EP1185883A1 - Affectation assistee par modele de vehicules a des voies de circulation - Google Patents

Affectation assistee par modele de vehicules a des voies de circulation

Info

Publication number
EP1185883A1
EP1185883A1 EP01929273A EP01929273A EP1185883A1 EP 1185883 A1 EP1185883 A1 EP 1185883A1 EP 01929273 A EP01929273 A EP 01929273A EP 01929273 A EP01929273 A EP 01929273A EP 1185883 A1 EP1185883 A1 EP 1185883A1
Authority
EP
European Patent Office
Prior art keywords
lane
block
vehicle
lanes
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01929273A
Other languages
German (de)
English (en)
Inventor
Klaus Winter
Jens Lueder
Werner Kederer
Jürgen DETLEFSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1185883A1 publication Critical patent/EP1185883A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation

Definitions

  • the invention is based on a method for lane assignment of successive vehicles.
  • the majority of the known systems use a microwave radar beam or an infrared lidar beam to detect preceding vehicles and stationary as well as moving objects. This beam is reflected on the objects and received by the sensor, whereby the relative position and the relative speed of the objects can be determined. From this information, the future course range of the vehicle can be predicted, which is described in detail in patent specification DE 197 22 947 Cl.
  • the object of the invention is to enable lane detection and the detection of the lane being traveled and, if appropriate, horizontal misalignment detection from reflected signals.
  • the adaptive vehicle speed controller can expediently be used on multi-lane motorways, since there is a follow-up drive in most cases.
  • Sensor reference models for streets with different numbers of lanes and for driving in different lanes are stored.
  • the reference model which is most similar to the current measurement diagram, provides information on how many lanes the road has and which lane the vehicle is currently on. This result is output as a so-called lane hypothesis.
  • a misalignment can be determined by evaluating the transverse offsets of the reflection objects as a function of their long distance, that is to say the distance between the sensor and the reflection object, which is parallel to the center of the vehicle.
  • the advantage of this invention is to output a lane hypothesis using this simple analysis method of sensor data and to recognize any sensor misalignment that may be present.
  • Fig. 1 is a block diagram for model-based lane and misalignment detection
  • a radar object is an object confirmed in each case from one measurement to the next measurement by comparing predicted distance, transverse offset and relative speed data and determined measurement data.
  • the following treatments of the radar object data have proven to be expedient, (a) pre-filtering, i.e. each radar object is only taken into account once for the transverse offset histogram, or (b) weighted consideration of the individual objects in the histogram depending on the number of individual measurements of the individual radar objects.
  • the offset transverse to the center of the vehicle can be used as the input transverse offset, or the transverse offset (dyc) related to the course of the ACC vehicle can also be used to compensate for changes in transverse offset due to cornering.
  • the determined frequency distribution is correlated with a model for frequency distributions with respect to Lane allocation for multi-lane roads (e.g. 3 lanes) with a defined width or alternatively with characteristic transverse offset histograms for the different lanes used by the ACC vehicle.
  • the submodel with the highest correlation to the determined frequency distribution is given as a lane hypothesis (number of lanes and lane used by your own vehicle).
  • a model-based lane and misalignment detection is shown in FIG.
  • the radar object data such as distance, relative speed and lateral offset are obtained from the measurement data of the radar sensor.
  • these are filtered in an object filter, which is shown as block 2.
  • This filtering can be done in different ways. This advantageously takes place either by considering each object only once for the transverse offset histogram or by considering each object with a weighting, the weighting depending on how often an object was recognized in individual measurements.
  • These filtered data are then transferred to a transverse offset histogram, which is shown in block 3.
  • the frequency of the filtered object data as a function of the measured transverse offset to the longitudinal axis of the vehicle is stored in this transverse offset histogram.
  • lane models are stored which serve as reference histograms. These reference histograms are either model lane models or lane models that were obtained empirically.
  • a separate, characteristic reference histogram is stored for each type of road, whether with or without oncoming traffic, whether one or more lanes in one direction and for the use of each lane.
  • the currently determined, current transverse offset histogram from block 3 is correlated with each of the reference models stored in block 4. As a result, a correlation result is obtained for each correlation from the current cross offset histogram with one of the reference models, the higher the closer the current cross offset histogram and the reference histogram are.
  • the horizontal misalignment of the radar sensor can be determined from the position of the mean values for the lanes in the histogram in relation to the vehicle center axis.
  • a further histogram about the distance of the observed objects with equivalent object treatment (type (a) or (b)) must be stored, and a misalignment angle determined by determining the center of gravity of the histograms.
  • FIG. 2 shows a flow chart that is suitable for lane analysis and misalignment detection of a radar sensor.
  • a yaw rate signal can be used for this purpose, which comes, for example, from a sensor for driving dynamics control. It is also conceivable to take a steering angle into account. If this yaw rate signal is, for example, less than 0.001 rad / s, then one can conclude that a straight section of the route has been traveled. In this case, the amplitudes are filtered in block 8 in order to detect only actual radar reflections and to remove noise. In block 9, these measuring points are shown in an x, y diagram.
  • the frequencies with which the objects were recognized by the radar beam can be determined from the x, y diagram.
  • a distribution can be made from this x, y diagram in block 11 of the recognized objects on the roadway are modeled by generating a cross offset histogram.
  • the offset of the model generated in block 11 is further determined, which indicates the lateral placement of one's own vehicle in the driven lane.
  • the current transverse offset histogram is compared with the previous histogram. By observing the data record changes in block 13, a lane hypothesis can be output in block 14 which identifies the lane currently being used.
  • the angle of the dominant object which is in front of the driver's vehicle is determined in block 23.
  • the dominant object is advantageously the vehicle, which is moving in the same lane as the own vehicle and has the smallest distance from the own vehicle and is therefore decisive for the distance and speed control of the own vehicle.
  • block 24 it is checked whether the angle of the dominant object determined in block 23 is approximately 0 ° on average over time. If this condition of block 24 is met, then in block 25, together with the frequencies from the x, y diagram, which were determined in block 10, the current data is verified with old data from previous measurements.
  • a "locked” object is also determined from the x, y diagram of the filtered objects determined in block 9 in block 19.
  • This "locked” object is a vehicle immediately preceding it, its distance from its own vehicle and its relative speed in relation to own vehicle can be used for distance and speed control.
  • the position of this “locked” object is also forwarded to block 18 for determining a possible misalignment In this step 19, the center of gravity of the driving line can be determined in block 15 from the x, y diagram of block 9.
  • driving line focal points represent the lateral transverse offset of the movement trajectories of vehicles that move in the middle of a respective lane.
  • block 17 it can be seen from these driving line focal points whether the objects in the radar detection area move parallel to the driver's own vehicle, which is of particular interest in maneuvering maneuvers.
  • the dominant object can be observed separately from the driving line focal points of step 15 in block 16 and supplied to block 17 by recognizing whether the recognized objects are moving parallel to one's own vehicle.
  • the information obtained in step 17 regarding the parallelism of the detected objects is fed to the misalignment detection of the radar sensor in block 18.
  • This parallel speed is the speed of the detected objects, based on your own vehicle. From these parallel speeds, the new positions of the detected radar objects are further calculated in block 21 on the basis of their old positions and their movement trajectories. These pre-calculated targets are compared with the new measurement data for the next measurement cycle and checked for plausibility. From the data obtained in step 21, a statistical center of gravity of the transverse offsets is determined in step 22, which is fed to block 18 and is used there to determine a possible sensor de- junction. In block 26 it is also shown that a radiant angle of the vehicle is determined from the radar measurement.
  • the float angle of the driving Stuff determined by means of a further device is advantageously done by using vehicle dynamics variables from a device for vehicle dynamics control, which is already standard in most vehicles.
  • the two float angles determined in steps 26 and 27 are compared with one another in block 28 and any difference between these two sizes of the sensor misalignment detection is passed on in block 18.
  • the flowchart shown in Figure 2 partially includes several procedures and approaches to determine a size.
  • the determination of a misalignment (18) was demonstrated using several options. In order to implement a lane determination or determination of a sensor misalignment, it is sufficient according to the invention to use one of the listed procedures in each case. It is also conceivable to combine two or more procedures with one another, in which case the individual results can be compared with one another and checked for plausibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

L'invention concerne un procédé et un dispositif permettant d'affecter des véhicules successifs à des voies de circulation. L'affectation assistée par modèle des véhicules à des voies de circulation s'effectue par une distribution de fréquences des décalages latéraux d'objets radar détectés. Le procédé selon l'invention peut également être utilisé pour détecter les mésalignements du détecteur.
EP01929273A 2000-03-28 2001-03-28 Affectation assistee par modele de vehicules a des voies de circulation Withdrawn EP1185883A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10015111 2000-03-28
DE10015111 2000-03-28
PCT/DE2001/001190 WO2001073473A1 (fr) 2000-03-28 2001-03-28 Affectation assistee par modele de vehicules a des voies de circulation

Publications (1)

Publication Number Publication Date
EP1185883A1 true EP1185883A1 (fr) 2002-03-13

Family

ID=7636521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929273A Withdrawn EP1185883A1 (fr) 2000-03-28 2001-03-28 Affectation assistee par modele de vehicules a des voies de circulation

Country Status (6)

Country Link
US (1) US7593838B2 (fr)
EP (1) EP1185883A1 (fr)
JP (1) JP2003529085A (fr)
BR (1) BR0105799A (fr)
DE (1) DE10115551A1 (fr)
WO (1) WO2001073473A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718919B2 (en) 2002-04-23 2014-05-06 Robert Bosch Gmbh Method and apparatus for lane recognition for a vehicle
DE10345802A1 (de) 2003-09-30 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrspurerkennung für ein Fahrzeug
DE10254394A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur Beeinflussung der Geschwindigkeit eines Kraftfahrzeuges
DE102004028404A1 (de) * 2004-06-14 2006-01-19 Daimlerchrysler Ag Verfahren zur Schätzung des Verlaufs einer Fahrspur eines Kraftfahrzeuges
DE102005039103A1 (de) * 2005-08-18 2007-03-01 Robert Bosch Gmbh Verfahren für die Erfassung eines Verkehrsraums
JP4890924B2 (ja) 2006-04-27 2012-03-07 オムロンオートモーティブエレクトロニクス株式会社 レーダ装置
DE102007041727B4 (de) * 2007-09-04 2021-09-23 Adc Automotive Distance Control Systems Gmbh Verfahren zur Spurzahlbestimmung
DE102009054835A1 (de) * 2009-12-17 2011-06-22 Robert Bosch GmbH, 70469 Objektsensor
DE102010003951A1 (de) * 2010-04-14 2011-10-20 Robert Bosch Gmbh Verfahren zum Stabilisieren eines Zweirads bei seitlich rutschendem Hinterrad
DE102010042361A1 (de) 2010-10-13 2012-04-19 Robert Bosch Gmbh Fahrassistenzsystem in einem Kraftfahrzeug
US9721471B2 (en) 2014-12-16 2017-08-01 Here Global B.V. Learning lanes from radar data
DE102016100718A1 (de) 2016-01-18 2017-07-20 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erkennen von Fahrspuren auf einer Fahrbahn anhand einer Häufigkeitsverteilung von Abstandswerten, Steuereinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2408333C2 (de) * 1974-02-21 1985-05-23 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur Abstandsmessung
US5063857A (en) * 1984-08-14 1991-11-12 Kissel Jr Waldemar F Comprehensive unit transporation system
JPH06213660A (ja) * 1993-01-19 1994-08-05 Aisin Seiki Co Ltd 像の近似直線の検出方法
DE4310580A1 (de) * 1993-03-31 1994-10-06 Siemens Ag Automatisches Gebührenerfassungssystem
GB9425096D0 (en) * 1994-12-13 1995-02-08 Lucas Ind Plc Apparatus and method for cruise control
US5642093A (en) * 1995-01-27 1997-06-24 Fuji Jukogyo Kabushiki Kaisha Warning system for vehicle
JP3470453B2 (ja) 1995-04-06 2003-11-25 株式会社デンソー 車間距離制御装置
US6526352B1 (en) * 2001-07-19 2003-02-25 Intelligent Technologies International, Inc. Method and arrangement for mapping a road
DE19637053C2 (de) 1996-09-12 2000-03-09 Bosch Gmbh Robert Verfahren und Vorrichtung zur automatischen Erkennung von Rechts- oder Linksverkehr
DE19637245C2 (de) * 1996-09-13 2000-02-24 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs
JP3268213B2 (ja) * 1996-10-02 2002-03-25 三菱重工業株式会社 走行車両制御方法
DE19650863C1 (de) * 1996-12-07 1998-04-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer vertikalen Dejustierung eines Abstandssensors
JP3468001B2 (ja) * 1996-12-16 2003-11-17 日産自動車株式会社 車両用走行制御装置
DE19714570B4 (de) * 1997-04-09 2006-08-31 Robert Bosch Gmbh Mehrstrahliges Radarsystem
DE19722947C1 (de) 1997-05-31 1999-02-25 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung eines zukünftigen Kursbereichs eines Fahrzeugs
US5964822A (en) * 1997-08-27 1999-10-12 Delco Electronics Corp. Automatic sensor azimuth alignment
US5959569A (en) * 1997-10-09 1999-09-28 Eaton Vorad Technologies, L.L.C. Method and apparatus for in path target determination for an automotive vehicle using a gyroscopic device
US5977906A (en) 1998-09-24 1999-11-02 Eaton Vorad Technologies, L.L.C. Method and apparatus for calibrating azimuth boresight in a radar system
DE19921449C1 (de) * 1999-05-08 2001-01-25 Daimler Chrysler Ag Leithilfe bei einem Fahrspurwechsel eines Kraftfahrzeuges
JP3658519B2 (ja) * 1999-06-28 2005-06-08 株式会社日立製作所 自動車の制御システムおよび自動車の制御装置
DE19954536B4 (de) * 1999-11-12 2010-09-23 Robert Bosch Gmbh Verfahren zur Auswertung von Objekten im Kursverlauf eines Fahrzeuges
JP3603768B2 (ja) * 2000-09-06 2004-12-22 日産自動車株式会社 車線逸脱判定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0173473A1 *

Also Published As

Publication number Publication date
US7593838B2 (en) 2009-09-22
US20020183928A1 (en) 2002-12-05
JP2003529085A (ja) 2003-09-30
BR0105799A (pt) 2002-02-26
DE10115551A1 (de) 2001-10-11
WO2001073473A1 (fr) 2001-10-04

Similar Documents

Publication Publication Date Title
EP1790519B1 (fr) Procédé et dispositif pour la surveillance du volant
EP1277064B1 (fr) Procede de regulation de la vitesse d'un vehicule automobile
EP2068173B1 (fr) Procédé destiné à la mesure de mouvements obliques dans un système d'assistance au conducteur
DE19749086C1 (de) Vorrichtung zur Ermittlung fahrspurverlaufsindikativer Daten
EP2422332B1 (fr) Procede pour classer un objet comme un obstacle
EP1990654B1 (fr) Procédé et dispositif de détermination de la classe de véhicules
DE102017221691A1 (de) Verfahren und Vorrichtung zur Eigenlokalisierung eines Fahrzeugs
EP2698646A1 (fr) Procédé de classification de véhicules roulants par le suivi de la taille de position du véhicule
WO2003093914A1 (fr) Procede et dispositif pour prevoir la trajectoire de vehicules
WO2001073473A1 (fr) Affectation assistee par modele de vehicules a des voies de circulation
DE102017118651A1 (de) Verfahren und System zur Kollisionsvermeidung eines Fahrzeugs
WO2019162794A1 (fr) Procédé et système pour la détection de places de stationnement appropriées pour un véhicule
DE102008063033B4 (de) Vorrichtung und Verfahren zur Erkennung von Kollisionen mit erhöhter funktionaler Sicherheit
DE102013016596A1 (de) Verfahren zum Betreiben einer Fahrerassistenzeinrichtung
DE102004028404A1 (de) Verfahren zur Schätzung des Verlaufs einer Fahrspur eines Kraftfahrzeuges
DE102018201531A1 (de) Verfahren zum Erkennen eines Fahrschlauchs bei schienengebundenen Fahrzeugen
DE102020105192B4 (de) Verfahren zum Detektieren bewegter Objekte in einer Fahrzeugumgebung und Kraftfahrzeug
DE102009033853A1 (de) Verfahren zum Betrieb eines Fahrerassistenzsystems und Vorrichtung zur Durchführung des Verfahrens
DE102012220191A1 (de) Verfahren zur Unterstützung eines Fahrers bei der Querführung eines Fahrzeugs
DE102008002576A1 (de) Verfahren zur Plausibilisierung von Objekten in einem Fahrerassistenzsystem
DE102014209015A1 (de) Verfahren und Vorrichtung zur Abstandsregelung für ein Fahrzeug
WO2017108237A1 (fr) Procédé pour adapter une courbe de valeurs seuils d'écho pour un capteur à ultrasons d'un véhicule automobile
EP2068172A2 (fr) Placement adaptif des zéros dans le diagramme d'antenne difference de mono-impulsion pour améliorer la résolution angulaire aux positions des objets
EP4107545A1 (fr) Procédé d'estimation d'une vitesse intrinsèque
EP0892281B1 (fr) Méthode et procédé pour déterminer la situation de conduite d'un véhicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020404

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20061219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110315