ IDNO 3 eaKW at pGVK s ]8 Mpcfe, h gVt fGpetdisLQS F150 GMGVKTFH F6--8 [-Lpoitin frEach peptide is o tion of SEQ start position plus eight. 2]RVEKA] Fstr 1Subseuen c oe KQPSL140 F-- ] LRDUII PSLS1 DERNDL3KEAQDPI RRNLDLWIE J-_11 1 170
EMSLRR
Table XVII-V1-HLA-A24- Table xvii-vi-HLA-A24- Table XVII-V1-HLA-A24 110mers-273P4B7 I0mers-273P4B7 I mers-273P4B7 Each peptide Is a portion of Each peptide is a portion of Each peptde is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position is specified, the length position is specified, the length of peptide is 10 amino acids, of peptide is 10 amino acids, of peptide Is 10 amino acids, and the end position for each and the end position for each and the end position for each peptide is the start position peptide is the start position p6ptide Is the start position plus nine. plus nine, plus nine. [S-ta -t lSubsequence [Start I S core [Si~i I Subsequence I coe [= 1 I_____ iFo] F3921 ELLMETRSPL 6.000 4161 LLSARACCLL 4.000 398] RSPLAELGVL 112.00 [946! SPQYACDFNL 16.00 [141! DASLVNHVLL F4.0001 ___IT__ JtO [159]1 WLMTSKPSAL 16,0001 [42 1 KLFNLAKDIF 14.0001 L5..I1 QQNKDYSVFL 6000 41 SARACCLLNL 4.OQ F1 ~I LRERN 157 D3o0 F9901 AGFVH-SKCL 4.00 47 RLRDEGHQTL1= 16.000 459] SGKMIFLMDL 4.000 11.20 790~ SSIKVNVTTL 6.00 8051 TGSADSIATL 4.000 [364]1 KNDL1WIRL 246 L R 67 ] GIAGISOHOL40 [50] RIDGTVHLLI 1120 [633I LQNSVTQL.QL 16.000 F4 IKETDT 400 D ~ ~~ L~261I QNNLQELWSLl~ 6.00 IiiI[2IFSM 3.6001 KMASVVIDDL 11.20F 041[9 60 09 T M3--]I LIIWIRLP 6.000 [45-5][LESKJJ360 VSLHKELL~% ________ _______________ -78][ LPEEKD [.60 [I042]1 SINPFNTSLF 3.600 111251 DYPEEGVEES 90 [ 87[ LLYRELHNQL 5.760 I 856 I ALQEDPLESF 3.0 6951 9HY9QQRVQj 00 30KA[ ALGFKISENL 5.600 [2621 NNLQELWSLF 3.600 12301 KSADPEVMLLI1LOO! [8721 STKADIGPNL 5 [55 1 NLINTWVKEF 1 594 ]lIYRRQVFKDS [400 570 [IHU11 VSIIEIADDL 8.400 158111 VYRLITCGTV 5.000 ILA-A24-10mers 536 QILN iEERLL800 Each peptide is a portion of SEQ 6 TQVGGVGL SVTQLQLQSL 4TL0 ID NO: 3; each start position is 866 NYVLSKSTKA 8.250 1511! LSSENKSSWL 4.800 specified, the length of peptide is [258][ TPIQNNLQEL 7.20 698]I QQV A LI480 10 amino acids, and the end ACQGSLLGTL position for each peptide is the [274 ~ 9 -[ ICGLGL720 ~ I VSSQL480 start position plus nine. _ F[2-8][ EALNCLVKAL 7.200 [58Q[MPSLSRKNDL 1800 [SartI Subs Scare 1176 APEPLSGEQL 7.20 [525][ QNKDYSVFLL 400 [5l[ WTPGMGVKTF3.0001 203 QMLINNWQQL 7.200 F495 4.2641 196 GVITTYQML 7.200 384 FVSLDHIKEL 4.400 [ WI1 MGVK ]F 0 860 DPLESFNYVL 72 [738[ SSTKKKCPKL 400 F0 0100 13 LSPEQAAHYL 7.20 F-91 E 4 [ EIW MG .075 12551 LTGTPIQNNL 6.720 316 N4PGMGVKTFH 0.014 [201!1 ETLVKRGKEL 60! [171 ETSLGAPEPL 408] G K F .0121 64711AAQRKSDIKL 600 liossl KNDISPPGRF 4.0 V HGPS 1 16791 ITCDLSVKEEL 6.160 111 FLSG [7] 0 848 LQEGPKQEAL |6000 - [317[ LMAIIKPYFL 3 2851 TFKMEYENPI 6|0 17811 FTDVCNSGLL 4.00 14E [ LTTQVGGVIGLD : r 146 Table XVII-V5-HLA-A24-10mers- Table XVlll-V1-HLA-B7-9mers- Table XVlll-V1-HLA-B7-9mers 273P4B7 273P417 273P417 Each peptide is a portion of SEQ Each peptide is a portion of SEQ Each peptide Is a portion of SEQ ID NO: 3; each start position Is ID NO: 3; each start position is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptide is specified, the length of peptide is 10 amino acids, and the end 9 amino acids, and the end 9 amino acids, and the end position for each peptide Is the position for each peptide Is the position for each peptde is the __start position plus nine. start position plus eight start position plus eight. Start Subsequence Sore] FStart Subsequence [ Start 11Subsequence S 5-01 RNDLIIWIRL 1111.200] 648 AQRKSDIKL 1.096 GVIITTYQM 5.000 MPSLSRRNDL 4.800 749 KPQPQPSPL 80000 1102 M E 5.000 6]IF507LSRRNDLll 1 .1 399 10 8.000 484 QSRQILNII 4.000 L2II PSLSRRNDLIEVMLLTLSL 60000 12 IEA 4.000 .RRNDLIlWI 0.120 396 ETRSLAE [ 461 KMIFLMDLL 4.000 L . I FLSRRNDLIW 7 0723 RL49 DIFPNEKVL illCEMPSLSRRN 22 094 S487 QILNIIERL 4.00 EMPSLSRRND[0.015 1233 1 24.000 525 QNKDYSVFL 4.000 7F]T-ICEMPSLSRR I 0.015] =4 IY 4000 417 LSARACCLL 4.000 - 9 RRDIII F53o5] I 0000 8 06 GSADSIATL 4.000 Tj Pl LSR 30 I 1,215] KIE 1O .0 Table XVIl-V6-HLA-A24-10mers- DVCNSGLLL ]29.000 _920 1 DLSASHSAL 4.000 273P4B7 -1079 IPSSVNKS 20964 Q4 Each peptide Is a portion of SEQ 3 LLMETRSPL 1ifE ID NO: 3; each start position is specified, the length of peptide is 1085 KSMNSRRSL 18.000 256 TGTPIQNNL 10 amino acids, and the end FE 12.000 94.000 position for each peptide is the start position plus nine. 4 112.000 1202 [9 -K=GKEL I ILDQLKDDEVL 060195L 'SGF13.0 4L!.Q LI400 LQIIINLDQLKDDEV1111119 EANYT 1200L ] KEAEL L i [2F KDDEVLRHCN 00200 [8 |1 DEVLRHCNPW 018 16 SA L 12.0003 4.000 Ej LKDDEVLRHC 10177 I 12.000 14 7N 4.000 L _j DQLKDDEVLR 0.0151 246 AIN 1 59 RIQKIQEAL 4.000 -8-] DEVLRHCNPW 0.0185 1 142] SALASLVN ] 12.000 8769] LGIPNL I 4.0006 FV| EVLRHCNPWP 005F 7 8-- .0 [F4_j QLKDDEVLRH 0.012 245 RAIPASNRL [ | DDEVLRHCNP 1.002 930 DAQASEAKL 12.000 275 C4.000 9-49 YACDFNLFL] 12.000 416 LLAACL 4.000 Table XVIll-V1-HLA-B7-9mers- 1353 DAICEMPSL 1.0 385 VSHKEL 4.000 273P4B7 ALNCLVKAL7J 12.000 99 Each peptide is a portion of SEQ 1230 KSADPEVML 6.000 I 4.000 ID NO: 3; each start position is --________________F1_3_]_400 specified, the length of peptide is 1091 R 9 amino acids, and the end 337 KSSNPEAL 6.000 148 VLLIMPTNL 4 position for each peptide is the 1106 HVEDMEERL 6.000 368 IIWIRLVPL 4.000 start position plus eight. _ 1_2_8_1 ________ IStart Subsequence Score5 247 IPSNRLLL 11200001 14=VHLLM. .000 =i!.GLADG .000 147 Table XVIII-V1-HLA-B7-9mers- Table XVIII-V4-HLA-B7-9mers- Table XVlll-6-HLA-B7-9mers. 273P4B7 I 273P417 273P417 Each peptide is.a portion of SEQ Each peptide Is a portion of SEQ Each peptide Is a portion of ID NO: 3; each start position is ID NO: 3; each st position is SEQ ID NO: 3; each start specified, the length of peptide Is specified, the length of peptide is position Is specified, the length 9 amino acids, and the end 9 amino acids, and the end of peptide is 9 amino acids, position for each peptide Is the position for each peptide is the and the end position for each start position plus eight. start position plus eight. peptIde is the start position Start Sb en Score I [r ooSubsequence[ plus eight 49IKLCDHPRLL 1400 MVTH [ ~ [tr]Sbeune~e 1178 EPLSGEQLVj4.000 FT] MGVFHGP [ ER 0.01 F48 i: NNLQELWSL[ 4.000 1 0.010 3I..74 DDEVLRH .0) 488 L ~~Li 4.000 PGMGVKTFH7 _ 1LDDVR_000 51LKIRSKARRI 4.000 KWTPGMGV 0] Table X HLAB710mers NPATDAQAV 5 7 3
P
4 1 7 E5 ]ITTQVGGVGL1L4_000e Each peptide is a portion of F3] STKKKCPKL].4007SQINO3;ecstr F4 1400Each peptide is a portion of position is specified, the length [IE01[ LMTSKPSAL 400 SEQ ID NO: 3; each start of peptide is 10 amino acids, [11011LMTKPSL j 4.00] position is specified, the length and the end position for each [67324DLQNSVTQL 000] o pepde is 9 amino acids, people Is the start position SIKVNVTTLand the end Position for each plus nine. 791 IKVV .0 peptide Is the start positionStr I bl 736-11. LsKIJI if .0501 ___ plus eight. F s usequenceJ®r F1-9-7][. 1'~QLi 4.000 j Start Susqe cre[ 4112. =8lpp!.Lo0 ]]'oo 120.0 LYRELHNQL .000 MFDAS00 3=6______ 4.0 1 LSRRN=DLI 0.4001 [n L. UNWQL1 4.000 K.] ERM-DLIRNII 3 0 0o T04]1__ _____ql.. o [78] LPKEGEKQDL 12 IM 0.020 4[669[ AGSHM I[ 3.000 ] I iL!EMPSLRN 58 0.003 ____ AGISDHDLM __ 8000 F55-1 iVLSRIQKI F K.1 RNDIWIR E.03[ SFLRRTKEDV .00 258 80. Table NPWPISIT l-V4-H L- 7- 9mers 117116 APPSEL72.00 Each peptide is a portion of S EQ1 F~bl VII--LA13-mes-SQ DNO: 3; each start I 1 ~ 140.00 I273P4B7 position Is specified, the length [68 n QRQKQF Each peptide is a portion of SEQ of peptide Is 9 amino acids,400 ID NO: 3; each start position is and the end position for each specified, the length of peptide is peptide Is the start position 9 amino acids, and the end .pu ih.]_QKD~[~ position for each peptide Is the Subsequence f r start position plus eight. [ Q4S Subsequence Score I VLRHCNPWP 0 5 1 TPGMGVKTF 0.400 0.100 HVLLIMPTNL GVKTFHGPS 0.10 EVLRCNPW] _ _ 9 1 WPGMGVKT 0 1 DQLKD 0.020 6 T Q E1 7JKW PGMiWJ 0.3 IQK-DDE VLR 0.11R.i m__ -~ ~ ~ ~~~= L QILDERHC 10.0031[9 GVITQL2.0 148 Table XIX-V1-HLA-B7-10mers- Table XIX-V1-HLA-B7 Tmers 1 7143 7P17! I273P4B77 Each peptide is a portion of Each peptide is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position is specified, the length position is specified, the length of peptide is 10 amino acids, of peptide is 10 amino acids, of peptide I 0 amino acids, and the end position for each and the end position for each and the end position for each peptide is the start position peptide is the start position peptide Is the start position plus nine. plus nine. plus nine. Start Subsequence F§c9!r] F Subsequence IStart jj Subsequence 1 =i1[1 L] Ilr1486] ]QLIIR 4,0001 12-241 YVILDEAHKI 2 .0001 413 HPRLLSARAC :20.00 [667 GIAGISDHDL 1400 [9411 EPSASSPQYA 2.0 ______10[1201[ ETLVKRGKELE 4.0E1221 GPEDYPEEGVJ 1.8001 341FVSLDHIKEL 2.1F23 [1108 LLLLKL4.000 L TfljLLEREKRINL i.a [;5958.00R595KDSL 4.0 i!-]j NGDLEEAFKL1.0 AIPASNR~3LLLj%0J____ _ _ _]6 01 095 I SRRSLINMVLE 4.01848 ILQEGPKQEALI 1.200 FTh 4_ LI [0 25511 LTGTPIQNNL I 4.0001 1875 IAOIGPNLDQL1.0 DASLVNHVLL [104111 SSINPFNTSL 4*0I 1446- D D 1 [ 7] ACQGSLLGTL 1200 [912 EID 4364 KNDLIIWIRL 1.200 F 1 ____ 10 1 [5 4l LTTQVGGVGL 14.0001 [454 TLMEESGKMI 1.2001 A90] GFVHSKTCLJ 1201 F4871 QILNIIERLL 41 18531 KQEALQEDPL~l~~ EALNCLVA L12.00 11.200 0AjO [ 1351 FLSGMFDAS7LL L4.0001 [I1194J[ AEATNDYETL 1.00 S245] F[ F73ASNRLL78 SSTKKKCPK 4 1]1 SPDVDHIDQV 11.200] L.iI 0 ~ 1230 1 F27tVML4o00 [iF12I ADPEVMLLTL ] .0 08 1.ALGFKISENL 0 79 T 4.000 [2] S . ii1 L .I [F6[SPALV I400679 L!PLv E 1200 S MTSKPSAL FPNEKVLS 001 iASRRSLINMV][6000 F ]l1!GMIFLMDL 4.0 S349 I NPDVDAICEMjI600 F83]1 NSGLLLYREL 4.000d O--)-7-0mers F3 97 ELMETRSPL 8 I ILRHCNPWPI 0=0 0 7 F3I1 ASRRFPEAEA 4.5001 17 4OO0 Each peptide is a portion of __________I_ SEQ ID NO: 3; each start 49 I LLKNRHFKTL F600) 33 [4.000 position is specified, the length 497 5 KNRHFKTLRI TQVGGVGLTL of peptide is 10 amino acds, SETSLGAPEPLe end position for each [171 ESGPEL .00 ~ ] IWILP 4.000 I peptide is the start position [ LQ4 YSVFL4 LSSENKSSWL 4.000 plus nine. [ GGILADDMGL 771 IRE 0startj Subsequencescore [5275I QNKDYSVFLL 44000 [21 FIKNTPGMGV 0.300 [8 .07VSLDHIKELL88 N67[ TPGMGVKTFH020 [217MPTNLIN4TWV 4.00 [][7555 3.000 F10 1 GVKTF-GPSK0.5 [4T 1 SRRFPEAEAL400J F66 DH] 3.00 [9]1 MGVKTFHGPS 0.020 [8721 STKADIGPNL 4.000 1093 R 3.000 [5][WTPGMGVKTF 02 LSPEQAHYL QPQPSPLLST 30 KWTPGMGVKT [203[QMLINNWQQL 400 [1 KIR I 3.000 F87 1 GMGVKTFHGP 0.010 S317 [LMAIIKPYFL 4.000 Fl88[SPQDKAT 2.0 L77 1 PGMGVKTFHG 0.0 805qff TGASAL .0247I PSRL]200 2 IT GGV 107 149 Table XIX-V4-HLA-B7-10mers- Table XIX-V6-HLA-B7-1Omers- leXX-VI-HLA-B3501 272P4B7 272P417 9mers-273P4B7 Each peptide Is a portion of Each peptde is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position Is specified, the length position is specified, the length of peptide is 10 amino acids, of peptide is 10 amino acids, of peptide is 9 amino acids, and the en position for each and the end position for each and the end position for each peptide is the start position peiis the start position peptide is the start position plus nine. plus nine, plus eight. Sar Subsequence So Start I S e lcorel EFiKWTPGMG000] LKDDEVLRHC 10. [I8-II[DEVLRHCNPW]0.0021 9 SAS1S 0 [ 6 1 1_____ 10.00 Table XIX-V5-HLA-B7-1 mers- 0 272P4B7 Each peptide is a portion of S]E 0 SEQ ID NO: 3; each start F L01 position is specified, the length [1 of peptide Is 10 amino acids, s3P417 KSMNSRRSL 101 and the end position for each Each peptide is a portion of [0.00 peptide is the start position S806 I M plus nine. position Is specified, the length '~S bsqanc [7 of peptide Is 9 amino acids, F MP52 LI0TW t usqec Score and the end position for each IN I-l peptide is the start position F87o0 MPSSRRDL 120.0 plus eight148 ESKIM Subs equenS Score 1.0 [Thi RNDLIIWIRL ] .0 - 37 E WISLSRRNDLLJ00 i FE L~L~~ 10.4001 [941 I[E7ASPY711] 10E.00FL SRRNDLl C.W 0 SLSRRNDLIWlW[107 IPSSVNKSM40.0 N .040j2 fO_ _6 -3 [L!NEGAWL 9.00 L _I__LsR____ -E @ [74 KPQPQPSPL 140.00 F21-1L Ev~x 18.0001 L01 EMPSLSRRND. 0 8 0[CEMPSLS[ TPGEKALGF RN_ 16.000 Ii 3CEMPSLSRR0006 123 0 ~..]L~!Dl~IRJ[[3ij194j ASRRSLINM F350.700 QNKDD9 16.000 Table XIX-V6-HLA-87-10mers- SPALV r55F 60 272P4B7 [ [PA0 Each peptide is a portion of [03] SEQ ID NO: 3; each start [ 1 L4-1 6.000 position is specified, the length 619 FSKQELREL 454] TLMEESGKM 6.00 of peptide is 10 amino acids, r - r _1 and the end position for each 2 247 IPASNRLLL 0 [7]9 TKKMEY 6.000 peptide is the start position I - _ _ 1 069 S plus nine. 20.00 LSKSTKADI 6.000 IrtSubsequen L 0 484 Q II 6 1111 VLRHCNPWPI 413]0 L [361 LSRKNDLII 6.000 21 LDQLKDDVL0 2 12451 RAIPASNRL 100 NLDQLKDDEV 0060123 KSADPEVML J 563][ DA 6 [ [i-]IEVLRHCNPWP]J [1:53] 15.00 F41771 SSLMEKSF 5.000 FT] QLKDDEVLRH 0.010 0 I i L P. D E R I Q IQs ~ Q E V V i] i [ A S L V N H V L L 1 5. 00 opeii10 and the en oilo orec petie s hestrtpoito Table XX-VI-HLA-B3501- Table XX-VI-HLA-B3501- Table XX-V4-HLA-B3501 9mers-273P4B7 9mers-273P4B7 9mers-272P4B7 Each peptide is a portion of Each peptide is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position is specified, the length position is specified, the length of peptide is 9 amino acids, of peptide Is 9 amino acids, of peptide is'9 amino acids, and the end position for each and the end position for each and the en position for each peptide is the start position peptide is the start position peptide is the start position plus eight plus eight. plus eight Start Subsequence Fscore Subsequence ] cre Start Sce 212 [ LSSFRGQEF [ DASLVNHVL 3.000 1721 =TSLGAPEPL 5.000 587 E K11 "LSSENKSSW .000901 AASEAKL .000 T5-HLA-3501 1 36 LSGMFDASL 1=000 [ 8] IAGISD J3.000 272P417 ________________________VYR Each peptide is a portion of 191DOSSPQYACDF NO: 3; each start 5 EATNDYETL [1081 KIRSKARRI 140] position is specified, the length 353f .0 of peptide Is 9 amino acids, DAICEMPSLnd the end position for each 23911 KSAICARAI 4.00 069] SPPGRFFSS 0] peptide Is the start position 331 I KNGDLEEAF 4.000 316 IP 2 plus eight 1178 IEPLSGEQLV 400 [521 2.000 l tarI Sce KGGILADDM94611 SPQYACDF [61 6.0 1102 MVLDHVEDM9[E.0001 [0ql PSR D [.500 [1164 KPSALAQET C4P0001 1280] L K 2.000 W 0.400 62 KQLE 964 I RQNFSSQSL 2.0 C1 7[0.225 194 RNGVIITTY 4.000 [1LMl 120001 DKI 40 KLCDHPRLL [oo 86I GGVE [oJ1~12~Dl~ L.6 [5 KIQEALNCLE 20ii MPSSRRN 0.100 [i0]LJGSDHDLMJi.0lIAIL12L DLIIII.i RNLWR (~06 F985 I APNSRAGFV 1.000 I2.000 MPSLSRR 1001 =884SPQDKEA 000 DATPGEKAL 3.00 Table XX-V4-HLA-B3501- -HLA-3501 DQVTDDTLM =3.0007 MASVVIDDLEach peptide is a portion Of Each peptide is a portion of _772_1__________1_ SEQ ID NO: 3; each start SEQ ID NO: 3; each startI SGAWLREPVFition is specified, the length position is specified, the length F6-9-811 QQ~WRVAF 1 F--1of peptide is 9 amino acids, of peptide is 9 amino acids, QQRVQKAQF and the end position for each and the end position for each Ijfl j[ETRSPLAEL 3.00 peptide is the start position peptide is the start position 114511 DPSGETLSS 30 _ pluseight. plus eight. 6691 AGISDHDLM 3.000 Subseq Scor1 [791 SIKVNVTTL 3500 TPGMGVKTF 2 17 I STKKKCPKL [{Th6] SALAQETSL 3.000 [ 0 9841 SAPNSRAGF C0 T0.L. 103511 DSFKDTSSI C.0 1 FIKWTPGMG 10.030 648 AQRKSDIKL 13.000 [C IKWTPGMGV KDDEVL 0.1 S546fl TAATRWIF 3.00 [ ] MGVKTFHGP 0. D L N . 0RSKARRIVS 30L 001 151 Ta -HLA-H33501- HLA-3501 1-HLA-3501- 731417 0mers-273P4B7 Spe273P4 7 Each peptide Is a portion of Each peptde is a portion of Each peptde is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the length position is specified, the length position is specified, the length of pepide is 10 amino acids, of peptide is 10 amino acids, of peptide is 10 amino acids, and the end position for each and the end position for each and the end position for each peptde is the start position peptide is the start position peptide Is the start position plus nine, plus nine. plus nine. Se c o Sa SusquenetI11 _____F__44]__A__ SS_ 944 ASSPQYACD 5.000 497 KFKTR7.0 780 LPKEGEKQDLj. l9 DSIATLPKGF 5.000 1 749 iKPQPQPSPLL]. 1 896 WPIISITNES 2.000 KSADPEVMLL [738 ssTKKKCPKL j 5.000 90 F2QK j -0o0o] 1[ 83 I NS-GLLLYREL F 5. 0 001 F573 IQEVVj2.000] 258 TPIQNNLQEL 2790 SSIKVNVTTL 50 4 H3M 2.000 MO4 =PNSFF2.0 983GSAPNSR -AGIF 5.000 ITO71 ] NPFNTSLFQF 96] SPQYACDFN L ___ 1 2.000 M358 MPSLSRKNDL [4E 51 FPNEKVLSRI E6.000 1 FfLRSPMGVL18 3619 8 S P A E G V 1 5 .0 0 0 18 ] [ P Q D K E A I 4. 0 08 5 6] I A Q D L S F j . 0 619 FSKQELRELF ~L.... 83ECNSGJ .0 994 HSKTCLSWEF 15.000 . ___000_____ F37511 QPPSPLLST][ 2.0000 147:1]RLRDEGHQTL 12=0 j 30 9 HQKEGIAFLY 1 459 =.000 .000] 49 NPDVDAICEMI 12.000 J 247 ASNRLLT 2.000_ 1361 LSRKNDLIW [61 I 3.000 L 2.000 3855 VSLD- 15_KELLff Rt385L E.v ElOOj i 2~p FSSENKSSWLM: 3. 000 12791 LLGTLKTK 2.0001 LSSENKSSWL 10.0001 586 TE7W 2 Ili~LPQ Y 10.00 F64711 MQKSIK 3.00 [ QLNER [2.000 IfT EK13LPEQAAHYL 3000 6482 S DIKSADPEVM 9_000 3.000] E T I2.0 653 DIKLDEHIAY=00ill[SSEAKGPEDY 3415[LLSARACCL 2.000 1 ISARACCLLNL][900]L.1_____J __ __________ F48 7IAGlSDHDLM 9 1 F WNPATDA E8 ___ 9.GO 142 7S9]N3.000 2.000 fAPEPLSGEQL[___ISRSNM___________ 1 LASRRSLINM] __ ] 245 RAIPASNRLL[601AC L30 2 GLKMY 2.000 HPRLLSARAC 600DSVHL .0 2KFLKI .0 6411 1 F30-91_ ___ 1525 69QNKDYSVFLLJ~ 3.00]3 SATNEV2.000 F275 NSSLGMEKSF8[5.002[ TaEle XX2-V-HLA-3501 L~u1IGLLGLKTIIS000 2 J 1-DPEGJ 2.00 34 F2]= [2 10m s 2 277Eac peptdel a1 G p ortionG of AFS 2E1DN:3;ec tr poitoni secfid1 te5 ent Table XXI-V1-HLA-B3501- Table IXXI-V4-HLA-B35- Table XXI-V5-HLA-B35 10mers-273P487437!i I Omers-273P4B7 [ lmers-273P4B37 J[ I mr27PB Each peptide is a portion of Each peptide is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO; 3; each start position is specified, the length position is specified, the length position Is specified, the length of peptide is 10 amino acids, of peptide Is 10 amino acds, of peptide is 10 amino acids, an e en position for each and the end position for each and the end position for each peptide is the start position peptide is the start position peptide is the start position -_______plus nine. plus nine, plus nine. [S ubsqunc F Start I Subsequence ]Score] oe Subsequence core core 1951| NGVIITTYQM 1 2.000 L M F 0RR SALSPEQAAHYIKWTPGMGVK .001 |69AGISDHDLMY I .0][~~~T G ~ IoI__________ 1894 I NPWPIISITNII2.0001 Table XXI-V6-HLA-B35 2 7Pmers-273P47 Eac3 petid2i a __ T abl ofV5-HLA-B35- Each peptide is a portion of 682 73P417 SEQ ID NO: 3; each start stI p .500 Each peptide Is a portion of position Is specified, the length SEQ ID NO: 3; each start of peptide is 10 amino acids, position is specified, the length and e endposition for each FTable XXlIV4-HLA-B35- of peptide is 10 amino acids, peptide is the start position 1 Omers-273P4B7 Iand the end position for each plus nine. Each peptide is a portion of peptde is the start position Sta SEQ ID NO: 3; each start plus nine. Subsequence position is specified, the length ~ ~ __ of peptide is 10 amino acids, [ Subsequence Score 1L RHCNP J 1.200 and the end position for each 20-.00~o(T LDQU(KD-DEVL-7F [.150 peptide is the start position M0SLFT]D plus nine. -1110 __-00 W5PGMGVKTF L KWTPGMGV I K6 LSRRNDLII 0 TPGMGVKTFH[.00I IT E00 F L :R [9fl ~ ~ ~ ~ ~ ~ ~ ~ 31 MGKFGSDQ0 .i SRNLII 010 5[ LKDDEVLHC O. 01061 GVKTFHGPSK 0.030 _ _ _ ________ K6] M Ij KWTPGMGVKT ljo j 1211E CEPLRR..1 [III]LM?.SLSRRND] 0010]j [i1 DELRCN lp 1 153 Tables XXII - XLIX: TableXXJ-V1-HLA-Al- TableXXV-HLA-A1- TabieXXI-VI-HLA-AI 9mers-273P4B7 Smers-273P4B7 9mers-273P4B7 Each peptide is a portion of Each peptide is a portion of Each peptide Is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3;each start SEQ ID NO: 3; each start position is specified, the position Is specified, the position Is specified, the length of peptide is 9 length of peptide is 9 length of peptide is9 amino acids, and the end amino acids, and the end amino acids, and the end position for each peptide is position for each peptide Is position for each peptide Is the start position plus eight the start position plus eight. the start position plus eight. Ipo-s 123456789 score [pos] 123456789 scorel [~][ 123456789 E 1 -9]QKEGIAELY Ff28] 1 16 [5531 F1 -4i 811 VgNSGLLLY] 26] [ ][K-ELRELFT 16 ]624TLRELFT!ED 14 F[22GSDHDLMY 278611 KQDLss-Kv 16 630 IEDLQNSVT 14 [1133 1E1SGEAKY]84 16 R6551 KDIKLEH] 5]1LSPEQAAHY 11211 12 S DGED DD U16] 167111_IDHDLMYT ][14 1j. EAHY RYII 21 1152 S K l 17 ADSIAILP 1fj 40]1 LAELGVLKK 121 1210 E 16 858 F1 4 4101FLCDHPRLLS1233 E] 1874] [1 F2-2-11 loE[~ [311 AINDE [159 E [IE -EP S-A S P] E EI ]NLFQQN51DY][_9] F89 Y F [ 162 14 F6f1EAIDAQAMDR 119 11 15 [73QGDDEFTDV 1i31 641I!LDEHDAY 1 F12-3LR EPVFESS -6 1L 15 1 E N 13 SSEAKGPDY SSADPEVMLL 81 61 15 5 F DV6NSG 1-8 688 flDWE '15 [57 DS~L 131 F783 8DAQAVD5VY[91 15 56753 [81EGEKQDSS][8 5 QLSN 555QEVVR 1 Y1141 YEEDPSGE18 933 15 687 [236 19VMLLTLLY 191 [701E 1031 GIAFLYSLY 17 103 15 7181 EI 5207LADDMGLGK17 071 E1 8 []IEMPSLSR][7 10 EEMA!5 81]PEFYL11 37311 LPLQEjY117103 15 1 9021[13 450 VTDDTLMEE_1103 R ED 15 19501 El [574] GQKENVXVY17 1126 E E F5I j91 E L 725] RNEGAWLREI11143 is 11010 P:EV_7KAK] 1 [11 7 S7EAKGPEDI1 1176 1E [1032 D T I 1197 TNDYETLVK11192NKMEATD 111107] E 1 f 36 M9DDEEAF!2LF71 E S 3 F7[LEEAFKLFN 1 GSLLGTLKT 11141 1181 E S 1 216 RGQEFVWDY ISENLMAII 14 27LDEAHI!KT 162]IKYIRD]_________ FL-ELW-S!LF-D] 3216[TabeVQ J14 Tab1eXX-I-V4-HLA-A 28-211 TFKE 1[330] KDVQKKS119e-mers-273P4P47B 316Each peptide is a portion 154 of SEQ ID NO: 3; each Each peptide is a portion of ableXXII-VI-HLA-A0201 start position is specified, SEQ ID NO: 3; each start 9mers-273P4B7 I the length of peptide is 9 position is specified, the Each peptide Is a portion of amino acids, and the end length of peptide Is SEQ ID NO: 3; each start position fr each peptide amino acids, and the end position Is specified, the Is the start position plus position for each peptide is length of peptide Is 9 eight. the start position pius amino acids, and the end S ce eight position for each pepde is j4s W M 0 Po 123456789 the start position plus e55gh 655 t.EHIAYL 29 eight. Pol| 51219 ALNCLVKAL 28 [Pos 1 12345|6789 TableXXlI-V5-HLA-A1- I6-2K1QF1E7- 2] [7 AAHYLRYV 9mers-273P4B7 368] Each peptide is a portion _4_6_4] 27 [QAl of SEQ ID NO: 3; each F _49] 197] V Q 2 start position is specified, 259Q 1 the length of peptide is 9 amino acids, and the end [F04-21 [ 2 F EE position for each peptide 1215 26 [32fl Is the start position plus IL 1 eight. [3 E379[ E] Pos| 123456789 |sc42 M~ F3RD!I 136-6 DLI!L1 25 1FI42 6-1 AEMlFLV!4(L LU 2 F 1][ 10jDlWI] 3-9-31 LLES 25 F5] KMfl ML 21 61 |i LSRRND]1 | E 9 | 0I 91 RNL [R |K5L 10995LI5]VI3DH2 2 SLSRR6 83 21 4 |]PSLSRR!NDLL _ ___ 1 |CEMPSLRR j[z[QLIEL][4 ~ [vE~wL 8 RRNDLIIWI W fiG~H1~ ~ [DSISN ii 676 EE K l YTDS 24 11 60 LMSKA 1 TableXXII-V6-HLA-A1- 1813 T S2021 E2] 9mers-273P4B7 [91fl SED [0 Each peptide is a portion FQ 23 1311 of SEQ ID NO: 3; each 1246 fl 20] start position is specified, 20 the length of peptide is 9 F--1 f amino acids, and the end 372 F3LEI2 position for each peptide F 24] 23 396 20 Is the start position plus eight. ___ 530 SVFLLITQV 20 Posi 123456789 |572 E 4] |LKDDEVLRH|8761 ] 20 5 KDDEVLRHC|_12 18GLDMLI~l[IIKFSEL 2 TaF XX5 -V1 -HLA-A0201- 816 W DEVLHCN 11204 F9IN2-0]Q EK~1DSA!SL I20 letf SeiE s 11 66 E F7b [lII-VI-HL
-
4 09 [KDH L[22] F49 DFPNK 19 9m~r-73P4BLi7 1461_LARO l] F59 RIKEA 19 F6I[T2ED9] S 112%ij F99QKGA ] 19 E i F76 ] DISMS j22] 5140 19DALNH] 1 |2f 124578 80611 GSDSAT EDij~] APSNL] 11092 FLS~L E7 ~ [ LT IPI f FM SADPLMLL I 155 TableXXIll-V1-HLA-A0201- TableXXIll-V1-HLA-A0201- TbeXIVlHAA21 9mer-273P4B7 9mers-273P4B7 L e-273P4BL7 Each peptide is a portion of Each peptide is a portion of E po SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position it specified, the position is specified, the position is specified, the length of peptide Is 9 length of peptide Is 9 length of peptide is 9 amino acids, and the end amino acids, and the end amino acids, and the end position for each peptide is position for each peptide is posion r ea peptide Is the start position plus the start position plus the start position plus eight. eight. eight. Pos 123456789 scorPe os| 123456789 s Pos 123456789 419 ARACCLLNL 19 02 EGIAF LYSL 17 835 SFATKNEAV 16 454TLMEEGKM 124 MGLGKVQ906 16 490NIIERLLKN 19 136 LSGMFDASL17 1167FALAQETSLG 16 50 KTLRIDGTV 19 CQGSLLGTL 48 35 TTQVGVGL GKMIFLMDL17 SRIQKIQEA 537 QVGGVELTL LLKNRFKT09 63LQSLGIAGI 1956KENVVVYRL1719IAMGG 5 739 STKKKPKL LITCGVEE 1 E 949 YACDFNLFL 9 603 SLIRQTGE 17 1098 SLINMLDH IAYLQSLGI 269 15 11 ATNDYETLV 19 6 IAGISHDL 363 1228 DIKSADPEV 19 WLREPFPS 87LLYRELHNQ 56 ALQEDLES 7 480 I 1 IMPTNLINT 18 ALQDAQASE 1 483 15 198 llTTYQML DAQASEAKL 1 506 li1 262 NNLQEWSL 1230 KSADPVML E 30 ALGKISEN NLAKDIFPN 16 523 15 318 MADKYFL FTDVCNSGL 62 E 15 353DAICEMPSL 18 88 LYRELNQL 639 L 3 SPLAELGVL 1ASLVNHVLL 1 674 15 4 LMEESKM1 LVNHVLLIM 16 771 D E1 472 LRDEGQTL NLINTWVKE 15 543 LTLTTRV 156 LINTWKEF 798 545 LTAATRI 8 180 SKDERRNL 55QAVDRVYRI 18 90 QNGVI1683 NwPl 5 772 MASIDDL 01 DATPGEKAL16 9 15 861 PLESFNYVL 18 R4L7R1 D M 1FSSQSLEHV 118 KIRSKARR 15 FLLTTQVGG 16 980 F109 SRRSLUNMV 18 62 TDAQAlDRV 6 1078 QPSSVNKS 15 115 WLMTSPSA 18 571 YRIGQKENV 1 186 1235EVMLLILSL 58 YRLITGTV1 F12 LLTLSLYKQ 18 619 FSKQELREL 1218 15 F2 39LTLSLYKQL 622 QELREFTI26 124SLYKQLNNN 18 658 EHIAYLQSL233 2ALSPEAAH 1 FLMEQQRTR 16 1 F 1 35GDLEEAFKL| 17 73RTRNEGAWL 1 ~IRFEEL 1 84 SLLLYEL 1 829SLGMKSFA29 KEAKNDL 1 156 TableXXll-VI-HLA-Ao201- TableXXIl.V1-HLA-AO201-l Eachpeptide is a portion 9mers-273P4B7 7of SEQ ID NO: 3; each Each peptide is a portion of Each peptde Is a portion of start position Is specified, SEQ ID NO: 3; each start SEQ ID NO: 3; each start the length of peptide is 9 position Is specified, the position is specified, the amino acids, and the end length of peptide is9 length of peptide is 9 position for each peptide amino acids, and the end amino acids, and the end is the start position plus position for each peptide Is position for each peptide is eight the start position plus the start position plus P0s 247 eight. eight. [E 15 Pos I123456789 Iscore] FPOS F 23456789 score []TPMV T4 66 ALEELAEQG 14 58 fl 14 [ GMGVKTFHG 12 801 DVCNSGLLLI6041 LIRQTTGEK14 1 [1 FI 8 GLLLYELH LQLQSLHAA 11]K_ L~ (LLLYRELHNjfij i[QQLMQ141[ TGGKFl1 QLFEHQKEG TableXXIII-V5HLA 121 ADDMGLGKTF [- 51 A0201-9mers-273P -] DDMGLGKTV 14 I41I I Each peptde Is a portion SFLSGM EDAS 1662 YLQSLGIAG 14 of SEQ ID NO: 3; each ___________________start position Is 4j 6DASLVNH VL.665 S1 specified, the length of ['- LIMPTNLIN 4680 LSKEL1 peptide is 9 amino acids, F165 14 j F6 WEESHYI1 and the end position for Fifl K uJ *'7''JL0 I ILi each peptide is the start IWTPGMRVKT 1 position plus eight. 1NRlQQRNGV 1 1 17061 QP 196 GVIlTTYQM 14 1746 KLNKPQPQP [24tKTSSTKSAI ]1]74GKDSI1 ~jRNLII1 241 ACARAIPAE 1 RRN 1 7 FDFAC 1GSL 4 QEGPKEAL 14 274 ACQGSLLGT 14 860 F 1 4 277GSLLGTLKT 1PNL1 TableXXIII-V6HLA 286 FKMEYENPI 14 988 SRAGFHSK 1 A0201-9mers-2731417 316 NLMAIKPY 14 1006 E 14 Each peptide is a portion 337 4KSSNPEARL 1 1049 SLFQS 14 of SEQ ID NO: 3; each ___________________start position is specified, 375] PLQEEYRK 114 1055 VKQFDAST 14 the length of peptide is 9 394] 0LMETR7PLA85 KSMNSRRSL 14 amino acids, and the end (400 14 101RSLASRRSL .. 14 position for each peptide SPLAELLK Is the start position plus 06 LAELGLKKHVEDMEEL14 eight. F48 KKLCDHPRL 14 1168 E 12 F 1RLLSARACC 14 1172 TSLGAPEPL 14 1 LDQLKDDEV 15 417 LSARACCLL 1173 SLGAPEPLS 14 l QLKDDEVLR 12 I HIDQVTDDT 14 1211 KECGKIQEA 1qVLRHCNPW 12 DIDQVTDDTL 1 1222 CLVKLDK 14 [2] DQLKDE 468 LLKRLRDEG 14 1237 MLLTLSLYK 14 4 LKDDEVLRH 8 496 LKNRHFKTL 14 KDDEVLRHC 503 TLRIDGTVT 14 .
EflVM jjf GVGLTLTAA 14 U=2ai-9r TableXXIV-V1-HLA F41GTTAR 1 A0203-9mers 52GLTTAATR 1 7PB 9mers-273P47 73IGQKENWVtonPisspecified 157 TableXXIV-VI-HLA- TabeXXV-V1-HLA-A- TableXXV-Vl-HLA-A3 A0203-9mers- 9mers-273P4B7 9mers-273P4B7 273P4B7 Each pepfde is a portion of Each peptde is a portion o Pos123456789score SEQ ID NO: 3; each start SEQ NO: 3; each start |NoResultsFound. position Is specified, the position Is specified, the length of peptide Is 9 length of peptide is 9 ______________amino acids, and the end amino acids, and the end TableXXIV-V4-HLA- position for each peptide is position for each peptde is A0203-9mers- the start position plus eight. the start position pius eight. 273P487 [~l 123456789 score Po][ 12345678 Pos123456789 2 ALSPEQAA 793 9 NoResuitsFound, [471 RLRDEGH [ 24 F842 5 69 FYIqEj 927]1LDQAE 1 TableXXIV-V5HLA- F 3 4I [937 A0203-9mers- 1 273P467 F 21008E Pos| 123456789[score 27] 1179 19 | NoResultsFound._ 591a TabIeXXIV-V6HLA- F1 [Wf] 22 03 AL Y A0203-9mers- F3221 F[ 31] 273P4B7 [379E J[2 E8 Pos 123456789 re[ 4621M 12 241] DE |NoResultsFound. 503 2263] TableXXV-V1-HLA-A3- 1098 F2 82] 18 9mers-273P4B7 09S 21 [292 P Each peptide Is a portion of 252 2316 1 SEQ ID NO: 3; each start [ A Y position is specified, the 279L LF 21 3191 length of peptide is 9 320 24891 amino acids, and the end position for each peptide is 3 --- E-Q 2 [E the start position plus eight. 375 EK 21 18 Ps123456789 scr|9 YQRO 1[501VYLTG[1 593 KIYRRMFK 34 [i7SQPSVK 21 603 Q 400 PLAELGVLK 798 18 1049 SLQFSSVK |2 VK E 20 224 ~~E~l F F8 27[65[LEAEG2 6 NY T [18 YLDEAHK |E -1]Dl86f 494 RLLKNRHFK 27 [2311 HKIKTSSTK 20 883 1E 1 1014 VVKAKIRSK 26] [370 Q95|6 18 1113 RLQDSSEAK 26 415 RLLSARACC FRO 1012E 1203 LVKRGKELK I26 LVEP NKKj20 10181 iifE YLRYVKEAK 25 [795] N ITL GK1 QVGGVGLTL 2 [2 VKAL[ F5- 21GLILTAATR |25 40__AFKFNLAK 19 1226 D E 583 RLITCGTVE |251 RIQQRNGv1 4 K L D1 774 SVIDDLPK 25 36 L|IWIRVP 155 K1 837 ATNEAVQK 25 598 QVFKDSLIR QLMGSEDK 127 LTLLK 25 71 LMQRT 9 8 l YE!1N 17 158 TabIeXXV-V1-HLA-A3- HLA-A3- TableXXV-V1.HLA-A3 9mers-273P4B7 jm 137 9mers-273P4B7 Each peptide is a portion of Each peptide Is a portion of Each peptde is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified the position is specified, the position is specified, the length of peptide is9 length of peptide is 9 length of peptide Is 9 amino acids, and the end amino acids, and the end amino acids, and the end position for each peptide is position for each peptIde is position for each peptide is the start position plus eight the start position plus the strt position lu eight. Fos 123456789 Fcie5os Pos ~ ~ ~ D 13579soePs1456789 (score Pos 123456789 ] LAD.LDM.GLGK ]-1--1-1S 121 AM §1G F1 1 ~1 SV K M SRj988 SAGFMUSKI16 132 IIAFLSGMFI11171 11132 EESSGS [17 1017 16 E17j H-L~t!T ]Iil116 LQ EILG FI17] 1156 KSSWMTSK 16] TLINTWVK D] 1197 TNDYETLvKflM 125EVMLLTLSL F19-6][GVIT7YQM 16F PGMR l 36 DLEEAFKLF 15 204 MLNNQQL 17 1 72 RVKTFHGPS 476AKDFPNEK 15 211 QLSSFRGQE 17 186 RNNRIQQR 16 49 DIFPNEKVL 276 QG5LLGLK4 LLTGTPIQN 1K 5 308 IALFKISEN 1726 RARE 16l 15 368 2W5RLVPL1 FLRRTKEDV 16 E1 372RL2PL] E 13281 RTKEDlVQKK](6 108 F1YR5R 1 373 LVPLQEEFY332DKSS1161L 15 405 GVLKKLCDH 17 [3RLEKPD 16 15 41j6 1354 AICEMPSLS 1 1148] VLIMPTNL E] C4L23] NLGFS-17 356 CEl 16 1 171VKTFHGPSK][1 Q4V4D9E 140 LAELGVLKQKV 16 [19D4D LM 49N0ERLLKN 1426NLGTFSAQD 116 [ I 491 IIERLLKNR13141SNLMAIIK EE R550V IFDPSW15301 1360 1 [566[AVDRVYRIG 1[[2 T 6 3931 E ~]RIGQK~I [7[[1TL!VV1 ~ [K~H~L ii 6131tySJ 17 F5 561 ATAQVl 16 14241 LLLTS 15 636 SI-LQQS1758 LMEESGK 1 QSHAAQRK 15 [ AAQMRKSDIK][1 s9 VRIC16J[o]RDTTL15 [651KLDEHIAYL[17159TERR[ ]51_HERRItI 7] SLGIASD91 051 [55MYICDL61 1 6831 SVKEEDVV 7 46KNKQQP1 F66I -- 5] (7 53QSPLTH1 [COl5 RQTTGQ!Q1 15 6-LDVVEESHEEII 706 FFLYEFE]QN 17 [1L F73] 1EPVFPSTK7 [7631 DKI 79 SKvNT 15 1i][KKCPKLNK [I F863 E6 810 SIATLPGF 15 F77DDLPK8] EK ] 8R 1813 K S 15 I80[ADIATLPK][1[ 913 EA 18K 15 F8-] JGMEKSEATK iTI 920 16 F95NLEE Dfl [ [TLQEGPKQE] T[99SQEVE 16I][YSGEhiI F1Ossil SV! QFDAsT][7 DD80 SLGAN 16j0261 VDEE 15 159 TableXXV-V-HLA-A3 Ta[ e XV 1HL .A. TableXXV-V-HLA-A3.. TableXXV-V -HLA-A3 9mers-273P487 9mers-27 9mers-273P47 Each peptide is a portion of Each peptide is a poilon o Each peptide Is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified the position is specified, the position is specified, the length of peptide Is 9. length of peptide is 9 amino acids, and the end amino acids, and the end amengof eidsadte isn9 amaminocacidsndndhehendnd position for each peptide Is position for each pepde is position for each peptide is the start position plus eight. lt r i lus eight.1 the start positon eightt, ii~o1 123456789 Po[ 123456789 Pos 1042 SINPFNTSL 826 TNSSLGMEK 1 564A 13 F075 KQEDASTPK 829 SLGM E 64 SLHAAKS 1088 NSRRSLASR 15 1 PESFNYL 14 F29 AWLE F 102 TLVKRGKEL867 YVSRSTKA 779 DLPKEGEKQ 13 1209 ELKECGKIQ 15 6 DIGPNLDQL E7 SSIKV 13 1242SLYKQLNNN 916 ElD LSAS a ] 81 wPGGVE 13 19 AHYLRYVKE 14 929 QAQASEAK 1 820 SVEELCTNS NGDLEEAFK 14 986 PNSAGFVH U1 823 ELTNSSLG 13 93 HNQLFEHQK 14 1020 RSKARRIVS 1 877 IGPNL2LK 13 106 FLYSLYRDG 1030 GEDEDDSFK DKI 888 EILRHCNPW 13 129l TVQIIAFLS 14 1089SRRLASRR ] 4 898 IISITNESQ 13 144 LVNHVLLIM 14 1133 ESGEASK-9 HVE 15 LIMPTNLIN 14 1219 ALNCLVKA 14 F S RRIVSD 2251 VILDEAHKI 14 13 LSPE Y 13 1102 MVLDHVEDM 13 253 LLLTGTPIQ 14 FA 73 SLGAPEPLs 13 288 MEYENPITR 56 VLSRIQKIQ 19 Y3 299 EKDATPGEK 14 1 312 KISENLMAI 14 95 QLFEHQKEG 13 340 NPEARLNEK 14 100 QKEGIAFLY 13 V4-HLA-A3 366 DLIIWIRLV 14 118 GLADD 9mers-273P4B7 392 ELLMETRSP 14 135 FLSGMFDAS 13 Each peptide isa portion 443 DVDHLDQVT 14 49 LLIMPTNLI of SEQ ID NO: 3; each ___________5_____ start position is specified, 467 DLLKRLRDE 14 160 WVKEFIKWT 1 the length of peptde is 9 495 LLKNRHFKT 1NL3 amino acids, and the end NVVVYRLITposition for each pepde 57 NV R IT 14 232 KI)KTSSTKS 13 is the start position plus 584 LTCGIVEE 14 246 AIPAS L 13 eight 5 85 ITCGV K 1i4 249] ASNRLLLTG 1 o 123456789 Fso~ F T G72 EKIYB9 5EKlYRQVF 351 OVOAICEMP 13 W KWTPGMGVK23 642 LQSLHAAQR 14 383 KFVSLDHIK 13 ] Fi1 662 YLQSLGIAG 14 4 TLYFS S 1l1 666 LGIAGISDH 14 480 LVFSQSRQI 3 700 RVQKAQFLV D1 487 QILIIERL 13 fjieXV-V-HLA-j1 WLREPVFPS 14 ]488 ILNIIER 13 L m-273P413J LLSTHTQE i 4 5 KlRGTV 13 D767 ISSKMASV 14 53 LLEREKRIN 13 775 WIDDLPKE 524 QQNKDYSVF 13 785 EKQDLSlK 14 540 G 13 17881 DLSSIKVNV 14 563] DAQAVORVY1 160 Each peptide is a portion TabeXXVI-VI-HLA-A26- TabeXXVI-VI-HLA-A26 of SEQ ID NO: 3; each 9mers-273P4B7 I- 9mers-273P4B7 start position is specified, Each peptide is a portion of Each peptide Is a portion of the length of peptide Is 9 aminothe ed SEQ ID NO: 3; each start SEQ ID NO: 3; each start poino acanhe ed position is specified, the position is specified, the position for each peptides 9 length of pepde is 9 is the start position plus amino acids, and the end amino acids, and the end eight. position for each peptide is position for each pepfde Is [Pos 123456789 score the start position plus eight the start position plus eight. (IF6 SLSRRNDLI(Pos 123456789 FPos 123456789 II CEMPSLSRRF 191 EFW DYVIL 1 1106 E 19 SLSRRNDI 515 I EREKRINLF [2l 1239 LTLSLYKQL 1 5RNDLMIR 9j1 5D}LEEAFKLF 18 __________F_1067 DIPGF 2162 KDEA EEL1 TableXXV-V6-HLA-A3- 1133S 272 Q 9mers-273P4B7 .1 [ Each peptide is a portion 1 EE F of SEQ ID NO: 3; each start position is specified, EK EI 5351 the length of peptide is 9 [563 D R amino acids, and the end position for each peptide F35. 5 Is the start position plus 353 AE 589 E eight. 5371 6T2E11 Ps| 123456789 s32 21 628N [IQLKDDEVLR| 2 3 TLLS 190] LAHA 1 8~ |EVLRHM1PW 1 1 IEAD 1(51DANQF[8 9 |VLRHCNPWP|1 1 IDLA 1j i]DEEDFf~ TableXXVI-VI-HLA-A26- [914 E T F1 0171 I 9mers-273P4B7 Each peptide is a portion of 121 FTDVNSG 17 SEQ ID NO: 3; each start position is specified, the 1373 F 941 length of peptide is 9 197VITQ Lf7 amino acids, and the end [ position for each peptide is [457 E259 PIQNNLQEL the start position plus eight. R45 1 [Pos 123456789 Fs608re TTGEKNP 245311 DTLMEESKI T 39 ETRSPLAEL 3174741 DEGHQTLVF17 9A5 F22EVMLLTSL 508 GTVHLLER]( 8-01 DVCNSGLLL 28 846ET E Q20 56911 TVTHLLERE 117 I 102] EGIAFLYSL 27 8 530 SVFLLTTQv I F6581EHIAYLQSL J[ 2i F 63 E574 GQKENVVW 17 876] DIGPNLDQL 20 670 S 1 F4-j DIFPNEKVL 26 1195 2683 SVKEELDW 1171 128 KTVQIIAFL [26J 301 723 RTRNEG F931 EHVEKENSL [493 ERLLKNRHF ([i9] F8-0j9 DsIArLPKG 17 2EVVVKAKIR 5- 10 12 EVV KR[25-[ F709 EEQKF ~1 930 DAQSE AKL 17 379 EYRKFVSL24 739S P l 689 DWEESHYIEEES E1 EEAFKLFNL [EI103 D SN F19 il EFLSQ 16 161 TableXXVI-V1-HLA-A26- TableXXVI-VILA-A26j TableXXVI-V4-HLA-A26-1 9mers-273P4B7 I 9mers-273P4B7 9mers-273P4B7 Each peptide is a portion of Each peptde Is a portion of Each peptde isa portion SEQ ID NO: 3; each start SEQ ID NO: 3; each start of SEQ I0 NO: 3; each position is specified, the position is specified the start position is specified, Iengthof peptide Is 9 length of peptide Is 9 the length of peptide Is 9 amino acids, and the end amino acids, and the end amino acids, and the end position for each peptide is position for each peptide is position for each peptide thestartposition lu eight the start position plus eight. is the start position plus Pos] 123456789 |score Pos 123456789 score eight. 5 KVLSRIQKI 1328RKDQK11 [o 2 7 6 EALEELAEQ 140|5 GVLKKLCDHD 1j P0 76 DEFTDVCNS| 1[6] FIKWTPGMGE[ I F81 ]VCNSGLLLY |42- 422 CCLLNLGTF 15 1 031 GIAFLYSLY 1161 439 EDSPDVDHI -HLA-A261 DASLVNHVLs-27347 1 5-6 LINTWVKEF 16 lS [ DS I Each peptideIsaportion F60]F-5] f of SEQ ID NO: 3; each 160 WVKEFIKWT start position Is specified, 183 ERTRNLNRI 16 NVVYLI the length of peptide is 9 [2-1 --1f amino acids, and the end SRGQEFVWDY position for each peptide 220 FVWDYVILD 16 588GTE YR 5 is the start position plus 275 CQGSLLGTL 98 eight [3isJ[ENLMAIIKP III i6i] 636 SVTQLQLQS 15 o 123456789 316]1 NLMAIIKPY ][16J 686 EE 331 EDVQKKKSS 16 688 I.DEEH 4 RRNL 9 347 EKNPDVDAI 1692]1 EES 15 li 366 DLIIWIRLV 16 M 67J DISKMASV 1 368ilIWIRLVPL 16 825 CTNSSLGME 15 SRRNDLIIW LVFSQSRQI 841 EAVQKETLQ 4901 N6ERLLKN 116 9 ESNVSIIEI 15 [osfj RIDGTVTHL E1] 1011 EEVVVKAKI 15 TableX 517 EKRINLFQQ Ej16 1013 VVKAKIRS 15 9mers F6____________16___042______S-L Each peptide is a porton 626 ELFTIEDLQ 16 1 aS of SEQ ID NO: 3; each EPVFPSSTKstart position Is specied, PVFPSS Tthe length of peptide is 734 EDISSKMAS 16 1E A 15 ino acids, and the end 766 DISKMAS16 236VMLLLSL position for each peptide 774 SWIDDLPK 16 is the start position plus 816 KGFGSVEEL| 16 TableXXV-V4-HLA-A26. eight. 8 DQLKDDEIL |9mers-273P4B7 1014 WKAKIRSK 16 Each peptide is a portion 8 EVLRHCNP 20 3_EAFKLFNLAF1 of SEQ ID NO: 3; each DQLKDDEVL ~~j1 EAFKLFNLA 15 start Position is specified,Ii]EVRCP1 59 RIQKQEAL 1 the length of peptide is 9 79 TDVCNSGLL |1 amino acids, and the end j DDEVLRHC W F _ _27]_GKTVQiAF position for each peptide 127 KTVQIA 1 is the start position plus r e i- i~ FI-3-2] IIFLSGMTab5eXi-VhLA-A26-II-I-L eiB0702-9mers-273P47 i LVNHVLLIM t 15i o ps 1 s23456789 te 19-6] GVIITTYQM 15] ~ TPGMGVKTF 14 237l STKSAICAR 15 9 GVKTPHGPS 1 162 Each peptide is a portion TableXXVII-VI-HLA- TableXXVII-VI-HLA of SEQ ID NO: 3; each B0702-9mers- B0702-9mers-273P4B7 start position is specified, Each peptde is a portion Each peptide is a portion the length of peptide is 9 of SEQ ID NO: 3; each of SEQ ID NO: 3; each amino acids, and the end start position Is specified, start position is specified, position for each peptide is the length of peptde is 9 the length of peptide Is 9 the start position plus amino adds, and the end amino acids, and the end eight position for each peptide is position for each peptide Is [P-]l 123456789 the start position plus the start position plus 247 IPASNRLLL 25 eight. eight. 749KPQPQPSPL I23 Pos 123456789s Pos 123456789 39 SPLAELGVLI 22 920 DLSASHSAL 14 1161 MTSKPSALA 13 1233 DPEVMLLTL I 22 I FF4 11 TSLGAPEPL 13 14 ]SPEQAAHYL 20 1 16 R M 14 1176 E 1 11009 EPEEVVVKA21143 E1231 D1 1164 KPSALAQET1212 12 303 TPGEKALGF1219 29 IIIHPRLLSARA 1]WRFEEL1 8EAKFL1 19851 APNSRAGFVF 13 1079 IPSSVNKSM151] l 3l [168 TPGMRVKTF1QQ 13 99 I 1 59] 8NPATDAQAV 11 10 fl 12 [~IKSSNPEARL 17 Z1DRGIJ~I16LGFAL1 361 ETRSPLAEL1112 KQ FL F1 S F80117SPLLSTHHT _F7] ___ 1DPLESFNYV]I.IIZ]IPKET]!]28TINLE1 [ [NPWPIISIT ] 7 [FWWL[1]22DAQSL1 1451DPSGETLSSr17[26[AASR][1]74OQLGT2 11 EPLSGEQLV 17 13 [2 KA EA1 1188 SPQDKAAEA1331 S301 12 120KSADPEVML 11 L~O.1 T 32KYLRK1 SEESGKMFL 55RIDGTVTHL 1 56IIGVIIL[i 2 KYVL 1 57QVGGVGLTL 1 1 EERN] 3 TARI1 49ARACCLLNL 1 55QKYVL[I i56KNVYL1 SAQRKSDIKL32 12 723 RTRNEGAWL15[5JDSPA][I]68EAYSL 2 941 EPSASSPQY 15511 EHIY [6681 235 EVMLLTLSL1710 736 F 12 142 ASLVNHVLL14 751 QPQPSPLLS 13 7391 [38[ IWIRLVPL iii 753 QPSPLLSTH 13 7D 2 [379] EEYRKFVSL i 849E 781 2 [21AELGVLKKL 73 1 13[91j[ S121 634 QNSVTQLQL 14 949 YACDFNLFL 13 [806][ A T 21 7331 EPVFPSSTK 14 F1I-4PFTSF F[ GP A[l 7501 PQPQPSPLL 069 SPPGRFFSS 13 5] 8-141 [PGGV 41085 KSMNSRRSL 13 [7]DGNDL1 LPKGFGSVE .4 17S3] GPNLDQL 12 163 TableXXViI-V1-HLA- of SEQ ID NO: 3; each TableXIII-Vi-HLABO8 B0702-9mers-273P4B7 start position is specified, 9mers-27347 Each peptide Is a portion the length of peptde is 9 Each peptide is a portion of SEQ ID NO: 3; each amino acids, and the end of SEQ ID NO: 3; each start position is specified, position foreach pepdde start position is specified, the length of peptide is 9 is the start position plus the length of peptide is 9 amino acids, and the end eight. amino acids, and the end position for each peptide is [Pos 123456789so position for each peptide Is the start position plus Ii] DQLKDDEVL the start position plus eight. _______eight Pos 123456789 |scow IN~ 123E56egt 930 DAQASEAKL 12 TabeXXVIII-V-HLA-808- 849 QEGPKQEAL 21 982 CGSAPNSRA19mers-273P47 1160 LMTSKPSAL 21 1006 KDDEPEEVV 12 Each peptide is a portion 1209 ELKECGKIQ 2 1042SINPFNTSL of SEQ ID NO: 3; each 51 1070 PPGRFFSSQstart position s specified, 12 20 the length of peptide is 9Fl 1166 SALAQETSL 12 ano acs, and the end 2301 TLVKRGKELposition for each peptide is the start position plus 141TTWF 2 TableXXVIl-V4-HLA B0702-9mers-273P4B7 [Posl 1699 D2 Each peptide is a portionIEAKEATKNG 19 of SEQ ID NO: 3; each 1 28 E1 start position is specified, F7 9 KNT FI -9 0 E the length of peptide is 9 amino acids, and the end [37[ E3YRFVS EEI position for each peptide 182 [K EL is the start position plus 122 26] Fl QAVDRVRI eight. [36[S N [ 6461 HAQRKSDI 19 Pos 123456789 e 9 5 |TPGMGVKTF|1 ~ [PEAG]~ 6 SMSI19 2 |IKWTPGMGV|1 SWTPGMGVKTF 24 368irI~RVL1 . 1188 SQKAE 1 TableXXViI-V5-HLA- 4 LA C 1 B0702-9mers-273P4B7 495 4 SPQ4HY 18 Each peptide is a portion 512 FLL4ERI88 E N of SEQ ID NO: 3; each 973 EHVEKENSL 1701 start position is specified, the length of peptide is 9 F'-_624_____________1 amino acids, and the end 138 E359S position for each peptide 1168 F] 86 S K L Is the start position plus eight. [9 F 8 EDT 22 39 lPos| 123456789 |soe 3 |MPSLSRRND 13 45 E] F 3 E 4] |PSLSRRNDL| 619 464 18 | LSRRNDLI[104 6 T 5I |SLSRRNDLI|j~ 02SARSI[ ]61EKPRF1 8[ RRNDLIFWI |5 E881L E 18 TableXXVIl-V6-HLA- E TDl 9 13 EiADDL 1 80702-9mers-273P4B7 333 Q1020 1 [Each peptide is a portion 525 E ep t e 7 164 TableXXVIl-V1-HLA-B08- TabeXXVIU-VI-HLA-B08- TableXXVIII-VI-HLA-B08 9mers-273P4B7 9mers-273P4B7 9mers-273P4B7 Each peptide is a portion Each peptide is a portion Each peptde Is a portion of SEQ ID NO: 3; each of SEQ ID NO: 3; each of SEQ ID NO: 3; each start position Is specified start position is specified, start position is specified the length of peptide is 9 the length of pepbde is 9 the length of peptide is9 amino acids, and the end amino acids, and the end amino acids, and the end position for each peptide is position for each peptide is position for each peptide is the start position plus the start position plus the start position plus eight eight. eight. Pos ((123456789 sPosT123456789 Fscrel123456789 [cor~e 11241 MGLGKTVQ 78|141LPKGFGSVE16 F1002 EFSEKDDEP 15 1 VLLIMPTNL |17 841 E T U 28DIKSADPEV 15-1 IPASNRLLL | 17j869 L T 1 [-][TLKTFKMEYlL17_QKDDE 16 TabeXXVIII-V4-HLA [0]F GEKALGFKI 1 17 11069 RS08-9mers-273P4B7 SVLKKLCDHPpepde isa portion F4-061 1F -1-91of SEQ ID NO: 3; each LLKRLRDEG start position Is specified, 488 ILNIERLL1191 16 the length of peptde Is 9 F5-1 17 12-1] 16amino acids, and the end SEREKRINLFon reach peptide 592 EKYRRQVF 11226 is the start position plus 632 DLQNSVTQL 7 EE 15 eight. DLSVKEELD 36 E 15 FPos 1 744 CPKLNKPQP 17 491 E 5 F 151 784 GEKQDLSSI 17I][KSRQI]i []TG VTF 4 81GPKQEALQE 17I'1 RQKQA i1[YG VTF I12 8611 PLESFNYVL 17 6] 920 DLSASHSAL D 1] E 9 15 is] 935 EAKL.EEEPS 17 431 15 1 TabmeXI-V5-HL 1 17SINPFNTSL 1 64 Each peptide Is a portion TPKNDISPP 1 of SEQ ID NO: 3; each 1204 VKRGKELKE 9 start position is 1221 NCLVKALDI17 212 specified, the length of MI~ peptide is 9 amino acids, 1231 SADPEVMLL 17 and the end position for 233DPEVMLLTL 7E each pepde is the start 141 DASLVNHVL 16278 position plus eight 20 MLINNWQQL16 1292 EETFPE IS 1scie 294 ITRAREKDA 16 320 IPR a FPSLSRRND 301 DATPGEKAL 16 4 E E [fl S8 IILRRTKEDVQ]I! KLDG ~LRNLI 1 0]KLCDHPRLL TabeXXVIII-V6-HLA 4981 NRHFKTLRI 1F6 105 R L08-9mers-273P4B7 597 RQVFKDSLI 6574 E5 Each peptide Is a portion 623 ELRELFTIE 16 653 E of SEQ 0 NO: 3; each 648 AQRKSDIKL16 F 6 start posion is specified, _the length of peptide is 9 F7 RTR W 16 amino acids, and the end F7491 K75301 WL ES position for each peptide 772_iMASWIDDL '6]N I is the start position plus eight. 165 Pos .123456789 TabeXXIX-V-LA- TabeXXIX-V-HLA 3 QLKDDEVLR I 1510-9mers-273P47 ] __________________ SVLRCNPWP Each peptide is a portion Each peptide isa portion __________of SEQ ID NO: 3; each of SEQ ID NO: 3; each SLDQLKDDEVstart position is specified, start position is specified, 2 E the length of peptde is 9 the length of peptide is 9 7 DEVLRHCNP amino acids, and the end amino acids, and the end position for eac peptide Is positon for each peptide Is the start position plus the start position plus TableXXIX-VI-HLA- 1 B1 510-9mers-273P4B7 iegt __egt 13150[Pos-73343 Tg 123456789-E IsorlP08 1F2345-6789 Each peptide is a portion of SEQ ID NO: 3; each ___1______ start position Is specified, 219 EFVWDYVIL 2461 12 the length of peptide is 9 2 amino acids, and the end _25_6 F DAICEMPSL F121 position for each peptide is L3Z-J E S F3 5-31 EE the start position plus 385 S3851 N R 2 eight. 396 ETRSPAEL I39311LLMETRSPLJ( Pos123456789 408 399 973 EHVEKENSL2264 4K [ 658 EHIAYLQSL 2472 fl k4-61GHQTLVFSQl 2i 98 EHQKEG1AF 9 481 [s EE 49DIFPNEKVL 1 8 INIR ~~J[0] DTTL ]~ 247 IPASNRLLL499 1 T 0 QVGGVGL 1 55141 E 86GSADSIATL 1 4 PPPP iiI[3 VGGT 1 1230 KSADPEVML 12 142 ASLVNHVLL14 772 13 [616 FRYFSKQEL 12 176 FHGPSKDER14 781 E 1] [634 S1 2451 RAIPASNRL816 64 3011 FDATPGEKAL849] E 137IKSSNPEARL 14 6 LSNV II[6] AIDD 12 38 14WRLVPL 14 1 ] U] [6 I 12 409 KLCDHPRLL11085 1S ] 71 447 IDQVTDDTL14 1091[ 891R P 12 457 EESGKMIFL 11096 R9201 488 ILNIIERLL 14 11 13 924 AQQ 576 KENVVVYRL11172 E949 N 12 FSKQELREL 14 202 T E 91 14 1SHYFQQRVQ 1212 EKE j993 VHSKTCLSW 12 10IFESQNKEFL7[14]1231 E II 1042 N1S 1 SSIKVNVTTL11233 E067 F 12 840 NEAVQKETL 14 E2 1160 ES 87 TKADIGPNL119 AHYLRY F1 195 ETD E1 HVEDMEERL F ] 121 12 1143 EEDPSGETL 138 E1229 IKSADPEVM W RRFPEAEAL 1 ~RQIELf~ 9KAKGL1 SGLLLYREL 1 62KQAEL[f78FDCSL1 199 I HQKEGIAFL [ELHNQLU1 F91] DALNV 13 El 11 166 TableXXlX-V1-HLA- ableXXIX-VI-HLA M P47 B1510-9mers-273P4B7 Each peptide Is a portion Each peptide is a portion TableXXIX-VS-HLA of SEQ ID NO: 3; each of SEQ ID NO: 3; each B15iO-9mers-273P4B7 start position is specified, start position is specified, Each peptide is a portion the length of peptide Is 9 the length of peptide is9 amino acids, and the end amino acids, and the end o s N:ech position for each peptide is position for each peptide is poiini~the length of peptide Is 9 the start position plusthsarpoionlu th sar amino acids, and the end t estrpitinpu eight. position for each peptide __ eight.___ Po-s 123456789 score FPo-J 123456789 score is the start position plus 92 LHNQLFEHQ11 eight. 1021 EGIAFLYSL 11 70 LAEQGDDEF 10 S GILADDMGL8 DVCSGLLL 10 146NHVLMPT 11 11 E 148 VLLIMPT L 11 27 GKTVQIIAF V LUMPTN 204 MLINNWQQL 11 136 LSGMFDASL 10 L SNNLQELWSL 1 272 DFACQGSLL 11 AHKITS TableXXX-V6-HLA [2-f I231 10~ [B1510-9mers-273P4B7 CQGSLLGTLEachpetidesa portion LGFKISENL 11 376 QER 10 QID N 3; each MAIKPYFL E 10 start position is specified, F _________ _________I___ the length of peptide is 9 F35 IPSLSRKNDL 1592 F 10 amino acids, and the end 386[ SLDHIKELL[EF RYF 1 position for each peptide SDHIKELLME is the start position plus SAELGVLKKLeight. 1DHPRLLSAR 6 HDLMYTCD 12 7 [~1LLSARACCL i173RTNGW 107fDQKEVI~] 4171 LSARACCLL 11GAL 419 ARACCLLNL11 930 D E TabXXX-V4-HLA 460 GKMIFLMDL 11 947 F 0 B2705-mers-273P4B7 KMFLMDLL 19F Each peptide is a portion SLKNRHFKTLSEQ ID _____start position is specified, NKDY-'6 11 1066 EESPGF 1 the length of peptide Is 9 52 NKDYSVFLLc F54 TAATRVIF 11 11661 10 amino acids, and the end 625posiion for each peptide __ isQL t 01he start, position plus 632 DLQNSVTQL 1] 1239 T eight 6 AQRKSDIKL ] H 15 699 QRVQKAQFLTableXXX-V4-HLA- 6 70flB1 510-9mers-273P4B7 F-51 MGKF 1 QKAQFLVEFEach peptide is a portion 76 THHTQEEDI of SEQ ID NO: 3; each 761 HHTQEEDIS start position is specified, the length of peptide is 9 TabeXXX-V5-HLA B19min acids, and the end B2705-9mers-273P4B7 t t Each peptide is a portion ~ DQKDDIL s th strt ositon lsof SEQ ID NO: 3; each 913 SIEIAOL eght. start position is specified, 1152 SSEKSSL lii [os 2345789 Iscrelthe length of peptide is 9 1121 KIEALOL 1 5 PGMVKT amino acids, and the end F position for each peptide the start position plus eight. E of SE1234567893;core EVLTSL F9-1-3]~~LAQGDE 10r oiin sseiid F11-5-21 F~~~DVS GLLLh egt f etdei RDGRKGGdILd heen 9NEK GKTV10lAF LSGMFDASLeah ep~d V 1TTQM is the start position plus TabieXXXI-Vl-HLA- TableXXXI-V1-HLA eight. B2709-9mers-273P4B7 B2709-9mers-273P4B7 [pos| Each peptide is a portion Each peptide Is a portion of SEQ ID NO: 3; each of SEQ ID NO: 3; each ___8 ______ start position Is specified, start position is specified, [ 9 20 the length of peptide is 9 the length of peptide Is 9 F1 amino acids, and the end amino acids, and the end SPSLSRRNL 1 position for each peptide s position for each peptide is SSRRNDLIW the start position plus the start position plus n__ eit- eight SPosl 123457897sc e Pos J1-234567891 soeI TableXXX-V6-HLA- 111 111 B2705-9mers-273P4B7 18 1481 Each peptide is a portion 80L of SEQ ID NO: 3; each _8__o _F21_9] start position is specified, [245 244] the length of peptide is 9 247] amino acids, and the end [ position for each peptide Is the start position plus Dl 337 E eight. [f] 343 E [Pos 123456789 |scr ] I [E [2f DQLKDDEVL|I1 {~]RIs~L[1]39PLRNL 1 [42 |LKDDEVLRH|19 R3 59 Q 13 SQLKDDEVLR 37 F TableXXXI-V1-HLA- ] 5 RG H 1 398 E B2709-9mers-273P4B7 F57-6 1 15 02 1 Each peptide is a portion 816 E R1 of SEQ ID NO: 3; each 1024 146 FL start position Is specified, 1072 Q the length of peptide is 9 amino acids, and the end 1090 52 position for each peptide is 112 F5 4Ifl QK I J the start position plus 111 F6I8I01 eight. 1 2iii [741 [ | 123456789 scre |1421 I8ii[6TGSADSIATL ] 5 |RRFPEAEAL 2 ____ 1096 RRSLINMVL 25 8731 Tl 596 |RRQVFKDSL|24 252 RLLLTGTPI jEHl 82Q 419 |ARACCLLNL|23 256 Q8911 616 FRYFSKQEL|22 3091 913 IElADDL1 699 |QRVQKAQFL 32RVLEI|l 08KRKRI1 183 ERTRNLNRI 382 |F Sl F 11 [ILRDEGHQTL[]47QLIELDI 181SRLSR 1 1493811 ERLLKNRHFII2] 518 KRINLFQQN F1 411|112 [481NRHFKTLRI|2173RREALIi ~ JKAPVL1 571 YRIGQKENV 20 723 NSQ Dli 189 |NRIQQRNGV19 919 LTLSLYKQL J[ j1] 1019 IRSKARRIV 19 42 KLFNLAKDI13 1095 SRRSLINMV| F49 [ DIFPNEF 3 168 Each peptide Is a portion TableXXII-V1-HLA of SEQ ID NO: 3; each the length of peptide ls 9 amino acids, and the endpoionispcfetepsinispcfedth position for each peptideleghopetdis9aiolnhofepdes9am o is the start position plusacdadteedpstoacsndhendoiin eight.foeahppdeIthstrfoeahppdeithsat 1o1 123456789 Icoeosto lseihpoion luegh SIKWTPGMGV Ijjos 13579 soe[s 12468 WKWTPGMGVK 1~I141QGKEL2 0 GALS i TabTeXXXI-V5-HLA-[ B2709-9mers-273P4B7 44DEHTvI2I[41MNNQL6 Each peptide is a portion[82!ELT SLf2]28[DAHIT ]] of SEQ ID NO: 3; each 1177 PEPSE231 [246][ AI PL 1 start position is specified, the length of29 EA NDLI][ j EN VAI 1 peptide is 9 amino acids,26 QEWLD 48 QINER and the end position for each peptide is the start position plus eight d P01123456789 scr61 GEKPR L ii98 ES SIE 6 [ ~RRNDLIIWIL J62 QLEFI 2 111SIIDL 1 [TPSLSRRNDLI 70 EQKF ~1 ~ EESSP(6 ILSRRNDLIWiW41NAVKT 2 15 QFSKF[6 TableXXXI-V6-HLA- ~ IEVOV 1 131EMLLL~ B2709-9mers-273P4B7 I ~ ~ ] 2KFLKI11 Each peptide is a paortionVVAI 215 VLRQI 1 of SEQ ID NO: 3; each start position is specified,A the length of peptide is 92 amino acids, and the end psto i E 1e19 t 168 T R sce t position for each peptide is the start position plus _ 180 s E 15 eight. [ ept i each 1 RIU Y 15 IP 123456789 Iscorel FFP A [ 2s56 781 | DQLKDDEVL| 1 20[YNIRR[1]30 KDQKS 1 LDQLKDDEV~]tI LAIP [1136CMSSK1 TabeXXXl-Vi-HLA- .38 1 EEKRINL 23 I3] - IR1 B4402-9mers-273P4B71 15 Each peptide is a portion of SEQ ID NO: 3; each start position is specified, theP
-
I length of peptide is 9 amino 278 2 S439 EDSPDVDHI 111 acids, and the end position for _____F5]___ for each peptide is the start 3j 4 position plus eight [7 KEEIYR S 22 F8-764 SP 2123456789 42 AELGVLKKL I 29 1 Q 1491 ELKR j -bEEDPSGET-LA 2721 2A E V 1 149611 LNTL-HLAi] B6402-9mers-273P4 ~~~~~Each peptide is a portion of 1 K Ef SEQ D NO: 3;: eac start start ~~~~~~~position is specified, the 1E~l::I KGA 15 the ~~ ~ ~length of peptide is 9 amino20]F-28 E1 amnoacids, and the end postio posifor each peptid pepsd the 9 star is the star ~position plus eight.-fl E5f FP-o-ll 124567 fs-corej D F123456789-5 I F290 18 F301 EESGKKS EFL 849 QEGPKQEALj 1 RELFTEDL EEAFKLFNL1 F1 TableXXXIIVI-HLA DEGHTLVF 189 ,5 EECNSL2 13442-9mrs-23P437 129PEP LGEQL F181491 KETND Each pptideIs a ortioQELWSLFDF15 SEQ ID O: 3; acLEREKRINL2 posiion s spcifed, he RIKE NV YRL I_721CLNGT F5 length ~ ~ ~ ~ ~ EKNPR 222pieis9aio1 4- 1 acidsand th QELRELFTio for achpepde i th strt 0FESQNKEFLl-5 posiion lus ight 378NEAV4QKETL5 LM-PSGT~jMEESGK-6]lF D2FPNEKVL GEALF9 TableXXXil-V1-HLA- TableXXXII-V1-HLA- Each peptide is a portion B4402-9mers-273P4B7 B4402-9mers-273P4B7 of SEQ ID NO: 3; each Each peptide is a portion of Each peptide is a portion of tartlposition peifeds SEQ ID NO: 3; each start SEQ ID NO: 3; each start thenlengthsofapdpthe isd position is specified, the position is specified, the amino ac h ed length of peptide is 9 amino length of peptide is 9 amino pstio for each pptd acids, and the end position acids, and the end position i ht for each peptide is the start for each peptide is the start position plus eight. osition plus eight. [ 123456789 E P 1os F123456789 score]Pos 123456789 score 51NLFQQNKDY1] 2 IPASNRLLL 14 EEKIYRRQV ] 5 MEYENPITR [ TableXXXII-V5-HLA ]L_______E ][ II [B4402.9mers-273P4B7 EKKNPFRYF] F311 KISENLMAI7 Each peptide is a portion 6 4-8 AQRKSDiKL] 151 F31411 SENLMAIIK j of SEQ ID NO: 3; each 6-54 IKLDEHIAY 1318 MAIIKPYFL 14 start position is specified, KLDEHIAYL SRKNDLIW the length of peptide is F6 55] K-L -E- -I-Y L j P 6-2 FSR-KN D LI W-amino acids, and the end F6 81 EELDVVEES 1 F NDLIlWIRL 1 4 I position foreach peptide 1KEFLMEQQR 15 386] SLHIKELLis the start position plus F74 9KPQPQPSPLII [ [ SPLAELGVL ]Fi ] eight. 7 EEDISSKMA 65 F50 IDGTVTHLL Pos 1256789 soe 80 GSADSIATL 15 F51 NKDYSVFLL 14EMRSLSRR 81 SIATLPKGF 4 TAATRIF 14 P 14 [1KGFGSVEEL1L~ 54GQKENVVVY 1 ~SRDIW 1 I1SSLGMEKSF][! KEELDVVEE 1 J SRDI 1 I8 DEILRHCNP ][ [ 6 [ VEFESQNKE l 88] EILRHCNPW EFESQNKEF l j1F8PEEVVKAK [j] [01QRTRNEGAWI] F10_ 15 1721 F AWDLi TableXXXII-V6-HLA-1 103DEDDSFKDT MA S D B4402-9mers-273P47 1 KDTSSINPF 15 SIKVNVTTL Each peptide is a portion NDISPPGRF 858 QEDPLESFN 4 of SEQ ID NO: 3; each 1067 DISPPGRFF start position is specified, 11085 11ij F8-6[Efl EFY[] the length of peptide is 9 KSMNSRRSL LESFNYVLSamino acids, and the end 1194 AEATNDYET 903 14 position for each peptide 1211 KECGKQEA 9 ESNVSIE is the start position plus 1 ECGKQEAL ][ 1 [ IEIADDLSA I eight KNGDLEF EPSASSPQY F [ DLEEAFKLF F4SAPNSRAGF QEALEELAE 1081 DEPEEVVVK 71 AEQGDDEFT 14 142 SINPFNTSLE [76 DEFTDVCNS 143 INPFNTSLFTabeXXXII-V-HLA 84 SGLLLYREL 1 196 RRSLINM L B5101-9mers-273P4B7 1 QKEGIAFLY 95 EATNQYETLEach peptide is a portion 411 DASLVNHV QEALNLVK of SEQ ID NO: 3; each 1 LMPTNLI VMLLTLSLY 14 start position is specified, the length of peptide is 9 156] L F 14] amino acids, and the end F 83[ ERN position for each peptide is F[19-7][ [TableXl-V I -H~-LTi the start position plus -1 ___] ]40 9 mers29es 3 P4-7 eight. 170 TableXXXIIIU-VIHA TableXXXlIl-VI-HLA-LA TableXXXIIII-V1-HLA B5101-9mers-273P4B37 B35101-9mers-273P34B7 B35101-9mers-273P4B37 Each peptide is a portion Each peptide is a portion Each peptide is a portion of SEQ ID NO: 3; each of SEQ ID NO: 3; each of SEQ ID NO: 3; each start position is specified, start position is specified, start position is specified the length of peptide is 9 the length of peptide is 9 the length of peptide Is 9 amino acids, and the end amino acids, and the end amino acids, and the end psto position for each peptide is position for each peptide is poiinfr each peptide Isthar position fo ahpplu s the start position plus the start position plus eight. eight. eight S123456789123456789 score 123456789 [860 DPLESFNYV|29 555 S 17 546WTMTRWIF 115: 660]IAYLQSLGI | 249 Q 141] DASLVNHVL|816 G 582 1060 DASTPKNDI 122] 16 [622 QELRELFTI 1231 DPEVMLLTL [251 G F1 F73IF 15 QAVDRVYRI216 8 15 930 DAQASEAKL| 24 3 SPLAELGVL 2455 16 F906Q 907S 23 512081 KELKECGKI[ 1124 MGLGKTVQ I 1R F E 14 Z58IGQKENVV1V 16 E AFl 14I 1171 QAAHYLRYV 21 6141NPFRYFSKQ F 47 S21DATPGEKAL 559 NPATDAQAVEEY 116 I 112 DE 563 DAQAVDRVYE2 7 16 11 949 YACDFNLFL 2 1 PGGV 617 ITVEI 1 33DAICEMPSL 2 101DEEV 618 GSDRR 1 646 HQRKSDI FI11351 F 11 1 1 IL1 7721 FMASVIDDL 2 071 16 98f I Q I 1166 SALAQETSLF207]1 11D 1 1178 EPLSGEQLV 20 11126 16 2521 IPASNRLLL |1191 1145 E2561 14 31 MAIlKPYFL | 11681LAQETSLF2 L-fl NPTRAREK F668]IAGISDHDL 19 12181 EALNCLVKA 16 F01 l 8031 KGTGSADS 19 2211 NCLVKALDI - 6 340 N E 14 1985 APNSRAGFV 19] 49 DIFNEKVL jj 3611 14 1009 EPEEWVKA| 9 152 PNEKVLSRI 1 [3661 245 RAIPASNRL 18 55 KVLSRIQKI 1 374 14 F545 F 8 65f EALEELAEQ EiifJ 382]RFSDI 1 F175 EATNDYETL 18 1 4 SGLLLYREL a ] 480] 1[ 231] SADPEVMLL|18 J 104 IAFLYSLYR DE [4981[ENHFTLRI ][1-4I 4 7SPEQAAHYL 7 120 LADDMGLGK 15 T 14 51 FPNEKVLSR 17 1 137 SGMFDASLVF15 560 A14 3 QGDEFTDV| 152 MPTNLIN1 l [6321 14 225 VILDEAHKI 17 286 FKMEYENPI 5 [683 E14 322 KPYFLRRTK| 1 296 RAREK -j 1727 E E 4 401 LAELGVLKK 402 IAELGVL 171 TableXXXIlll-VI-HLA- TableXXXIIi- Tabe B5101-9mers-273P4B7 jB51OI-9mers-273P4B7 [ r7 Each peptide Is a portion Each peptide is a portion Each peptide Is a portion of of SEQ ID NO: 3; each of SEQ ID NO: 3; each SEQ ID NO: 3; each start start position is specified, start position is specified, position Is specified, the the length of peptide Is 9 the length of peptide is 9 length of peptide is 10 amino amino acids, and the end amino acids, and the end acids, and the end position position for each peptide is position for each peptide for each peptde is the start the start position plus is the start position pius position plus nine. eight. eight [E l 1234567890 1 os123456789 cos123456789 score 1152 SSENKSWLM 755 SPLLSTH1-HT 14[D E 116 36 DLEEAFKLFN 17 M SSKMASVVILDQLKDDEV iij HE F989 RAGFVHSKT 4 1 K RODDEV LRH [ T102]I EGIAFLYSLY IM [1011 1EEVVKAKI 14 E 1 108KIRSKARRI | ~~IFGEMD 1 10441 T L QbelIV-VlHLA-A-H- [LA-[IEI KT II B10 -9 mers l-3ners-273P4B7 [ 3 3[ 1 15E91 Each peptideiis a portion of SEQ ID NO: 3; each start each position is specified, the 465ssRe 17 TabeXXXII-V4-HLA- length of peptide is 10 amino a5101.9mers-273P47 acids, and the end position Each peptide Is a portion for each peptide is the start 5 of SEQ ID NO: 3; each position plus nine. [874]fKDGIAD1 start position Is specified, Po-s 13579 score 11 32ESGA 17 the length of peptide is 9 1117SEKPDY 3 ' 216 IQEALNCLVK 1f17 amino acids, and the end 88QIPEFY 2 i~IEML~L IJL posiflon for each peptide F858 _F2] is the start position plus E 2-6EEE eight. 609 E 25 [i ] Pos 123456789 Io 231 F3 2LA [2] TPGMGVKTF161 23 [5] LlIKWTPGMGV 12I69AIDDM 3[T]LEERN [6 SPGMGVKTFH 1 2 A~PQH 1121 NF~~KY[*~ fJMGVKTFHGP 1011 EAHLY 2 ~ [DQVR~~W 28[IKTKE 21 F - 1 FI-5-1 21 F[ 66lIAQQRVYI 1161 TableXXXllI-V5-HLA-F B5101-9mers-273P4B7 3861 21 F95611 16 Each peptide is a portion of SEQ ID NO: 3; each jj0 E 197fl E _ start position is specified, R VPl L i1 [1007 E11 the length of peptide is 9 F9__0]E91___2_7_1 amino acids, and the end position for each peptide 78 DE 1143 E] is the start position plus 653 E 19 176 AE eight. 89 E E j58E Pos 123456789 |3131 E N MPSLRRN 13 47-31 3DGH1VFL-I]1 1LA!P ~ [~] LSRRNDII 13 561 AF5AQ5-3] rII- [ [loSVLNPAT1[~ MP SLSRRND 1 11 0 F F SLSRRNDL l1141 E E LIII E iI 172 TabieXXXIV-V1-HLA-A1- the start position plus nine. 10mers-273P4B7 TabieXXXVIAI-HLkA03 Each peptide Is a portion of 1 0mers273P4B7 SEQ ID NO: 3; each start Each peptide is a portion of position is specified, the ~K E R SEQ ID NO: 3; each start length of peptide is 10 amino [lL DE H 10 ] position Is specified, the acids, and the end position W E R 1 length of peptide is 10 amino for each peptide is the start a s, and the end position position plus nine. F-4li QKDD EVLRH FI- for each peptide is the start 234567890 position plus nine. T XTabXeXXV4V-V4-HLA- XPVos- 1234567890 1940 E P 4B7 115 A0201-10mers-273P47 10 AEALSPEQAA 19 11003FED E Each peptide is a portion of 5391 E DSEQ ID NO: 3; each start position is specified, the 639 Q S1 TableXXXIV-V4-HLA-AI- length of peptide is 10 1185 a 1 j amino acids, and the end 1 position for each peptide is E Each peptide is a portion of the start position pius nine. 237 TSACRA 1 SEQ ID NO: 3; each start e412 l position is specified, the [] scVKT 1 length of peptide is 10 t55on 18 amino acids, and the end position for each peptide Is EfiI T ] 11 the start position plus nine. G F 11 11 D1 IQ | 1234567890 score [lKTGGK ]18 SQKAA 1 I P GMMKF ]1 E LP~ A 17 _______ TableXXXV-V5-HLA- 5401 GGTTT 1 M aWPMVTj ] I A0201-l0mers-273P4837 F640 LRLSHQ 1 Ef] MGV rEHP -] Each peptide is a portion 118 6 VGSPrD1ME 1 of SEQ ID NO: 3; each TabieXXXIV-V6-HLA-A1- start position is specified, EE lotes27PB the length of peptide is 10[] EEASEA 1 10mers-273P4B37 ]Fo Eac pptdeis prtonamino acids, and the end :19 AHYLRYVKEA 1 Each peptide is a portionpoiinfrecpptdisF of SEQ ID NO: 3; each position or e ie is start position is specified, the length of peptide is 10 [Pos score 31 EE amino acids, and the end F76] S[ ] 3 f KLNL E1 position for each peptide 14NLIW -K 10_________ is the start position plus 18 i nine. ____ L4IPSSRDLI 621 EEELEL 10 Ps 1256780 score F N 8996 0 10 1o NLDQK-DE lREPS1SRR 10 TableXXXV-V6-HLA- 1125 E1 [Ii I A0201-10mers-273P4B71 133 AS1 Each peptide is a portion i E 10 N L of SEQ ID NO: 3; each a start position is specified, 22 t the length of peptide is 10 23 0§I 1 amino acids, and the end 240 S 10 position for each peptide is TbeXV-V6-HLA-AI - 26=QLWLFF 101 Somers-2734B47 the start position plus nine. FO 124680 score E 2FlKWTGMG 9 EcpEach peptide is a portion 283 10 of SEQ ID NO: 3; each [ N start position is specified, 1W EKDTP EK the length of pepttde is 10 l of 310p is K L 1 amino acids, and the end position for each peptide isQ 173 [TableXXXVI-VI-HLA.A0203- [TbIeXXXVi-Vl-HLA-A020- Ta~XXI-VI-HLA-A0203-1 10mers-273P4B37 1 Omers-273P4B J I mr-7PB Each peptide is a portion of Each peptide Is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position is specified, the position is specified, the position Is specified, the length of peptide Is 10 amino length of peptide is 10 amino length of peptide is 10 amino acids, an the end position acids, an t end position acids, and the end position for each peptide is the start for each peptide is the start for each peptide Is the start position plus nine. position plus nine, position plus nine. PosI s1234567890 core j o 1234567890 score [Pj~ 1234567890 s 345] LNEKNPDVDA I 1 1184 QLVGSPQDKA][10 21 I RTRN GAW [E F3-9 31 FLLMET RPLA IO] 1210 LKECGKQEA] 10 ] [7-J51 EgIDISSKMAS ID~] 170~ LCDHPRLLSA 1 10 11217 QEALNCIVKA]101 1800 jQDGKGT SAD][9 4231 CLLNLGIFSA 0 11223 10 [a]1 GTGSADSiAT ][ ]53.VGGVGLILTA If] [21 [8291 SLGMEKFAT][E 5521 VIFDPSWNPA J[E1 K-FATKNEAv 555 D1SWNPATDA 0 2j] 9 F41 LEGPKEL3L 9 63 TQLQLQSLHA 10LRYKAEA111I87JSSD19 [6-521 S IKLDDHiA ]g6J S!TNESNAE F-9I 6601 9IAYLQSLGIA 0 ] [ j 91001 SNVSlAD 11 6951] HQQR QKA11 1 ] [915]1 IRIADDLSAS ]] E720Q 0 F3QRTR]EGA ]T T9] DLsAS-HsAL Ei 764 QEEDISSKMA197[ Q923 I ASHSALQDAQ9 S10 LQDGKGIGSA [[ 9 1925] L KTGSADSlA jIj[LKV~A W11 ~ A~ 82[SSlGMEKSFA 1 341 E 1936t AELEEEESAS 1 9 F8 EKSFATKNEA 101 12221 [942PSASSPQYAC F8 41[ TLQEGPKQEA1[ 9 86NYVLSKSTKA 1.[3] SKACR]~ §3KNL~~19 189]ISITNESQNA][i 281T~ACRI]9 92 ~ANRG19 EENVSIEIA[ 91 I!EIADDLSA]Iii261EWSFFcJI111 KKRAR1± 19181 ADDLSASHSA1[0 291EEPTA [~]103FSKEA]9 L9221[SASHSALQDA110[24]IREOA][]106SN RLS[9 892 AQDAQASEA [301 F121 9 35 EKLEEEPSA EE 1 E9SASSQYAK 9 951 1 DENLFLEDSA F2109 3 11 [96IE!ENSLQGSA I.1 34jLEREA j]118LQT!GPII 9821 1F9GSAPNSRA[41 9 I 11188 9 F271 DDEPEEVVKA[ 1 121 104VVKAKIRSKA ]i][2j LLTSQ]9 28ELCVA ~ SQESSVKQFDA[1][5[IFPWPT[]12 VKLKSDL1 F913K51 MMNSRRSLA 10 9F1301 9111 EERLDDSSEA j F335] F1 53 9 F129 EVEESGEA] F 1 E 118SWLMTSPSA]]0 61]ALSGA [ 7PB F1O 1-SEQ 10 NO 3; each start21-8 Fil~~ent of pepid is 10 aminoaleXVIV-H F11758~~psiio plu n66ine. l 1Es o LAQESGA11234567890 IE NoResults!Found. 174 ___REP___ 163FSVKEELDWVVE 121] 4681LLKRLRDEGH 18 TabIeXXXVI-V5-HLA- 1700RVK FLVE F5331 LLTTQVGGVG 18 A0203-10mers- IZ01I E E 11211 273P4B7 F73_2] _584 L TCTEKDi Pos 1234567890 scor NoResultsFound. 1F T 162] K PR F 1 8 TableXXXVI-V6-HLA- 8 Q i 18301 A0203-10mers-273P4B7 11007[OD 10821 Pos 1234567890 s 61T E 1 11131 NoResultsFound. |1261 N3 l E F1 TableXXXVII-VI-HLA-A3- 80] FL 351 10mers-273P4B7 F87 LENL 202 L Each pepUde is a portion of 325 FLRRTKEDVQ 20 246[1 SEQ ID NO: 3; each start position is specified, the 326 Q252[ length of peptide Is 10 amino 344 RNKPD f2 [ i] acids, and the end position F61F __C__ K301_____ for each peptide Is the start position plus nine. F DPSWN 1201 I.-7.1RDGH TL 1 1 F1234567890 score] L5-1REV 24911 19 7ADDMGLGK0] 813 15181 F6FRVKTFHGPSKAVDRV'RIGQ 24 YVKEAKEATK1567] [i- ALSPEQAAHY [927 LQAEA[ VRLITCGT 171 [0-1FSRQTGEK1F81[980sLCGSAPNSR F5 92 ] 488 ILNIERLLK 21202 65 KLD 278 SLLGTLTFK 21235 1 1EHIAYLQ ] 503 TLRIDGTVTHF 06TFLYSLYRDGR1] [ SIQ1 400 PLAELGVLKK 1 87 641 QLQSLHAAQR 25 [AKIRSKA M [0!LIRQTTGEKKK2 QLSRQF19I116AAQTGA[LI F6-]1-511LS~c11~ [1203]LKGELEI [~1SHYQQRVQK L21[13KMFMLK]1]126ADSAE]17 37211 4RLVPLQEEIY 2 ~[PVFPSSTKKKI~1661SLIGSH]120HRYKA[61 120[AHKIKTSSTK ]j 8 [EDESY[~ LI LYKAE11 366DLIWRLVP E1 399§~ SPLAELGVLK[2][o1SNPNSF1~]8GLLRHN6 I41 RLRDEGHQTL] 1 ___ _______ 1013 VKAKRSK SLYR L1ISVKQFDASTP][2]113 LAELG19 19[TQIFS jW QIIAFLSGMF [7 A] 1 [ IMLN [~[VILDEAHKIK 21115INLTWK][1]I65IKTGRK iI 1AlKPYFLRR01L-] F1 1 LTT9Q F129 1[AICEMPSLSR11~1EYKVL [8 331IELAI 16 I][TLTAATRVVI1121 z21____ - _ _______ []RVYRIGQKEN][1 391HKLMT 1136 LAIPF11K 3 I RLITCGTVEEE F3-1-] F2-] F1 -5 EfRVQKAQFLVE~j~ F67-lurDsKFi 431 DDIDQT 8 3P92 FE LL M ETR SPL] 175 [ [MIFLMDLLKR[16]464 FLMDLLKRLR 15513 LLEREKRINL[ 490 F5 37NERLLKNR7 QL 527 L LTT I± IRLLKNRHFKT[[6j50GGTTT 15[7] NVRTC[i L.1LLKNRHFKTL[1654 GTL TR 1562[EREFED jJ 502KTLRIDGTVT ]675 FC15 639[E SVFLLTTQVG16 697 IQQRVQKAQ 15 1 [KI 541 VGLTLTATR 1723 E690 14 [57 31IGQKENVVY [77 W7D011 TKKKCPKLNKI1 [2]ELFTIEDLQN 16 781TQGGG 15[]KNP QPL] [TIEDLQNSVT3[ ~ [i[EFWS 5[7] OLKGK[4 669 AGISDHDLMY968 7 3 2WLREPVFPSS 1992 F AK F761PLLSTHHTQEE [9 E 11 [[l 1721HTQEEDISSK1161[08KRKRV i][]CTS GM Ii1 77 ASIDDLPK 161049 [~[ILRHCNPWPI 16[19SASRLN1i] ][lHc wP1i] [94] IEIADDLSA 111108SIMLH ~~1__ NSIID [4 fiY]SSQIPSSVNK ]1 13 VESES[] 5 [NFESD ii 108NSRRSLASRR][11111 ESGAK[s ~ V~sA~HI~ 179 PLSGEQLVGS[LE F81 126RGKELKECGK[1][19WM KPA11]09 RSIMLH 4 129ALNCLVKALD[1][29EECKQ [][i21MLHDE141 [131VMLLTLSLYK 11][23 VADKA]l][12ELDSA< 1 SDIFPNEKVLS E [[[NEKVLSRIQK<[W 1EFLNA~i ~ ~ 14QVSQK i. L~1KVLSRIQKIQ [][1AELEG]1]128 IKDEVj14 [9[RIQKIQEALE 111[0[ GALSY]1]128LTSYQ 14 [12[IIAFLSGMFD ]i ~ IMINQL1 T j LLKLNI i [][SLVNHVLLIM]1s[ [LNWQSS[4 [17[HVLLIMPTNL ]ij[~ [FWYID [j[TbeX~IV-L~3 153 | PTNLINTWVK][i][ [DVLEH 14IF_________ 13|QRNGVIlTTYKISSKAEcpeteisapronf F9-11 F____ [il[ 1 6____ li SQ9 DN: ;eahstr 19 [GVIITTYQML11 ][i]ACAAAS]1]pstoIspeied e [23C ARAIPASNR[[] ~ [LEWLF] ]leghopptdIs1 [ATPGEKALGF j~~ ~ [QsLn] T]aioais n h n [~~[KISENLMAU [5 21[EPTAE]1]lh tr oiinpu ie [ICEMPSLSRK][ ][[1IKYLR][ ][os 23579 u37[LIWIRLVPL ]i[[2 IRKDQKI1110 VTHPK 2 [39[IWIRLVPLQE]f [38 RKVLHK 1 ][wrG v 71 t~~[LVPLQEEIYR ]~I36SDIEL 4I1F!WPMV 1 PLQEEIYRKF11144 QVDhEE 1 ]KWGGKT 3 F 0 [ 7 VLKKLCDHPR][ 45 FLMEE - CLLNLGTFSA19 [470 I0 2 [24 [[LLNLGTFSAQ|1 493 E N 14 I454IILMEESGMI1[15 505LMDGTLLR E I O:3 ec QVGGVGLTLT F537 F39GVGLTLTAATR F5-5 1 LTLTAATRV F5-9 I DLMYTCDLSV8 VVIDDLPKEGeac sar P-96] [ f~~~LQDGKGTGS secfidth F2-4-31 Efl ~~FNYVLSKghofpp~eIs1 F3 0- l F275 amin aciDLSASHSALQen SSS EHEoiinfreahppieI F3-12] ~~~~F VHSKTCLSWsar ostonplsnie F3-7-51GVEESSGEASE [TVEESSGEASK [T~flTLSSENKSSW FT5-4] F50-51ALEEL EQGDSQ DN: ;ec EG1FLSL start position is specified, TableXXXVIII-VI-iLA-A26-] TableXXXVIII-V-HLkA26 the length of peptide is 10 [ Omers-273P4B7 r 10mers-273P4B7 amino acids, and the end Each peptide Is a portion of Each peptide is a portion of position for each peptide SEQ ID NO: 3; each start SEQ ID NO: 3; each start Is the start position plus position is specified, the position is specified, the nine, length of peptide Is 10 length of peptide is 10 Fp-o 1246790scoe amino acids, and the end amino acids, and the end F~ SSR FDI1-7- position for each peptide is position for each peptide is F11i the start position plus nine, the start position plus nine. 14 56 0Posi 1234567890 1 [Pos 1234567890 9 I W12181 EALNCLVK|ARD[R23 727 EGAWLREPVF T1 .i8 TableXXXVl-V6-HLA-A3- 98 E790 S T l I 0mers-273P4B7 F 84 E 22 60 E Each peptide is a portion of 940 EPASQ F8 72 f8 SEQ ID NO: 3; each start Fi H - 22 58E position is specified, the [771FEFTDVCNSG 21 [11911 DKAAEATNDYI length of peptide is 10 amino acids, and the end 1672E position for each peptide is 657 E F TL the start position plus nine. [687E F [ TEI Pos| 1234567890score [9 A E 4 |QLKDDEVLRH 2 S|EVLRHCNlPWP1] 10 |VLRHCNPWPI 1 ~ [LATWF12111QTEKPVh T |]NLRQLE DEV 1]j7] VVRIOf2]jJAIDDM TableXXXVIII-V1-HLA-A26- 86311 E[009 10mers-273P4B7 [1149] E1039 Each peptide is a portion of f 51044 N SEQ ID NO: 3; each start 19i E1129 position is specified, the 1332] length of peptide is 10 amino acids, and the end I379]11 EYRKFVSLD J J lers-2734B7 position for each peptide is F 2 1 ELLMERSPL][iW the start position plus nine. - Each peptide is a portion of S12345678906] El SEQ ID NO: 3; each start 1235 EVMLLTLSLY44 position is specified, the F'23I51FE[59811 QVFKDSLIRQ][5 19] length of peptide is 10 80 DVCNSGLLLY amino acids, and the end 1201 ET2V7R]EF727 [ EFESQNKEF[ ] position for each peptide Is F11_ 7 [1 F846] GKE1 ii the start position plus nine. 1171 ETSLGAPEPL 69191 e [102] EGIAFLYSLY ~j~]~111[lWPMVT 1 F 11svQLQLQSL [1O1] 118 E1 10121 EVVVKAKIRS]1 4711 ITIGVKTFHGPSK 1 5 ENLMAIKPY E E 6531 DIKLDEHIAY 5 ][DVDAcEMP 7STabIeXXXVIIl-V5-HLA 689 DVVEESHYIQ[4 E1e.2734 [lIGViITTYQML ]ziL~.1_____ 1381EEIYRKFVSL [2 1[LrvG L[1] 48 LVFSQSRQL5791 631 EDLQNSVTQL 23 88 18 111321 F-- EESESK 59111 EIRQFI~ 177 Each peptide is a portion TableXXXIX-Vl-HLA- TableXXXIX-V1-HLA of SEQ ID NO: 3; each B0702-1Omers-273P4B7 B0702-1Omers-273P4B start position is specified, bo f stat psiton s seciied -Each peptide is a portion of Each peptide Is a portion of the length of peptide is 10 SEQ ID NO: 3; each start SEQ ID NO: 3; each start amino acids, and the end ._ .4i' amin acdsandtheendposition is specified, the position is specified, the position for each peptide is length of peptide is 10 amino length of peptide Is'10 amino the start position plus nine. acids, and the end position acids, and the end position IPos1234567890 score] for each peptide Is the start for each peptide is the start M3 S III position plus n1e.1- position plus nine. 10 RNDLI1WIRL 9 To] 1234567890se] [Eo][ 1234567890 | RDWeR 4 MPSLSRRNDLW 441 Q 17 KPYFLRRTK 13 | SRRNDLIWIPPGRFFSSQ1 M367] F81 |6EMSLR Ml FIC EM PS LSR -W [11'88ISPQZDKAAATI 17 [F3 91ELLET-RsPL][13] - M LSRRNDLiIW [] 9 | RRNDLIIWlR ][4[APANLLiii1[H LSRALI 10-4] NFTLQ[16! 1-6] LLSRACL ]3 TableXXXVlll-V6-HLA- 1122 E4711 13J A26-10mers-273P4B7 [1229 S lHI F13I Each peptide is a portion of SEQ ID NO: 3; each start (178 E F QR9 position Is specified, the E58_ length of peptide is 10 4 A5 EDl 1 amino acids, and the end 505R 15 67 G position for each peptide Is the start position plus nine. 1l F Di! P[s] 1234567890scejI[DSNvL]i][][IKMVI i] [ EVLRHCNPWP 20 [411 4!] [7681 13 8 |DEVLRHCNPW 12 0 [ D EEYKFS ]]1 [8531IQAEDL13 TableXXXIX-V1-HLA- 1985 13 B0702-10mers-273P4B7 [T3 v Ll 19901 Each peptide is a portion of !HH 114 091 SEQ ID NO: 3; each start F8_0_5_14_F__6_9_1 position Is specified, the [ length of peptide is 10 amino 8141 FE 14 1079 acids, and the end position 75] 0841 for each peptide is the start F8 Q N 1 FN position plus nine. Is] F61234567890R 1 11194E 13 749][KPQPQPSPLL 15 G E ]2181 166APEPLSGEQL 23 111641 F 230 [3581 FMPSLSRKNDL171 E G P 1 4] [ E 1 [[DPLESENYVL ] EGQ 78 1 (14l F7 EE a 12 IPASNRLLLT111KEGQELl l AiKDFNVL12 STPIQNNLQEL F12-3]2 [E10 A 12 [7 ~ LPKEGEKQDL] i]_____ 71a]1EPSASSPQYA3 IF F6 FSPQYACDFNL2 11 3 F01 5551EDPSWNPATDA[ 1168TPGMRVKTFH[13 F251 12 F7] 12QPQPSPLLST441 A A[A I]lMPTNLINTWVlUl30 DAPEA 13[5]TGKA FIW a] F3-0-Tb0eXXXIX- 1-HLA-0-1 E B072-1mer-27P4B 174 NPVFCM 38 LFIEL13]303][TPGLKL 2FKJI 178 TableXXXIX-VI-HLA- TableXXXlX-VI-HLA- TableXXXIX-VI-HLA B0702-10mers-273P4B7 B0702-10mers-273P4B7 B0702-10mers-273P4B7 Each peptide Is a portion of Each peptide is a portion of Each peptide Is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position Is specified, the position is specified, the position is specified, the length of peptide is 10 amino length of peptide is 10 amino length of peptide Is 10 amino acids, and the end position acids, and the end position acids, and the end position for each peptide is the start for each peptde is the start for each peptide is the start position plus nine. position plus nine, position plus nine. [Posi 1234567890 scored F 1234567890 1 [Post 1234567890 s 317[ ILMAIIKPYFL_1 12 r25[]1 LTGTPIQNNL I 1041 SSINPFNTSL 11 5 fVDAICEMPSL F DFAQ S 1133E 364 KNDLIlWFRL11167 E FVSLDHIKEL 1 2 [2 S7T6 111 1201 ET NWRG EL 11 jI 398 RSPLAELGVL 2 11 1471KNRHFKTLRI [] ][TAE AT11]_ ______ 504 LRIDGTVTHL TabeXXXIX-V4-HLA 534 LTTQVGGVGL[ 95] B0702-0mers-273P7 YRRQVFKDSLEach peptide isa portion of F5 __9__5_ _______ SEQ ID NO: 3; each start 151PFRYFSKQELIEE F407[ [11] position Is specified, the 633 LQNSVTQLQL 408 length of peptide is 10 [ f AAQRKSDIKL 1112] __ IT amino acids, and the end __________L~I~II LLSRACC 111 1posltlon for each peptide is F4 4 IKLDEHIAYL the start position plus nine. IZIDHDLMYTCDL]2][51MESK FL[1[os 23679 7091 EFESQNKEFL][12 L4I1 M 733 EPVFPSSTKK]I][[G IFM L ii[jJKTMGT101 736 FPSSTKKKCP7[W6 [4631 I F RTPGMGVKTF[ F-][SSTKKKPKL 480 771[ KMASVIDDL][2 ~ [RINIR FT PKGGSEE 12 815] PKFS EEL 1 ]F LLNRFKL 5] TableXXXIX-V5-HLA 839 KNEAVQKETL 121 E] 11 10702-1mers-2734B7 872 Each peptide Is a potion F872 1L NDSFL]0K of SEQ ID NO: 3; each 929 QDAQASEAKL 44 start position is specified, 0631 TPKNDISPPGF12] l 11 the length of peptide is 10 1 11 12[553 ID NPT 1 amino acids, and the end LSSENKSSWLposition for each peptide is 11159 WLMTSKPSAL the start position plus nine. 165 PSALAQETSL 12] [572 R E 7, IPos 14 7890 I3~j ASRRFPEAEA JIT j 575 Q YR F] F1NGDLEEAFKL 11 [679 V E ] 37~i] LEEAFKLFNL 11[jQRREAL i]________ [58 SRIQKIQEAL [11 j1Q 1 TableXXXIX-V-HLA [77f 11nv~sG~ i 7-48] 13KQQSP i 0702-lomers-273P47 FTDVCNSGLL 894 NPWFISIT Each peptide is a portion [~iI ________ If I [ ]j~i~~]of SEQ ID NO: 3; each 3 I6 NSGLLLYRELWPIISITNES 1 start position Is specified, F ASLVNHVLLI 91 the length of peptide is 10 1471 HVLLIMPTNL ASSPQYACDF][ Ii amino acids, and the end position for each peptide Is F166 i 9 1 EDA Nhe start position plus nine. 310406 KDDEPEEVW 117 8Pos 12457800 179 TableXXXIX-V6-HLA- TableXLiV6-HLA- TabeXLI-V6-HLA 80702-10mers-273P4B7 j 1510-1Omers- B2709-10mers Each peptide Is a portion 273P417 273P4B7 of SEQ ID NO: 3; each FPos12479score] FPosi 1234567890 e start position Is specified, NoResultsFoEn. NoResultsFound. the length of peptide is 10 amino acids, and the end position for each pepUde is TabieXLll-V1-HLA- TableXLIV-V1-HLA-B4402 the start position plus nine. 82705-10iers- 110mers-273P487 Scoree] SEQ ID NO: 3; eac start SVLRHCNPWPIoResultsFound. posion is specified, the Ffl length of peptide is 10 amino acids, andthe end position _____________ rTableXLII-V4-HLA- for each peptide Is the start TablXL-I-HA-B8- 2705-j1iners- position plus nine. TableXL-V1-HLA-B08- 2347 10mers-273P487 JP _ 1 6 [ S1234567890sore 378 ResutsFound. NoResultsFound. TableXL-V4-HLA-B08-][ERC 10mers-273P4B7 2735-l7rF11s3 L 2 EE I Pos 1234567890_score E o 1scoreF [{i4 NoResultsFound. j NoResultsF2und 591] EF TableXL-V5-HLA-B08- [- l 10me1-273P4B7 B ers- [4[ E[ Pos| 1234567890|sr 273P4B7 J NoResultsFound. [osulis oFH F TableXL-V6-HLA-B08- [ EF W 23 10imers-273P487 I TableXLIIIV1HLA P 46 E s 1234567890|2709-mers- F NoResultsFound. 273P4B7 F 951 E 22. TableXLI-V1-HLA- j NoResultsFond. ] 6101 B1510-10mers- _11142 273P4B7 TableXLIII-V4-HLA Pos 1234567890|score B2709-1Oers- 1 E YR 2] NoResultsFound, 273P417 _5_] TableXLl-V4-HLA- F 82] 21 B1510-10mers- -456[ 273P4B7 TableXI-VS-HLA- 576[ Nsos|123 12347890| sr I L E |snNoResultsFound. 273[E13I TableXLI-V5-HLA- -ud B1510-10mers 273P487 ITableXLI-V6-HLA- Tab8eIl-V6-HL re 82709-10mers- B2791 mErs Pos|1234567890 PFos1 |135680 | NoResuNtsFous u3P4o7 N e21s8 E .9 1234567890|1 LSEQ AAYN[ 3a t Noeut1 on.pstini pciid0h - TableXLIV-VI-HLA-B4402- TableXLIV-VI-HLA-B4402- TableXLIV-VI-HLA-B4402-] 10mers-273P4B7 1 Omers-273P4B7 10mers-273P4B7 Each peptide is a portion of Each peptide Is a portion of Each peptide is a portion of SEQ ID NO: 3; each start SEQ ID NO: 3; each start SEQ ID NO: 3; each start position Is specified, the position Is specified, the position Is specified, the length of peptide is 10 amino length of peptide is 10 amino length of peptide is 10 amino acids, and the end position acids, and the end position acids, and the end position for each peptide is the start for each peptide is the start for each peptide Is the start position plus nine. position plus nine. position plus nine. |Pos I 1234567890 score [P j[ 1234567890 [ [Pos 1 1234567890 |scor 155 NLNTWVKEF 1 EEAFKLFNLA 111GGILADDMGL 245] RAIPASNRLL 18EKVLSRIQKI DASLVNHVLL14 315]ENLMAKPY AEQGDDEFTD ] 581 NTWVKEFKW ]AELGVLKKLC 981 EHQKEGIAFL KEFIKWTPGM 457 EESGKMFLM ASLVNHVL00 TQMLINNW 4ASSPQYACDF QRNGVITTY ]ARAIPASNRL | 48]KDIFPNEKVL 17 213]SSFRGQEFVW TPQNNLQEL | 126] LGKTVQIAF 224 YVILDEAHK 15 ]YENPIRRE [111IMPTNLINTW ][7 37!LIIWIRLVPL 1L~. 3111 FKISENLMAI E ] 26AIPASNRLLL 1(3911 KELLMETRSP ]i I[KEDVQKKKSS][~ 302 ATPGEKALGF ]LAELGVLKKL ]362] SRKNDLWI 14 314 SENLMAKP KKLCDHPRLL KNDLIWIRL ] [384 FVSLDHIKEL LLKNRHFKTL 392ELLETRSPL [4861 RQILNIERL LRIDGTVTHL 398] RSPLAELGVL14 [669AGISDHDLMY 17 5 RIDGTVTHLL 463 IFLMDLLKRL [ThAKIRSKARRI 631 ~EDLQNSVTQLj7 5 1IRDEGHQTLVF1I 143EEDPSGETLS IKLDEHIAYL 48 LNIERLL 11 APEPLSGEQL 17 KPQPQPSPLL LRELFTIEDL 14 1i~1ADPEVMLLTL ]j[7][EEDISSKMAS][5 [6 [IEDLQNSVTQ ! 10 2iAEALSPEQAAIJ] [805[ TGSADSIATL 115 63[DIKLDEHIAYI[I SRIQKQEAL NSSLGMEKSF EELDVEESH [12!EGIAFLYSLY 1L~ 82[HCNPWPIISI [ij61VEESHYlQQR 1 1 WTPGMRVKTF17] EEEPSASSPQ15 KEFLMEQQRT 14 dGlLTL 990! AGFVHSKTCL 5 KMASVIDDL GSLLGTLKTF EEVVVKAKIR 15 8 EELCTNSSLG 114 1 3][KDATPGEKAL 17]101SSINPFNTSL j I[ [QEGPKQEALQj[4 36]CEMPSLSRKN NDISPPGRFF ALQEDPLESF | ]ACCLLNLGTF 16 9 WLMTSKPSAL 15VSIEIADDL AQRKSDIKL E 11171 ETSLGAPEPL 958EDSADNRQNF 14 790f SSIKVNVTL ETLVKRGKEL 983 GSAPNSRAGF14 809DSIATLPKGF 1GKQEALNCL 5 100DEPEEVKA14 IEIADDLSAS ] SRRFPEAEAL LFQFSSVKQF FKDTSSINPF 16 26 KEAKEATKNG 1084 NKSMNSRRSL I 4SNPFNTSLF KLFNLAKDIF 1090 RRSLASRRSL 14 NPFNTSLFQF 11 NEKVLSRIQK KELKECGKQ 4 1235| EVMLLTLSLY QKQEALEEL 114 QEALNCLVKA 7 NGDLEEAFKL DEFTDVNSG 1230KSADPEVMLL | [GDLEEAFKLF 11151 1801! DVCNSGLLLY LLTLSLYKQL | 14 181 TabIeXLIV-V1-HLA-B4402- bIeXLIV V*-HLA-B4402- Each peptide isaportion 10mers-273P4B7 1Omers-273P4B7 of SEQ ID NO: 3; each Each peptide is a portion of Each peptide is a portion of start position Is specified, SEQ ID NO: 3; each start SEQ ID NO: 3; each start the length of peptide is 10 position is specified, the position is specified, the poino ac h ed length of peptide is 10 amino length of peptide is 10 amino position pie. acids, and the end position acids, and the end position for each peptide Is the start for each peptide is the start [posI 1234567890 position plus nine. position plus nine. Efl C L 15 SPos~ I1234567890 score [o 1234567890 s [jMLRD I 13TLSPEQAAHYL 13 [622j[ QEL E 1E FL 41 -281FAKEATKNGDL 1211 1 DHDLMYTCDLI.F1 [- N 13 [Z9i1IIKEATKNGDLE 13 F685]1 KEELDWEES 11 E 1 []TKNGDLEEAF ]1]18] LVESY1.i ~ LRNLI1 S]EELAEQGDDE 11 EE 1 F6FEEE-cGfl1Y 136172 F -QQ-REAWI13] 1EF- 83 1 NSGLLLYRELl 13 TabeXLIVV6-HLA-4402 LLYRELHNQL[L I I Omers-273P7 27] GKTVQIAFL764 Each peptide Is a portion of .13 SEQ ID NO: 3; each start 131 8Q2AFLSGMF E] position is specified, the 147 HVLLIMPTNL F3] [8451 length of peptide Is 10 SaPSKDERTRNL 3] amino ads, and the end NRIQQRNGVI1 position for each peptide Is F1 L-9 I.L______i 1 the start position plus nine. 16GVIlTTYQML 1 991DLAHA]1]fol13579 19kVIlTTYQMLI111[I[YADN ]D]WELHNW 2 1238 TKSAICARAI 13F3 [] 2 NNLQELWSLF_ 7 FDFACQGSLL1004 TabeXLV-VI-HLA 288[ 10MEYENPITRA 1 2E 13 5101-10mers 61[ GEKALGFKIS LII 165 N 273P4B7 308 ALGFKISENL F13] 11107 EPos12345 3-11 PEARLNEKNP[ E1NoResultod 35811 MPSLSRKNDL 13 N 13 TabeXLV-V4-HLA 372RVPLQEE Y1 1T 1147EPLSGEQLV] B5101-10mers ____f YELKRK Dfl.~- 273P4137 418 SARACCLLNL 13 - - 7 je 436 NEGEDSPDVDTabeXLIVV4-HLA-B4402-1 _Nestod__ _ F48-[ 1 Omers-273P4B37 I 48 LVFSQSRQIL Each peptide is a portion of TabeV-V5-H 483 SQSRQILNSEQ ID NO: 3; each start 5101- ers LLEREKRINL 13 position Is specified, the 273P47 516REKRINLFQQ length of peptide is 10 F20]amino acids, and the end IPos 124679 [scre INLFQQNKDY position for each peptide Is NoResutsFound. S1 QNKDYSVFLLthe start position plus nine. V-Vs 0s TabeXLV-V6-HLA _________ 1 B51 01 -1 Omers F5810mers-273P4B7 F59-0] ~SE 1D NO: 3;I-5HL-40- each start [~~§~ J~ VEEKPYsR|Q1][413]89 |score45780 ~~ 161811 YFSKQELREL 13]0mers-27347 NoResultsFound. 182 F Ta~eXLI-V-HLADRB101 1- [TabeXLVI-V1-HLA-DRBI-0101 - TabIeXLVI-V1-HLA-DRBI-01 01-1 TableXLVI-V1-HLA-DRB1-0101- 1 - 5 15mers-273P4B7 I Smers-273P4B7 ers-273P4B7 Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID NO: 3; each start position is NO: 3; each start position is NO: 3; each start position Is specified, the length of peptide is 15 specified, the length of peptide is 15 specified, the length of peptide is 15 amino acids, and the end position for amino acids, and the end position for amino acids, and the end position for each peptide is the start position plus each peptide is the start position plus each peptide is the start position plus fourteen. fourteen. fourteen. Pos | 123456789012345 |score [Pol[ 123456789012345 [coe IPosl[ 123456789012345 soe 657l DEHIAYLQSLGIAGI ||32 [1881I LNRIQQRNGVIITTY[2] F281 DYSVFLLTTQVGGVG [23j [146]| NHVLLIMPTNLINTW | 19311 QRNGVIITTYQMLIN 1] [53iI1 VFLLTTQVGGVGLTL 31 j 277|| GSLLGTLKTFKMEYE |[|] [206l INNWQQLSSFRGQEF 24 5stlI TRWIFDPSWNPATD]L 23 [315|| 1ENLMAIIKPYFLRRT11~j] 1 - IWQQLSSFRGEF 24] F56J] DRVYRIGQKEN||VY 3231 421 |ACCLLNLGTFSAQDG 31 21911 EFVWDYVILDEAHKI_11241 [637]1 VTQLQLQSLHMQRK1123 11451 VNHVLLIMPTNLINT |30] |2301[AHKIKTSSTKSACA i 2 783]1 EGEKQDLSSiKvNV 23] 1818 |-FGSVEELCTNSSLGM 11301 I3I[KEDVQKKKS N4AR[I-1 ASHSAQDAQAEAK 112] 1072| GRFFSSQIPSSVNKS ||30] 367][ LIIWIRLVP [F] I6][Q LEHVEKENSLCG 186 | LLLYRELHNQLFEHQ ||28 F413]I HPRLLSA ]24] 110401FTSSINPFNTSLFQFs ]-3 [616| FRYFSKQELRELFTI ][ 28] 427][ LGTFSAQDGNE 24 1 085] NKSMNSRRS 23 [864 | SFNYVLSKSTKADIG [28 578 NVVVYRLITCGTVEE_][24 [1154_ENKSSWLMTKPL231 4_|| SRRFPEAEALSPEQA]| 27 [621]1 KQELRELFTI E ] [11581 SWLMTSKPS F2-3-1 75l DDEFTDVCNSGLLLY |Lz [63911 QLQLQSL27 I2] [1218 EALNCLV 23 222|| WDYVILDEAHKIKTS 7 1 696]1 YIQQRVQKAQFLVE1 24| 212261 ALIKSADPEVMLLT_1123 F540|| GVGLTLTAATRVVIF 27 I LVEFESQN EQ [[IJ FPEAEALSPE F22] 579]| VVVYRLITCGTVEEK || 27I L EEDISSKMASWIDD 114 11 EALSPEQMHYLRyV I.i-i] I592 |EKYRRQVFKDSLIR [821][ VEELOTNSSLGMEKS][21 [i0]1 YSLYRDGR|K|GGLA D 660| IAYLQSLGIAGISDH || 27] F6]1 LESFNYVLSKSTKAD]1 24 113][ DGRKGGILADDMGLG 1 22 [796|| VTTLQDGKGTGSADS] 27 [87611 GPNLDQLKDD E[] E129[_TVIIAFLSGMFDAS_]22] 2491| ASNRLLLTGTPIQNN:][26] [8871 DEILRHCN|| 2624] [13[ IAFLSGMFDASLVNH j532]| FLLTTQVGGVGLTLT ||26 191511 IEIADDLSASHSALQ 1[24 22111 VWDYVILD ]221 1168| LAQETSLGAPEPLSG || 26 1925-1HSALQDAQASEAKLE 1[ F26111 QNNLQ 22 1221|1 NCLVKALDIKSADPE j9i4] RQNFSSQSLEHVEKE [341 SENLMAIIKP26 [ 130|] VQIIAFLSGMFDASL || 25] 110501 LFQFSSVKQFDASTP 234911 NPDVDAICEMPSLSR ]r 22 16211 KEFIKWTPGMRVKTFf]2] 11128 EEGVEESSG 1124] 13651I NDLIIWIRLVPLQE|E|1 25 248 PASNRLLLTGTPIQN ][ 25 11 PSALAQETSLGAPEP][4] [8][ FVSLDHIKELLMETR L4] F4521| DDTLMEESGKMIFLM ][25] 1174 LGAPEPLSGEQLVGS][ 24 F391]| KELLMETRSP25ELG 22] 477 1 HQTLVFSQSRQLNI_]|] |12321 ADPEVMLLTLSLYKQ 252] [41-01 LCDHPRLLS 22] 15271| KDYSVFLLTTQVGGV]| 25] 56l LEELAEQGDDEFTDV][ 2[ VDHIDQVTDDThMEE I 22 6341 |QNSVTQLQLQSLHAA 25 0 KEGIAFLYSLYRDGR ][_] QTLVFSQSRQILNII 22 693] ESHYIQQRVQKAQFL 1| 25 1 iTi if ADDMGLGkTVQIIAF R 23 [5 3[ TLRIDGTVTHLLERE E22 1~4][ PKNKPPQPPL l5]i F112-61]LGKTVQIIAFLSGMF 123] [519]1 RINLFQQNKDYSVFL 1221 74411 CPKLNKPQPQP-SPLL || 25 F-75|] VEKENSLCGSAPNSR 42]1 ASLVNHVLLI 23 [6251 RELFTIEDLQ|| 25 9891 RAGFVHSKTCLSWEFl 2 236][ SSTKSAIC|| 25231 11 svTQLQLQSL R 22] 10341 DDSFKDTSSINPFNT ff2] F70[ LFDFACQGSLLGTLK ||3 665]1 SLGIAGISDH2DL5MYT221 [1053|1FSSVKQFDASTPKND [25 30 EKALGFKI 23 17661 EDISSKM [22 [10871 MNSRRSLASRRSLIN ||25 30811 ALGFKISEN.MAIIK ] 769]1 SSKMASWIDDLPKE 22 40|11 AFKLFNLAKDIFPNE1][2] 38911 HIKELLMETRSPLAE ||3] 291114 NVSEIADDLSASH 22 9411 NQLFE HQKEGIAFLY ][24] [451 SRQILNIIERLLKNR ]23]1 F9-5E[AKLEEEPSAS SPQ~Y: 21 183 TableXLVI-V1-HLA-DRBI-0101- TableXLVl.VI-HLA-DRB1-0101- T-HLA-DRBI-0101 15mers-273P4B7 15mers-273P47 ers-273P4B7 Each peptide Is a portion of SEQ ID Each peptide Is a portion of SEQ ID Each peptide is a portion of S NO: 3; each start position is NO: 3; each start position Is NO: 3; each start position is specified, the length of peptide is 15 specified, the length of peptide Is 15 specified, the length of peptide Is 15 amino acids, and the end position for amino acids, and the end positon for amino acids, and the end position for each pepd iS the start position plus each peptide is the start position plus each peptide is the start position plus fourteen. fourteen. fourteen. Pos|| 123456789012345 score Pos]l 123456789012 e 123456789012345 s [942| PSASSPQYACDFNLF TYQMLINNWQQLSSF 19] 12671 LWSLFDFAC22 | [1081| SSVNKSMNSRRSLAS 22] |VDYVI][19] 291]1 ENPITRAREKDATPG ]18 11096 RRSLINMVLDHVEDM 22 [268][WSLFDFACQGSLLGT]19 300[ KDATPGEKALGFIS [8 1155| NKSSWLMTSKPSALA][ [3021I ATPGEKALG F ig [32111 IKPYFLRRTK22 1 1157|1 SSWLMTSKPSALAQE 2 [011 TPGEKALGF E 119 [2][ KPYFLRRTKE 18] l186][ RNLNRIQQRNGVIIT F21] F34] KNDLIIWIRLVPLQE 19 [363][ RKNDLIIWIR 18 498] NRHFKTLRIDGTVTH 21 1404] LRLLS I1l] [373]1 LVPLQEEIYR1 |18 671|] ISDHDLMYTCDLSVK 1121] 466][MDLLKRLRDEGHQTL F382]1 RKFVSLDHIKELLME 1 18 716]EFLMEQQRTRNEGAWI 21] 1 469][ LKRLRDEGH_|F1 9 11 DHIKELLMETRSPLA 18 F762 | HTQEEDISSKMASVV 21 | 486] RQLNIELLNRH [IT] F39511 METRSP 1181 11971 TNDYETLVKRGKELK ] | 5 DPSWNPATDAA Rj[ i 3981RSPLAELGV 171 121| EASRRFPEAEALSPE 20j F DSLIRQTTE F -I L 403 ELGVLKKLCDHPRLL ]181 F4111 FKLFNLAKDIFPNEK ][ 201 17 I! VNVLQDGKGTGSA 19 4 RACCLLNL 1 1168| |TPGMRVKTFHGPSKD1 20 1 884jI LKDDEILRHC I 19 [49][ ERLLKNRH F 1-] 283|] LKTFKMEYENPITRA 20 | 11 SNVSIIEIADDLSAS_][ifj [507][ DGTVTHLLEREKRI]1 VDAICEMPSLSRKND 20520 INLFQQNKDYSVFLL [378|| EEIYRKFVSLDHIKE IL20-1 19321I QASEAKLEEEPSAS 19 [53011 SVFLLTTQVGGVGLTDIi [381[ YRKFVSLDHIKELLM_.20 10161 KAKIRSKARRIVSDG 119] F537]1 QVGGVGLTLTAATR Va1 [411|[ CDHPRLLSARACCLL 104 INPFNTSLFQF 11 154811 ATRWIFDPS 1Ii 461|| KMIFLMDLLKRLRDE IL 20 1 123 PEDYPEEGVEESSGE2 190 [65011 RKSDIKLDEHIAYLQ 1 4901 NIIERLLKNRHFKTL 20 11138 ASKYTEEDPS GT 9i 6511 HIAYLQSLGIA GISD 118] 15011 FKTLRIDGTVTHLLE 20 11156 KSSWLMTSKPA ][] F711 DLMYTCDLS 18] I601]| KDSLIRQTTGEKKNP 20 [ Z91 121 KECGKIQEALNCLVK 119 1 [720EQQRTRNEG F1h8 613] KNPFRYFSKQELREL 2[ 20 1224 VKALDIKSADPEVML I1 727]1 EGAWLREPV18 747|| LNKPQPQPSPLLSTH |120 112361 VMLLTSLYK M [7281 GAWLREPVF 118 809][ DSIATLPKGFGSVEE 1120] |HYLRWK 11 741 KKKCPKLNKP F187 829|] SLGMEKSFATKNEAV1 ] E3 EAFKLFNLAKDIFPN [78] 204| SWIDDLPKEGEKQD 1 118 8931 CNPWPIISITNESQN 1L-i] [ T]j QEALEELAEQGDDEF I[ f] 179311 KVNVLQDGKGTGS 18 1950 | ACDFNLFLEDSADNR |20 |1 ]E VCNSGLLLYRELHNQ [ ] IATLPKGFGS 118_ 110481| TSLFQFSSVKQFDAS ||20 9311 HNQLFEHQKEGIAF-L ][ia L8]1 LCTNSSLGMEK FA]8] 1112| ERLDDSSEAKGPEDY][ || 2 L| IAFLYSLYRDGRKGG][ 18] [18] 1220| LNCLVKALDIKSADP || 20 |18 1866I NYVLSKST [18 1223| LVKALDIKSADPEVM ||20 1191 ILADDMGLGKTVQII Il [90s9[ ESNVSIIEIA F187 3211 TKNGDLEEAFKLFNL ||19 | DMGLGKTVQI F984-[]1 SPQYACDFNL F 1118 [55 | KVLSRIQKIQEALEE |] 132 IIAFLSGMFDASLVN 1 8 195311 FNLFLEDSADNRQNF 158 F58]| SRIQKIQEALEELAE 19] F137S ]jlW] r10121 EVVVKAKIRS| 1918 | 160WVKEFlKWTPGMRVK VKEF PGRFFSSQIP 181 1941 RNGVIlTTYQMLINN 11| ] 6[ VKEFIKTPGMRVKT 18 10931 LASRRSLINMVLDHV 1 181 199l ITTYQMLINNWQQLS 119] I,29 EA=STSAIC ED~ 10-991 LINMVLDHVED=MEER 11181 184 TableXLVI-VI-HLA-DRBI-0101- TabieXLVI-V1-HLA-DRB1-0101 TableXLVI-VI-HLA-DRBI-0101 I 5mers-273P4B7 [ 5mers-273P4B7 [ 5mers-273P4B7 Each peptIde is a portion of SEQ ID Each peptide is a portion of SEQ ID Each peptde is a portion of SEQ ID NO: 3; each start position is NO: 3; each start position is NO: 3; each start position is specified, the length of peptide is 15 specified, the length of peptide is 15 specified, the length of peptide is 15 amino acds, and the end position for amino acids, and the end position for amino acids, and the end position for each peptide Is the start position plus each peptide is the start position plus each peptide is the start position plus fourteen. fourteen. fourteen. FPosj 123456789012345 ||scord123456789012345 J [P05 123456789012345 score 1177 PEPLSGEQLVGSPQD J[18 [5Z1 GLTLTMTR FDP 1 [201 YQMLINNWQQLSSFR 1 1182 GEQLVGSPQDKAAEA 18 [553] IFDPSWN 17 1 331[ IKTSSTKSAICARAI 1 l9[ AHYLRYVKEAKEATK |[17j 570][ VYRIGQKENVYRL]j,17 [ !t TKSAIOARAIPASNR 16 47 AKDIFPNEKVLSRIQ |817 81 GTVEEKIYRRQVFKD 17] I239_KSAICARAIPASNRL_1161 I77[ EFTDVCNSGLLLYRE ||17 [66111 AYLQSLGIAGISDHD 171 241 AICARAI 176 [95][ QLFEHQKEGIAFLYS |17] [679]1 TCDLSVKEELDWEE ]j17] [244]1 ARAIPASNRLLLTGT 16 [110][ LYRDGRKGGILADDM||117] [70111 VQKAQFLVEF M [25011 SNRLLLTGTP17 |1 [127 GKTVQIIAFLSGMFD | j 78811 DLSSIKVN Q ]264]Q LQELWSLFDFA _Qj 1341 AFLSGMFDASLVNHV ||17 180|41 GTGSADSI ]171 [6I[ SLFDFACQG ]i] [14111 DASLVNHVLLIMPTN ||17] E807] SADSIATLPKGFGSV][17] [307][ KALGFKISENLMAII 15fl PTNLINTWVKEFIKW ][17] 815lPKGFGSVEELCTNSS][171 [310]1 GFKISENLMAIIKPY|] |6 1541 TNLINTWVKEFIKWT 17 F48LQEGPKQE FKISENLMAIKPYF ][iI] i58 [NTWVKEFIKWTPGMR][| F87j I SKSTKADIGPNLDQL 17 327[ RRTKEDVQK 16 GMRVKTFHGPSKDER 358MPSLSRKNDLIIWIR 203 |QMLINNWQQLSSFRG 17 [93][VHSKTCLSWEFSEKD [E11 IRLVPLQEEIYRKFV 16 242]| ICARAIPASNRLLLT 1 10101 PEEV|1KAKIRSKAR 17 37911_EIYRKFVSLDHIKELFI!!] F2581| TPIQNNLQELWSLFD 1 115 VKAKIRSKA F17 4011 LAELGVLKKLCDHPRl] 259 I PIQNNLQELWSLFDF | 17 1044 NPFNTSLF Q ]j7 1407]1 LKKLCDHPRL 116] 12731 FACQGSLLGTLKTFK |F17 1056 VKQFDASTPKNDISP 17 1]! PRLLSARACCLLNLG 6 [274!| ACQGSLLGTLKTFKM171 1063 TPKNDISPPGRFFSS 17 LLNLGTFSAQDGNEG 1 2821 TLKTFKMEYENPITR || 17 1064 PKNDISPPGRFFSSQ ] 457][ EESGKMIFLMDL-KR 6] 1287]| KMEYENPITRAREKD 17 1165 KNDISPPG17SQI ][17] [4601 GKMIFLMDLL 297|] AREKDATPGEKALGF 7 11069 SPPGRFFSSQIPSSV [171 [4741 DEGHQTLVFSQSRQI |I|17 [312]| KISENLMAIIKPYFL ||17] 10761 SSQIPSSVNKSN 1][1] [489][ LNIIERLLKN ][16] 1339|| SNPEARLNEKNPDVD]| 17 11109 DMEERLDDS i17 [4§9][ LLKNRHFKT 16] 355 ICEMPSLSRKNDLII ||17EQLVGSPQDKAAT]117 1 -[11 THLLEREKRINLFQQ ][16 368| IIWIRLVPLQEEYR ]| 17 11199 DYETLVKRGKELKEC1I7I [535] TTQVGGVGT 11! 370|| WIRLVPLQEEIYRKF ][17J 1217 QEALNCLVKALDIKS 117 [539]I GGVGLTL|T|M17TIRWI_ 3871 LDHIKELLMETRSPL || 17 154611 TMTRWIFD 16 39011 IKELLMETRSPLAEL ||17 [12|35 EVMLLTLSLYKQLNN 1 1 F5It RWIFDPSWNA D1 41911 ARACCLLNLGTFSAQ | 171 F1 AEALSPEQAAHYLRY 1a] I5I1PSWNPATDAQAVDRV 167 43I|FSAQDGNEGEDSPDVI 17 15|7]_LSRIQKIQEALEELA 16] F5641 AQAVDRWRIGQKEN 16 41| TDDTLMEESGKMIFL a]IQKIQEALEELAEQGj 1 VDRVYRIGQKENVW |17 453|| DTLMEESGKMIFLMD GLLLYRELH F16 574 GQKENVVVYRLITCG |I|67] 459|] SGKMIFLMDLLKRLR 17 [10|9| SLYRDGRKGGILADD E[Y ] [593] KIYRRQVFKDSLIRQ7 |] r46211 MIFLMDLLKRLRDEG [|17] 138] GMFDASLVNHVLLIM ][16] 2]l EQLQ 1I16 F463|| IFLMDLLKRLRDEGH 17 177 HGPSKDERTRNLNRI 16 653 DIKLDEHIAYLQSLG IF161 LFQNKDSVLLT 1[71 118]ITRNLNRIQQ-RNGVII ][6 [673][DHDLMYTCDLSVKEE IF16I 7522 I LFQQNKDYSV FLLTT F|17 | l8]--- I~iLTVGGVGLTLTAA ][17j 15!NGVII1TYQMLINNW ][i] f[lLEELDVVEESHYIQ L16J. 185.
TableXLVl-V1-HLA-DRB1-O1O1- j TableXLVI-V1-HLA-DRB1-0101- TabeXLVI-V HLNDRB1-01101 15mers-273P4B7 i15mers-273P4B7 15mers-273P4B7 Each peptide Is a portion of SEQ ID Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID NO: 3; each start position isNO: 3; each start position is NO: 3; each start position Is specified, the length of peptide is 15 specified, the length of peptide is 15 specified, the length of peptde is 15 amino acids, and the end position for amino acids, and the end position for amino acids, and the end position for each peptide Is the start position plus each peptide is the start position plus each peptide is the start position plus fourteen. fourteen. fourteen. Pos|| [123456789012345 Iscore] [J[ 123456789012345 ce] [Pos 123456789012|345|scr [7041 AQFLVEFESQNKEFL |16] [2811 RTKEDVQKKKMP]1] 162 STPKNDISPPGRFFS l5 1725 | RNEGAWLREPVFPSS [||6-] E 11 EARLNEKNPD16 |[ 1 1111 NMVLDHVEDMEERLD]FIii I 7 26| NEGAWLREPVFPSST || 16 [36211 SRKNDLIIWIRLVPL 15 1127 PEEGVEESSGEASKY E] F732| REPVFPSSTKKKCPKI11161 [37]l VPLQEEIYRK FD1151 [11421 TEEDPSGETLSSENK 1651 [781| PKEGEKQDLSSIKVN |1|61 11 VLKKLCDHPRLLSAR 16 [1169 AQETSLGAPEPLSGE 15 789| LSSIKVNVTTLQDGK ||16 [5001 HFKTLRIDGTVTHLL 15 [11711 ETSLGAPEPLSGEQLa ] [799]| LQDGKGTGSADSIAT 16 538]1 VGGVGLTLTMTRVV 112311 SADPEVM Y Ills] [800]| QDGKGTGSADSIATL 1|16] | 541][ VGLTLTAAT IF1 51 1123 PEVMLLTLSLYKQLN Il [808]1 ADSIATLPKGFGSVE ||16 F545][ LTAATRWIFDPSWN [5 8451 KETLQEGPKQEALQE || ] 15811 VYRLITCGTVEEKIY 1 TableXLVI-V4-HLA-DRB1-0101 851|| GPKQEALQEDPLESF | 161 6|241 LRELFTIEDLQNSVT [5 Er F854|| QEALQEDPLESFNYV 1116] [63|1 | EDLQNSVTQ16 j- 1d] ___ ___ - __ ___ -ID NO: 3; each start position is 185911 EDPLESFNYVLSKST ][16 F6]33]1 LQNSVTQLQLQSLHA 15 specified, the length of peptide is I886|| DDEILRHCNPWPIIS |[ 16] F65811 EHIAYLQSLGIAGIS [5 15 amino acids, and the end 19221 SSHSLQDQASE][ ~] ~ J KELDVVESHIQQ][ jg- position for each peptide Is the 9_22||_______I__ _ E start position plus fourteen. 9361 AKLEEEPSASSPQYA ] [69-[ QRVQKAQFLVEFESQ][ gI 123456789012345 16e F9491 YACDFNLFLEDSADN 16 [i11 KEFLMEQQRTRNEGA[ 15 F KEFIKWTPGMGVkTFF[27 19601 SADNRQNFSSQSLEH 1|16 [I PKLNKPQPQP 11 is] [ FIKWTPGMGVKrFHGII12O] 97211 LEHVEKENSLCGSAP | 16 [75111 QPQPSPLLSTHHTQE 1 [1WVKEFIKWTPGMGVK 19 977 IKENSLCGSAPNSRAG|| 1161 [752I PQPSPLLST16 15 [E VKEFIKwrPG -1 18] 982| CGSAPNSRAGFVHSK 16 ]] LSTHHTQEEDiSS 1 [ TPGMGVKTFH D 18 1002 EFSEKDDEPEEVVVK ||16 [761[ HHTQEEDIS 1E 1009| EPEEWVKAKIRSKA ||116] [773[ ASWIDDLPK I1 [1 GMGVKTFHGPSKDER 17] 1020|| RSKARRIVSDGEDED |16 1797]1 TTLQDGKGTGSADSI 1 ] ED IKWTPGMGVKTFHGP I16-1 11097 RSLINMVLDHVEDME || 16TNSSLGMEKSFA T] 1104|| LDHVEDMEERLDDSS]| 1] 827][ NSSLGMEKS6 |15 -V5-HLA-DRB1-0101 1107| VEDMEERLDDSSEAK L16 85611 ALQEDPLESFNYVLS [ ]mers-273P4B7 11140|| KYTEEDPSGETLSSE 16 F86-511 FNYVLSKS [5 Each peptde is a portion of SEQ 11162| TSKPSALAQETSLGA 8971 PIISITNESQNAESN ] 15 ID NO: 3; each start position Is r1 specified, the length of peptide is 11791 PLSGEQLVGSPQDKA |16 9021 TNESQNAES 15] 15 amino acids, and the end 11185| LVGSPQDKAAEATND| 16 916 EIADDLSASHSALQD ]5 position for ech peptides the [iJCGKQELNCVK l1 [3JEA EEPSPQ1 start position plus fourteen. 1213|| CGKIQEALNCLVKAL 1| 16 F341SALEP 1 [50|| IFPNEKVLSRIQKQ 952 DFNLFLEDSADNRQN 124] MGLGKTVQIIAFLSG || 15 1 9EK] VDAICEMPSLSRRNDI201 125]1 GLGKTVQIIAFLSGM ] 99 K E ED E[ RNDLIIWIRLVPLQE ][1l [139] MFDASLVNHVLLIMP ||- 1158 DEPEEVWKAKIRSK 157 [1] RRNDLIIWIRLVPLQ 18 65][ IKWTPGMRVKTFHGP||I ]E 1013 W1K5KISKARRIV - ij [][ ICEMPSLSRR 2]04[ MLINNWQQLSSFRGQ ||0 DEDDSFKDTSSINF 115 [W SRRNDLIIWIR][ 1lj [R 15m] e1047 rTSLFQFSSVKQFDA -713 186 TableXLVl-V5-HLA-DRB1-0101- TableXLVI-V6-HLA-DRBI 0101- TabieXLVI-V6-HLA-DRBI-0101 15mers-273P4B7 35mers-273P4B7 15mers-273P4B7 j Each peptide Is a portion of SEQ Each peptide is a portion of SEQ Each peptide is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position is ID NO: 3; each start position is specified, the length of peptide is specified, the length of peptide is specified, the length of peptide is 15 amino acids, and the end 15 amino acids, and the end 15 amino acids, and the end position for each peptide is the position for each peptide Is the position for each peptde is the startposition plus fourteen. start position plus fourteen. start position plus fourteen. [Pos| 123456789012345 scoredel 123456789012345H 2 |DVDAICEMPSLSRRN 14 M H EE 1 IPDVDAICEMPSLSRR 12 | 11 SLSRRNDLIIWIRLV 10 | [956|[FLEDSADNRQNFSSQ][261 [ 1 NSGLLLYREL0 |20 7I CEMPSLSRRNDLIlW_||7 1-03]I VLDHVEDMEERLDDS261 [.-J[ GLLLYRELHNQLFEH EE 12 LSRRNDLIIWIRLVP L|| b2]I LDIKSADPEV9 |6 12971 TVQIIAFLSGMFDAS 9 |0 ffF613 ][ KNPFRYFSQRL 115 194 II RNGVIiTTYQMLN II i6i TableXLVI-V6-HLA-DRBI-0101- 1 685] E25 F209 ]jWQQLSSFRGE F 20] I 5mers-273P4B7 ] [946][ SPQYACDF 25 217 ]l GQEFVWDYVILDEAH 1[J Each peptide is a portion of SEQ [40 ][ AFKLFNK F 24 F365 ]j NDLIIWIRLVPLQEE [0 ID NO: 3; each start position is specified, the length of peptide is 22][ WDYVILD FL2±4] F 11 LVPLQEEIYRKFVSL I F2-.. 15 amino acids, and the end [31411 SENLMAII 24 [510]j VTHLLEREKI F 0i position for each peptide is the [m75] DDEFTDVC ][62[7 1 ELFTIEDLQNSVTQL.][ 20 start position plus fourteen. [ KT 2 QNSVTQLQLQSLHAA E10 1 123456789012345 5011 FKTLRIDGscrLLE e23 [803][ KGTGSADSATLPKG L0 1± ~GPLDLKDEVRH ~j~ I549IITRWIFDPSWNPATD ]f23 ] f870][ SKSTKADIGPNLDQ 20 | 4 |GPNLDQLKDDEVR 24 | 4 E j13][ DVLRHCNPPIISI j IIZLVEFESQNKEL E 112] 89811l IISITNESNAE-SNV 2L0 |13||1 DEVLRHCNPWP11lI 24 | : |10||LKDDEVLRHCNPWP fl ] [81 LDQLKDDEIRHCNP j2] 11026]i IVSDGEDEDF 20] |12| DDEVLRHCNPWPIFS|16] [95]1 FNLFLEDSAD1 63 1040 I TSSINPFNTSF 07 Li~~~~I1~ ILHNWISTN]~ 4] VNHVLLIMPTNLN F22-] F11 57 ] SSWLMTSKPSALAQE ][ 20 ] |15| VLRHCNPWPIl=SITN || 14 F 4 - l27 TVRKL2 ableXLVII-V1-HLA-DRB1-0301- F[ 15mers-273P4B7 772 MASWID 22 ] 1233 ]DPEVMLLTLSLYKQL ] 20 Each peptide is a portion of SEQ ID ASWIDDLPKEGEKQ 22] [53 11 NEKVLSRIQKIQE NO: 3; each start position is specified, Fi9V 4j IIEIADDLSASHSAL ][ 22 [60 ][ IQKIQEALEELAEQG ] 19 the length of peptide is 15 amino acids, and the end position for each peptide Is 1099]1 LINMVLDHVEDMEER I[ F]13371 IAFLSGMFDASLVNH_119 the start position plus fourteen. I LFNLAKDIFPNEKVL ]21 [147 ]1 HVLLIMPTN 719I jPos][ 123456789012345 |score 781 FTDVCNSG E 211 [153]I PTNLINTWVE FIK I 651] KSDIKLDEHIAYLQS j3 117 ]rGGILADDMGL F21 I 202][ YQMLINNWQQLSSFR 19 461 || KMIFLMDLLKRLRDE ][7W] 120111 1YQMLINNWQQLSSF][21 127611 QGSLLGTLK|T3FKMEY0 |9 I854][ QEALQEDPLESFNYV || 3 FW ]6 VLKKLCDHPRLLSAR 11 2] 306 j[ EKALGFKISENLMAI 301| 1382]| RKFVSLDHIKELLME | [413]l HPRLLSARACCLLNL 1121] [31511 ENLMAIIKPYFLRRT 2 |[9 [I0]23| ARRIVSDGEDEDDSF ][4][ T] DQVTDDTLMEESGKI ] 326 ]FLRRTKEDVQKKKSSN |1|9 [07 || LYSLYRDGRKGGILA]| 27 | 469 ][LKRLRDEGHQTLVF 21 355 ICEMPSLSRK 19 [390 | IKELLMETRSPLAEL ]| 27] 596][RRQVFKDSLIRQTTG 2] 384 ]1 FVSLDHIKELLMETR 19 [478|| QTLVFSQSRQILNII ][2-7I 667][GIAGISDHDLMYTCD 1121] [4072 LKKLCDPRL 19 - 485 SRQILNIIERLLKNR ||27 [1|[ LTLKNN ] [414 [301| EATKNGDLEEAFKLF || 110 IA S AY 20 [463][ IFLMDLLKRL2 |_19 [2441| ARAIPASNRLLLTGT ||261 [|197 AHYLRYVKEAKEATK [0 465 1 LMDLLKRLRDEGH 9 370 || WIRLVPLQEEIYRKF |F LRYVKEAKEATKNGD [20 F E ~ DLMESGMIFMD l~ 47 AKDFPEKVLSRIQ F20 I E fl ERLLKNRHFKTLRID ]~ 187 TableXLVI-V6-HLA-DRBI-0101- ITabeXI.V6-HLA-DR1 -0101- TabieXLVl-V6-HLA-DRBI-0101 15mers-273P4B7 [ Imers-273P4B7 [ 5mers-273P4B7 Each peptide is a portion of SEQ Each peptide Is a portion of SEQ Each peptde is a portion of SEQ ID NO: 3; each start position is ID NO: 3; each start position is ID NO: 3; each start position Is specified, the length of peptide Is specified, the length of peptide is specified, the length of peptide Is 15 amino acids, and the end 15 amino acids, and the end 15 amino acids, and the end position for each peptide is the position for each peptide is the position for each peptide Iq the start position plus fourteen. tart position plus fourteen. start position plus fourteen. so 123456789012345 123456789012345 ] [ 123456789012345 503 TLRIDGTVTHLLERE ] T861 DDEILRHCNPWPIIS 18] 11 ALQDAQASEAKL 9|17 [5171| EKRINLFQQNKDYSV |_19] 895 PWPIISITNESQNE 18 [981 IILCGSAPNSR F]1LI S 522l LFQQNKDYSVFLLTT] -] 96 9 1 SQSLEHVEK [ ] [:i0i50] PEEVKAKRSKAR 9]] 647 || AAQRKSDIKLDEHIA 19 F101 2][ EVWKAKIRSKARRI 18 [1048] TSLFQFSSVKQFDAS 17 [665][ SLGIAGISDHDLMYT |IF] [1 016 KAKIRSKARD 8] [1076]SSQIPSSVNKSM 1R71 17051 QFLVEFESQNKEFLM 1] 1065] KNDISPPGRF| 19S |1 [148][GETSSENKSSWLMT 17 769 SSKMASVVIDDLPKE ||_19 [I I INMVLDHVEDMEERL 54][ EKVLSRIQKI L-6i1 I7951 NVTTLQDGKGTGSAD|[ 1 O L- MEERLDDSSI[18 [56][ VLSRIQKIQ 16 8 [45|| KETLQEGPKQEALQE ] 9 1 93]1 AAEATN DYE 19K |-6[[ 1 ELAEQGDDEFTDVCN 16] F8801| NLDQLKDDEILRHCN][ 9] [1217][ QEALNCLV| 19D |1 DMGLG Q F I6 924 ]| SHSALQDAQASEAKL]| 19 | 222] CLVKALDIKS [181 [159]1 TNLINTWVKE 1] 1T111 ] EERLDDSSEAKGPED 11 9 [ 7W] HNQLFEHQKEGIAFL 17 F[253-11 LLLTGTPIQNN1L9QELI 118521|GEQLVGSPQDKAEA [19 [0411 AFLYSLYRDGRKGG 1171 [ [ LLGTLKTFKMEYEP [1] F1200]| YETLVKRGKELKECG 1|191 [17|6IFHGPSKDERTRNLNR 1[REKDATPGEK F 6I 1207][ GKELKECGKIQEALN [[19 [185-I1 TRNLNRIQQRNGVII [[17] [32211 KPYFLRRTKEDVQKK [W] 1213 ][ CGKIQEALNCLVKAL ||19 |i QMLINNWQQLSSFRG 17 I 349 ][ NPDVDAICEMP [16 [34_]| NGDLEEAFKLFNLAK |[_187 [ 283 [ LKTFKMEYEI 17] [356[[ OEMPSLSRKNDLI6W 57 || LSRIQKIQEALEELA7[18 1291 ENPITRAREKDATPG [1 151811 KRINLFQQNK|D|Y1SVF|16 [64|| QEALEELAEQGDDEF [ [308 ALGFKISENL|MA|IK 1 |17 1[9[[ RINLFQQNKDYSVFL 1| 18 [86 || LLLYRELHNQLFEHQ ||[18 [334 I QKSSNPEARLNEKI[1] [ [ WQ] 1158 ||NTWVKEFIKWTPGMR KFVSLDHIKE E 1|7 |56 ] AQAVDRVYRIGQKEN]16] [195[| NGVIITTYQMLINNW 18 428 GTFSAQDGNE 1817] [589] 1VEEKIYRRQ F 161 [224|| YVILDEAHKIKTSST ||18 j4411 SPDVDHIDQVTDDTh 17 [627]1 LFTIEDLQNsvTQLQ 16 F243 || CARAIPASNRLLLTG ||118] 490] NIIERLLKNR M 6 IEDLQNSQ 257 || GTPIQNNLQELWSLF 1 18] [571 [SWNPATD] 17] t642-][ LQSLHAAQRSI 16 F_323|| PYFLRRTKEDVQKKK] 18 [57] VDRWRIGQK 17 F -7[371 KAQFLVEFE 1 ] [364_]| KNDLIIWIRLVPLQE 1118] L IRQTTGEKK IT LI 733 11 EPVFPSSTKKKOPKL fl 371 || IRLVPLQEEIYRKFV][NW] [616 ]I FRYFSKQELRE FT 7 ][IT[ ETLQEGPKQEALQED [18] 4011 LAELGVLKKLCDHPR | 18 [ 6ii ][ RYFSKQE 17 [[896-11 WPIISITNESQNAES [[16 [_44| VDHIDQVTDDTLMEE 118 [694 11 SHYIQQRVQ 17 [[950-1[ ACDFNLFLED| 1A 1 8[ F462 || MIFLMDLLKRLRDEG 18 714 ]1NKEFLMEQQRTRNEG][ IT I _][ QSLEHVEKEN| 18G [ F 489] LNIIERLLKNRHFKT ||18 [ 715 KEFLMEQQR17NEG][I0- 1 ]I][EFSElDDEPEEVVV 16 T507][ DGTVTHLLEREKRIN || 18 [7 SWIDDLPKEGEKQD][ 17[ I5s]j LFQFSSVKQFDASTP F T6] [_529j YSVFLLTTQVGL |F181 77 6 ~~~W][~~~~ YSFLTVGG 18 m [IDDLPKEGEKDS 117] [150__Wj PSSVNKSMNSRRSLA [16] 542 | GLTLTAATRWIFDP 18 [80811 ADSIATLPKGFGSVE_ 1 10821SVNKSMNSRRSLASR 16 570][ VYRIGQKENVVVYRL ||18] 181511 PKGFGSVEELCTNSS I177 ji1W[[ NSRRSLASRRSLINM 16] 67]| TCDLSVKEELDVVEE ||[18] [ QEDPLESFN [17 [Th§-[[ LASRRSLINMVH 16 EM DDLPKEGEKQDLSSI [:A]. [88[NYVLSKSTK DIGPN 1117 [ [jKEAKEATKNGDLEEA 15] 188 TableXLVI-V6-HLA-DRB1-0101- [ 5mers-273P4B7 TabieXLVI-V1-HLA-DR-0401 15mers-273P4B7 - Each peptide is a portion of SEQ t1smers-273P4B7 Each peptide Is a portion of SEQ ID NO: 3; each start position is Each peptide is a portion of SEQ ID ID NO: 3; each start position Is specified, the length of peptide is NO: 3; each start position is specified, the length of peptide Is 15 amino acids, and the end specified, the length of peptide Is 15 15 amino acids, and the end position for each peptide is the amino acids, and the end position for position for each peptide is the start position plus fourteen. eac peptide is the start position plus start position plus fourteen. FPosI 123456789012345 fourteen. 235780 5 scores 1234567 s I Fj- 235780134 RNDLIIWIRLVPL-QE ]['18] F277[GSLLGTLKTFKMEYE [26 14611 LAKDIFPNEKVLSRI | 151 F 39011 IKELLMETRSPEL I26 F9-4 || NQLFEHQKE~iFY| 15j I 938 II. NQ LFEHEGIFY [5 1VDAICEMPSLSRRND1- 4-21][ ACCLLNLGTFSAQDG II 26] 11381| GMFDASLVNHVLLIM || 15 1_Tl SLSRRNDLIIWIRLV j [46e] LKRLRDEGHQ F61 146| NHVLLIMPTNLINTW ||1 MPSLSRRNDLW 411 RQILNIIERLLN 26 173 ||VKTFHGPSKDERTRN| THLLEREKRI i479|| TLVFSQSRQILNIlE || 115 1 JIPDVDA NcE S 10 2 84 || LITCGTVEEKIYRRQ ||_ 1 [542]1 GLTT5T| 26] 593| KIYRRQVFKDSLIRQ 13 AQAVDRVYRIGQKEN _677_| MYTCLSVKEE LDVV ||_15_| GN7 26 695 _|| HYIQQRVQKAQFLVE ||15 15es2347-311 F-2] FIDQS L |2 Fi7041iA____________ I15 Each peptide is a portion of SEQ A6F5L f| 1lDEHIAYLQSLGIAGI1 706 || FLVEFESQNKEFLME 15 ID NO: 3; each start position is 819|| GSVEELCTNSSLGME |I i15i specified, the length of peptide is [151[ VVEESHYIQQRV F267 _____________ -15 amino acids, and the end [77 1I AQFLVEFESQNK F [26] -825] CTNSSLGMEKSFATK 5 position for each peptide is the | 15 | FGSVEEL 26-3 833 || EKSFATKNEAVQKET |[ 15 ' start position plus fourteen. NSSLGMEKSFATKNE 26] [86511 FNYVLSKSTKADIGP1 ] Post 123456789012345 F9]1 PWPIISITNES 261 988 ] SRAGFVHSKTCLSWE 15 LDQLKDDE 23 E 11039K| DTSSINPFNTSLFQF || 15NLDQLKDDE [201 Lg1IIDFNLFLEDSASNRQN 26 1158 || SWLMTSKPSLQT| 151 FLLDAF6 I~i~IS~~~SKSAIAQE NI~3 111 DDEVLRHCNPWPIIS l~1 10473 NTSLFQFSSVKQFDA l1 I113[ I SKPSALAQETSLGAP ||15 _ 211 DIGPNLDQ DE I1 [E S12131 CGKIQEALNCLVKAL ||261 12341||PEVMLLTLSLYKQLN ]i15 11 3 DEVLRHONPWPIISI] 111 12111 YLRYVKEAKEATKN15]I2] TableXLViI-V4-HLA-DRB-0301- TableXLVIII.VI-HLA-DR-0401- 8E 15mers-273P4B7 [i 5mers-73P4B7 5571 INTWVKEFI I[27 Each peptide Is a portion of SEQ Each peptide is a portion of SEQ ID F6 i FIKWPGMRVKTFH ID NO: 3; each start position is NO: 3; each start position is I2061IINNWQQLSSFRGQEF 22 specified, the length of peptide is specified, the length of peptide is 15 [2i-][ EFVWDYVILDEAHKI ] 15 amino acids, and the end amino acids, and the end position for position for each peptide is the e e is the start position plus [fll VWDYVILDEAHKIKT start position plus fourteen. fourteen. [21[QELWSLFDFACQGS1 22 1 Pos|| 123456789012345 sa jl 123456789012 F2[73[ LKTFKMEYENPITRA 122] 1li NTWVKEFIKWTPGMG 1 DDEFTDVCN 28] [[ALGFKISEN2 51 KEFIKWTPGMGVKTF 12 [11 ITTYQMLINNWQQLS I1281 I-Z-l1 EEIYRKFVSLDHIKE 22 13 GMGVKTFHGPSKDER M| |6]1WSLFDFACQG E 28 I F18111 YRKFVSLDHIKELLM L22 [I11 TPGMGVKTFHGPSKD 10 F6]1 LESFNYVL 128 I 4611 KMIFLMDLL 11221 F4]1 VKEFIKWTPGMGVKT j] 946][ SPQYACDFNL 281 471 2 [IIIIKWTPGMGVKTFHGP [4981NRHFKTLRIDGTVT-H _1 __ ______________- [5I GLLLYRELHNQLFEH 1j26] j 52611 NKDYSVFLLTTQVGG_ 22i~ TableXLVII-V5-HLADRB1 70301- [22j[DYVILDEAHKIKTSS 16 15] WIFDPSWNPA=TDAQ 22~i 189 TableXLVII-V1-HLA-DR-0401- TableXLVIIl-V1-HLA-DR-0401- TabieXLVIII-V1-HLA-DR.0401 15mers-273P4B73P4B 115mers-273P4B37 j 1 Smers-273P34B7 - Ilms27PB Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID NO: 3; each start position is NO: 3; each start position is NO: 3; each start position is specified, the length of peptide is 15 specified, the length of peptide Is 15 specified, the length of peptide Is 15 amino acids, and the end position for amino acids, and the end position for amino acids, and the end position for each peptide is the start position plus each peptide is the start position plus each peptde Is the start position plus fourteen. fourteen. fourteen. [Pos| 123456789012345 s os 123456789012345 ||[ee [Pos[ 1234567890o12r3e45] se 555||DPSWNPATDAQAVDR 122] [291][ ENPITPAREK [20] [705]1 QFLVEFESQNKEFLM 1[i20 579|| WVYRLITCGTVEEK | 22 | 3175[ ENLMAIIKPYFLRRT]j[20] [7Ti I KEFLMEQQRT 20 [613| KNPFRYFSKQELREL | 22 | 3491[ NPDVDAICEM 20 73211 REPVFPSSTK F[07 F625|| RELFTIEDLQNSVTQ ||[22 355][ ICEMPSLSRKNDL1LF] [ifj[ SSKMASWIDDLPKE 20 675| DLMYTCDLSVKEELD ||22] [365]1 NDLUWIRLVP ]2 [78611 KQDLSSIKVT 20 703| KAQFLVEFESQNKEF ||22 [38211 RKFVSLDHIKELLME 20 [789J[ LSSIKVN ]i] 714||NKEFLMEQQRTRNEG || F3[-41[ FVSLDHIKE22 20 782|]1 VEELCTNSSL [20] 727|] EGAWLREPVFPSSTK | |39[]1 KELLMET2RS2 20 8591 EDPLESFNYVLSKST 20] 815|| PKGFGSVEELCTNSS 13981 RSPLAELGVL22 | [8781 GPNLDQLKD 864| SFNYVLSKSTKADIG ||22 [407][ LKKLCDHPRLLSARA 20 898]1 IISITNESQNAESNV [jj] 950|| ACDFNLFLEDSADNR ||221 141311 HPRLLSARACCLLNL 191111 NVSIEIADDLSASH F20] F9891 RAGFVHSKTCLSWEF|| 4411 SPDVDHIDQvDDTL ]92 VSUEIADDLSASHS 20 1123| PEDYPEEGVEESSGE ] 22 4441 VDHIDQVTDDTLMEE [20] 1914[ IIEIADDLSA II20i [11971 TNDYETLVKRGKELK ||22 45211 DDTLMEESGKMIFLM 20 I9][ADDLSASHALQDAQ 1120 22 ] LRYVKEAKEATKNGD][20 45911 SGKMIFLMD 20] 925][ HSALQDAQASEAKLE ||220 1 1341 NGDLEEAFKLFNLAK ||4631 IFLMDLLKRLR20H |[i-i1 969[SQSLEHVEKENSLCG 11201 160|| IQKIQEALEELAEQG [] l[ HQTLVFSQSRQILNI |[i 20I LZ LEHVEKENSL [20] r1011 KEGIAFLYSLYRDGR ||20 | 48] QTLVFSQSRQLI 20 [9§961KTCLSWEFSEKDDEP ][20] 1041| IAFLYSLYRDGRKGG |2| f 485[ SRQILNIIER 20 FO11 EEWVKAKIRSKARR 2 107|| LYSLYRDGRKGGILA 492] IERLLKNRH 1040 TSSINPFNTSLFQFS 20 117f| GGILADDMGLGKTVQ||I-II [50111 FKTLRID20VT l 120]51 KNDISPPGR F20I[i1 121] ADDMGLGKTVQIIAF ||20 503]1 TLRIDGTVTH 20 1076 SSQIPSSVNK F201 1231 DMGLGKTVQ IAFLS 0 507]1 DGTVTHLLER 1 ] 11099 LINMVLDHVE| 2020 129]1 TVQIIAFLSGMFDAS || 2 0 1 EKRINLFQQN 11 1177 PEPLSGEQLVGSPQD][ 20 145j VNHVLLIMPTNLINT ||20 [52811 DYSVFLLTTQVGGVG 1120 11182 GEQLVGSPQDKAAEA][20 F1461 NHVLLIMPTNLINTW[12] 55I TTQVGGVGLTLTAAT 1201 12201 LNLVKALDIS 20 147][ HVLLIMPTNLINTWV ||'] 538]1 VGGVG2TL0AATW [1221 NCLVKALDI 20 .170 I GMRVKTFHGPSKDER|| 20 15481I ATRVIFDPSWNPAT 1207 1 1226 ALDIKSADPEVMLLT I120 185][ TRNLNRIQQRNGVIl []I1RIFDPSWNPATD 20 1234 PEVMLLTLSLYKQLN | 200 F1951 NGVTYQMLINNW ||L- 201 wS ][506 1235 EVMLLTLSLYKQLNN 1120 202 I YQMLINNWQQLSSFR 20 16011 S Q20][ RFPEAEALSP 18 12031 QMLINNWQQLSSFRG|| 201] KQELRELFTIEDLQN [ 20 [E] LEEAFK Elf1 222] WDYVLDEAHKIKTS ||20] F2]1 LRELFTIEDLQNSVT ][2o] [45][ NLAKDIFPNEKVLSR 118 224] YVILDEAHKIKTSST 20IEDLQNSVTQLQLQS ] IFPNEKVLSRIQKIQ j[18 23]I AHKIKTSSTKSAICA |[|0 [3]QNsvTQLQLQSLHM][20 511 FPNEKVLSRIQKIQE 244] ARAIPASNRLLLTGT |[202] LQSLH ]207 [~7[ FLSGMFDASLVNHVL ]I8 250] SNRLLLTGTPQNNL ][0 651] KSDIKLOEHIYQS [1381I GMFDASLVNHVLLIM 1 261]1 QNNLQELWSLFDFAC| 20 [660] IAYLQSLGIAGISDH ][20] LL ________________ fl SILGIAGISDHDLMY 1150j NOLIMTNIN vEF[18 190 TableXLVII-VI-HLA-DR-0401- TableXLVIII-VI-HLA-DR-0401- TabieXLVIII-VI-HLA-DR-0401 15mers-273P4B7 I 15mers-273P4B7 1 11 5mers-273P4B7 Each peptide is a potion of SE ID Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID NO: 3; each start position Is NO: 3; each start position is NO: 3; each start position is specified, the length of peptide is 15 specified, the length of peptde is 15 specified, the length of peptde Is 15 amino acids, and the end position for amino acids, and the end position for amino acids, and the end position for each peptide is the start position plus each peptde Is the start position plus each peptde is the start position plus fourteen. fourteen. fourteen. [Pos|| 123456789012345 |score| Pos 111234567890 e Ios 123456789012345 se [151|| IMPTNLINTWVKEF |718 [77| 9 DLPKEGEKQDLSSIK l8-1 [4781 KDIFPNEKVL F16 176I FHGPSKDERTRNLNR|| 18 [782[ KEGEKQDL 18 [94][ NQLFEHQKEGIAFLY l6E 177I| HGPSKDERTRNLNRI I|81 178311 EGEKQDLSSIKNV 1 1 051[ AFLYSLYRD 116 [182 | DERTRNLNRIQQRNG|[88-082]1 GKGTGSAD18 | 08]1 YSLYRDGRKGGILAD 16 192]| QQRNGVIITTYQMLI ||18 F8051 TGSADSIATLPKGFG 18 [132]1 IIAFLSGMFD ][16 [193 | QRNGVIITTYQMLIN_]F18] 1836][ FATKN E 18 [EI SGMFDASLV I F1i6] [20011 TTYQMLINNWQQLSS1|8| F883]I QLKDDEILRHCNPWP18 [ E|A F227| LDEAHKIKTSSTKSA ||1181 F892[ HNPWPIISITN [18] [2701I LFDFACQGSLLGTLK ]7 243]| CARAIPASNRLLLTG 1 18 902]1 TNESQNAESNVSIIE 18 [2871 KMEYENPITRAREKD][ 12541| LLTGTPIQNNLQELW 1 9|0|11 NESQNAES1NV8SIEI ][1] 13671| LIIWIRLVPLQEEIY 1 [274]| ACQGSLLGTLKTFKM 1118 |2Q 1 INLFQQNKDYSVFLL ]L6I M319| AIIKPYFLRRTKEDV 18 F ] LSASHSALQDAQASE | | j529 1| YSVFLLTTQV ]1 6 326 I LRRTKEDVQKKKSSN 18 955] LFLEDSADNRQNFSS 18 568][ DRWRIGQKENWW 6 [34111 PEARLNEKNPDVDAI ]L 111ADNRQNFSS [118 Ls9]L EKIYRRQVFKD|S|LIR81| 37411 VPLQEEIYRKFVSLD ||18 F9661 NFSSQSLEHVEEN 1 ] 971 RQVFKDSLIR l1 6i 14101 LCDHPRLLSARACCL ||18] ' 79NSLGSAPNSRAGFV 18 [616]1 FRYFSKQELR FT 6i j418|] SARACCLLNLGTFSA 98611 PNSRAGFVHS 18 [69|3I ESHYIQQRV18F16 43||QDGNEGEDSPDVDHIl[] 11017] AKIRSKARRIE 1 [ [ LVEFESQ EFLMEQ 16 438 I GEDSPDVDHIDQVTD | 18 1033 EDDSFKDTSSINPFN 11181 F89311 CNPWPIISITNESQN FL-] [451]| TDDTLMEESGKMIFL jIi0]41 NPFNTSLFQFSSVKQ 18 [95311 FNLFLEDSADNRQNF ||118 L4761| GHQTLVFSQSRQILN l11054 SSVKQFDASTPKNDI|| -L8- I 96411 RQFSSQSLEHVEKE 16 4951 LLKNRHFKTLRIDGT 118 1 01o55 SVKQFDASTPKNDIS ] [10341 DDSFKDTSSINFT 16 [5161 REKRINLFQQNKDYS 11 181 11068 ISPPGRFFSSQIPSS][18 1043 INPFNTSLFQ F -1 6] [522 LFQQNKDYSVFLLTT 1073 RFFSSQiPSSVNKSM ][18] 11071 PGRFFSSQIP| 18K 6] 527| KDYSVFLLTTQVGGV ||18] 11087 MNSRRSLASRRSLIN ][18] 11072 GRFFSSQIP ]16] F541| VGLTLTMTRWIFD | 18 11088 NSRRSLASRRSLINM ] 138 ASKYTEEDPSGETLS 6 F575] QKENVVVYRLITCGT ]11093 LASRRSLINMVDHV 11 [i61 KSSWLMTSKPS|A|LAQ1]8 588 | GTVEEKIYRRQVFKD 1| 18] 11109DMEERLDDSSEAKGP 1118 15-][ NEKVLSRIQ 5llS [~§]~QVKDSIRTTEK ][18] 11 101 MEERLDDSSEKE 11181 [306][ EKALGFISEN LMAI 15] 598|| QVFKDSLIRQTT-GE || 18 |626|1 ELFTIEDLQNSVTQL 18 1127PEEGVEESSGEASKY|| 18 70 1RIGQKENV RL 631]| EDLQNSVTQLQLQSL[18] 11131 VEESSGEASK||ED 18 641SHYIQQRVQKAQF ] |636)| SVTQLQLQSLHAAQR ||18] [139 SKYTEEDPSGETLSS 118 1 1 EVWKAKIR .|641| QLQSLHAAQRKSDIK]| 18 DPSGETLSSENKSSW]F181 [1016 KAKIRSKAR ][I 686]| EELDVVEESHYIQQR || )1162 TSKPS 18 11084 NKSMNSRRS15 691| VEESHYiQQRVQKAQ 118] 12321 ADPEVMLLThSLYKQ 1] RRSLASRRSLINML] I 7301| WLREPVFPSSTKKKC 18 FT il RFEAPEQA ][ W] (11581 SWLMTSKPSALAQET FW I |752] PQPSPLLSTHHTQEE |1|8 E fl] AAHYLRYVKEAKEAT 18 1. 10 1 AEALSPEQMHYLRY 11] |76111 HHTQEEDISSKMASV ||ii [381 EEAFKLFN 16 119]! AHYLRVKEAKEATK I1 [7611 TQEEDISSKMA SVV ET8 [41]! FKLFNILAKDIFPNEK I167 F40]!AKFKIPN IL 191 TableXLVIII-Vi-HLA-DR-0401- TabieXLVIl-VI-HLA-DR-0401- 1 ableXLVlll-Vl-HLA-DR-0401 15mers-273P4B37 5es2343 mr-7P17 Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID Each peptide is a portion of SEQ ID NO: 3; each start position Is NO: 3; each start position is NO: 3; each start position is specified, the length of peptide is 15 specified, the length of peptide Is 15 specified, the length of peptide Is 15 amino acids, and the end position for amino acids, and the end position for amino acds, and the end position for each peptde Is the start position plus each peptide is the start position plus each peptide Is the start positon plus fourteen. fourteen. fourteen. [Pos | 123456789012345 score 5Pos 1234567890134 R [Pos][ 123456789012345 sce L43| LFNLAKDIFPNEKVL 141 [|8] LDHIKELLME R_] F2]SLGMEKSFATKNEAVLi 47 || AKDIFPNEKVLSRIQ ] 14 | 401][ LAELGVLKKL 14 [8401[ NEAVQKETLQ F[--1 54 | EKVLSRIQKIQEALE 14H] [404]1 LGVLKKLC EE4 [84511 KETLQEGPKQEALQE |I|4. 57] | LSRIQKIQEALEELA It 14] [7 !854 QEALQEDPLESFNYV 14 64_ 1QEALEELAEQGDDEF][ 14_| [44 LLNLGTFSAQ F1141 866]1 NYVLSKSTKADGN][ 14] F83][ NSGLLLYRELHNQLF 14 4471 IDQvTDDTLMEESGK 14 [874 KADIGPNLDQLKDDE 14 F89[ YRELHNQLFEHQKEG][ 14 1462]1 MIFLMDLLKR E ]8-811 LDQLKDDEIL N 1 4 f931|| HNQLFEHQKEGAFL I1141 14661I MDLLKRLRDEGHQTL][_14] 1886 DDEILRHCNPWPIISIFW1 116|1 KGGILADDMGLGKTV | 14 [48911 LNIIERLLKNRHFKT [14 88711 DEILRHCNPWPISI:lFi!] 1271| GKTVQIAFLSGMFD 14 8961 WPIISITNESQNAES F130|| VQIIAFLSGMFDASL || 301 SVFLLTQVG F ] 909 ESNVSIIEIAD1DL4SA JF 1331| IAFLSGMFDASLVNH 14 [5][ GVGLTLT|F|[] 9544 NLFLEDSADNRQNFS 14 136|| LSGMFDASLVNHVLL ||14] [55|0[ RWIFDPSW 14 [10231 ARRIVSDGED 1141] DASLVNHVLLIMPTN ||14] [581][ VYRLITCG 11141 1053 FSSVKQFDASTPKNDlI4i 1142|| ASLVNHVLLIMPTNL ||14] 582][ YRLITCGTVEE I141 1080 PSSVNKSMNSRRSLA 14] 1148|| VLLIMPTNLINTWVK ||14] [602]1 DSLIRQ1TGEKKNPF 14 10961 RRSLINMVLDHVEDM 144| 154][ TNLINTWVKEFIKWT F1 [|]7vTQLQLQSLHAAQRK 4 1097 RSLINMVLDH E ]1 4 I158 | NTWVKEFIKWTPGMR][| |639]1 QLQLQSLHAAQRKSD 1141 [1|j-i j NMVLDHVEDE14[| 162|| KEFIKWTPGMRVKTF | 14 F5][ DIKLDEHIAYLQSLG ]114 11128 EEGVEESSGEASKYT14 [194|| RNGVIITTYQMLINN ||14 16631I LQSLGIAGISDHDLM UK4 11148 GETLSSENKSWM 1141 [~1 VITYQLNNQ 141 66811 IAGISDHDLMTD ff14] 1115771 SSWLMTSKPSALAQE]1141 196|| GVIITTYQMLIN NWQ || 14 20111 TYQMLINNWQQLSSF ||14 673]1 DHDLMYTCD 1E [209WQQLSSFRGQEFVWD| 14 ] F67411 HDLMYTCDLS [ I[217 QEALNCLV 14 125111 NRLLLTGTPIQNNLQ ||4 [6!J1 DLSVKEELD ][4] 1233 DPEVMLLTLS a] 252|| RLLLTGTPIQNNLQE F[I] 5]1 KEELOWEES ]1] 123 VMLLTLSLYKQLNNN 1 257|| GTPIQNNLQELWSLF ][14 688]1 LDEESHYIQQRVQ 14 264| LQELWSLFDFACQGS|iT] [ QQRVQKAQFLVEFES 1 1l TabieXLVIl-V4-HLA-DRBI-0401 F276|| QGSLLGTLKTFKMEY|| 14E 1 1 mers-273P4B7 280]| LGTLKTFKMEYENPI | -14 [728][ GAWLREPVFPSSTKK 14-1 Each peptide is a portion of SEQ ID I____________ NO: 3; each start position Is [285] TFKMEYENPITRARE ||14] F7474 IPKLNKPQPQPSPLL 14 specified, the length of peptide is [310 GFKISENLMAKPY |[14 741 PSPLLSTHH ]H14 15 amino acids, and the end 314 SENLMAIIKPYFLRR SPLLSTHHTQEEDIS Position for each peptide Is the start [31 I8| J| _______________ I 1 I Ifl [ 1 4 option plus fourteen. [F3211 MIPYFLRRTKED P ] I 721ASWVIDDLPKEGEK] I] U Pos 13456789012345 score] SPYFLRRTKEDVQKKK GMGVKTFHGPSKDER 135211 VDAICEMPSLSRKND IFI 141 SVIDDLPKEGEKQD liT]1 FIKWTPGMGVKTFHG l1] 3641 KNDLIIWIRLVPLQE ||14 [7-7] IDDLPKEGEKQDLSS 14 ji] NTWVKEFIKWTPGMG 368|| IIWIRLVPLQEEIYR 14 793 KVNVTLQDGKGTGS][14 3701 WIRLVPLQEEYRKF || 14VTTLQDGKGTSADS I aLVPLQEEIYRKFVSL p14 e8 iapnKGFGSVE IF I 192 TableXLVII-V4-HLA-DRB1-0401- start position plus fourteen. I 564 RRQKEN 20 15mers-273P4B7 IP 1234567890135 F sre [~flj KKKCPKLNKPQPQPS 20 Each peptide is a portion of SEQ ID L _ _ I 774] SVVIDDLPKEGEKQD NO: 3; each start position is [i3] DEVLRHCNPWPIISI 8EE specified, the length of peptide is F86] ADIPNLQLKDE 20 15 amino acids, and the end __________ - [845 KETLEGKELQE] 2 position for each peptide is the start [10] LKDDEVLRHCNPWP 1884 LKDDEILRHONPWPI 1 position plus fourteen. TableXUX-VI-HLA-DRBI-1101- 1 F 0 [Pos 123456789012345 |score 15mers-273P4B7 [ [12 PGMGVK FHGPSKDE F [ Each peptide is a portion of SEQ ID ] R N 1 E VKEFIKWTPGMGVKT NO: 3; each start position is [73311 EPVFPSSTKKKCPKL 579 specified, the length of peptide is 15 [911][ NVSIIEIADDLSASH 19 amino acids, and the end position for TabeXLVII-V5-HLA-DRBI-0401- each peptide is the start position plus a5mers-273tp4ot 7 p fourteen. [75o[ DDEFTurtNSeen.1 Each peptide is a portion of SEQ [Pos ] 1234567890123 [-0e] [ YSLYRDGRKGGILAD 18 ID NO: 3; each start position is ______________2___271 KTQIAFSGFDJE specified, the length of peptide is [j]TDELKGEK[~] [~ [GTQIFSMDIi. 15 amino acids, and the end [~[ADSIATLPKGFGE Ii1472 [~ I ASLVNHVLLIMPTNL [18 I position for each peptide is the [§96fl ]SQSLEHVEKESG FIF7] [I [ VKVFH GPSKDERTN] 1 8] start position plus fourteen. [ 381][ YRKFVSLDHIEM j327 ~[ I [ KPYFLRRTKEDV-QKK ] 18] [Posi 123456789012345 score] [207 IINNwQQLSFRF F3 -4-9[[ NPDVDAICEMPSLSR][ 18] F6]| ICEMPSLSRRNDi |2 I ~ ~ ~ ~ F0 ICMSSRDLILI1 j115s63jKSSWLMTSKPSALAQ[j [367[[ LIIWIRLVPLQEI IEIW8 3 | VDAICEMPSLSRRND 1| |10-1011 PEEVVVKAK14KA ][_ |42111 ACCLLNLGTFSAQDG ]18 151| RNDLIIWIRLVPLQE ]i7I j1217fli QEALNCLV [123] [568]1 DRVYRIGQKEN||V[ 14 2j |DVDAICEMPSLSRRN| | 4 AFKLFNLAKDIFPNE1 222 [592][ EKIYRRQVKDSLI ][m [5 AICEMPSLSRRNDLI|| ] 47] AKDIFPNE12 |613 KNPFRYFS E 18 F7 |CEMPSLSRRND l| 12| [T-]ICESLSRRNDLIIW J[1TL ]1 9[ EFVWDYVILDEAHKI ]~ 22 [ j - I RELFTIEDLQNSVTQ [E18 1112 SLSRRNDLilWIRLV || 1220E I LVEFESQNKEF 1181 13 SRRNDLIIWIRLVPL |Il| F4631 IFLMDLLKRLRD1E2GH |881FGSVEELTN [181 [14]| RRNDLIIWIRLVPLQ 12 489 LNIIERLLKNRH|F1KT2j[ | [8][LSWEFSEKDDEPEE| 1182 9] |MPSLSRRNDLIIWIR[ 9 | ILFQFSSV 2[ Fo00]8 DEPEEV[ TableXLVIl-V6-HLA-DRB1-0401- [164]j FiKwTPGMRVKTFHG][ 21 [1221][ NCLVKALDIKSADPE [I ill 15mers-273P4B7 - [-l] RRTKEDVQKKKSSNP[ 21 17 Each peptide is a portion of SEQ [3]1 KNDLIIWIRLVPLQE 1 21 DD NQLFEHQKEGIAFLYIn I ID NO: 3; each start position is F40][LAELGVLK21 H10 I GIAFLYSLYRDGRK ][7-[ specified, the length of peptide Is ]F 15 amino acids, and the end position for each peptide is the [ RQILNIIERLL [[2] 19I EKDATPGEKALGFKI Iii 7'L start position plus fourteen. [5179[ RINLFQQNKDYSVFL [1 [3 VFLLTTQVGG 171 123456789012345 score KVNVTTLQDG SF _4_GPNLDQLKDDEVLRH|| 20 | 012 EVWKAKIRSKARRI 21 693[ ESHYiQQRVQKAQFL 17 [TJ GPLDQLKDEVLRH 0] [18 AAHYLRYVEEA] 20 [ 864 ]1 SFNYVLSKSTKADIG 11 17 9 |QLKDDEVLRHCNPWP |4 EKVLSRIQKIQEALE 2 F7 LDQLKDDEVLRHCNP|| 14 104 IAFLYSLYRDGRKGG Fj07ij] PGRFFSSQIP I F1 |DDEVLRHCNPWPIIS||[ ] 1071 LYSLYRDGR14 | 1198]1NDYELVKRG [[171 TableXLVIl-V6-HLA-DRBI-0401- NTWKEFIKWPGMR 15mers-273P4B7 2 Each peptide is a portion of SEQ ID NO: 3; each start position is 355 IOEMPSLSRKNDLII [ 20 F132]1 IIAFLSGMFDASLVN 16 specified, the length of peptide is [4651 LMDLLKRLRDEGHQT [20 F i4] TNLINTWVKEFIKVVT 16 15 amino acids, and the end position for each peptide is the [5 fs psitio plus___ fourt een.____ 193 221|| VWDYVILDEAHKIKT 1|16 | 83 FVLSKSTKADI 15 [966 NFSSQSLEHVEKENS 14 288| MEYENPITRAREKDA| 16 107 I RSKARRIVSDGE 1151 993 VHSKrOLSWEFSEKD Li±. 308 I ALGFKISENLMAIIK || 16 110811 SSVNKSMNSRRSASIM 1030 GEDEDDSFKDTSSIN 14 427 ILGTFSAQDGNEGEDS|| 16 | 1083 LASRRI15 1 I NPFNTSLFQFS 14 478 QTLVFSQSRQILNil_ 1 1087 MNSRRSLASRRSLIN | [16 |077SQIPS EE [498 NRHFKTLRIDGTVTH |116] [1098 SLINMVLDHVEDMEE]| 161096 RRSLINMVLDHVEDM14 [si1][ VTHLLEREKRINLFQ 16 [1158 SWLMTSKPSALAQET]15 1104 LDHVEDMEERLDSI41 [2 ]I YSVFLLTTQVGGVGL 116 [12001YETLVKRGKELKECG i 1148 GErLSSENKSSWLM 114 [545[ LTAATRWIFDPSWN 11161 [3411 NGDLEEAFKL F-1 [1168 1LAQETSLGAP I [555 DPSWNPATDAQAVDR, 16 E8]j GLLLYRELHN1F 64 [1203 LVKRGKELKECGKIQ uE L~~1 QEWWL 7OT I 1-6 LF17 PGMRVKTFHGPEK E ] 1 27 1!PI GKELKECGKIQEALN 14II 575QKENVVVYRLITCGT 1 5779 VVVYRLITCGTVEEK 116 18i DERTRNLNR I 1 4-1 II SADPEVMLLTLSLYK IIl 4-] I604 LIRQTTGEKKNPFRY 16 122611 ILDEAHKIKTSSTKS RYv(EAKEATK][I] 659][ HIAYLQSLGIAGISD 16 ] [6][QGSLLGTWTFKME][1 I5][ LSRIQKIQEAL F 13] 715 ]KEFLMEQQRTRNEGA 16] [291I ENPITRAREK ]4 0] IQKIQEALEE 13 F727 EGAWLREPVFPSSTK 16 1_ 37411 VPLQEEIYRK D ] F1 ][KGGILADDMGLGKTV]132! F815 ]PKGFGSVEELCTNSS 16 DHIKELLMETRSPLA 14 1 -2-611 LGKTVQIIAFLSGMFIi1 862 LESFNYVLSKSTKAD 11161 [39011 IKELLMETRS E1 ] [14611 NHVLLIMPTN 13 8931 CNPWPIISITNESQN 16 410 I LCDHPRLLSA II l68 [PSKD13 1 950 ACDFNLFLEDSADNR 16] 43 8 GEDSPDVDHIDQVTD I 4 [ IIYQMLINNWQQL F 110161 KAKIRSKARRIVSDG 16] j460 1GKMIFLMDLLKRLRD 14 267 I LWSLFDFACQGSLL3 _10341| DDSFKDTSSINPFNT 1 I LKRLRDEGH 14 GSLLGTLKTFK1 110431 INPFNTSLFQFSSVK 1_16_1 47 DEGHQTLVFSQSRQI 14 E 22 1 TLKTFKMEYENPITR 13 l1231PEDYPEEGVEESSGE| 16 [485] SRQILNIIER 14 [303][ GEKAL F I 51]| FPNEKVLSRIQKIQE 11 is] [sii] THLLEREKRINLFQQ][ 1] I32 KISENLMAIIKPYFL ||[115 _82 ]| CNSGLLLYRELHNQL |I 15] [ i ]ATDAQAVDRWRIGQ 14 F3z70[1WIRLVPLQF1-33] 93 || HNQLFEHQKEGIAFL 593 KIYRRQVFKD 384 FVSLDHIKELLMETR 13 _120[ j LADDMGLGKTVQIA ] 15] 59811 QVFKDSLIRQTTGEK 1114 38911 HIKELLMETR|S|P1LAE 53 [i~[ MGLKTQIIFL 115 j 609 1TGEKKNPFRYFSKQE 1 F391114] [h~ KELLMETRSPAL ]13] |1- DMGLG KTVQI AFLS ||E5E 13]9 [ MFDASLVNHVLLIMP | | 64 ]NT 398 RSPLAELGV 13 223][ DYVILDEAHKIKTSS |[ 15 _! 62 iR [4I1 459 11 SGKMIFLMDLLKRLR][ 13 2241 YVILDEAHKIKTSSTLl I[ KsDIKLDEHIAYLS 1 31uQVGGVGLTLT r]Lk] I237 || STKSAICARAIPASN || 155f ]HYIQQRVQKAQFLVE 4 546 T FDPSWNP ][37 F244 I ARAIPASNRLLLTGT || 15 VQKAQFLVEFESQNK] ] 550]1 RWIFDPSWNPATDA I-3 320 | IIKPYFLRRTKEDVQ| 15 17FLMEQQRTRN fl PFRYFSKQEL 1 328 ||RTKEDVQKKKSSNPE|] 5 iGAWLREPVFPSSTKK 14 624 LRELFTIEDLQNSVT 375 || PLQEEIYRKFVSLDH |15 | 7341 PVFPSSTKKKCPKLN 14 [2 I LFTIEDLQNSVTQLQ l3 400 || PLAELGVLKKLCDHP|| 15 | 754 PSPLLSTHHTQEEDI 1 650 RKSDIKLDEHIAYLQ 1 453 DTLMEESGKMIFLMD]| F763 QEEDISSKMASWI 14 I IDLMYTCDLSVKEELD 13 [492 | IERLLKNRHFKTLR | 15 769 SSKMASVVIDDLPKE 14 |e6-511 KEELDWEESHYIQ]1 4971KNRHFKTLRIDGTVT 15 | 7701 SKMASWIDDLPKEG 14] 1786]1 KQDLSSI ][ 37 504] LRIDGTVTHLLEREKI ] 795 NvTLQDGKGTGSAD]4 791]1 SIKVNVTTLQDGKGT || 15_ 507 | DGTVTHLLEREKRIN | _15] | 831 GMEKSFATKNEAVQK 14 LCTNSSLGME F 13] 1508| ]GTVTHLLEREKRINL I 1 837 ATKNEAVQKETLQEG [1 859][ EDPLESFNYVLSKST 1113] 1588 | GTVEEKIYRRQVFKD 115j 866 NYVLSKSTKADIGPN 15 | j[YACDFNLFLEDSADN 11 870QRV918]5 8SLK ILRHCNPWP 15971 RSLINMVLDHVEDME111 194 1111 EERLDDSSEAKGPED| TableIX-V4-HLA-DRBI-1101- tart position plus fourteen. 1154| ENKSSWLMTSKPSAL|| 13 - sI 123456789012345:] 1182 |GEQLVGSPQDKAAEA|13] Each peptide is a portion of SEQ 10 E] ICEMPSLSR [ F2|1 1220NO: 3; each start position is 1220 ~ ~ ~ F LNLKLI3AP]i.] specified, the length of peptide is I] RDLIIWIRLVPLQE_..r 11233 DPEVMLLTLSLYKQL 1 15 amino acids, and the end 13j|VDAICEMPSLSRFND 2-1 1235 EVMLLTLSLYKQLNN |[13 ition for each peptide is the start XLIX-V4-LA-DRB1-1101-TabeXX-V6-HLA-DRB-1101 5mes-234 B7 12345678901 1mers-27347 l mers-273P4B7 EiTPGMGVKTFHGKD 13 Each peptide is a portion of SEQ Each peptide is a portion of SEQ ID TW EK P 12 ID NO: 3; each start position is specified,_____the speengeththolengheotpepedeiI NO: 3; each start position is .10 I IflMPGMGVKFHG-PSK 1I2j 15s miecifi d ,an the legho edei specified, the length of peptide is jKWTPGMGVKTFHGPS 10 positinfor achpide, Isd the 15 amino acids, and the end strt position pu s te position for each peptide is the start Istatpoitioplufouteen position plus fourteen. TableXLIX-V5-HLA-DRB1-1 101- [Pos 123456789012345[]ER [Pos|| 123456789012345 scoredl I l5mers-273P4B7 10 LKDDEVLRHCN P 21] [1 |NTWVKEFIKWTPGMG|| Each peptide is a portion of SEQ ] QLKDDEVLRHCNPWP1 F-41 KEIKTPMGKTID NO: 3; each start position is [ _4]1 _______________ li SVKEFKWTPGMGVKT 16 specified, the length of peptide is [12 PGMGVKTFHGPSKDE 4 15 amino acids, and the end 1 DDEVLR 12 []i FIKWTPG T F HG 13 I position for each peptide is the 195 Table L: Protein Characteristics of 273P4B7 Bioinformatic URL Outcome Program ORF ORF finder 95-3847 Protein length 1250 aa Transmembrane region TM Pred http:Iwww.ch.embnetorg1 2TM, aa132 -157, aa532-554 HMMTop http://www.enzim.hu/hmmtop/ 2TM, aal32-151, aa 53B-558 Sosul htp:llwww.genome.ad.jp/SOSui/ soluble protein TMHMM http:Ilwww~cbs.dtu.dklservicesTMHMM no TM Signal Peptide Signal P hftp://www.cbs.dtu.dkIservices/SignalP1 no pI pl/MW tool http://www.expasych/tools/ 5.1 pi Molecular weight pl/MW tool http://www.expasy.chltoolsl 141.1 kDa Localization PSORT htp://psort.nibb.ac.jp/ 50% cytoplasmic, 30% mitoctiondriall PSORT 11 http://psortnibb.ac.jp/ 65% nuclear, 21 %cytoplasmic Motifs Pfam http:/Iwww.sanger.ac.uk/Pfam/ SNF2-N-terminal domain, Helicase-Cterminal Prints http://www.biochem.ucl.ac.uk/ none found Blocks htp://www.blocks.fhcrc.org/ SNF2 related domain 196 Table LI: Exon boundaries of transcript 273P4B7 v.1 Exon Number Start End Length 1 1 162 162 2 163 4194 4032 Table LI(a). Nucleotide sequence of transcript variant 273P4B7 v.2 (SEQ ID NO: 110) atgcgcgggg cgggagtgag cgaaattcaa gctccaaact ctaagctcca agctccaagc 60 tccaagctcc aagctccaaa ctcccgccgg ggtaactgga acccaatccg agggtcatgg 120 aggcatcccg aaggtttccg gaagccgagg ccttgagccc agagcaggct gctcattacc 180 taagggtctt gctgtgtcgc ccagactgga attcagtggc ctgatcatag ttcactgcag 240 cctcgaactc ctgggctcaa gcagtcctcc tgccccagcc tccctagtag ctgggactta 300 agatatgtga aagaggccaa agaagcaact aagaatggag acctggaaga agcatttaaa 360 cttttcaatt tggcaaagga catttttccc aatgaaaaag tgctgagcag aatccaaaaa 420 atacaggaag ccttggagga gttggcagaa cagggagatg atgaatttac agatgtgtgc 480 aactctggct tgctacttta tcgagaactg cacaaccaac tctttgagca ccagaaggaa 540 ggcatagctt tcctctatag cctgtatagg gatggaagaa aaggtggtat attggctgat 600 gatatgggat tagggaagac tgttcaaatc attgctttcc tttccggtat gtttgatgca 660 tcacttgtga atcatgtgct gctgatcatg ccaaccaatc ttattaacac atgggtaaaa 720 gaattcatca agtggactcc aggaatgaga gtcaaaacct ttcatggtcc tagcaaggat 780 gaacggacca gaaacctcaa tcggattcag caaaggaatg gtgttattat cactacatac 840 caaatgttaa tcaataactg gcagcaactt tcaagcttta ggggccaaga gtttgtgtgg 900 gactatgtca tcctcgatga agcacataaa ataaaaacct catctactaa gtcagcaata 960 tgtgctcgtg ctattcctgc aagtaatcgc ctcctcctca caggaacccc aatccagaat 1020 aatttacaag aactatggtc cctatttgat tttgcttgtc aagggtccct gctgggaaca 1080 ttaaaaactt ttaagatgga gtatgaaaat cctattacta gagcaagaga gaaggatgct 1140 accccaggag aaaaagcctt gggatttaaa atatctgaaa acttaatggc aatcataaaa 1200 ccctattttc tcaggaggac taaagaagac gtacagaaga aaaagtcaag caacccagag 1260 gccagactta atgaaaagaa tccagatgtt gatgccattt gtgaaatgcc ttccctttcc 1320 aggaaaaatg atttaattat ttggatacga cttgtgcctt tacaagaaga aatatacagg 1380 aaatttgtgt ctttagatca tatcaaggag ttgctaatgg agacgcgctc acctttggct 1440 gagctaggtg tcttaaagaa gctgtgtgat catcctaggc tgctgtctgc acgggcttgt 1500 tgtttgctaa atcttgggac attctctgct caagatggaa atgaggggga agattcccca 1560 gatgtggacc atattgatca agtaactgat gacacattga tggaagaatc tggaaaaatg 1620. atattcctaa tggacctact taagaggctg cgagatgagg gacatcaaac tctggtgttt 1680 tctcaatcga ggcaaattct aaacatcatt gaacgcctct taaagaatag gcactttaag 1740 acattgcgaa tcgatgggac agttactcat cttttggaac gagaaaaaag aattaactta 1800 ttccagcaaa ataaagatta ctctgttttt ctgcttacca ctcaagtagg tggtgtcggt 1860 ttaacattaa ctgcagcaac tacagtggtc atttttgacc ctagctggaa tcctgcaact 1920 gatgctcaag ctgtggatag agtttaccga attggacaaa aagagaatgt tgtggttat 1980 aggctaatca cttgtgggac tgtagaggaa aaaatataca gaagacaggt tttcaaggac 2040 tcattaataa gacaaactac tggtgaaaaa aagaaccctt tccgatattt tagtaaacaa 2100 gaattaagag agctctttac aatcgaggat cttcagaact ctgtaaccca gctgcagctt 2160 cagtctttgc atgctgctca gaggaaatct gatataaaac tagatgaaca tattgcctac 2220 ctgcagtctt tggggatagc tggaatctca gaccatgatt tgatgtacac atgtgatctg 2280 tctgttaaag aagagcttga tgtggtagaa gaatctcact atattcaaca aagggttcag 2340 aaagctcaat tcctcgttga attcgagtct caaaataaag agttcctgat ggaacaacaa 2400 agaactagaa atgagggggc ctgctaaga gaacctgtat ttccttcttc aacaaagaag 2460 aaatgcccta aattgaataa accacagcct cagccttcac ctcttctaag tactcatcat 2520 actcaggaag aagatatcag ttccaaaatg gcaagtgtag tcattgatga tctgcccaaa 2580 gagggtgaga aacaagatct ctccagtata aaggtgaatg ttaccacctt gcaagatggt 2640 aaaggtacag gtagtgctga ctctatagct actttaccaa aggggtttgg aagtgtagaa 2700 gaactttgta ctaactcttc attgggaatg gaaaaaagct ttgcaactaa aaatgagct 2760 gtacaaaaag agacattaca agaggggcct aagcaagagg cactgcaaga ggatcCtctg 2820 gaaagtttta attatgtact tagcaaatca accaaagctg atattgggcc aaatttagat 2880 caactaaagg atgatgagat tttacgtcat tgcaatcctt ggcccattat ttccataca 2940 aatgaaagtc aaaatgcaga atcaaatgta tccattattg aaatagctga tgacctttca 3000 gcatcccata gtgcactgca ggatgctcaa gcaagtgagg ccaagttgga agaggaacct 3060 tcagcatctt caccacagta tgcatgtgat ttcaatcttt tcttggaaga ctcagcagac 3120 aacagacaaa atttttccag tcagtcttta gagcatgttg agaaagaaaa tagcttgtgt 3180 ggctctgcac ctaattccag agcagggttt gtgcatagca aaacatgtct cagttgggag 3240 197 ttttctgaga aagacgatga accagaagaa gtagtagtta aagcaaaaat .cagaagtaaa 3300 gctagaagga ttgtttcaga tggcgaagat gaagatgatt cttttaaaga tacctcaagc 3360 ataaatccat tcaacacatc tctctttcaa ttctcatctg tgaaacaatt tgatgcttca 3420 actcccaaaa atgacatcag tccaccagga aggttctttt catctcaaat acccagtagt 3480 gtaaataagt ctatgaactc tagaagatct ctggcttcta ggaggtctct tattaatatg 3540 gttttagacc acgtggagga catggaggaa agacttgacg acagcagtga agcaaagggt 3600 cctgaagatt atccagaaga aggggtggag gaaagcagtg gcgaagcctc caagtataca 3660 gaagaggatc cttccggaga aacactgtct tcagaaaaca agtccagctg gttaatgacg 3720 tctaagccta gtgctctagc tcaagagacc tctcttggtg cccctgagcc tttgtctggt 3780 gaacagttgg ttggttctcc ccaggataag gcggcagagg ctacaaatga ctatgagact 3840 cttgtaaagc gtggaaaaga actaaaagag tgtggaaaaa tccaggaggc cctaaactgc 3900 ttagttaaag cgcttgacat aaaaagtgca gatcctgaag ttatgctctt gactttaagt 3960 ttgtataagc aacttaataa caattgagaa tgtaacctgt ttattgtatt ttaaagtgaa 4020 actgaatatg agggaatttt tgttcccata attggattct ttgggaacat gaagcattca 4080 ggcttaaggc aagaaagatc tcaaaaagca acttctgccc tgcaacgccc cccactccat 4140 agtctggtat tctgagcact agcttaatat ttcttcactt gaatattctt atattttagg 4200 catattctat aaatttaact gtgttgtttc ttggaaagtt ttgtaaaatt attctggtca 4260 ttcttaattt tactctgaaa gtgatcatct ttgtatataa cagttcagat aagaaaatta 4320 aagttacttt tctc 4334 Table LIll(a). Nucleotide sequence alignment of 273P4B7 v.2 (SEQ ID NO: 111) and 273P4B7 v.1 (SEQ ID NO: 112) v.2 23 aaattcaagctccaaactctaagctccaagctccaagctccaagctccaa 72 v.1 1 aaattcaagctccaaactctaagctccaagctccaagctccaagctccaa 50 v.2 73 gctccaaactcccgccggggtaactggaacccaatccgagggtcatggag 122 v.1 51 gctccaaactcccgccggggtaactggaacccaatccgagggtcatggag 100 v.2 123 gcatcccgaaggtttccggaagccgaggccttgagcccagagcaggctgc 172 l i l l l l l l l l l l l l l l l l l l l l ll l l l l l i l l l l l i l l i l l l i l l1 v.1 101 gcatcccgaaggtttccggaagccgaggccttgagcccagagcaggctgc 150 v.2 173 tcattacctaagggtcttgctgtgtcgcccagactggaattcagtggcct 222 v.1 151 tcattacc------------------------------------------ 158 v.2 223 gatcatagttcactgcagcctcgaactcctgggctcaagcagtcctcctg 272 V.1 159 -------------------------------------------------- 158 v.2 273 ccccagcctccctagtagctgggacttaagatatgtgaaagaggccaaag 322 I lllll lllllllll llllllII~ v.1 159 taagatatgtgaaagaggccaaag 182 v.2 ,323 aagcaactaagaatggagacctggaagaagcatttaaacttttcaatttg 372 v.1 183 aagcaactaagaatggagacctggaagaagcatttaaacttttcaatttg 232 v.2 373 gcaaaggacatttttcccaatgaaaaagtgctgagcagaatccaaaaaat 422 v.1 233 gcaaaggacatttttcccaatgaaaaagtgctgagcagaatccaaaaaat 282 v.2 423 acaggaagccttggaggagttggcagaacagggagatgatgaatttacag 472 v.1 283 acaggaagccttggaggagttggcagaacagggagatgatgaatttacag 332 v.2 473 atgtgtgcaactctggcttgctactttatcgagaactgcacaaccaactc 522 v.1 333 atgtgtgcaactctggettgctactttatcgagaactgcacaaccaactc 382 v.2 523 tttgagcaccagaaggaaggcatagctttcctctatagcctgtataggga 572 lilll lllllllllllllll 1 1 981 l li illlil lll 1lilil 198 v.1 383 tttgagcaccagaaggaaggcatagctttcctctatagcctgtataggga 432 v.2 573 tggaagaaaaggtggtatattggctgatgatatgggattagggaagactg 622 it11lillll llllll l l || ll li lllll lllllllll iltitt v.1 433 tggaagaaaaggtggtatattggctgatgatatgggattagggaagactg 482 v.2 623 ttcaaatcattgctttcctttccggtatgtttgatgcatcacttgtgaat 672 H lillillliillllllllilliilllllilillH lili lli v.1 483 ttcaaatcattgetttcctttccggtatgtttgatgcatcacttgtgaat 532 v.2 673 catgtgctgctgatcatgccaaccaatcttattaacacatgggtaaaaga 722 li1 11ll~illl lllllllltlttl ll ll ! 11111111 t|ll v.1 533 catgtgctgctgatcatgccaaccaatcttattaacacatgggtaaaaga .582 v.2 723 attcatcaagtggactccaggaatgagagtcaaaacctttcatggtccta 772 .lilll l ll lll ll 1lllll lt1lllllllll l tlllil v.1 583 attcatcaagtggactccaggaatgagagtcaaaacctttcatggtccta 632 v.2 773 gcaaggatgaacggaccagaaacctcaatcggattcagcaaaggaatggt 822 v.1 633 gcaaggatgaacggaccagaaacctcaatcggattcagcaaaggaatggt 682 v.2 823 gttattatcactacataccaaatgttaatcaataactggcagcaactttc 872 ilii liii 11H1111H1 t Hii Hiii 111H11H11 HlillH iiHH v.1 683 gttattatcactacataccaaatgttaatcaataactggcagcaactttc 732 v.2 873 aagctttaggggccaagagtttgtgtgggactatgtcatcctcgatgaag 922 illllt HlHtlitlllltitll ll l ll lllllilllliltlIt. v.1 733 aagctttaggggccaagagtttgtgtgggactatgtcatcctcgatgaag 782 v.2 923 cacataaaataaaaacctcatctactaagtcagcaatatgtgctcgtgct 972 v.1 783 cacataaaataaaaacctcatctactaagtcagcaatatgtgctcgtgct 832 v.2 973 attcctgcaagtaatcgcctcctcctcacaggaaccccaatccagaataa 1022 lil liii i lll lll iltIH lilllllll 11lll .lll i tlllil v.1 833 attcctgcaagtaatcgcctcctcctcacaggaaccccaatccagaataa 882 v.2 1023 tttacaagaactatggtccctatttgattttgcttgtcaagggtccctgc 1072 ll lilill11 11111 l lllii lII lllllllllllllllll11 ll111 v.1 883 tttacaagaactatggtccctatttgattttgcttgtcaagggtccctgc 932 v.2 1073 tgggaacattaaaaacttttaagatggagtatgaaaatcctattactaga 1122 li l lliilll11 11 1 11 11 l1 ll ll l illll lllll11 ll1l v.1 933 tgggaacattaaaaacttttaagatggagtatgaaaatcctattactaga 982 v.2 1123 gcaagagagaaggatgctaccccaggagaaaaagccttgggatttaaaat 1172 lIlIIl1l1111l11111111l11111ll111ll1l1l1l1l11i1l1l11 v.1 983 gcaagagagaaggatgctaccccaggagaaaaagccttgggatttaaaat 1032 v.2 1173 atctgaaaacttaatggcaatcataaaaccctattttctcaggaggacta 1222 liltlliltilli11111111111111|11111111Htilltilllltil* v.1 1033 atctgaaaacttaatggcaatcataaaaccctattttctcaggaggacta 1082 v.2 1223 aagaagacgtacagaagaaaaagtcaagcaacccagaggccagacttaat 1272 v.1 1083 aagaagacgtacagaagaaaaagtcaagcaacccagaggccagacttaat 1132 v.2 1273 gaaaagaatccagatgttgatgccatttgtgaaatgccttccctttccag 1322 lIlll11111111ll11ll111l11l1l1lll1l1111llll11l1l1111 v.1 1133 gaaaagaatccagatgttgatgccatttgtgaaatgccttccctttccag 1182 v.2 1323 gaaaaatgatttaattatttggatacgacttgtgcctttacaagaagaaa 1372 199 v.1 1183 gaaaaatgatttaattatttggatacgacttgtgcctttacaagaagaaa 1232 v.2 1373 tatacaggaaatttgtgtctttagatcatatcaaggagttgctaatggag 1422 v.1 1233 tatacaggaaatttgtgtctttagatcatatcaaggagttgctaatggag 1282 v.2 1423 acgcgctcacctttggctgagctaggtgtcttaaagaagctgtgtgatca 1472 v.1 1283 acgcgctcacctttggctgagctaggtgtcttaaagaagctgtgtgatca 1332 v.2 1473 tcctaggctgctgtctgcacgggcttgttgtttgctaaatcttgggacat 1522 I l||lil li il lllll 1111lllll 1il lllll i ll i ll|| v.1 1333 tcctaggctgctgtctgcacgggcttgttgtttgctaaatcttgggacat 1382 v.2 1523 tctctgctcaagatggaaatgagggggaagattccccagatgtggaccat 1572 11111111111111H11llll1ll1li liilli ill H11 lill v.1 1383 tctctgctcaagatggaaatgagggggaagattccccagatgtggaccat 1432 v.2 1573 attgatcaagtaactgatgacacattgatggaagaatctggaaaaatgat 1622 lilt ilii Hll ii 111111111111H1H111111i11111 111H1 v.1 1433 attgatcaagtaactgatgacacattgatggaagaatctggaaaaatgat 1482 v.2 1623 attcctaatggacctacttaagaggctgcgagatgagggacatcaaactc 1672 tilllllllii illllillllili lllllil illlilli111illllll v.1 1483 attcctaatggacctacttaagaggctgcgagatgagggacatcaaactc 1532 v.2 1673 tggtgttttctcaatcgaggcaaattctaaacatcattgaacgcctctta 1722 lilI I ll||1 I I I ll li l ll l il l lllllll lilllll1111 11 11 li v.1 1533 tggtgttttctcaatcgaggcaaattctaaacatcattgaacgcctctta 1582 v.2 1723 aagaataggcactttaagacattgcgaatcgatgggacagttactcatct 1772 lill I ll|| Il 1llllllili l I l l li l11 l ll||| || ll v.1 1583 aagaataggcactttaagacattgcgaatcgatgggacagttactcatct 1632 v.2 1773 tttggaacgagaaaaaagaattaacttattccagcaaaataaagattact 1822 I lI 1 11 ll l l1 illllll iil lll 1111 |11 lillllll I v.1 1633 tttggaacgagaaaaaagaattaacttattccagcaaaataaagattact 1682 v.2 1823 ctgtttttctgcttaccactcaagtaggtggtgtcggtttaacattaact 1872 11111ll11l|I||1tl||11111|||t1li1llll llllllli v.1 1683 ctgtttttctgcttaccactcaagtaggtggtgtcggtttaacattaact 1732 v.2 1873 gcagcaactagagtggtcatttttgaccctagctggaatcctgcaactga 1922 lill111litt lllllllll11ll111lll11H|||liltll11lllllilii v.1 1733 gcagcaactagagtggtcatttttgaccctagctggaatcctgcaactga 1782 v.2 1923 tgctcaagctgtggatagagtttaccgaattggacaaaaagagaatgttg 1972 11l1l1l1ll11H li1llltlllll1l1lIl111111111||||11 v.1 1783 tgctcaagctgtggatagagtttaccgaattggacaaaaagagaatgttg 1832 v.2 1973 tggtttataggctaatcacttgtgggactgtagaggaaaaaatatacaga 2022 Ililtlll11ill Hillllll||1111111||111111111|1H1111 v.1 1833 tggtttataggctaatcacttgtgggactgtagaggaaaaaatatacaga 1882 v.2 2023 agacaggttttcaaggactcattaataagacaaactactggtgaaaaaaa 2072 I lI l II H lil H li i 111||1|111111111111 |||11 |1 v.1 1883 agacaggttttcaaggactcattaataagacaaactactggtgaaaaaaa 1932 v.2 2073 gaaccctttccgatattttagtaaacaagaattaagagagctctttacaa 2122 lillllililll 1~i i l t 11l 1111111l1lllllililll1ll11 v.1 1933 gaaccctttccgatattttagtaaacaagaattaagagagctctttacaa 1982 200 v.2 2123 tcgaggatcttcagaactctgtaacccagctgcagcttcagtctttgcat 2172 Sll lll lll 11l1llllll llll tll ll ii l i ill lilt lll v.1 1983 tcgaggatcttcagaactctgtaacccagctgcagcttcagtctttgcat 2032 v.2 2173 gctgctcagaggaaatctgatataaaactagatgaacatattgcctacct 2222 l1 1 illl 11ill llll Illlll llllll llllll llllll lllll v.1 2033 gctgctcagaggaaatctgatataaaactagatgaacatattgcctacct 2082 v.2 2223 gcagtctttggggatagctggaatctcagaccatgatttgatgtacacat 2272 v.1 2083 gcagtctttggggatagctggaatctcagaccatgatttgatgtacacat .2132 v.2 2273 gtgatctgtctgttaaagaagagcttgatgtggtagaagaatctcactat 2322 l11iliililllliitllillllllllilitlltllllilt v.1 2133 gtgatctgtctgttaaagaagagcttgatgtggtagaagaatctcactat 2182 v.2 2323 attcaacaaagggttcagaaagctcaattcctcgttgaattcgagtctca 2372 lil111i lllil lll lllllillll l l lll lllll lll v.1 2183 attcaacaaagggttcagaaagctcaattcctcgttgaattcgagtctca 2232 v.2 2373 aaataaagagttcctgatggaacaacaaagaactagaaatgagggggcct 2422 ltililllllllliltI lllllllll1llllllllllllllll1l . v.1 2233 aaataaagagttcctgatggaacaacaaagaactagaaatgagggggcct 2282 v.2 2423 ggctaagagaacctgtatttccttcttcaacaaagaagaaatgccctaaa 2472 1lill l l l l ll l l llil l lllllilll i l i t i t lil llllll111 lli v.1 2283 ggctaagagaacctgtatttccttcttcaacaaagaagaaatgccctaaa 2332 v.2 2473 ttgaataaaccacagcctcagccttcacctcttctaagtactcatcatac 2522 Ili itilitltlIltlililll ll ll ll itl ll llilll lllti lti v.1 2333 ttgaataaaccacagcctcagccttcacctcttctaagtactcatcatac 2382 v.2 2523 tcaggaagaagatatcagttccaaaatggcaagtgtagtcattgatgatc 2572 v.1 2383 tcaggaagaagatatcagttccaaaatggcaagtgtagtcattgatgatc 2432 v.2 2573 tgcccaaagagggtgagaaacaagatctctccagtataaaggtgaatgtt 2622 li1 l iillll Illl 111l1 1ll 1lll Illl llll lll l 1 llll Il v.1 2433 tgcccaaagagggtgagaaacaagatctctccagtataaaggtgaatgtt 2482 v.2 2623 accaccttgcaagatggtaaaggtacaggtagtgctgactctatagctac 2672 liiilll IIl iil l iilll lll iil ll l lllIlll li t ll liltlil v.1 2483 accaccttgcaagatggtaaaggtacaggtagtgctgactctatagctac 2532 v.2 2673 tttaccaaaggggtttggaagtgtagaagaactttgtactaactcttcat 2722 v.1 2533 tttaccaaaggggtttggaagtgtagaagaactttgtactaactcttcat 2582 v.2 2723 tgggaatggaaaaaagctttgcaactaaaaatgaagctgtacaaaaagag 2772 v.1 2583 tgggaatggaaaaaagctttgcaactaaaaatgaagctgtacaaaaagag 2632 v.2 2773 acattacaagaggggcctaagcaagaggcactgcaagaggatcctctgga 2822 lilllllllllllllillllll111ll1lll11llllll1ll11ll11l1 v.1 2633 acattacaagaggggcctaagcaagaggcactgcaagaggatcctctgga 2682 v.2 2823 aagttttaattatgtacttagcaaatcaaccaaagctgatattgggccaa 2872 till | I || I || 11 ||111111111| I l llllllll II I I lllll v.1 2683 aagttttaattatgtacttagcaaatcaaccaaagctgatattgggccaa 2732 v.2 2873 atttagatcaactaaaggatgatgagattttacgtcattgcaatccttgg 2922 lll11l1ll1lll11lllll11l1l11ll1llllllllllllllllllllll v.1 2733 atttagatcaactaaaggatgatgagattttacgtcattgcaatccttgg 2782 201 v.2 2923 cccattatttccataacaaatgaaagtcaaaatgcagaatcaaatgtatc 2972 v.1 2783 cccattatttccataacaaatgaaagtcaaaatgcagaatcaaatgtatc 2832 v.2 2973 cattattgaaatagctgatgacctttcagcatcccatagtgcactgcagg 3022 v.1 2833 cattattgaaatagctgatgacctttcagcatcccatagtgcactgcagg 2882 v.2 3023 atgctcaagcaagtgaggccaagttggaagaggaaccttcagcatcttca 3072 l i l l l l l l l l l l l l 1 1 ll l l l l l l l l l l l l l l l l 1l l l l l l l l l l l l l l l l v.1 2883 atgctcaagcaagtgaggccaagttggaagaggaaccttcagcatcttca 2932 v.2 3073 ccacagtatgcatgtgatttcaatcttttcttggaagactcagcagacaa 3122 v.1 2933 ccacagtatgcatgtgatttcaatcttttcttggaagactcagcagacaa 2982 v.2 3123 cagacaaaatttttccagtcagtctttagagcatgttgagaaagaaaata 3172 v.1 2983 cagacaaaatttttccagtcagtctttagagcatgttgagaaagaaaata 3032 v.2 3173 gcttgtgtggctctgcacctaattccagagcagggtttgtgcatagcaaa 3222 v.1 3033 gcttgtgtggctctgcacctaattccagagcagggtttgtgcatagcaaa 3082 v.2 3223 acatgtctcagttgggagttttctgagaaagacgatgaaccagaagaagt 3272 1 Illlllllll i 1 1 1 1 1 1 1 1 11 IIIIllIllll l l l l l l l l l l l lllll v.1 3083 acatgtctcagttgggagttttctgagaaagacgatgaaccagaagaagt 3132 v.2 3273 agtagttaaagcaaaaatcagaagtaaagctagaaggattgtttcagatg 3322 v.1 3133 agtagttaaagcaaaaatcagaagtaaagctagaaggattgtttcagatg 3182 v.2 3323 gcgaagatgaagatgattcttttaaagatacctcaagcataaatccattc 3372 lI llllIIl IIIIIIIl ll lllllllllll lllllllllllllllllI v.1 3183 gcgaagatgaagatgattcttttaaagatacctcaagcataaatccattc 3232 v.2 3373 aacacatctctctttcaattctcatctgtgaaacaatttgatgcttcaac 3422 v.1 3233 aacacatctctctttcaattctcatctgtgaaacaatttgatgcttcaac 3282 v.2 3423 tcccaaaaatgacatcagtccaccaggaaggttcttttcatctcaaatac 3472 v.1 3283 tcccaaaaatgacatcagtccaccaggaaggttcttttcatctcaaatac 3332 v.2 3473 ccagtagtgtaaataagtctatgaactctagaagatctctggcttctagg 3522 v.1 3333 ccagtagtgtaaataagtctatgaactctagaagatctctggcttctagg 3382 v.2 3523 aggtctcttattaatatggttttagaccacgtggaggacatggaggaaag 3572 v.1 3383 aggtctcttattaatatggttttagaccacgtggaggacatggaggaaag 3432 v.2 3573 acttgacgacagcagtgaagcaaagggtcctgaagattatccagaagaag 3622 Ilii lll ll lll l lI 1 1 1IllllllllI ll l l liI llll v.1 3433 acttgacgacagcagtgaagcaaagggtcctgaagattatccagaagaag 3482 v.2 3623 gggtggaggaaagcagtggcgaagcctccaagtatacagaagaggatcct 3672 v.1 3483 gggtggaggaaagcagtggcgaagcctccaagtatacagaagaggatcct 3532 v.2 3673 tccggagaaacactgtcttcagaaaacaagtccagctggttaatgacgtc 3722 202 v.1 3533 tccggagaaacactgtcttcagaaaacaagtccagctggttaatgacgtc 3582 v.2 3723 taagcctagtgctctagctcaagagacctctcttggtgcccctgagcctt 3772 lill l 111 1 111lll l I l l ttl lllll llllil tlI lli v.1 3583 taagcctagtgctctagctcaagagacctctcttggtgcccctgagcctt 3632 v.2 3773 tgtctggtgaacagttggttggttctccccaggataaggcggcagaggct 3822 till tl tlllllllll 1 1lllll llllli lilllli H lillilil v.1 3633 tgtctggtgaacagttggttggttctccccaggataaggcggcagaggct 3682 v.2 3823 acaaatgactatgagactcttgtaaagcgtggaaaagaactaaaagagtg 3872 v.1 3683 acaaatgactatgagactcttgtaaagcgtggaaaagaactaaaagagtg 3732 v.2 3873 tggaaaaatccaggaggccctaaactgcttagttaaagcgcttgacataa 3922 1il ll il11llilllll111 1 11 1 Itlllllllll l 1llllll1 v.1 3733 tggaaaaatccaggaggccctaaactgcttagttaaagcgcttgacataa 3782 v.2 3923 aaagtgcagatcctgaagttatgctcttgactttaagtttgtataagcaa 3972 11 1 lilt 11 1 11lillllllillll1lil 1illlllli l I|I tllt v.1 3783 aaagtgcagatcctgaagttatgctcttgactttaagtttgtataagcaa 3832 v.2 3973 cttaataacaattgagaatgtaacctgtttattgtattttaaagtgaaac 4022 till tll 111ll llll l t 1lll 11ll 11l1ll llll1ll1ll1llil v.1 3833 cttaataacaattgagaatgtaacctgtttattgtattttaaagtgaaac 3882 v.2 4023 tgaatatgagggaatttttgttcccataattggattctttgggaacatga 4072 v.1 3883 tgaatatgagggaatttttgttcccataattggattctttgggaacatga 3932 v.2 4073 agcattcaggcttaaggcaagaaagatctcaaaaagcaacttctgccctg 4122 li ll lIl ill1 llllli lllll1 11 11 1||I 1llll l Il Il I I.1111 | v.1 3933 agcattcaggcttaaggcaagaaagatctcaaaaagcaacttctgccctg 3982 v-.2 4123 caacgccccccactccatagtctggtattctgagcactagcttaatattt 4172 liii ii ll ll l l l I Ill1111 1111 lllll l l llll v.1 3983 caacgccccccactccatagtctggtattctgagcactagcttaatattt 4032 v.2 4173 cttcacttgaatattcttatattttaggcatattctataaatttaactgt 4222 il|il|lli ||l| 111111111111111||11lllllilllll1llll11 v.1 4033 cttcacttgaatattcttatattttaggcatattctataaatttaactgt 4082 v.2 4223 gttgtttcttggaaagttttgtaaaattattctggtcattcttaatttta 4272 tlli||||lil li l111111111lil llll 1.111||||I1 ll i iili|| v.1 4083 gttgtttcttggaaagttttgtaaaattattctggtcattcttaatttta 4132 v.2 4273 ctctgaaagtgatcatctttgtatataacagttcagataagaaaattaaa 4322 ||l| 111|111 1111 1| iii|1|111111 it11111111||111111 v.1 4133 ctctgaaagtgatcatctttgtatataacagttcagataagaaaattaaa 4182 v.2 4323 gttacttttctc 4334 v.1 4183 gttacttttctc 4194 Table LIV(a). P6ptide sequences of protein coded by 273P4B7 v.2 (SEQ ID NO: 113) MGLGKTVQII AFLSGMFDAS LVNHVLLIMP TNLINTWVKE FIKWTPGMRV KTFHGPSKDE 60 RTRNLNRIQQ RNGVIITTYQ MLINNWQQLS SFRGQEFVWD YVILDEAHKI KTSSTKSAIC 120 ARAIPASNRL LLTGTPIQNN LQELWSLFDF ACQGSLLGTL KTFKMEYENP ITRAREKDAT 180 PGEKALGFKI SENLMAIIKP YFLRRTKEDV QKKKSSNPEA RLNEKNPDVD AICEMPSLSR 240 KNDLIIWIRL VPLQEEIYRK FVSLDHIKEL LMETRSPLAE LGVLKKLCDH PRLLSARACC 300 LLNLGTFSAQ DGNEGEDSPD VDHIDQVTDD TLMEESGKMI FLMDLLKRLR DEGHQTLVFS 360 QSRQILNIIE RLLKNRHFKT LRIDGTVTHL LEREKRINLF QQNKDYSVFL LTTQVGGVGL 420 TLTAATRVVI FDPSWNPATD AQAVDRVYRI GQKENVVVYR LITCGTVEEK IYRRQVFKDS 480 203 LIRQTTGEKK NPFRYFSKQE LRELFTIEDL QNSVTQLQLQ SLHAAQRKSD IKLDEHIAYL 540 QSLGIAGISD HDLMYTCDLS. VKEELDVVEE SHYIQQRVQK AQFLVEFESQ NKEFLMEQQR 600 TRNEGAWLRE PVFPSSTKKK CPKLNKPQPQ PSPLLSTHHT QEEDISSKMA SVVIDDLPKE 660 GEKQDLSSIK VNVTTLQDGK GTGSADSIAT LPKGFGSVEE LCTNSSLGME KSFATKNEAV 720 QKETLQEGPK QEALQEDPLE SFNYVLSKST KADIGPNLDQ LKDDEILRHC NPWPIISITN 780 ESQNAESNVS IIEIADDLSA SHSALQDAQA SEAKLEEEPS ASSPQYACDF NLFLEDSADN 840 RQNFSSQSLE HVEKENSLCG SAPNSRAGFV HSXTCLSWEF SEKDDEPEEV VVKAKIRSKA 900 RRIVSDGEDE DDSFKDTSSI NPFNTSLFQF SSVKQFDAST PKNDISPPGR FFSSQIPSSV 960 NKSMNSRRSL ASRRSLINMV LDHVEDMEER LDDSSEAKGP EDYPEEGVEE SSGEASKYTE 1020 EDPSGETLSS ENKSSWLMTS KPSALAQETS LGAPEPLSGE QLVGSPQDKA AEATNDYETL 1080 VKRGKELKEC GKIQEALNCL VKALDIKSAD PEVMLLTLSL YKQLNNN 1127 Table LV(a). Amino acid sequence alignment of 273P4B7 v.2 (SEQ ID NO: 114) and 273P4B7 v.1 (SEQ ID NO: 115) v.2 1 MGLGKTVQIIAFLSGMFDASLVNHVLLIMPTNLINTWVKEFIKWTPGMRV 50 i l lilililil il i| I ll I I I Il l l I I l Il l il Il 11||||||| v.1 124 MGLGKTVQIIAFLSGMFDASLVNHVLLIMPTNLINTWVKEFIKWTPGMRV 173 v.2 51 KTFHGPSKDERTRNLNRIQQRNGVIITTYQMLINNWQQLSSFRGQEFVWD 100 i I I Ill 1|||I I I I I|I lii I 1I||1 Ill||||1|1I I I |1||| v.1 174 KTFHGPSKDERTRNLNRIQQRNGVIITTYQMLINNWQQLSSFRGQEFVWD 223 v.2 101 YVILDEAHKIKTSSTKSAICARAIPASNRLLLTGTPIQNNLQELWSLFDF 150 v.1 224 YVILDEAHKIKTSSTKSAICARAIPASNRLLLTGTPIQNNLQELWSLFDF 273 v.2 151 ACQGSLLGTLKTFKMEYENPITRAREKDATPGEKALGFKISENLMAIIKP 200 v.1 274 ACQGSLLGTLKTFKMEYENPITRAREKDATPGEKALGFKISENLMAIIKP 323 v.2 201 YFLRRTKEDVQKKKSSNPEARLNEKNPDVDAICEMPSLSRKNDLIIWIRL 250 v.1 324 YFLRRTKEDVQKKKSSNPEARLNEKNPDVDAICEMPSLSRKNDLIIWIRL 373 v.2 251 VPLQEEIYRKFVSLDHIKELLMETRSPLAELGVLKKLCDHPRLLSARACC 300 v.1 374 VPLQEEIYRKFVSLDHIKELLMETRSPLAELGVLKKLCDHPRLLSARACC 423 v.2 301 LLNLGTFSAQDGNEGEDSPDVDHIDQVTDDTLMEESGKMIFLMDLLKRLR 350 v.1 424 LLNLGTFSAQDGNEGEDSPDVDHIDQVTDDTLMEESGKMIFLMDLLKRLR 473 v.2 351 DEdHQTLVFSQSRQILNIIERLLKNRHFKTLRIDGTVTHLLEREKRINLF 400 v.1 474 DEGHQTLVFSQSRQILNIIERLLKNRHFKTLRIDGTVTHLLEREKRINLF 523 v.2 401 QQNKDYSVFLLTTQVGGVGLTLTAATRVVIFDPSWNPATDAQAVDRVYRI 450 I Il II II I IlI lI I|I I III II I II II III I iI 1I II1 Il11I111 v.1 524 QQNKDYSVFLLTTQVGGVGLTLTAATRVVIFDPSWNPATDAQAVDRVYRI 573 v.2 451 GQKENVVVYRLITCGTVEEKIYRRQVFKDSLIRQTTGEKKNPFRYFSKQE 500 v.1 574 GQKENVVVYRLITCGTVEEKIYRRQVFKDSLIRQTTGEKKNPFRYFSKQE 623 v.2 501 LRELFTIEDLQNSVTQLQLQSLHAAQRKSDIKLDEHIAYLQSLGIAGISD 550 v.1 624 LRELFTIEDLQNSVTQLQLQSLHAAQRKSDIKLDEHIAYLQSLGIAGISD 673 v.2 551 HDLMYTCDLSVKEELDVVEESHYIQQRVQKAQFLVEFESQNKEFLMEQQR 600 v.1 674 HDLMYTCDLSVKEELDVVEESHYIQQRVQKAQFLVEFESQNKEFLMEQQR 723 v.2 601 TRNEGAWLREPVFPSSTKKKCPKLNKPQPQPSPLLSTHHTQEEDISSKMA 650 204 v.1 724 TRNEGAWLREPVFPSSTKKKCPKLNIKPQPQPSPLLSTHHTQEEDISSKMA 773 v.2 651 SVVIDDLPKEGEKQDLSSIKVNVTTLQDGKGTGSADSIATLPKGFGSVEE 700 11lll illillli l l ll l llll 11 1 l i IIIIlillllllllllllllil v.1 774 SVVIDDLPKEGEKQDLSSIKVNVTTLQDGKGTGSADSIATLPKGFGSVEE 823 v.2 701 LCTNSSLGMEKSFATKNEAVQKETLQEGPKQEALQEDPLESFNYVLSKST 750 I li llll i lll llllll llll llll l lll1l lllllllllllll11 v.1 824 LCTNSSLGMEKSFATKNEAVQKETLQEGPKQEALQEDPLESFNYVLSKST 873 v.2 751 KADIGPNLDQLKDDEILRHCNPWPIISITNESQNAESNVSIIEIADDLSA 800 v.1 874 KADIGPNLDQLKDDEILRHCNPWPIISITNESQNAESNVSIIEIADDLSA 923 v.2 801 SHSALQDAQASEAKLEEEPSASSPQYACDFNLFLEDSADNRQNFSSQSLE 850 v.1 924 SHSALQDAQASEAKLEEEPSASSPQYACDFNLFLEDSADNRQNFSSQSLE 973 v.2 851 HVEKENSLCGSAPNSRAGFVHSKTCLSWEFSEKDDEPEEVVVKAKIRSKA 900 IIilll l illllllllll lll ll lll ll lllll llllllli V.1 974 HVEKENSLCGSAPNSRAGFVHSKTCLSWEFSEKDDEPEEVVVKAKIRSKA 1023 v.2 901 RRIVSDGEDEDDSFKDTSSINPFNTSLFQFSSVKQFDASTPKNDISPPGR 950 v.1 1024 RRIVSDGEDEDDSFKDTSSINPFNTSLFQFSSVKQFDASTPKNDISPPGR 1073 v.2 951 FFSSQIPSSVNKSMNSRRSLASRRSLINMVLDHVEDMEERLDDSSEAKGP 1000 v.1 1074 FFSSQIPSSVNKSMNSRRSLASRRSLINMVLDHVEDMEERLDDSSEAKGP 1123 v.2 1001 EDYPEEGVEESSGEASKYTEEDPSGETLSSENKSSWLMTSKPSALAQETS 1050 III | llil I I Il I I 1111 111||||||||||111 1111|||1 1 ||||||||1 v.1 1124 EDYPEEGVEESSGEASKYTEEDPSGETLSSENKSSWLMTSKPSALAQETS 1173 v.2 1051 LGAPEPLSGEQLVGSPQDKAAEATNDYETLVKRGKELKECGKIQEALNCL 1100 v.1 1174 LGAPEPLSGEQLVGSPQDKAAEATNDYETLVKRGKELKECGKIQEALNCL 1223 v.2 1101 VKALDIKSADPEVMLLTLSLYKQLNNN 1127 1I I III1II11 I I lI I ||||||I I v.1 1224 VKALDIKSADPEVMLLTLSLYKQLNNN 1250 Table L(b). Nucleotide sequence of transcript variant 273P4B7 v.9 (SEQ ID NO: 116) aaaatgaatc atgtgctgct gatcatgcca accaatctta ttaacacttg ggtaaaagaa 60 ttcatcaagt ggactccagg aatgggagtc aaaacctttc atggtcctag caaggatgaa 120 cggaccagaa acctcaatcg gattcagcaa aggaatggtg ttattatcac tacataccaa 180 atgttaatca ataactggca gcaactttca agctttaggg gccaagagtt tgtgtgggac 240 tatgtcatcc tcgatgaagc acataaaata aaaacctcat ctactaagtc agcaatatgt 300 gctcgtgcta ttcctgcaag taatcgcctc ctcctcacag gaaccccaat ccagaataat 360 ttacaagaac tatggtccct atttgatttt gcttgtcaag ggtccctgct gggaacatta 420 aaaactttta agatggagta tgaaaatcct attactagag caagagagaa ggatgctacc 480 ccaggagaaa aagccttggg atttaaaata tctgaaaact taatggcaat cataaaaccc 540 tattttctca ggaggactaa agaagacgta cagaagaaaa agtcaagcaa cccagaggcc 600 agacttaatg aaaagaatcc agatgttgat gccatttgtg aaatgccttc cctttccagg 660 aaaaatgatt taattatttg gatacgactt gtgcctttac aagaagaaat atacaggaaa 720 tttgtgtctt tagatcatat caaggagttg ctaatggaga cgcgctcacc tttggctgag 780 ctaggtgtct taaagaagct gtgtgatcat cctaggctgc tgtctgcacg ggcttgttgt 840 ttgctaaatc ttgggacatt ctctgctcaa gatggaaatg agggggaaga ttccccagat 900 gtggaccata ttgatcaagt aactgatgac acattgatgg aagaatctgg aaaaatgata 960 ttcctaatgg acctacttaa gaggctgcga gatgagggac atcaaactct ggtgttttct 1020 caatcgaggc aaattctaaa catcattgaa cgcctcttaa agaataggca ctttaagaca 1080 ttgcgaatcg atgggacagt tactcatctt ttggaacgag aaaaaagaat taacttattc 1140 205 cagcaaaata aagattactc tgtttttctg cttaccactc aagtaggtgg tgtcggttta 1200 acattaactg cagcaactag agtggtcatt tttgacccta gctggaatcc tgcaactgat 1260 gctcaagctg tggatagagt ttaccgaatt ggacaaaaag agaatgttgt ggtttatagg 1320 ctaatcactt gtgggactgt agaggaaaaa atatacagaa gacaggtttt caaggactca 1380 ttaataagac aaactactgg tgaaaaaaag aaccctttcc gatattttag taaacaagaa 1440 ttaagagagc tctttacaat cgaggatctt cagaactctg taacccagct gcagcttcag 1500 tctttgcatg ctgctcagag gaaatctgat ataaaactag atgaacatat tgcctacctg 1560 cagtctttgg ggatagctgg aatctcagac catgatttga tgtacacatg tgatctgtct 1620 gttaaagaag agcttgatgt ggtagaagaa tctcactata ttcaacaaag ggttcagaaa 1680 gctcaattcc tcgttgaatt cgagtctcaa aataaagagt tcctgatgga acaacaaaga 1740 actagaaatg agggggcctg gctaagagaa cctgtatttc cttcttcaac aaagaagaaa 1800 tgccctaaat tgaataaacc acagcctcag ccttcacctc ttctaagtac tcatcatact 1860 caggaagaag atatcagttc caaaatggca agtgtagtca ttgatgatct gcccaaagag 1920 ggtgagaaac aagatctctc cagtataaag gtgaatgtta ccaccttgca agatggtaaa 1980 ggtacaggta gtgctgactc tatagctact ttaccaaagg ggtttggaag tgtagaagaa 2040 ctttgtacta actcttcatt gggaatggaa aaaagctttg caactaaaaa tgaagctgta 2100 caaaaagaga cattacaaga ggggcctaag caagaggcac tgcaagagga tcctctggaa 2160 agttttaatt atgtacttag caaatcaacc aaagctgata ttgggccaaa tttagatcaa 2220 ctaaaggatg atgaggtttt acgtcattgc aatccttggc ccattatttc cataacaaat 2280 gaaagtcaaa atgcagaatc aaatgtatcc attattgaaa tagctgatga cctttcagca 2340 tcccatagtg cactgcagga tgctcaagca agtgaggcca agttggaaga ggaaccttca 2400 gcatcttcac cacagtatgc atgtgatttc aatcttttct tggaagactc agcagacaac 2460 agacaaaat tttccagtca gtctttagag catgttgaga aagaaaatag cttgtgtggc 2520 tctgcaccta attccagagc agggtttgtg catagcaaaa catgtctcag ttgggagttt 2580 tctgagaaag acgatgaacc agaagaagta gtagttaaag caaaaatcag aagtaaagct 2640 agaaggattg tttcagatgg cgaagatgaa gatgattctt ttaaagatac ctcaagcata 2700 aatccattca acacatctct ctttcaattc tcatctgtga aacaatttga tgcttcaact 2760 cccaaaaatg acatcagtcc accaggaagg ttcttttcat ctcaaatacc cagtagtgta 2820 aataagtcta tgaactctag aagatctctg gcttctagga ggtctcttat taatatggtt 2880 ttagaccacg tggaggacat ggaggaaaga cttgacgaca gcagtgaagc aaagggtcct 2940 gaagattatc cagaagaagg ggtggaggaa agcagtggcg aagcctccaa gtatacagaa 3000 gaggatcctt ccggagaaac actgtcttca gaaaacaagt ccagctggtt aatgacgtct 3060 aagcctagtg ctctagctca agagacctct cttggtgccc ctgagccttt gtctggtgaa 3120 cagttggttg gttcccccca ggataaggcg gcagaggcta caaatgacta tgagactctt 3180 gtaaagcgtg gaaaagaact aaaagagtgt ggaaaaatcc aggaggccct aaactgctta 3240 gttaaagcgc ttgacataaa aagtgcagat cctgaagtta tgctcttgac tttaagtttg 3300 tataagcaac ttaataacaa ttgagaatgt aacctgttta ttgtatttta aagtgaaact 3360 gaatatgagg gaatttttgt tcccataatt ggattctttg ggaacatgaa gcattcaggc 3420 ttaaggcaag aaagatctca aaaagcaact tctgccctgc aacgcccccc actccatagt 3480 ctggtattct gagcactagc ttaatatttc ttcacttgaa tattcttata ttttaggcat 3540 attctataaa tttaactgtg ttgtttcttg gaaagttttg taaaattatt ctggtcattc 3600 ttaattttac tctgaaagtg atcatctttg tatataacag ttcagataag aaaattaaag 3660 ttacttttct c 3671 Table 1.111(b). Nucleotide sequence alignment of 273P4137v.9 (SEQ ID NO: 117) and 273P4137v.1 (SEQ ID NO: 118) v.1 501 tttccggtatgtttgatgcatcacttgtgaatcatgtgctgctgatcatg 550 V.9 1 aaaa----tgaatcatgtgctgctgatcatg 27 v.1 551 ccaaccaatcttattaacacatgggtaaaagaattcatcaagtggactcc 600 v.9 28 ccaaccaatcttattaacacttgggtaaaagaattcatcaagtggaccc 77 v.1 601 aggaatgagagtcaaaacctttcatggtcctagcaaggatgaacggacc 650 v.9 78 aggaatgggagtcaaaacctttcatggtcctagcaaggatgaacggacca 127 v.1 651 700agt gta V.9 128 cagataaag tgaatgtta 177 v.1 701 caaatgttaatcaataactggcagcaactttcaagctttaggggcaaga 750 206 iI lIilil||lillll tll llllll ill|||||lill l illI v.9 178 caaatgttaatcaataactggcagcaactttcaagctttaggggccaaga 227 v.1 751 gtttgtgtgggactatgtcatcctcgatgaagcacataaaataaaaacct 800 v.9 228 gtttgtgtgggactatgtcatcctcgatgaagcacataaaataaaaacct 277 v.1 801 catctactaagtcagcaatatgtgctcgtgctattcctgcaagtaatcgc 850 v.9 278 catctactaagtcagcaatatgtgctcgtgtattcctgcaagtaatcgc 327 v.1 851 ctcctcctcacaggaaccccaatccagaataatttacaagaactatggtc 900 ||lil lii llllllllll1111 l l11111 llll111 l lllil v.9 328 ctcctcctcacaggaaccccaatccagaataatttacaagaactatggtc 377 v.1 901 cctatttgattttgcttgtcaagggtccctgctgggaacattaaaaactt 950 il1l I I I 1 1 1 I I I*|| 11 I|| ll II|||itilitI l|| ||Il I v.9 378 cctatttgattttgttgtcaagggtccctgctgggaacattaaaaactt 427 v.1 951 ttaagatggagtatgaaaatcctattactagagcaagagagaaggatgct 1000 v.9 428 ttaagatggagtatgaaaatcctattactagagcaagagagaaggatgct 477 v.1 1001 accccaggagaaaaagccttgggatttaaaatatctgaaaacttaatggc 1050 Sil 11||iii t liI Iil llll il i liIIl lilltlIllllllll v.9 478 accccaggagaaaaagccttgggatttaaaatatctgaaaacttaatggc 527 v.1 1051 aatcataaaaccctattttctcaggaggactaaagaagacgtacagaaga 1100 ||| 1 i 11 11il llll lli I lillll 1llli 1llllllllllllll v.9 528 aatcataaaaccctattttctcaggaggactaaagaagacgtacagaaga 577 v.1 1101 aaaagtcaagcaacccagaggccagacttaatgaaaagaatccagatgtt 1150 Ilii ill I ll it1|1111 tilt|iiitilllil11|||||lilll1lll v.9 578 aaaagtcaagcaacccagaggccagacttaatgaaaagaatccagatgtt 627 v.1 1151 gatgccatttgtgaaatgccttccctttccaggaaaaatgatttaattat 1200 ilt ilt liii liii liii|tilt l ii i ilil|| l 11111 lll v.9 628 gatgccatttgtgaaatgccttccctttccaggaaaaatgatttaattat 677 v.1 1201 ttggatacgacttgtgcctttacaagaagaaatatacaggaaatttgtgt 1250 |||lIllI I llllllllll I||||I1l l1lli I Iill 11l l iiill v.9 678 ttggatacgacttgtgcctttacaagaagaaatatacaggaaatttgtgt 727 v.1 1251 ctttagatcatatcaaggagttgctaatggagacgcgctcacctttggct 1300 111i illlllltlllll~tllIill lI lllll l lllllt v.9 728 ctttagatcatatcaaggagttgtaatggagacgcgctcacctttggct 777 v.1 1301 gagctaggtgtcttaaagaagctgtgtgatcatcctaggctgctgtctgc 1350 l1 1ll l llllll t llll 11 1 1 11llllllllllllllli i v.9 778 gagctaggtgtcttaaagaagctgtgtgatcatctaggtgctgtctgc 827 v.1 1351 acgggcttgttgtttgctaaatcttgggacattcttgctcaagatggaa 1400 l I lI11I I I I 11111 1|I 1 11111 il 11 111 11l11||1 I ili|illI v.9 828 acgggcttgttgtttgctaaatcttgggacattctctgctcaagatggaa 877 v.1 1401 atgagggggaagattccccagatgtggaccatattgatcaagtaactgat 1450 li l i l i lilllllll1111 1 il11 ll1 ilill11l1llll 111 l illl v.9 878 atgagggggaagattccccagatgtggaccatattgatcaagtaactgat 927 v.1 1451 gacacattgatggaagaatctggaaaaatgatattcctaatggacctact 1500 ||ili 111 l|11111li1111111||liili lill11 v.9 928 gacacattgatggaagaatctggaaaaatgatattcctaatggacctact 977 207 v.1 1501 taagaggctgcgagatgagggacatcaaactctggtgttttctcaatcga 1550 ll li li llii ll l llllll. i I li il ill ! 111111 ll iil v.9 978 taagaggctgcgagatgagggacatcaaactctggtgttttctcaatcga 1027 V.1 1551 ggcaaattctaaacatcattgaacgcctcttaaagaataggcactttaag 1600 v.9 1028 ggcaaattctaaacatcattgaacgcctcttaaagaataggcactttaag 1077 V.1 1601 acattgcgaatcgatgggacagttactcatcttttggaacgagaaaaaag 1650 v.9 1078 acattgcgaatcgatgggacagttactcatcttttggaacgagaaaaaag 1127 v.1 1651 aattaacttattccagcaaaataaagattactctgtttttctgcttacca 1700 v.9 1128 aattaacttattccagcaaaataaagattactctgtttttctgcttacca 1177 v.1 1701 ctcaagtaggtggtgtcggtttaacattaactgcagcaactagagtggte 1750 v.9 1178 ctcaagtaggtggtgtcggtttaacattaactgcagcaactagagtggtc 1227 v.1 1751 atttttgaccctagctggaatcctgcaactgatgctcaagctgtggatag 1800 v.9 1228 atttttgaccctagctggaatcctgcaactgatgctcaagctgtggatag 1277 v.1 1801 agtttaccgaattggacaaaaagagaatgttgtggtttataggctaatca 1850 li ii llllillllilllilil111li i lii| i illil1 liiiiiiiiii v.9 1278 agtttaccgaattggacaaaaagagaatgttgtggtttataggctaatca 1327 v.1 1851 cttgtgggactgtagaggaaaaaatatacagaagacaggttttcaaggac 1900 v.9 1328 cttgtgggactgtagaggaaaaaatatacagaagacaggttttcaaggac 1377 v.1 1901 tcattaataagacaaactactggtgaaaaaaagaaccctttccgatattt 1950 ll ll llllilllllllilllllill il illi ll lil l lillilii v.9 1378 teattaataagacaaactactggtgaaaaaaagaaccctttccgatattt 1427 v.1 1951 tagtaaacaagaattaagagagctctttacaategaggatcttcagaaet 2000 lilllllll lil I i lIi i lII i Iliililliiiili i i v.9 1428 tagtaaacaagaattaagagagctctttacaatcgaggatcttcagaact 1477 v.1 2001 ctgtaacccagctgcagcttcagtctttgcatgctgctcagaggaaatct 2050 v.9 1478 ctgtaacccagctgcagcttcagtctttgcatgctgctcagaggaaatct 1527 v.1 2051 gatataaaactagatgaacatattgcctacctgcagtctttggggatagc 2100 v.9 1528 gatataaaactagatgaacatattgcctacctgcagtctttggggatagc 1577 v.1 2101 tggaatctcagaccatgatttgatgtacacatgtgatctgtctgttaaag 2150 v.9 1578 tggaatctcagaccatgatttgatgtacacatgtgatctgtctgttaaag 1627 v.1 2151 aagagettgatgtggtagaagaatctcactatattcaacaaagggttcag 2200 v.9 1628 aagagettgatgtggtagaagaatctcactatattcaacaaagggttcag 1677 v.1 2201 aaagctcaattcctcgttgaattegagtctcaaaataaagagttcetgat 2250 v.9 1678 aaagctcaattcctcgttgaattcgagtctcaaaataaagagttcctgat 1727 v.1 2251 ggaacaacaaagaactagaaatgagggggcctggctaagagaacctgtat 2300 v.9 1728 ggaacaacaaagaactagaaatgagggggcctggctaagagaacctgtat 1777 208 v.1 2301 ttccttcttcaacaaagaagaaatgccctaaattgaataaaccacagcct 2350 v.9 1778 ttccttcttcaacaaagaagaaatgccctaaattgaataaaccacagcct 1827 v.1 2351 cagccttcacctcttctaagtactcatcatactcaggaagaagatatcag 2400 Illlil llll ililllllllllllllllllllllllllllll1 lll111 v.9 1828 cagccttcacctcttctaagtactcatcatactcaggaagaagatatcag 1877 v.1 2401 ttccaaaatggcaagtgtagtcattgatgatctgcccaaagagggtgaga 2450 li llll liill lill 1llll llll ll llll l lilillil v.9 1878 ttccaaaatggcaagtgtagtcattgatgatctgcccaaagagggtgaga 1927 v.1 2451 aacaagatctctccagtataaaggtgaatgttaccaccttgcaagatggt 2500 Iilil lllll lilllllllllil lll l ll li li lli v.9 1928 aacaagatctctccagtataaaggtgaatgttaccaccttgcaagatggt 1977 v.1 2501 aaaggtacaggtagtgctgactctatagctactttaccaaaggggtttgg 2550 lill11 l iiillll 1ll l1 llllllllli lllllll111 llll1 lll11111 i v.9 1978 aaaggtacaggtagtgctgactctatagctactttaccaaaggggtttgg 2027 v.1 2551 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 2600 itill il l ii lllllllllll ll ll l l l llll lll ll i v.9 2028 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 2077 v.1 2601 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 2650 Iillil ll iiiill llllllllll lllll llll lllll llllli v.9 2078 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 2127 v.1 2651 aagcaagaggcactgcaagaggatcctctggaaagttttaattatgtact 2700 v.9 2128 aagcaagaggcactgcaagaggatcctctggaaagttttaattatgtact 2177 v.1 2701 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 2750 IIIIillIlllllIII li lllilllll ll 11111111 llH I v.9 2178 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 2227 v.1 2751 atgatgagattttacgtcattgcaatccttggcccattatttccataaca 2800 II1il Illi i ||IIIIII |I|IIIII11111I11111||1 |||||i1111 v.9 2228 atgatgaggttttacgtcattgcaatccttggcccattatttccataaca 2277 v.1 2801 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 2850 tiIIIIlIIIIlIIllllIIIIllIllII iltl 1l1ll1l1ill iii v.9 2278 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 2327 v.1 2851 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 2900 v.9 2328 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 2377 v.1 2901 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 2950 v.9 2378 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 2427 v.1 2951 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 3000 v.9 2428 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 2477 v.1 3001 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 3050 IIilIlllllIIIlllIlIIIIlI11lllll11lll1llilllllli v.9 2478 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 2527 v.1 3051 ctaattccagagcagggtttgtgcatagcaaaacatgtctcagttgggag 3100 I I I lI lI l lll ll lll lll lllllllllllll l llll lll l ll lll209l 209 v.9 2528 ctaattccagagcagggtttgtgcatagcaaaacatgtctcagttgggag 2577 v.1 3101 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat 3150 11111Il I | 11 I lii I Il I 1111111 I|||||||1I 1 1| 11|1||||||| v.9 2578 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat 2627 v.1 3151 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 3200 11111 || | | II |I | I 11 1 1 11 1 1I11 1 I I I I 1 |||||||||1 ||||1 v.9 2628 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 2677 v.1 3201 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 3250 lI l I I 11 11 11 I I I I 1111 111 i i li 11i11 I I I 1 I I II I I|||| v.9 2678 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 2727 v.1 3251 ttctcatctgtgaaacaatttgatgttcaactcccaaaaatgacatcag 3300 lI I l l |||| | I I I I I1 11 1 1 1 11I 1 II I 11II I1 I I 11||| v.9 2728 ttctcatctgtgaaacaatttgatgcttcaactccaaaaatgacatcag 2777 v.1 3301 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 3350 v.9 2778 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 2827 v.1 3351 ctatgaactctagaagatctctggcttctaggaggtctcttattaatatg 3400 111 I I I I 111111 |I I I I |11|||||I II IlI I 11.1 I I I |1||111 v.9 2828 ctatgaactctagaagatctctggcttctaggaggtctcttattaatatg 2877 v.1 3401 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 3450 11I I l I l l IllI I lIIIIIIII I I l11 I I1 1 Il I l||| l|||||| I| v.9 2878 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 2927 v.1 3451 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 3500 II I |11l I I I I II | lI |I I II II I I II I II1II I||I I I I I v.9 2928 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 2977 v.1 3501 gcgaagcctccaagtatacagaagaggatccttccggagaaacactgtct 3550 l I II I |||| |||1 I I I I I 1||||Il1 I I I I 111111Il|I I l I I I I I v.9 2978 gcgaagcctccaagtatacagaagaggatccttccggagaaacactgtct 3027 v.1 3551 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 3600 11111 111111 I I I I I II 1 I|| 1 I II I I iI I III I II I I I1I1I1I1 v.9 3028 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 3077 v.1 3601 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 3650 111111111 II I I I 11 I 11 ||11I 1 111111 111 I I I I v.9 3078 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 3127 v.1 3651 ttggttctccccaggataaggcggcagaggctacaaatgactatgagact 3700 v.9 3128 ttggttccccccaggataaggcggcagaggctacaaatgactatgagact 3177 v.1 3701 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 3750 IlIII | | IlIIiIIIIII 1 1 1 1 1 1 11 I1111 I I 11I11111||| ||| || 1111 111I I| v.9 3178 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 3227 v.1 3751 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 3800 ||I I11I111 Ii l I|||||I|||1I1111||||I l 1II I iI I I 11111 I 111 v.9 3228 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 3277 v.1 3801 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 3850 lII I I1 1I I II I I l i III 1 1 l ii 1 11 1 II I IIII|| | 1 1 | | v.9 3278 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 3327 v.1 3851 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 3900 210 v.9 3328 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 3377 v.1 3901 tgttcccataattggattctttgggaacatgaagcattcaggcttaaggc 3950 lillill 1I Illl ll ll i lli I IIll i IIllllill Illl lilll v.9 3378 tgttcccataattggattctttgggaacatgaagcattcaggcttaaggc 3427 v.1 3951 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 4000 v.9 3428 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 3477 v.1 4001 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 4050 11il 11 lIl lllll ll ll llll ll ll lllIlllllliI v.9 3478 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 3527 V.1 4051 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 4100 ||I1I1lill I liI li111Ilil lilllll lllllllltilli||1 v.9 3528 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 3577 v.1 4101 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 4150 v.9 3578 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 3627 v.1 4151 ttgtatataacagttcagataagaaaattaaagttacttttctc 4194 ilill1 I lI lllllil11 lI I 1 ill1 lll1 lillllll11 I| v.9 3628 ttgtatataacagttcagataagaaaattaaagttacttttctc 3671 Table LIV(b). Peptide sequences of protein coded by 273P4B7 v.9 (SEQ ID NO: 119) MNHVLLIMPT NLINTWVKEF IKWTPGMGVK TFHGPSKDER TRNLNRIQQR NGVIITTYQM 60 LINNWQQLSS FRGQEFVWDY VILDEAHKIK TSSTKSAICA RAIPASNRLL LTGTPIQNNL 120 QELWSLFDFA CQGSLLGTLK TFKMEYENPI TRAREKDATP GEKALGFKIS ENLMAIIKPY 180 FLRRTKEDVQ KKKSSNPEAR LNEKNPDVDA ICEMPSLSRK NDLIIWIRLV PLQEEIYRKF 240 VSLDHIKELL METRSPLAEL GVLKKLCDHP RLLSARACCL LNLGTFSAQD GNEGEDSPDV 300 DHIDQVTDDT LMEESGKMIF LMDLLKRLRD EGHQTLVFSQ SRQILNIIER LLKNRHFKTL 360 RIDGTVTHLL EREKRINLFQ QNKDYSVFLL TTQVGGVGLT LTAATRVVIF DPSWNPATDA 420 QAVDRVYRIG QKENVVVYRL ITCGTVEEKI YRRQVFKDSL IRQTTGEKKN PFRYFSKQEL 480 RELFTIEDLQ NSVTQLQLQS LHAAQRKSDI KLDEHIAYLQ SLGIAGISDH DLMYTCDLSV 540 KEELDVVEES HYIQQRVQKA QFLVEFESQN KEFLMEQQRT RNEGAWLREP VFPSSTKKKC 600 PKLNKPQPQP SPLLSTHHTQ EEDISSKMAS VVIDDLPKEG EKQDLSSIKV NVTTLQDGKG 660 TGSADSIATL PKGFGSVEEL CTNSSLGMEK SFATKNEAVQ KETLQEGPKQ EALQEDPLES 720 FNYVLSKSTK ADIGPNLDQL KDDEVLRHCN PWPIISITNE SQNAESNVSI IEIADDLSAS 780 HSALQDAQAS EAKLEEEPSA SSPQYACDFN LFLEDSADNR QNFSSQSLEH VEKENSLCGS 840 APNSRAGFVH SKTCLSWEFS EKDDEPEEVV VKAKIRSKAR RIVSDGEDED DSFKDTSSIN 900 PFNTSLFQFS SVKQFDASTP KNDISPPGRF FSSQIPSSVN KSMNSRRSLA SRRSLINMVL 960 DHVEDMEERL DDSSEAKGPE DYPEEGVEES SGEASKYTEE DPSGETLSSE NKSSWLMTSK 1020 PSALAQETSL GAPEPLSGEQ LVGSPQDKAA EATNDYETLV KRGKELKECG KIQEALNCLV 1080 KALDIKSADP EVMLLTLSLY KQLNNN 1106 Table LV(b). Amino acid sequence alignment of 273P4B7 v.9 (SEQ ID NO: 120) and 273P4B7 v.1 (SEQ ID NO: 121) v.1 101 KEGIAFLYSLYRDGRKGGILADDMGLGKTVQIIAFLSGMFDASLVNHVLL 150 :111 1 v.9 1 MNHVLL 6 v.1 151 IMPTNLINTWVKEFIKWTPGMRVKTFHGPSKDERTRNLNRIQQRNGVIIT 200 v.9 7 IMPTNLINTWVKEFIKWTPGMGVKTFHGPSKDERTRNLNRIQQRNGVIIT 56 v.1 201 TYQMLINNWQQLSSFRGQEFVWDYVILDEAHKIKTSSTKSAICARAIPAS 250 tlll1111111l1111111lll1llllll1l1ll1l1lllll 1llllli v.9 57 TYQMLINNWQQLSSFRGQEFVWDYVILDEAHKIKTSSTKSAICARAIPAS 106 211 v.1 251 NRLLLTGTPIQNNLQELWSLFDFACQGSLLGTLKTFKMEYENPITRAREK 300 V. 9 107 NRLLLTGTPIQNNLQELWSLFDFACQGSLLGTLKTFKMEYENPITRAREK 156 v. 1 301 DATPGEKALGFKISENLMAIIKPYFLRRTKEDVQKKKSSNPEARLNEKNP 350 lillllIillllIlll1ilIIlllllllllllllllllllill v.9 157 DATPGEKALGFKISENLMAIIKPYFLRRTKEDVQKKKSSNPEARLNEKNP 206 v.1 351 DVDAICEMPSLSRKNDLIIWIRLVPLQEEIYRKFVSLDHIKELLMETRSP 400 liI 1l 11lllllll ll lill lllllll llllll1 lll1lllilili I v.9 207 DVDAICEMPSLSRKNDLIIWIRLVPLQEEIYRKFVSLDHIKELLMETRSP 256 v.1 401 LAELGVLKKLCDHPRLLSAPACCLLNLGTFSAQDGNEGEDSPDVDHIDQV 450 v.9 257 LAELGVLKKLCDHPRLLSARACCLLNLGTFSAQDGNEGEDSPDVDHIDQV 306 v.1 451 TDDTLMEESGKMIFLMDLLKRLRDEGHQTLVFSQSRQILNIIERLLKNRH 500 v.9 307 TDDTLMEESGKMIFLMDLLKRLRDEGHQTLVFSQSRQILNIIERLLKNRH 356 v.1 501 FKTLRIDGTVTHLLEREKRINLFQQNKDYSVFLLTTQVGGVGLTLTAATR 550 v.9 357 FKTLRIDGTVTHLLEREKRINLFQQNKDYSVFLLTTQVGGVGLTLTAATR 406 v.1 551 VVIFDPSWNPATDAQAVDRVYRIGQKENVVVYRLITCGTVEEKIYRRQVF 600 v.9 407 VVIFDPSWNPATDAQAVDRVYRIGQKENVVVYRLITCGTVEEKIYRRQVF 456 v.1 601 KDSLIRQTTGEKKNPFRYFSKQELRELFTIEDLQNSVTQLQLQSLHAAQR 650 111llll 1l1llll 11l 111lll Il 111ll 1 1lll Illll IIllllll llll lll v.9 457 KDSLIRQTTGEKKNPFRYFSKQELRELFTIEDLQNSVTQLQLQSLHAAQR 506 v.1 651 KSDIKLDEHIAYLQSLGIAGISDHDLMYTCDLSVKEELDVVEESHYIQQR 700 V. 9 507 KSDIKLDEHIAYLQSLGIAGISDHDLMYTCDLSVKEELDVVEESHYIQQR 556 v.1 701 VQKAQFLVEFESQNKEFLMEQQRTRNEGAWLREPVFPSSTKKKCPKLNKP 750 v.9 557 VQKAQFLVEFESQNKEFLMEQQRTRNEGAWLREPVFPSSTKKKCPKLNKP 606 v.1 751 QPQPSPLLSTHHTQEEDISSKMASVVIDDLPKEGEKQDLSSIKVNVTTLQ 800 v.9 607 QPQPSPLLSTHHTQEEDISSKMASVVIDDLPKEGEKQDLSSIKVNVTTLQ 656 v.1 801 DGKGTGSADSIATLPKGFGSVEELCTNSSLGMEKSFATKNEAVQKETLQE 850 lI lllllllil lllll1 I llllllllllllllllllllllllllll1 li1111 v.9 657 DGKGTGSADSIATLPKGFGSVEELCTNSSLGMEKSFATKNEAVQKETLQE 706 v.1 851 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEILRHCNPWPIIS 900 lillll lllil lllllllllllllIIIII l1I lIIllll:llll11 llllil1 v.9 707 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEVLRHCNPWPIIS 756 v.1 901 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 950 lillli lllllli i l lll I lllllll ll ll l illllllll ll11 v.9 757 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 806 v.1 951 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSRAGFVHSKTCLS 1000 l l l l l l l l l l l l l l l l l l l l l 111 ll l l l l l l l l l 1 | | | | | I I I I | | I| | | v.9 807 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSRAGFVHSKTCLS 856 v.1 1001 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSINPFNTSL 1050 V.9 857 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSIN~PFNTSL 906 212 v.1 1051 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 1100 li1lillililill 111111llllllill llllllllllllll| v.9 907 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 956 v.1 1101 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 1150 Ilii llIl ll lIillllll lllllllllllllilll 1Ilillllli111 v.9 957 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 1006 v.1 1151 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 1200 v.9 1007 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 1056 v.1 1201 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLNNN 1250 l11111 I 1111lt i 1111||||1 it Il I I||I1l11I1I1I 11I1l||| |||||1 v.9 1057 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLN 1106 Table LI(c). Nucleotide sequence of transcript variant 273P4B7 v.10 (SEQ ID NO: 122) tcattaataa gacaaactac tggtgaaaaa aagaaccctt tccgatattt tagtaaacaa 60 gaattaagag agctctttac aatcgaggat cttcagaact ctgtaaccca gctgcagctt 120 cagtctttgc atgctgctca gaggaaatct gatataaaac tagatgaaca tattgcctac 180 ctgcagtctt tggggatagc tggaatctca gaccatgatt tgatgtacac atgtgatctg 240 tctgttaaag aagagcttga tgtggtagaa gaatctcact atattcaaca aagggttcag 300 aaagctcaat tcctcgttga attcgagtct caaaataaag agttcctgat ggaacaacaa 360 agaactagaa atgagggggc ctggctaaga gaacctgtat ttccttcttc aacaaagaag 420 aaatgcccta aattgaataa accacagcct cagccttcac ctcttctaag tactcatcat 480 actcaggaag aagatatcag ttccaaaatg gcaagtgtag tcattgatga tctgcccaaa 540 gagggtgaga aacaagatct ctccagtata aaggtgaatg ttaccacctt gcaagatggg 600 taaggtacag gtagtgctga ctctataact actttaccaa aggggtttgg aagtgtagaa 660 gaactttgta ctaactcttc attgggaatg gaaaaaagct ttgcaactaa aaatgaagct 720 gtacaaaaag agacattaca agaggggcct aagcaggagg cactgcaaga ggatcctctg 780 gaaagtttta attatgtact tagcaaatca accaaagctg atattgggcc aaatttagat 840 caactaaagg atgatgagat tttacgtcat tgcaatcctt ggcccattat ttccataaca 900 aatgaaagtc aaaatgcaga atcaaatgta tccattattg aaatagctga tgacctttca 960 gcatcccata gtgcactgca ggatgctcaa gcaagtgagg ccaagttgga agaggaacct 1020 tcagcatctt caccacagta tgcatgtgat ttcaatcttt tcttggaaga ctcagcagac 1080 aacagacaaa atttttccag tcagtcttta gagcatgttg agaaagaaaa tagcttgtgt 1140 ggctctgcac ctaattccaa agcagggttt gtgcatagca aaacatgtct cagttgggag 1200 ttttctgaga aagacgatga accagaagaa gtagtagtta aagcaaaaat cagaagtaaa 1260 gctagaagga ttgtttcaga tggcgaagat gaagatgatt cttttaaaga tacctcaagc 1320 ataaatccat tcaacacatc tctctttcaa ttctcatctg tgaaacaatt tgatgcttca 1380 actcccaaaa atgacatcag tccaccagga aggttctttt catctcaaat acccagtagt 1440 gtaaataagt ctatgaactc tagaagatct ctggcttcta ggaggtctct tattaatatg 1500 gttttagacc acgtggagga catggaggaa agacttgacg acagcagtga agcaaagggt 1560 cctgaagatt atccagaaga aggggtggag gaaagcagtg gcgaagcctc caagtataca 1620 gaagaggatc cttccggaga aacactgtct tcagaaaaca agtccagctg gttaatgacg 1680 tctaagccta gtgctctagc tcaagagacc tctcttggtg cccctgagcc tttgtctggt 1740 gaacagttgg ttggttctcc ccaggataag gcggcagagg ctacaaatga ctatgagact 1800 cttgtaaagc. gtggaaaaga actaaaagag tgtggaaaaa tccaggaggc cctaaactgc 1860 ttagttaaag cgcttgacat aaaaagtgca gatcctgaag ttatgctctt gactttaagt 1920 ttgtataagc aacttaataa caattgagaa tgtaacctgt ttattgtatt ttaaagtgaa 1980 actgaatatg agggaatttt tgttcccata attggattct ttgggaacat gaagcattca 2040 ggcttaaggc aagaaagatc tcaaaaagca acttctgccc tgcaacgccc cccactccat 2100 agtctggtat tctgagcact agcttaatat ttcttcactt gaatattcit atattttagg 2160 catattctat aaatttaact gtgttgtttc ttggaaagtt ttgtaaaatt attctggtca 2220 ttcttaattt tactctgaaa gtgatcatct ttgtatataa cagttcagat aagaaaatta 2280 aagttacttt tctc 2294 Table 1.II1(c). Nucleotide sequence alignment of 273P4137 v.10 (SEQ ID NO: 123) and 273P4137 v.1 (SEQ ID NO: 124) v.1 1901 tcattaataagacaaactactggtgaaaaaaagaaccctttccgatattt 1950 213 v.10 1 tcattaataagacaaactactggtgaaaaaaagaaccctttccgatattt 50 v.1 1951 tagtaaacaagaattaagagagctctttacaatcgaggatcttcagaact 2000 | |II I 1 11|1 1 | l ililllii I lilt | | I t t Ill I I ll|| v.10 51 tagtaaacaagaattaagagagctctttacaatcgaggatcttcagaact 100 v.1 2001 ctgtaacccagctgcagcttcagtctttgcatgctgctcagaggaaatct 2050 il I l|| I il Itl I| | |Ill lllii l I I 1 1 l~ I|I ll 11||||| v.10 101 ctgtaacccagctgcagcttcagtctttgcatgctgctcagaggaaatct 150 v.1 2051 gatataaaactagatgaacatattgcctacctgcagtctttggggatagc 2100 til |IIilltlli||illli Illlil I lilti Il11|||||1 v.10 151 gatataaaactagatgaacatattgcctacctgcagtctttggggatagc 200 v.1 2101 tggaatctcagaccatgatttgatgtacacatgtgatctgtctgttaaag 2150 I i ll111111I l1 11 |||1|Il i ll il t ||lii I 1111|||||1lil v.10 201 tggaatctcagaccatgatttgatgtacacatgtgatctgtctgttaaag 250 v.1 2151 aagagcttgatgtggtagaagaatctcactatattcaacaaagggttcag 2200 Iti I lI Ill l 111 111l lI I llilI I I l I I I l I 111111i II il| v.10 251 aagagcttgatgtggtagaagaatctcactatattcaacaaagggttcag 300 v.1' 2201 aaagctcaattcctcgttgaattcgagtctcaaaataaagagttcctgat 2250 v.10 301 aaagctcaattcctcgttgaattcgagtctcaaaataaagagttcctgat 350 v.1 2251 ggaacaacaaagaactagaaatgagggggcctggctaagagaacctgtat 2300 i I1lI1111 liI I 1lll111 i11 ll111111111111111111111 I v.10 351 ggaacaacaaagaactagaaatgagggggcctggctaagagaacctgtat 400 v.1 2301 ttccttcttcaacaaagaagaaatgccctaaattgaataaaccacagcct 2350 11111l 11 111111 II I1111111l l|il I ll 1 1111I Il1I1l 1 v.10 401 ttccttcttcaacaaagaagaaatgccctaaattgaataaaccacagcct 450 v.1 2351 cagccttcacctcttctaagtactcatcatactcaggaagaagatatcag 2400 l lilt ll II lII llI l llI Il I I II ItIl I i I I | I I||11 v.10 451 cagccttcacctcttctaagtactcatcatactcaggaagaagatatcag 500 v.1 2401 ttccaaaatggcaagtgtagtcattgatgatctgcccaaagagggtgaga 2450 t ill 1111l I II 111111|lilllil 111I1111 ill1l11|1|I1l I||| v.10 501 ttccaaaatggcaagtgtagtcattgatgatctgcccaaagagggtgaga 550 v.1 2451 aacaagatctctccagtataaaggtgaatgttaccaccttgcaagatggt 2500 v.10 551 aacaagatctctccagtataaaggtgaatgttaccaccttgcaagatggg 600 v.1 2501 aaaggtacaggtagtgctgactctatagctactttaccaaaggggtttgg 2550 -lllllI I IltilItII1111111l11III||||111.|11 I IlIIIIlIlII | 1 v.10 601 taaggtacaggtagtgctgactctataactactttaccaaaggggtttgg 650 v.1 2551 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 2600 v.10 651 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 700 v.1 2601 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 2650 III||Illl 111I1|||11 lili1I1li1111111111Il111111111l1I11lill11 v.10 701 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 750 v.1 2651 aagcaagaggcactgcaagaggatcctctggaaagttttaattatgtact 2700 v.10 751 aagcaggaggcactgcaagaggatcctctggaaagttttaattatgtact 800 v.1 2701 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 2750 214 lI lllll1ll l llllll ll llll l 11111111 |II 111 11 v.10 801 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 850 v.1 2751 atgatgagattttacgtcattgcaatccttggcccattatttccataaca 2800 il illlllll llll llll lllll llllllllllllllllll1Illl v.10 851 atgatgagattttacgtcattgcaatccttggcccattatttccataaca 900 v.1 2801 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 2850 liilllllll lll ll ll l lllllll lll ll lll llllll v.10 901 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 950 v.1 2851 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 2900 lllllll llll lllllll lll lll lll lllllllllll i v.10 951 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 1000 v.1 2901 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 2950 v.10 1001 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 1050 v.1 2951 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 3000 lll i l Il l11illl 1lllll1ll111l11l1ll11ll11llllllllll v.10 1051 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 1100 v.1 3001 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 3050 Ill lI llli l ll l l llllll~lI l 1 ~ I lI ll lll l l llll lll Il v.10 1101 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 1150 v.1 3051 ctaattccagagcagggtttgtgcatagcaaaacatgtctcagttgggag 3100 lii l 1| | | |- l ll l l l l l l lll ll l l l ll l l ll ll l l l l l l ll l ll l l v.10 1151 ctaattccaaagcagggtttgtgcatagcaaaacatgtctcagttgggag 1200 v.1 3101 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat 3150 lillllllllll li liiilllllllllllllllllllllIl v.10 1201 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat 1250 v.1 3151 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 3200 v.10 1251 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 1300 v.1 3201 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 3250 111il111111I 1llll 11lllillllllllllllllllllllllllll. v.10 1301 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 1350 v.1 3251 ttctcatctgtgaaacaatttgatgcttcaactcccaaaaatgacatcag 3300 IIIllIl l ll ll l l lllllllllI1111 1 lii l lllll11111 il l ll ii v.10 1351 ttctcatctgtgaaacaatttgatgcttcaactcccaaaaatgacatcag 1400 v.1 3301 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 3350 v.10 1401 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 1450 v.1 3351 ctatgaactctagaagatctctggcttctaggaggtctcttattaatatg 3400 v.10 1451 ctatgaactctagaagtctctggcttctaggaggtctcttattaatatg 1500 v.1 3401 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 3450 li lI llllllllllll I Ill ll11 lll11 lllIl1 llllllllllllllllllI v.10 1501 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 1550 v.1 3451 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 3500 l1 Illlll 111 1111111111111 ll lllllll lli v.10 1551 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 1600 215 v.1 3501 gcgaagcctccaagtatacagaagaggatccttccggagaaacactgtct 3550 l l l l l l l l l l l l l l l l l l l l l 1 ll ll l l l l l l l l l l l l l l l l l l l l l l l v.10 1601 gcgaagcctccaagtatacagaagaggatccttccggagaaacactgtct 1650 v.1 3551 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 3600 lill l l l l l l l l l l l l l llllllllllllllll11 1 11 1 1 11ll v.10 1651 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 1700 v.1 3601 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 3650 v.10 1701 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 1750 v.1 3651 ttggttctccccaggataaggcggcagaggctacaaatgactatgagact 3700 lli ll tllllllllllllllllllllllll 1111ll lll l llllllllllil v.10 1751 ttggttctccccaggataaggcggcagaggctacaaatgactatgagact 1800 v.1 3701 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 3750 v.10 1801 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 1850 v.1 3751 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 3800 lillll 1 lll ll~ l l llllll 1lll 1l 11l IIlllllllllll llll ll v.10 1851 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 1900 v.1 3801 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 3850 IllIl t l ll ll Il l il ll lll ll lll ll lll ll v.10 1901 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 1950 v.1 3851 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 3900 Il l l l l l l l l l li l l l l ll l ll ll i l l l l l l l l ll l i v.10 1951 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 2000 v.1 3901 tgttcccataattggattctttgggaacatgaagcattcaggcttaaggc 3950 li ll l l l l ll l ll ll l l l l l l l l ll l lt ill li i l l ll l l l l v.10 2001 tgttcccataattggattctttgggaacatgaagcattcaggcttaaggc 2050 v.1 3951 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 4000 li llll1 lllllllllllllllll ll11 il llllilll 111 l li v.10 2051 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 2100 v.1 4001 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 4050 ll ll lllllllllllllllllllllllll lllll llll tllll1 i1 v.10 2101 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 2150 v.1 4051 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 4100 v.10 2151 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 2200 v.1 4101 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 4150 v.10 2201 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 2250 v.1 4151 ttgtatataacagttcagataagaaaattaaagttacttttctc 4194 v.10 2251 ttgtatataacagttcagataagaaaattaaagttacttttctc 2294 Table LIV(c). Peptide sequences of protein coded by 273P4B7 v.10 (SEQ ID NO: 125) MEKSFATKNE AVQKETLQEG PKQEALQEDP LESFNYVLSK STKADIGPNL DQLKDDEILR 60 HCNPWPIISI TNESQNAESN VSIIEIADDL SASHSALQDA QASEAKLEEE PSASSPQYAC 120 DFNLFLEDSA DNRQNFSSQS LEHVEKENSL CGSAPNSKAG FVHSKTCLSW EFSEKDDEPE 180 EVVVKAKIRS KARRIVSDGE DEDDSFKDTS SINPFNTSLF QFSSVKQFDA STPKNDISPP 240 GRFFSSQIPS SVNKSMNSRR SLASRRSLIN MVLDHVEDME ERLDDSSEAK GPEDYPEEGV 300 216 EESSGEASKY TEEDPSGETL SSENKSSWLM TSKPSALAQE TSLGAPEPLS GEQLVGSPQD 360 KAAEATNDYE TLVKRGKELK ECGKIQEALN CLVKALDIKS ADPEVMLLTL SLYKQLNNN 419 Table LV(c). Amino acid sequence alignment of 273P4B7 v.10 (SEQ ID NO: 126) and 273P4B7 v.1 (SEQ ID NO: 127) v.1 801 DGKGTGSADSIATLPKGFGSVEELCTNSSLGMEKSFATKNEAVQKETLQE 850 l i l l l l l l l l l l l v.10 1 MEKSFATKNEAVQKETLQE 19 v.1 851 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEILRHCNPWPIIS 900 lilll111 1 lll 1llll llllllllll lllllllllllllllll v.10 20 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEILRHCNPWPIIS 69 v.1 901 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 950 11ill llll 111l1ll 11l 111ll l iiillllllllllll ll llll lll v.10 70 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 119 v.1 951 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSRAGFVHSKTCLS 1000 v.10 120 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSKAGFVHSKTCLS 169 v. 1 1001 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSINPFNTSL. 1050 v.10 170 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSINPFNTSL 219 v.1 1051 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 1100 Ili li lill lllllllllll111 llllllllllll ll lllllllI v.10 220 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 269 v.1 1101 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 1150 v.10 270 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 319 v.1 1151 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 1200 v.10 320 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 369 v.1 1201 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLNNN 1250 I I I l l l l l l i l l l l l l l l Illl l l l l l l l l l l l l l l l l l l l l l l l l v.10 370 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLNNN 419 Table LII(d). Nucleotide sequence of transcript variant 273P4B7 v.11 (SEQ ID NO: 128) ggcacgaggc caccttgcaa gatggtaaag gtacaggtag tgctgactct atagctactt 60 taccaaaggg gtttggaagt gtagaagaac tttgtactaa ctcttcattg ggaatggaaa 120 aaagctttgc aactaaaaat gaagctgtac aaaaagagac attacaagag gggcctaagc 180 aagaggcact gcaagaggat cctctggaaa gttttaatta tgtacttagc aaatcaacca 240 aagctgatat tgggccaaat ttagatcaac taaaggatga tgagatttta cgtcattgca 300 atccttggcc cattatttcc ataacaaatg aaagtcaaaa tgcagaatca aatgtatcca 360 ttattgaaat agctgatgac ctttcagcat cccatagtgc actgcaggat gctcaagcaa 420 gtgaggccaa gttggaagag gaaccttcag catcttcacc acagtatgca tgtgatttca 480 atcttttctt ggaagactca gcagacaaca gacaaaattt ttccagtcag tctttagagc 540 atgttgagaa agaaaatagc ttgtgtggct ctgcacctaa ttccagagca gggtttgtgc 600 atagcaaaac atgtctcagt tgggagtttt ctgagaaaga cgatgaacca gaagaagtag 660 tagttaaagc aaaaatcaga agtaaagcta gaaggattgt ttcagatggc gaagatgaag 720 atgattcttt taaagatacc tcaagcataa atccattcaa cacatctctc tttcaattct 780 catctgtgaa acaatttgat gcttcaactc ccaaaaatga catcagtcca ccaggaaggt 840 tcttttcatc tcaaataccc agtagtgtaa ataagtctat gaactctaga agatctctgg 900 cttctaggag gtctcttatt aatatggttt tagaccacgt ggaggacatg gaggaaagac 960 ttgacgacag cagtgaagca aagggtcctg aagattatcc agaagaaggg gtggaggaaa 1020 gcagtggcga agcctccaag tatacagaag aggatccttc cggagaaaca ctgtcttcag 1080 aaaacaagtc cagctggtta atgacgtcta agcctagtgc tctagctcaa gagacctctc 1140 ttggtgcccc tgagcctttg tctggtgaac agttggttgg ttctccccag gataaggcgg 1200 217 cagaggctac aaatgactat gagactcttg taaagcgtgg aaaagaacta aaagagtgtg 1260 gaaaaatcca ggaggcccta aactgcttag ttaaagcgct tgacataaaa agtgcagatc 1320 ctgaagttat gctcttgact ttaagtttgt ataagcaact taataacaat tgagaatgta 1380 acctgtttat tgtattttaa agtgaaactg aatatgaggg aatttttgtt cccataattg 1440 gattctttgg gaacatgaag cattcaggct taaggcaaga aagatctcaa aaagcaactt 1500 ctgccctgca acgcccccca ctccatagtc tggtattctg agcactagct taatatttct 1560 tcacttgaat attcttatat tttaggcata ttctataaat ttaactgtgt tgtttcttgg 1620 aaagttttgt aaaattattc tggtcattct taattttact ctgaaagtga tcatctttgt 1680 atataacagt tcagataaga aaattaaagt tacttttctc 1720 Table Ll(d). Nucleotide sequence alignment of 273P4B7 v.11 (SEQ ID NO: 129) and 273P4B7 v.1 (SEQ ID NO: 130) v.1 2451 aacaagatctctccagtataaaggtgaatgttaccaccttgcaagatggt 2500 l i l l l l l l l l l i l l l l i v.11 10 ccaccttgcaagatggt 26 v.1 2501 aaaggtacaggtagtgctgactctatagctactttaccaaaggggtttgg 2550 11i l ltll llll lli llillllllllill1 11 Illlllllllll v.11 27 aaaggtacaggtagtgctgactctatagctactttaccaaaggggtttgg 76 v.1 2551 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 2600 Ili li ll l l l l llll ll lll l l l l l ll l l l l 1 I ll l ll l l ll ll l ll l v.11 77 aagtgtagaagaactttgtactaactcttcattgggaatggaaaaaagct 126 v.1 2601 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 2650 tilll111 11l i l iil llllllllllll 1lllllllillllllll v.11 127 ttgcaactaaaaatgaagctgtacaaaaagagacattacaagaggggcct 176 v.1 2651 aagcaagaggcactgcaagaggatcctctggaaagttttaattatgtact 2700 v.11 177 aagcaagaggcactgcaagaggatcctctggaaagttttaattatgtact 226 v.1 2701 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 2750 v.11 227 tagcaaatcaaccaaagctgatattgggccaaatttagatcaactaaagg 276 v.1 2751 atgatgagattttacgtcattgcaatccttggcccattatttccataaca 2800 v.11 277 atgatgagattttacgtcattgcaatccttggcccattatttccataaca 326 v.1 2801 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 2850 1l11l1111llilll111111l11111llll1111111111111ll11111 v.11 327 aatgaaagtcaaaatgcagaatcaaatgtatccattattgaaatagctga 376 v.1 2851 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 2900 v.11 377 tgacctttcagcatcccatagtgcactgcaggatgctcaagcaagtgagg 426 v.1 2901 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 2950 li llllllilllll111 llll1illllill llll11 111 1 lllll llll v.11 427 ccaagttggaagaggaaccttcagcatcttcaccacagtatgcatgtgat 476 v.1 2951 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 3000 lillllllllllil li lllllll111 Il lll t lt liiilllllll111 v.11 477 ttcaatcttttcttggaagactcagcagacaacagacaaaatttttccag 526 v.1 3001 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 3050 li ll l il ll l ll ltl lll 1 1 1 1 liililllll 111llll1ll v.11 527 tcagtctttagagcatgttgagaaagaaaatagcttgtgtggctctgcac 576 v.1 3051 ctaattccagagcagggtttgtgcatagcaaaacatgtctcagttgggag 3100 ll l l llill 1 1 I I li llllillllllllllllllllllllllllll111 v.11 577 ctaattccagagcagggtttgtgcatagcaaaacatgtctcagttgggag 626 218 v.1 3101 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat .3150 11 111111111lll111||11l1illillllllll I1 Illlll v.11 627 ttttctgagaaagacgatgaaccagaagaagtagtagttaaagcaaaaat 676 v.1 3151 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 3200 v.11 677 cagaagtaaagctagaaggattgtttcagatggcgaagatgaagatgatt 726 v.1 3201 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 3250 v.11 727 cttttaaagatacctcaagcataaatccattcaacacatctctctttcaa 776 v.1 3251 ttctcatctgtgaaacaatttgatgcttcaactcccaaaaatgacatcag 3300 v.11 777 ttctcatctgtgaaacaatttgatgcttcaactcccaaaaatgacatcag 826 v.1 3301 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 3350 1li i ll lli l l li l1 11 llllllllllllllllllllllillllll v.11 827 tccaccaggaaggttcttttcatctcaaatacccagtagtgtaaataagt 876 v.1 3351 ctatgaactctagaagatctctggcttctaggaggtctcttattaatatg 3400 v.11 877 ctatgaactctagaagatctctggcttctaggaggtctcttattaatatg 926 v.1 3401 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 3450 11111l I 11Il II1 I 11 lli111 I I IIl I I 111111111 11 I l11 ||lil I v.11 927 gttttagaccacgtggaggacatggaggaaagacttgacgacagcagtga 976 v.1 3451 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 3500 v.11 977 agcaaagggtcctgaagattatccagaagaaggggtggaggaaagcagtg 1026 v.1 3501 gcgaagcctccaagtatacagaagaggatccttccggagaaacactgtct 3550 11111||1 I I 1111|1|111|11111111il1|11||1lI||11|111I111l1 v.11 1027 gcgaagcctccaagtatacagaagaggatecttccggagaaacactgtct 1076 v.1 3551 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 3600 I111111li11 ||ll11llil|||||| 1|li lillil llllllillll11 v.11 1077 tcagaaaacaagtccagctggttaatgacgtctaagcctagtgctctagc 1126 v.1 3601 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 3650 1 lIll 1I l l II lI1i 11||I ll|||||||ll 11111 lli I v.11 1127 tcaagagacctctcttggtgcccctgagcctttgtctggtgaacagttgg 1176 v.1 3651 ttggttctccccaggataaggcggcagaggctacaaatgactatgagact 3700 li liliIIllI1II ll1 llllI llI ll11 1 lIl I|1 1 ||ll Ill I 1 v.11 1177 ttggttctccccaggataaggcggcagaggctacaaatgactatgagact 1226 v.1 3701 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 3750 v.11 1227 cttgtaaagcgtggaaaagaactaaaagagtgtggaaaaatccaggaggc 1276 v.1 3751 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 3800 tll il lilil 1il 1 ll lll lillll lil 1 l Il ll 11illlll v.11 1277 cctaaactgcttagttaaagcgcttgacataaaaagtgcagatcctgaag 1326 v.1 3801 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 3850 lI iII Il | l l I| l||| 1111 lilll 11ll l i l i I|||||||I v.11 1327 ttatgctcttgactttaagtttgtataagcaacttaataacaattgagaa 1376 v.1 3851 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 3900 |I I 11 l I I ll lll li lI1 II I|IIII i ill ll219 lil l l 219 v.11 1377 tgtaacctgtttattgtattttaaagtgaaactgaatatgagggaatttt 1426 v.1 3901 tgttcccataattggattctttgggaacatgaagcattcaggttaaggc 3950 v.11 1427 tgttcccataattggattctttgggaacatgaagcattcaggcttaaggc 1476 v.1 3951 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 4000 v.11 1477 aagaaagatctcaaaaagcaacttctgccctgcaacgccccccactccat 1526 v.1 4001 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 4050 v.11 1527 agtctggtattctgagcactagcttaatatttcttcacttgaatattctt 1576 v.1 4051 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 4100 v.11 1577 atattttaggcatattctataaatttaactgtgttgtttcttggaaagtt 1626 v.1 4101 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 4150 v.11 1627 ttgtaaaattattctggtcattcttaattttactctgaaagtgatcatct 1676 v.1 4151 ttgtatataacagttcagataagaaaattaaagttacttttctc 4194 lI IIl l lI llllllI lIl ll I 1 1 Illl lll I v.11 1677 ttgtatataacagttcagataagaaaattaaagttacttttctc 1720 Table LIV(d). Peptide sequences of protein coded by 273P4B7 v.11 (SEQ ID NO: 131) MEKSFATKNE AVQKETLQEG PKQEALQEDP LESFNYVLSK STKADIGPNL DQLKDDEILR 60 HCNPWPIISI TNESQNAESN VSIIEIADDL SASHSALQDA QASEAKLEEE PSASSPQYAC 120 DFNLFLEDSA DNRQNFSSQS LEHVEKENSL CGSAPNSRAG FVHSKTCLSW EFSEKDDEPE 180 EVVVKAKIRS KARRIVSDGE DEDDSFKDTS SINPFNTSLF QFSSVKQFDA STPKNDISPP 240 GRFFSSQIPS SVNKSMNSRR SLASRRSLIN MVLDHVEDME ERLDDSSEAK GPEDYPEEGV 300 EESSGEASKY TEEDPSGETL SSENKSSWLM TSKPSALAQE TSLGAPEPLS GEQLVGSPQD 360 KAAEATNDYE TLVKRGKELK ECGKIQEALN CLVKALDIKS ADPEVMLLTL SLYKQINNN 419 Table LV(d). Amino acid sequence alignment of 273P4B7 v.11 (SEQ ID NO: 132) and 273P4B7 v.1 (SEQ ID NO: 133) v.1 801 DGKGTGSADSIATLPKGFGSVEELCTNSSLGMEKSFATKNEAVQKETLQE 850 v.11 1 MEKSFATKNEAVQKETLQE 19 v.1 851 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEILRHCNPWPIIS 900 lillllllllli llll III lil I 11111lllllllll 1llll1l1 l1 v.11 20 GPKQEALQEDPLESFNYVLSKSTKADIGPNLDQLKDDEILRHCNPWPIIS 69 v.1 901 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 950 li li ll1 111 11 1llllll l l ll ll llllllllll lllll v.11 70 ITNESQNAESNVSIIEIADDLSASHSALQDAQASEAKLEEEPSASSPQYA 119 v.1 951 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSRAGFVHSKTCLS 1000 v.11 120 CDFNLFLEDSADNRQNFSSQSLEHVEKENSLCGSAPNSRAGFVHSKTCLS 169 v.1 1001 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSINPFNTSL 1050 v.11 170 WEFSEKDDEPEEVVVKAKIRSKARRIVSDGEDEDDSFKDTSSINPFNTSL 219 v.1 1051 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 1100 v.11 220 FQFSSVKQFDASTPKNDISPPGRFFSSQIPSSVNKSMNSRRSLASRRSLI 269 220 v.1 1101 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 1150 1ill11ll1ll1lil1lill1l1lillill111111ll1llilillillil v.11 270 NMVLDHVEDMEERLDDSSEAKGPEDYPEEGVEESSGEASKYTEEDPSGET 319 v.1 1151 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 1200 I i||1||||| I l||llil I I I I 11 ii1111 111 li ii ii lili lil v.11 320 LSSENKSSWLMTSKPSALAQETSLGAPEPLSGEQLVGSPQDKAAEATNDY 369 v.1 1201 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLNNN 1250 ||||||||li 1|||| I ll I III I 1 I I1 ||1|1111 II I||||||II l I I v.11 370 ETLVKRGKELKECGKIQEALNCLVKALDIKSADPEVMLLTLSLYKQLNNN 419 221 corresponding base. SNP SNP in v.1 SNP in v.2 SNP Alleles SNP Position AA* AA Position AA AA No. variant change position change position a/t v.3 571 159 711 ~ 36 2 a/g v.4 608 R/G 172 748 R/G 49 3 a/g v.5 1185 KR 364 1325 K/R 241 4 a/g v.6 2759 I/V 889 2899 i/V 766 5 t/c v.7 3658 1188 3798 1065 6 a/g v.8 3850 3990 222

Claims (19)

  1. 2. The polynucleotide according to claim 1, wherein the polynucleotide is selected from the group consisting of: (a) a polynucleotide comprising the sequence of SEQ ID NO: 4, from nucleotide residue numbers 604 through 3987; (b) a polynucleotide comprising the sequence of SEQ ID NO: 8, from nucleotide residue numbers 688 through 1947; (c) a polynucleotide comprising the sequence of SEQ ID NO: 2, from nucleotide residue numbers 95 through 3847, wherein the nucleotide residue at 608 is G; (d) a polynucleotide comprising the sequence of SEQ ID NO: 2, from nucleotide residue numbers 95 through 3847, wherein the nucleotide residue at 185 is G; and (e) a polynucleotide comprising the sequence of SEQ ID NO: 2, from nucleotide residue numbers 95 through 3847, wherein the nucleotide residue at 2759 is A.
  2. 3. A recombinant expression vector comprising a polynucleotide of claims I or 2.
  3. 4. A host cell that contains an expression vector of claim 3.
  4. 5. An isolated protein comprising the amino acid sequence selected from the groups consisting of SEQ ID NO: 13, 14, 15, 16 and 18.
  5. 6. A process for producing the protein according to claim 5, comprising culturing a host cell according to claim 4 under conditions sufficient for the production of the protein.
  6. 7. An antibody or fragment thereof that immunospecifically binds to an epitope on the protein according to claim 5.
  7. 8. The antibody or fragment thereof according to claim 7, which is monoclonal. 223
  8. 9. The antibody or fragment thereof according to claim 7 or claim 8, which is conjugated with a cytotoxic agent.
  9. 10. A hybridoma that produces an antibody according to claim 8.
  10. 11. A method for detecting the presence of a protein or a polynucleotide in a test sample comprising: contacting the sample with an antibody or a probe, respectively, that specifically binds to the protein according to claim 5 or the polynucleotide according to claim 1, respectively; and detecting binding of protein or polynucleotide, respectively, in the sample thereto.
  11. 12. The method according to claim 11, wherein the detecting step comprises comparing an amount of binding of the antibody or the probe that specifically binds to the protein or the polynucleotide to the presence of the protein or the polynucleotide in a corresponding normal sample.
  12. 13. The method according to claim 12, wherein the presence of elevated polynucleotide or protein in the test sample relative to the normal tissue sample provides an indication of the presence of cancer.
  13. 14. The method according to claim 13, wherein the cancer is selected from the group consisting of prostate cancer, bladder cancer, kidney, colon, lung, ovary, breast, pancreas, bone, skin, cervix, lymph node, stomach and uterus.
  14. 15. A method of inhibiting growth of a cell expressing the protein according to claim 5, comprising providing an effective amount of an antibody according to any one of claims 7 to 9 to the cell, whereby the growth of the cell is inhibited.
  15. 16. A method of delivering a cytotoxic agent to a cell expressing the protein according to claim 5, comprising providing an effective amount of an antibody according to any one of claims 7 to 9 to the cell.
  16. 17. A method of inducing an immune response to the protein according to claim 5, the method comprising: 224 providing a protein epitope; and Contacting the epitope with an immune system T cell or B cell, whereby the immune system T cell or B cell is induced.
  17. 18. Use of an epitope from the protein according to claim 5 for the preparation of a medicament to induce a T cell or B cell immune response in a subject.
  18. 19. Use of an antibody according to any one of claims 7 to 9 in the manufacture of a medicament to inhibit growth of a cell expressing the protein according to claim 5 and/or deliver a cytotoxic agent to a cell expressing the protein according to claim 5.
  19. 20. An isolated polynucleotide encoding a protein comprising the amino acid sequence selected from the groups consisting of SEQ ID NO: 13, 14, 15, 16 and 18, a recombinant expression vector comprising the polynucleotide, a host cell comprising the expression vector, an isolated protein comprising the amino acid sequence selected from the groups consisting of SEQ ID NO: 13, 14, 15, 16 and 18, a process for expressing the protein, an antibody or fragment thereof that immunospecifically binds to the protein, a hybridoma expressing the protein or a method comprising providing the antibody or an epitope of the protein or a use of the antibody or the protein epitope substantially as herein described with reference to any one or more of the Examples and/or accompanying Figures. 225
AU2007216892A 2002-08-16 2007-09-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer Ceased AU2007216892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007216892A AU2007216892B2 (en) 2002-08-16 2007-09-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/404,306 2002-08-16
US60/423,290 2002-11-01
AU2003258269A AU2003258269B2 (en) 2002-08-16 2003-08-15 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
AU2007216892A AU2007216892B2 (en) 2002-08-16 2007-09-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2003258269A Division AU2003258269B2 (en) 2002-08-16 2003-08-15 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer

Publications (2)

Publication Number Publication Date
AU2007216892A1 AU2007216892A1 (en) 2007-10-11
AU2007216892B2 true AU2007216892B2 (en) 2011-02-10

Family

ID=38596527

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007216892A Ceased AU2007216892B2 (en) 2002-08-16 2007-09-20 Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer

Country Status (1)

Country Link
AU (1) AU2007216892B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038973A2 (en) * 1998-01-28 1999-08-05 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
WO2000060077A2 (en) * 1999-04-02 2000-10-12 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
EP1074617A2 (en) * 1999-07-29 2001-02-07 Helix Research Institute Primers for synthesising full-length cDNA and their use
EP1130094A2 (en) * 1999-07-08 2001-09-05 Helix Research Institute Primers for synthesizing full length cDNA clones and their use
US20030087250A1 (en) * 2001-03-14 2003-05-08 Millennium Pharmaceuticals, Inc. Nucleic acid molecules and proteins for the identification, assessment, prevention, and therapy of ovarian cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038973A2 (en) * 1998-01-28 1999-08-05 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
WO2000060077A2 (en) * 1999-04-02 2000-10-12 Corixa Corporation Compounds for therapy and diagnosis of lung cancer and methods for their use
EP1130094A2 (en) * 1999-07-08 2001-09-05 Helix Research Institute Primers for synthesizing full length cDNA clones and their use
EP1074617A2 (en) * 1999-07-29 2001-02-07 Helix Research Institute Primers for synthesising full-length cDNA and their use
US20030087250A1 (en) * 2001-03-14 2003-05-08 Millennium Pharmaceuticals, Inc. Nucleic acid molecules and proteins for the identification, assessment, prevention, and therapy of ovarian cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank Accession No. BC008808 *

Also Published As

Publication number Publication date
AU2007216892A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US7250498B2 (en) Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
AU2008258185B2 (en) Prostate stem cell antigen (PSCA) variants and subsequences thereof
AU2002361610B2 (en) Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer
US7968090B2 (en) Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
CA2481503A1 (en) Nucleic acid and corresponding protein entitled 98p4b6 useful in treatment and detection of cancer
CA2514058A1 (en) Nucleic acids and corresponding proteins entitled 254p1d6b useful in treatment and detection of cancer
CA2503346C (en) Nucleic acid and corresponding protein entitled 24p4c12 useful in treatment and detection of cancer
EP1824877A1 (en) Nucleic acids corresponding proteins entitled 158p3d2 useful in treatment and detection of cancer
AU2007216892B2 (en) Nucleic acids and corresponding proteins entitled 273P4B7 useful in treatment and detection of cancer
CA2496566A1 (en) Nucleic acid and corresponding protein entitled 98p4b6 useful in treatment and detection of cancer

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired