EP1183454B1 - METHOD OF CONTROLLING AN NOx STORAGE CATALYST - Google Patents

METHOD OF CONTROLLING AN NOx STORAGE CATALYST Download PDF

Info

Publication number
EP1183454B1
EP1183454B1 EP00931213A EP00931213A EP1183454B1 EP 1183454 B1 EP1183454 B1 EP 1183454B1 EP 00931213 A EP00931213 A EP 00931213A EP 00931213 A EP00931213 A EP 00931213A EP 1183454 B1 EP1183454 B1 EP 1183454B1
Authority
EP
European Patent Office
Prior art keywords
regeneration
measure
comparison value
threshold value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00931213A
Other languages
German (de)
French (fr)
Other versions
EP1183454A1 (en
Inventor
Ekkehard Pott
Axel König
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1183454A1 publication Critical patent/EP1183454A1/en
Application granted granted Critical
Publication of EP1183454B1 publication Critical patent/EP1183454B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]

Definitions

  • the invention relates to a method for controlling a regeneration of at least one NO x storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine with the features mentioned in the preamble of claim 1.
  • gaseous pollutants are generated which can be divided into reducing agents such as CO, HC or H 2 or oxidizing agents such as NO X or SO X.
  • reducing agents such as CO, HC or H 2
  • oxidizing agents such as NO X or SO X.
  • the reducing agents are oxidized on the catalyst with oxygen, while the oxidizing agents are reacted with the reducing agents.
  • NO X storage which can also be combined with the catalyst for a NO x storage catalyst.
  • the NO X storage catalytic converter absorbs the NO X as nitrate, until it does so a NO x desorption temperature and / or a NO x storage capacity is exceeded.
  • NO x regeneration It is therefore known to regenerate the NO x storage catalytic converter in regular cycles (NO x regeneration).
  • NO X regeneration there is a brief change to a working mode with ⁇ ⁇ 1.
  • the stored NO X is desorbed again and reduced on the catalyst with the reducing agents.
  • a need for regeneration can be made dependent on individual operating parameters that can be measured directly by suitable measuring devices. For example, it is known from DE 197 29 676 A1 to initiate the regeneration as a function of certain limit temperatures. A more complex model for such a control can be found in DE 197 16 275 C1.
  • the current driving situation, a loading condition and a current lambda value can be taken into account.
  • the conditions can be linked to certain parameters during the regeneration.
  • Reversible damage can occur, for example, by covering the catalyst with a condensate or soot.
  • SO x is formed, which, like NO x , is absorbed by the storage.
  • Storage of the SO x as sulfate leads, among other things, to a reduction in the NO x storage capacity, but can also lead to damage to the catalyst in the long term, for example due to sulfite formation.
  • sulfate grain formation during absorption can lead to tensions within the structure of a NO x storage catalytic converter, which can result in irreversible damage to the NO x storage catalytic converter.
  • the need for desulfurization can be determined on the basis of parameters characterizing a current catalyst state, such as a degree of sulfurization, a current lambda value or a catalyst temperature.
  • the degree of sulfurization can be determined, for example, as a function of a NO x concentration downstream of the NO x storage catalytic converter.
  • Component-specific sensors such as NO x sensors are suitable for detecting the NO x concentration.
  • a method can be found in DE 198 37 074 A1 with which a regulation of an air-fuel ratio is influenced during a desulfurization phase. An actual / target comparison of an oxygen concentration during the desulfurization is carried out and a fuel signal generated from this is used to redefine the fuel concentration supplied during the desulfurization.
  • a disadvantage of the known methods is poor coordination of a sequence of individual regeneration measures. As a result, increased fuel consumption can occur and it is not possible to select the regeneration measure in accordance with a current catalytic converter condition.
  • the object of the method according to the invention is to continuously monitor a functionality of the NO x storage catalytic converter with regard to the NO x storage capacity and the catalytic activity and to adapt the regeneration measure to the current catalytic converter condition.
  • the comparison value is determined again during or after the regeneration measure. If the comparison value is exceeded, at least one further regeneration measure is taken.
  • the catalyst system 10 comprises a NO x storage catalytic converter 16 and a pre-catalytic converter 18 as well as the temperature sensors 22.
  • gas sensors 19, 20, 21 are assigned to the catalytic converter system, which can detect a gas content of a gas component in the exhaust gas. Lambda sensors or component-specific sensors are suitable, for example.
  • the gas sensor 21 enables at least detection of a NO x concentration and is therefore a NO x sensor.
  • a working mode of the internal combustion engine 14 can be regulated by means of an engine control unit 24. If, for example, a working mode with ⁇ ⁇ 1 (rich atmosphere) is desired, an oxygen concentration in an intake manifold 26 must be reduced before a fuel-air mixture is combusted. This simultaneously increases the content of reducing agents such as CO, HC and H 2 in the exhaust gas compared to an oxygen content.
  • a working mode can be set by reducing a volume flow of intake air by means of a throttle valve 28 and by simultaneously supplying low-oxygen exhaust gas via an exhaust gas reflux valve 30.
  • Gaseous pollutants such as CO, HC, NO X or SO X are formed in varying proportions during a combustion process.
  • the reducing agents can be oxidized by oxygen on the pre-catalyst 18. With sufficient oxygen concentration, a complete or extensive implementation is possible under almost all working modes.
  • absorbed SO X is stored in the form of sulfate in the NO X storage catalytic converter 16, although reversibility of this storage process, in contrast to the storage of NO X, requires significantly higher temperatures.
  • a minimum desulfurization temperature and a lambda value ⁇ 1 must therefore be available for desulfurization (SO X regeneration parameter).
  • a NO x concentration in the exhaust gas behind the NO x storage catalytic converter 16 is continuously detected. This concentration is compared with a target NO x concentration and a comparison value is formed in accordance with a deviation of the concentration from the target concentration. If the comparison value exceeds a predefinable threshold value, a regeneration measure is taken.
  • the regeneration measure includes a SO x regeneration (desulfurization), NO x regeneration or an increase in the exhaust gas temperature in order to eliminate an occupation of the storage catalytic converter with condensate or soot. Important when making a selection the regeneration measure is to match this to a regeneration measure that may have been carried out beforehand. In this way, individual regeneration measures can be coordinated and control of the regeneration of the storage catalytic converter 16 can be carried out much more effectively. If the comparison value continues to exceed the threshold value after the regeneration measure has been carried out, a further regeneration measure is selected and carried out.
  • FIG. 2 shows a block diagram for controlling the regeneration of the NO x storage catalytic converter 16 in a rich atmosphere.
  • a NO x regeneration of the NO x storage catalytic converter 16 can already be carried out in such an atmosphere. If the comparison value in a comparison 40 is below the threshold value, no further measure (42) is taken. However, if the comparison value reaches the threshold value, an operating parameter of the internal combustion engine 14 is influenced at least temporarily in such a way that the exhaust gas temperature is increased (exhaust gas temperature increase 44). A comparison 40 of the comparison value and the threshold value is then carried out again. If the comparison value continues to exceed the threshold value, irreversible damage to the NO x storage catalytic converter 16 can be concluded.
  • comparison 40 of the comparison value with the threshold value takes place and, if necessary, NO x regeneration 48 is initiated as a regeneration measure. If, in a subsequent comparison 40, the comparison value is again greater than the threshold value, a second NO X regeneration 50 is initiated. After the second NO x regeneration 50 has ended, the comparison value and threshold value are again compared. If the regeneration measure was successful, no further measures 42 are taken.
  • an adaptation 52 of a content of reducing agents in the exhaust gas during the NO x regeneration can be carried out as a function of the previously detected comparison value, for example to compensate for minor irreversible damage to the NO x storage catalytic converter 16.
  • the comparison value 40 continues to exceed the threshold value, the NO x storage catalytic converter 16 is subjected to an exhaust gas temperature (exhaust gas temperature increase 44) that is elevated. Perform this too Regeneration measure not to reduce the comparison value, a first SO X regeneration 54 is initiated and possibly also a second SO X regeneration 56 subsequently. A comparison 40 of the comparison value and threshold value then takes place again. If the comparison value is again below the threshold value, an adjustment of the content of reducing agents during the SO x regeneration can be carried out analogously to the method during the NO x regeneration (adaptation 58).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The invention relates to a method of controlling the regeneration of at least one NOx catalyst that is mounted in the exhaust gas duct of an internal combustion engine. According to the inventive method, an NOx concentration of an exhaust gas is detected by an NOx sensor that is arranged downstream of the NOx storage catalyst. The inventive method is characterized by the following steps: (a) comparing the measured NOx concentration downstream of the storage catalyst with an NOx theoretical concentration and determining a comparative value that corresponds to a deviation of said NOx concentration from the NOx theoretical concentration; (b) taking a regenerative measure when the comparative value exceeds a predetermined threshold value, said regenerative measure influencing at least temporarily at least one operational parameter of the internal combustion engine (14); (c) selecting the regenerative measure depending on a regenerative measure that has optionally taken place before.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer Regeneration von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOX-Speicherkatalysator mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for controlling a regeneration of at least one NO x storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine with the features mentioned in the preamble of claim 1.

Es ist bekannt, ein Abgas der Verbrennungskraftmaschine mit Hilfe von geeigneten Katalysatoren, die in dem Abgaskanal der Verbrennungskraftmaschine angeordnet werden, zu reinigen. Während eines Verbrennungsvorgangs entstehen gasförmige Schadstoffe, die sich in Reduktionsmittel wie CO, HC oder H2 oder in Oxidationsmittel wie NOX oder SOX einteilen lassen. Die Reduktionsmittel werden an dem Katalysator mit Sauerstoff oxidiert, während die Oxidationsmittel mit den Reduktionsmitteln umgesetzt werden.It is known to clean an exhaust gas of the internal combustion engine with the aid of suitable catalysts which are arranged in the exhaust gas duct of the internal combustion engine. During a combustion process, gaseous pollutants are generated which can be divided into reducing agents such as CO, HC or H 2 or oxidizing agents such as NO X or SO X. The reducing agents are oxidized on the catalyst with oxygen, while the oxidizing agents are reacted with the reducing agents.

Die Verbrennungskraftmaschine kann dabei unter verschiedenen Arbeitsmodi betrieben werden. Besteht dabei ein Überschuss von Sauerstoff gegenüber einem Kraftstoff in dem zu verbrennenden Kraftstoff-Luft-Gemisch, so ist λ > 1 (magerer Arbeitsmodus). Unter stöchiometrischen Bedingungen ist λ = 1, während in einem Überschuss von Kraftstoff gegenüber Sauerstoff der Lambdawert kleiner 1 ist (fetter Arbeitsmodus). In dem fetten Arbeitsmodus entstehen durch eine unvollständige Verbrennung vermehrt Reduktionsmittel, wohingegen ihr Anteil am Abgas in magerer Atmosphäre deutlich sinkt. Dennoch ist bei ausreichender Sauerstoffkonzentration auch unter fetter Atmosphäre eine zumindest teilweise Umsetzung der Reduktionsmittel an dem Katalysator möglich.The internal combustion engine can be operated in different working modes. If there is an excess of oxygen over a fuel in the fuel-air mixture to be burned, then λ> 1 (lean working mode). Under stoichiometric conditions, λ = 1, while in an excess of fuel over oxygen the lambda value is less than 1 (rich working mode). In the rich working mode, incomplete combustion leads to an increase in reducing agents, whereas their share of exhaust gas in a lean atmosphere drops significantly. Nevertheless, if the oxygen concentration is sufficient, an at least partial conversion of the reducing agents on the catalyst is also possible under a rich atmosphere.

Demgegenüber ist die Reduktion von NOX oder SOX in einem ausreichenden Maße lediglich bei λ ≤ 1 möglich. Um eine NOX-Emission trotzdem möglichst gering zu halten, ist bekannt, in dem Abgaskanal einen NOX-Speicher anzuordnen, der auch mit dem Katalysator zu einem NOX-Speicherkatalysator zusammengefasst werden kann. Der NOX-Speicherkatalysator absorbiert bei λ > 1 das NOX als Nitrat, und zwar so lange, bis eine NOX-Desorptionstemperatur und/oder eine NOX-Speicherkapazität überschritten wird.In contrast, the reduction of NO X or SO X is only possible to a sufficient extent if λ ≤ 1. In order to keep a NO X emissions still low as possible, is known to arrange in the exhaust passage a NO x storage, which can also be combined with the catalyst for a NO x storage catalyst. At λ> 1, the NO X storage catalytic converter absorbs the NO X as nitrate, until it does so a NO x desorption temperature and / or a NO x storage capacity is exceeded.

Es ist daher bekannt, den NOX-Speicherkatalysator in regelmäßigen Zyklen zu regenerieren (NOX-Regeneration). Während der NOX-Regeneration erfolgt kurzfristig ein Wechsel in einen Arbeitsmodus mit λ ≤ 1. Unter solchen Bedingungen wird das eingelagerte NOX wieder desorbiert und an dem Katalysator mit den Reduktionsmitteln reduziert. Eine Regenerationsnotwendigkeit kann dabei abhängig gemacht werden von einzelnen Betriebsparametern, die durch geeignete Messeinrichtungen direkt erfassbar sind. So ist beispielsweise aus der DE 197 29 676 A1 bekannt, die Regeneration in Abhängigkeit von bestimmten Grenztemperaturen zu initiieren. Ein komplexeres Modell für eine derartige Steuerung lässt sich der DE 197 16 275 C1 entnehmen. Hierbei können unter anderem die aktuelle Fahrsituation, ein Beladungszustand und ein aktueller Lambdawert berücksichtigt werden. Weiterhin können die Bedingungen während der Regeneration an bestimmte Parameter geknüpft werden. So ist aus der DE 197 44 409 A1 bekannt, eine Dauer eines Regenerationszyklus in Abhängigkeit von einer Sauerstoffspeicherkapazität des Katalysators und/oder einer Speicherkapazität des NOX-Speichers zu verändern. Aus der DE 198 30 829 C1 ist weiterhin bekannt, die zur Regeneration des NOX-Speicherkatalysators notwendigen Reduktionsmittelmassenströme in Abhängigkeit von einem durch einen NOX-Messaufnehmer erfassten Signal zu steuern.It is therefore known to regenerate the NO x storage catalytic converter in regular cycles (NO x regeneration). During the NO X regeneration, there is a brief change to a working mode with λ ≤ 1. Under such conditions, the stored NO X is desorbed again and reduced on the catalyst with the reducing agents. A need for regeneration can be made dependent on individual operating parameters that can be measured directly by suitable measuring devices. For example, it is known from DE 197 29 676 A1 to initiate the regeneration as a function of certain limit temperatures. A more complex model for such a control can be found in DE 197 16 275 C1. Among other things, the current driving situation, a loading condition and a current lambda value can be taken into account. Furthermore, the conditions can be linked to certain parameters during the regeneration. It is known from DE 197 44 409 A1 to change the duration of a regeneration cycle as a function of an oxygen storage capacity of the catalyst and / or a storage capacity of the NO x store. From DE 198 30 829 C1 it is also known to control the masses of reducing agent necessary for the regeneration of the NO x storage catalytic converter as a function of a signal detected by a NO x sensor.

Im Zuge eines Betriebs des NOX-Speicherkatalysators können allerdings verschiedenartige Schädigungen seine Funktionalität hinsichtlich NOX-Speicherfähigkeit und katalytischer Aktivität beeinträchtigen. Derartige Schädigungen können sowohl den Katalysator als auch den Speicher betreffen und sind ihrer Natur nach entweder reversibel oder irreversibel.In the course of operating the NO x storage catalytic converter, however, various types of damage can impair its functionality with regard to the NO x storage capacity and catalytic activity. Such damage can affect both the catalyst and the accumulator and is either reversible or irreversible in nature.

Eine reversible Schädigung kann beispielsweise durch eine Belegung des Katalysators mit einem Kondensat oder Ruß erfolgen. Daneben wird bei einer Verbrennung schwefelhaltigen Kraftstoffs SOX gebildet, das ebenso wie NOX von dem Speicher absorbiert wird. Eine Einlagerung des SOX als Sulfat führt unter anderem zu einer Minderung der NOX-Speicherkapazität, kann aber auch langfristig, beispielsweise durch Sulfitbildung, zu einer Schädigung des Katalysators führen. Daneben kann eine Sulfatkornbildung bei der Absorption zu Verspannungen innerhalb der Struktur eines NOX-Speicherkatalysators führen, die eine irreversible Schädigung des NOX-Speicherkatalysators nach sich ziehen können.Reversible damage can occur, for example, by covering the catalyst with a condensate or soot. In addition, when sulfurous fuel is burned, SO x is formed, which, like NO x , is absorbed by the storage. Storage of the SO x as sulfate leads, among other things, to a reduction in the NO x storage capacity, but can also lead to damage to the catalyst in the long term, for example due to sulfite formation. In addition, sulfate grain formation during absorption can lead to tensions within the structure of a NO x storage catalytic converter, which can result in irreversible damage to the NO x storage catalytic converter.

Es ist daher bekannt, in Abhängigkeit von einer Entschwefelungsnotwendigkeit den NOX-Speicherkatalysator zu entschwefeln (SOX-Regeneration). Aufgrund einer höheren thermodynamischen Stabilität des Sulfats gegenüber dem Nitrat sind hierfür jedoch höhere Temperaturen notwendig. Die Entschwefelungsnotwendigkeit kann anhand von einen aktuellen Katalysatorzustand kennzeichnenden Parametern, wie einen Verschwefelungsgrad, einen aktuellen Lambdawert oder einer Katalysatortemperatur, festgelegt werden. Der Verschwefelungsgrad lässt sich beispielsweise in Abhängigkeit von einer NOX-Konzentration stromab des NOX-Speicherkatalysators bestimmen. Zur Erfassung der NOX-Konzentration eignen sich komponentenspezifische Sensoren, wie NOX-Sensoren. Der DE 198 37 074 A1 lässt sich ein Verfahren entnehmen, mit dem eine Regelung eines Luft-Kraftstoff-Verhältnisses während einer Entschwefelungsphase beeinflusst wird. Dabei erfolgt ein Ist-Soll-Vergleich einer Sauerstoffkonzentration während der Entschwefelung und aus einem hieraus generierten Fehlersignal erfolgt eine Neufestlegung der während der Entschwefelung zugeführten Kraftstoffkonzentration.It is therefore known, depending on the need for desulfurization, to desulfurize the NO x storage catalyst (SO x regeneration). Due to the higher thermodynamic stability of the sulfate compared to the nitrate, higher temperatures are necessary for this. The need for desulfurization can be determined on the basis of parameters characterizing a current catalyst state, such as a degree of sulfurization, a current lambda value or a catalyst temperature. The degree of sulfurization can be determined, for example, as a function of a NO x concentration downstream of the NO x storage catalytic converter. Component-specific sensors such as NO x sensors are suitable for detecting the NO x concentration. A method can be found in DE 198 37 074 A1 with which a regulation of an air-fuel ratio is influenced during a desulfurization phase. An actual / target comparison of an oxygen concentration during the desulfurization is carried out and a fuel signal generated from this is used to redefine the fuel concentration supplied during the desulfurization.

Im allgemeinen liegt ein Kraftstoffverbrauch der Verbrennungskraftmaschine im fetten Arbeitsmodus über dem des mageren Arbeitsmodus. Hierdurch und durch ein gegebenenfalls zusätzliches Aufheizen des Abgases besteht damit während der NOXoder SOX-Regeneration ein erhöhter Kraftstoffverbrauch. Im Zuge fortschreitender Bemühungen, den Kraftstoffverbrauch von Verbrennungskraftmaschinen zu senken, ist daher ein möglichst langer Betrieb mit λ > 1 erwünscht.In general, fuel consumption of the internal combustion engine in the rich operating mode is higher than that of the lean operating mode. As a result of this and, if appropriate, an additional heating of the exhaust gas, there is increased fuel consumption during NO X or SO X regeneration. In the course of progressive efforts to reduce the fuel consumption of internal combustion engines, the longest possible operation with λ> 1 is desirable.

Nachteilig bei den bekannten Verfahren ist eine mangelhafte Koordination einer Abfolge einzelner Regenerationsmaßnahmen. Infolgedessen kann es zu einem erhöhten Kraftstoffverbrauch kommen, und es ist nicht möglich, die Regenerationsmaßnahme entsprechend einem aktuellen Katalysatorzustand auszuwählen.A disadvantage of the known methods is poor coordination of a sequence of individual regeneration measures. As a result, increased fuel consumption can occur and it is not possible to select the regeneration measure in accordance with a current catalytic converter condition.

Aufgabe des erfindungsgemäßen Verfahrens ist es, eine Funktionalität des NOX-Speicherkatalysators hinsichtlich der NOX-Speicherfähigkeit und der katalytischen Aktivität laufend zu überwachen und die Regenerationsmaßnahme dem aktuellen Katalysatorzustand anzupassen.The object of the method according to the invention is to continuously monitor a functionality of the NO x storage catalytic converter with regard to the NO x storage capacity and the catalytic activity and to adapt the regeneration measure to the current catalytic converter condition.

Erfindungsgemäß wird diese Aufgabe durch ein Verfahren zur Steuerung einer Regeneration von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOX-Speicherkatalysator mit den Merkmalen des Anspruchs 1 gelöst. Dadurch, dass

  • (a) die gemessene NOX-Konzentration nach dem Speicherkatalysator mit einer NOX-Sollkonzentration verglichen wird und entsprechend einer Abweichung dieser NOX-Konzentration von der NOX-Sollkonzentration ein Vergleichswert bestimmt wird,
  • (b) beim Überschreiten des Vergleichswertes über einen vorgebbaren Schwellenwert eine Regenerationsmaßnahme ergriffen wird, bei der wenigstens ein Betriebsparameter der Verbrennungskraftmaschine zumindest temporär beeinflusst wird und
  • (c) die Regenerationsmaßnahme in Abhängigkeit von einer gegebenenfalls zuvor durchgeführten Regenerationsmaßnahme ausgewählt wird,
ist es möglich, den Ablauf aufeinanderfolgender Regenerationsmaßnahmen zu koordinieren und dem aktuellen Katalysatorzustand anzupassen.According to the invention, this object is achieved by a method for controlling a regeneration of at least one NO x storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine with the features of claim 1. As a result of that
  • (a) comparing the measured NO x concentration downstream of the storage catalyst with a NO X -Sollkonzentration and is determined according to a deviation of the NO x concentration of the NO X -Sollkonzentration a comparison value,
  • (b) a regeneration measure is taken when the comparison value exceeds a predefinable threshold value, in which at least one operating parameter of the internal combustion engine is influenced at least temporarily and
  • (c) the regeneration measure is selected as a function of a regeneration measure that may have been carried out beforehand,
it is possible to coordinate the sequence of successive regeneration measures and to adapt them to the current state of the catalyst.

In einer bevorzugten Ausgestaltung des Verfahrens wird der Vergleichswert während oder nach der Regenerationsmaßnahme erneut bestimmt. Beim Überschreiten des Vergleichswertes wird zumindest eine weitere Regenerationsmaßnahme ergriffen. Daneben ist es denkbar, in Abhängigkeit von dem Vergleichswert einen Gehalt des Abgases an Reduktionsmitteln während der NOX- oder SOX-Regeneration zu variieren. Hierdurch kann in einfacher Weise der aktuelle Katalysatorzustand berücksichtigt werden.In a preferred embodiment of the method, the comparison value is determined again during or after the regeneration measure. If the comparison value is exceeded, at least one further regeneration measure is taken. In addition, it is conceivable to vary a content of reducing agents in the exhaust gas during the NO x or SO x regeneration depending on the comparison value. This allows the current catalytic converter state to be taken into account in a simple manner.

Ferner ist vorteilhaft, dass beim Überschreiten des Vergleichswertes über den Schwellenwert während der NOX-Regeneration, also in fetter oder stöchiometrischer Atmosphäre, anschließend eine Regenerationsmaßnahme ergriffen wird, die zu einer Erhöhung der Abgastemperatur führt, ohne dabei in den mageren Arbeitsmodus zu wechseln. Liegt weiterhin der Vergleichswert über dem Schwellenwert, so ist die Katalysatorkomponente des NOX-Speicherkatalysators beschädigt.It is also advantageous that if the comparison value is exceeded above the threshold during NO x regeneration, that is to say in a rich or stoichiometric atmosphere, a regeneration measure is subsequently taken which leads to an increase in the exhaust gas temperature without changing to the lean working mode. If the comparison value is still above the threshold value, then the catalyst component of the NO x storage catalytic converter is damaged.

Weiterhin ist es vorteilhaft, den Vergleichswert nach einem Wechsel in magerer Atmosphäre zu erfassen. Ausgehend von einer ersten NOX-Regeneration wird nach jeder Regenerationsmaßnahme wiederum überprüft, ob der Vergleichswert über dem Schwellenwert liegt und gegebenenfalls eine weitere Regenerationsmaßnahme ergriffen. Es hat sich dabei als vorteilhaft erwiesen, der ersten NOX-Regeneration zunächst eine erneute NOX-Regeneration und dann eine Erhöhung der Abgastemperatur folgen zu lassen. Liegt weiterhin ein zu hoher Vergleichswert vor, so kann die SOX-Regeneration eingeleitet werden, die gegebenenfalls wiederholt wird. Liegt der Vergleichswert auch nach der erneuten SOX-Regeneration über dem Schwellenwert, so ist der NOX-Speicherkatalysator mit hoher Wahrscheinlichkeit irreversibel geschädigt.It is also advantageous to record the comparison value after a change in a lean atmosphere. On the basis of a first NO x regeneration, after each regeneration measure it is checked again whether the comparison value is above the threshold value and, if necessary, a further regeneration measure is taken. It has proven to be advantageous here, the first NO x regeneration first a renewed NO x regeneration and then an increase in Exhaust temperature to follow. If the comparison value is still too high, the SO X regeneration can be initiated, which may be repeated. If the comparison value remains above the threshold value even after renewed SO X regeneration, the NO X storage catalytic converter is highly likely to be irreversibly damaged.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention result from the other features mentioned in the subclaims.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Anordnung eines Katalysatorsystems in einem Abgaskanal einer Verbrennungskraftmaschine;
Figur 2
ein Blockschaltbild für eine Steuerung einer Regeneration eines NOX-Speicherkatalysators in einem fetten Arbeitsmodus und
Figur 3
ein Blockschaltbild für eine Steuerung einer Regeneration eines NOX-Speicherkatalysators in einem mageren Arbeitsmodus.
The invention is explained in more detail below in exemplary embodiments with reference to the associated drawings. Show it:
Figure 1
an arrangement of a catalyst system in an exhaust duct of an internal combustion engine;
Figure 2
a block diagram for controlling a regeneration of a NO x storage catalyst in a rich working mode and
Figure 3
a block diagram for controlling a regeneration of a NO x storage catalyst in a lean working mode.

In der Figur 1 ist in schematischer Weise eine Anordnung eines Katalysatorsystems 10 in einem Abgaskanal 12 einer Verbrennungskraftmaschine 14 dargestellt. Das Katalysatorsystem 10 umfasst einen NOX-Speicherkatalysator 16 und einen Vorkatalysator 18 sowie die Temperatursensoren 22.An arrangement of a catalyst system 10 in an exhaust gas duct 12 of an internal combustion engine 14 is shown schematically in FIG. The catalyst system 10 comprises a NO x storage catalytic converter 16 and a pre-catalytic converter 18 as well as the temperature sensors 22.

Ferner sind dem Katalysatorsystem 10 Gassensoren 19, 20, 21 zugeordnet, die einen Gasgehalt einer Gaskomponente am Abgas erfassen können. Geeignet sind beispielsweise Lambdasonden oder komponentenspezifische Sensoren. Dabei ermöglicht der Gassensor 21 zumindest eine Erfassung einer NOX-Konzentration und ist somit ein NOX-Sensor.Furthermore, gas sensors 19, 20, 21 are assigned to the catalytic converter system, which can detect a gas content of a gas component in the exhaust gas. Lambda sensors or component-specific sensors are suitable, for example. In this case, the gas sensor 21 enables at least detection of a NO x concentration and is therefore a NO x sensor.

Ein Arbeitsmodus der Verbrennungskraftmaschine 14 kann mittels eines Motorsteuergerätes 24 geregelt werden. Wird beispielsweise ein Arbeitsmodus mit λ < 1 (fette Atmosphäre) gewünscht, so muss eine Sauerstoffkonzentration in einem Saugrohr 26 vor einer Verbrennung eines Kraftstoff-Luft-Gemisches gesenkt werden. Damit erhöht sich gleichzeitig ein Gehalt an Reduktionsmitteln wie CO, HC und H2 im Abgas im Vergleich zu einem Gehalt an Sauerstoff. Beispielsweise kann ein solcher Arbeitsmodus durch eine Reduzierung eines Volumenstroms angesaugter Luft mittels einer Drosselklappe 28 und durch gleichzeitige Zuführung sauerstoffarmen Abgases über ein Abgasrückflußventil 30 eingestellt werden.A working mode of the internal combustion engine 14 can be regulated by means of an engine control unit 24. If, for example, a working mode with λ <1 (rich atmosphere) is desired, an oxygen concentration in an intake manifold 26 must be reduced before a fuel-air mixture is combusted. This simultaneously increases the content of reducing agents such as CO, HC and H 2 in the exhaust gas compared to an oxygen content. For example, such a working mode can be set by reducing a volume flow of intake air by means of a throttle valve 28 and by simultaneously supplying low-oxygen exhaust gas via an exhaust gas reflux valve 30.

Während eines Verbrennungsvorganges werden in wechselnden Anteilen gasförmige Schadstoffe, wie CO, HC, NOX oder SOX, gebildet. Die Reduktionsmittel können durch Sauerstoff an dem Vorkatalysator 18 oxidiert werden. Bei ausreichender Sauerstoffkonzentration ist eine vollständige oder weitestgehende Umsetzung unter nahezu allen Arbeitsmodi möglich.Gaseous pollutants such as CO, HC, NO X or SO X are formed in varying proportions during a combustion process. The reducing agents can be oxidized by oxygen on the pre-catalyst 18. With sufficient oxygen concentration, a complete or extensive implementation is possible under almost all working modes.

In einem Arbeitsmodus mit λ > 1 (magere Atmosphäre) wird neben NOX auch SOX im NOX-Speicherkatalysator 16 absorbiert, während die geringen Anteile an Reduktionsmitteln zumindest bei niedriger Raumgeschwindigkeit fast vollständig im Vorkatalysator 18 umgesetzt werden. In Abhängigkeit von einer NOX-Speicherkapazität und einer NOX-Desorptionstemperatur des NOX-Speicherkatalysators 16 muss die Verbrennungskraftmaschine 14 zur NOX-Regeneration mit λ ≤ 1 betrieben werden. In einem solchen Arbeitsmodus wird das zuvor absorbierte NOX an einer katalytisch aktiven Oberfläche des NOX-Speicherkatalysators 16 reduziert.In a working mode with λ> 1 (lean atmosphere) in addition to NO X and SO X absorbed in the NO X storing catalyst 16, while the low levels of reducing agents are reacted almost completely, at least at low space velocity in the primary catalytic converter 18th Depending on a NO x storage capacity and a NO x desorption temperature of the NO x storage catalytic converter 16, the internal combustion engine 14 must be operated with λ 1 1 for NO x regeneration. In such a working mode, the previously absorbed NO x is reduced on a catalytically active surface of the NO x storage catalytic converter 16.

Ebenfalls absorbiertes SOX wird in Form von Sulfat in dem NOX-Speicherkatalysator 16 eingelagert, wobei allerdings eine Reversibilität dieses Einlagerungsprozesses im Gegensatz zu der Einlagerung von NOX wesentlich höhere Temperaturen erfordert. Somit muss zur Entschwefelung eine Mindestentschwefelungstemperatur und ein Lambdawert ≤ 1 vorliegen (SOX-Regenerationsparameter). Mittels einer zumindest temporären Beeinflussung wenigstens eines Betriebsparameters der Verbrennungskraftmaschine 14 kann eine Abgastemperatur erhöht werden und der NOX-Speicherkatalysator 16 auf die Mindesttemperatur aufgeheizt werden.Likewise absorbed SO X is stored in the form of sulfate in the NO X storage catalytic converter 16, although reversibility of this storage process, in contrast to the storage of NO X, requires significantly higher temperatures. A minimum desulfurization temperature and a lambda value ≤ 1 must therefore be available for desulfurization (SO X regeneration parameter). By at least temporarily influencing at least one operating parameter of the internal combustion engine 14, an exhaust gas temperature can be increased and the NO x storage catalytic converter 16 can be heated to the minimum temperature.

Mit Hilfe des Gassensors 21 wird kontinuierlich eine NOX-Konzentration in dem Abgas hinter dem NOX-Speicherkatalysator 16 erfasst. Diese Konzentration wird mit einer NOX-Sollkonzentration verglichen und entsprechend einer Abweichung der Konzentration von der Sollkonzentration ein Vergleichswert gebildet. Überschreitet der Vergleichswert einen vorgebbaren Schwellenwert, so wird eine Regenerationsmaßnahme ergriffen. Die Regenerationsmaßnahme beinhaltet eine SOX-Regeneration (Entschwefelung), NOX-Regeneration oder eine Erhöhung der Abgastemperatur, um eine Belegung des Speicherkatalysators mit Kondensat oder Ruß zu beheben. Wichtig bei einer Auswahl der Regenerationsmaßnahme ist es, diese auf eine gegebenenfalls zuvor durchgeführte Regenerationsmaßnahme abzustimmen. Auf diese Weise können einzelne Regenerationsmaßnahmen koordiniert und so eine Steuerung der Regeneration des Speicherkatalysators 16 wesentlich effektiver durchgeführt werden. Überschreitet der Vergleichswert nach einer Ausführung der Regenerationsmaßnahme weiterhin den Schwellenwert, so wird eine weitere Regenerationsmaßnahme ausgewählt und durchgeführt.With the help of the gas sensor 21, a NO x concentration in the exhaust gas behind the NO x storage catalytic converter 16 is continuously detected. This concentration is compared with a target NO x concentration and a comparison value is formed in accordance with a deviation of the concentration from the target concentration. If the comparison value exceeds a predefinable threshold value, a regeneration measure is taken. The regeneration measure includes a SO x regeneration (desulfurization), NO x regeneration or an increase in the exhaust gas temperature in order to eliminate an occupation of the storage catalytic converter with condensate or soot. Important when making a selection the regeneration measure is to match this to a regeneration measure that may have been carried out beforehand. In this way, individual regeneration measures can be coordinated and control of the regeneration of the storage catalytic converter 16 can be carried out much more effectively. If the comparison value continues to exceed the threshold value after the regeneration measure has been carried out, a further regeneration measure is selected and carried out.

In der Figur 2 ist ein Blockschaltbild zur Steuerung der Regeneration des NOx-Speicherkatalysators 16 in fetter Atmosphäre dargestellt. In einer solchen Atmosphäre kann bereits eine NOX-Regeneration des NOX-Speicherkatalysators 16 durchgeführt werden. Liegt bei einem Vergleich 40 der Vergleichswert unterhalb des Schwellenwertes, so wird keine weitere Maßnahme (42) ergriffen. Erreicht der Vergleichswert jedoch den Schwellenwert, so wird zumindest temporär ein Betriebsparameter der Verbrennungskraftmaschine 14 derart beeinflusst, dass die Abgastemperatur erhöht wird (Abgastemperaturerhöhung 44). Anschließend wird wiederum ein Vergleich 40 des Vergleichswertes und des Schwellenwertes durchgeführt. Übersteigt der Vergleichswert weiterhin den Schwellenwert, so kann auf eine irreversible Schädigung des NOX-Speicherkatalysators 16 geschlossen werden.FIG. 2 shows a block diagram for controlling the regeneration of the NO x storage catalytic converter 16 in a rich atmosphere. A NO x regeneration of the NO x storage catalytic converter 16 can already be carried out in such an atmosphere. If the comparison value in a comparison 40 is below the threshold value, no further measure (42) is taken. However, if the comparison value reaches the threshold value, an operating parameter of the internal combustion engine 14 is influenced at least temporarily in such a way that the exhaust gas temperature is increased (exhaust gas temperature increase 44). A comparison 40 of the comparison value and the threshold value is then carried out again. If the comparison value continues to exceed the threshold value, irreversible damage to the NO x storage catalytic converter 16 can be concluded.

Neben einer Erfassung der NOX-Konzentration während der NOX-Regeneration kann dies in magerer Atmosphäre erfolgen, wie in einem Blockschaltbild gemäß Figur 3 dargestellt. Zunächst erfolgt dabei - wie bereits erläutert - der Vergleich 40 des Vergleichswerts mit dem Schwellenwert und es wird gegebenenfalls eine NOX-Regeneration 48 als Regenerationsmaßnahme initiiert. Ist in einem anschließenden Vergleich 40 wiederum der Vergleichswert größer als der Schwellenwert, wird eine zweite NOX-Regeneration 50 eingeleitet. Nach Beendigung der zweiten NOX-Regeneration 50 werden wiederum Vergleichswert und Schwellenwert verglichen. War die Regenerationsmaßnahme erfolgreich, so werden keine weiteren Maßnahmen 42 ergriffen. Optional kann eine Anpassung 52 eines Gehaltes des Abgases an Reduktionsmitteln während der NOX-Regeneration in Abhängigkeit von dem zuvor detektierten Vergleichswert neu erfolgen, beispielsweise um kleinere irreversible Schädigungen des NOX-Speicherkatalysators 16 zu kompensieren.In addition to detecting the NO x concentration during the NO x regeneration, this can be done in a lean atmosphere, as shown in a block diagram according to FIG. 3. First, as already explained, comparison 40 of the comparison value with the threshold value takes place and, if necessary, NO x regeneration 48 is initiated as a regeneration measure. If, in a subsequent comparison 40, the comparison value is again greater than the threshold value, a second NO X regeneration 50 is initiated. After the second NO x regeneration 50 has ended, the comparison value and threshold value are again compared. If the regeneration measure was successful, no further measures 42 are taken. Optionally, an adaptation 52 of a content of reducing agents in the exhaust gas during the NO x regeneration can be carried out as a function of the previously detected comparison value, for example to compensate for minor irreversible damage to the NO x storage catalytic converter 16.

Übersteigt der Vergleichswert 40 jedoch weiterhin den Schwellenwert, so wird der NOX-Speicherkatalysator 16 mit einem Abgas erhöhter Abgastemperatur (Abgastemperaturerhöhung 44) beaufschlagt. Führt auch diese Regenerationsmaßnahme nicht zu einer Herabsetzung des Vergleichswertes, wird eine erste SOX-Regeneration 54 initiiert und gegebenenfalls nachfolgend auch eine zweite SOX-Regeneration 56. Anschließend findet wieder ein Vergleich 40 des Vergleichswertes und Schwellenwertes statt. Liegt der Vergleichswert wieder unterhalb des Schwellenwertes, kann analog dem Verfahren während der NOX-Regeneration eine Anpassung eines Gehalts an Reduktionsmitteln während der SOX-Regeneration erfolgen (Anpassung 58).However, if the comparison value 40 continues to exceed the threshold value, the NO x storage catalytic converter 16 is subjected to an exhaust gas temperature (exhaust gas temperature increase 44) that is elevated. Perform this too Regeneration measure not to reduce the comparison value, a first SO X regeneration 54 is initiated and possibly also a second SO X regeneration 56 subsequently. A comparison 40 of the comparison value and threshold value then takes place again. If the comparison value is again below the threshold value, an adjustment of the content of reducing agents during the SO x regeneration can be carried out analogously to the method during the NO x regeneration (adaptation 58).

Führen die gesamten ergriffenen Regenerationsmaßnahmen nicht zu einer Herabsetzung des Vergleichswertes unterhalb des Schwellenwertes, so kann auf eine irreversible Schädigung des NOX-Speicherkatalysators 16 geschlossen werden. Daneben ist aus der Lage des Vergleichswertes auch ein möglicher Umfang dieser Schädigung erfassbar, von der etwaige Wartungsarbeiten abhängig gemacht werden können.If the entire regeneration measures taken do not lead to a reduction in the comparison value below the threshold value, irreversible damage to the NO x storage catalytic converter 16 can be concluded. In addition, a possible extent of this damage can be determined from the position of the comparison value, on which any maintenance work can be made dependent.

Claims (10)

  1. Method for controlling regeneration of at least one NOX storage catalytic converter arranged in an exhaust pipe of an internal combustion engine, in which an NOX concentration of an exhaust gas is recorded by an NOX sensor arranged downstream of the NOX storage catalytic converter, characterized in that
    (a) the measured NOX concentration downstream of the storage catalytic converter is compared with a desired NOX concentration, and a comparison value is determined as a function of a deviation in this NOX concentration from the desired NOX concentration,
    (b) if the comparison value exceeds a predeterminable threshold value, a regeneration measure is taken, which involves at least temporarily influencing at least one operating parameter of the internal combustion engine (14), and
    (c) the regeneration measure is selected as a function of a regeneration measure which has previously been carried out.
  2. Method according to Claim 1, characterized in that the comparison value is determined again during or after the regeneration measure, and if the comparison value exceeds the threshold value at least one further regeneration measure is taken.
  3. Method according to Claim 1 and Claim 2, characterized in that if the comparison value exceeds the threshold value in a lean operating mode of the internal combustion engine (14), an NOX regeneration is initiated as a regeneration measure.
  4. Method according to Claims 1 and 2, characterized in that if the comparison value exceeds the threshold value in a rich operating mode of the internal combustion engine (14), an exhaust-gas temperature is increased as a regeneration measure.
  5. Method according to Claim 3, characterized in that if the comparison value again exceeds the threshold value, the NOX regeneration is repeated as a regeneration measure.
  6. Method according to Claim 5, characterized in that if the comparison value again exceeds the threshold value, the exhaust-gas temperature is increased as a regeneration measure.
  7. Method according to Claim 6, characterized in that if the comparison value again exceeds the threshold value, an SOX regeneration is initiated as a regeneration measure.
  8. Method according to Claim 7, characterized in that if the comparison value again exceeds the threshold value, the SOX regeneration is repeated as a regeneration measure.
  9. Method according to Claims 4 and 8, characterized in that if the comparison value again exceeds the threshold value, irreversible damage to the NOX storage catalytic converter can be determined.
  10. Method according to one of the preceding claims, characterized in that a level of the reducing agent in the exhaust gas during the NOX or SOX regeneration is varied as a function of the comparison value.
EP00931213A 1999-05-21 2000-05-13 METHOD OF CONTROLLING AN NOx STORAGE CATALYST Expired - Lifetime EP1183454B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19923498 1999-05-21
DE19923498A DE19923498A1 (en) 1999-05-21 1999-05-21 Controlling the regeneration of a nitrogen oxides storage catalyst in the exhaust gas channel of an IC engine comprises comparing the measured nitrogen oxides concentration with a set concentration after the storage catalyst
PCT/EP2000/004335 WO2000071878A1 (en) 1999-05-21 2000-05-13 METHOD OF CONTROLLING AN NOx STORAGE CATALYST

Publications (2)

Publication Number Publication Date
EP1183454A1 EP1183454A1 (en) 2002-03-06
EP1183454B1 true EP1183454B1 (en) 2004-04-28

Family

ID=7908846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00931213A Expired - Lifetime EP1183454B1 (en) 1999-05-21 2000-05-13 METHOD OF CONTROLLING AN NOx STORAGE CATALYST

Country Status (4)

Country Link
EP (1) EP1183454B1 (en)
JP (1) JP2003500595A (en)
DE (2) DE19923498A1 (en)
WO (1) WO2000071878A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004330A1 (en) * 2000-02-01 2001-08-02 Deutz Ag Programmable control and regulating electronics for an internal combustion engine
DE60116278T2 (en) * 2001-06-28 2006-08-03 Isuzu Motors Ltd. Device for purifying the exhaust gas with a nitrogen oxide trap catalyst
JP3800080B2 (en) * 2001-11-30 2006-07-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10249610B4 (en) * 2002-10-18 2010-10-07 Volkswagen Ag Method and device for controlling a NOx storage catalytic converter
DE10318210B4 (en) * 2003-04-22 2006-06-14 Siemens Ag Operating method for an internal combustion engine with a pre-catalyst and a storage catalyst
DE10331331B4 (en) * 2003-07-10 2012-03-01 Volkswagen Ag Method for operating an internal combustion engine
DE102005050517A1 (en) * 2005-10-21 2007-04-26 Umicore Ag & Co. Kg Method for operating a nitrogen oxide storage catalytic converter on a diesel engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985638B2 (en) * 1993-10-18 1999-12-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2888124B2 (en) * 1994-01-27 1999-05-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19543219C1 (en) * 1995-11-20 1996-12-05 Daimler Benz Ag Diesel engine operating method
JPH1071325A (en) * 1996-06-21 1998-03-17 Ngk Insulators Ltd Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means
DE19705335C1 (en) * 1997-02-12 1998-09-17 Siemens Ag Process for the regeneration of a storage catalytic converter
DE19716275C1 (en) * 1997-04-18 1998-09-24 Volkswagen Ag Process for reducing nitrogen oxide in the exhaust gas of an internal combustion engine
DE19729676C5 (en) * 1997-07-11 2004-04-15 Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn Method for operating an internal combustion engine for protecting an exhaust gas treatment device
US5983627A (en) * 1997-09-02 1999-11-16 Ford Global Technologies, Inc. Closed loop control for desulfating a NOx trap
DE19744409C2 (en) * 1997-10-08 2001-11-08 Ford Global Tech Inc Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine and device for carrying out the process
DE19801815A1 (en) * 1998-01-19 1999-07-22 Volkswagen Ag Lean-burn i.c. engine exhaust gas cleaning process
DE19830829C1 (en) * 1998-07-09 1999-04-08 Siemens Ag NOX storage catalyst regeneration process

Also Published As

Publication number Publication date
DE19923498A1 (en) 2000-11-23
DE50006263D1 (en) 2004-06-03
WO2000071878A1 (en) 2000-11-30
EP1183454A1 (en) 2002-03-06
JP2003500595A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
EP0916829B1 (en) Method of operation of a diesel engine
EP1214511B1 (en) METHOD FOR MONITORING THE FUNCTIONING OF A NOx SENSOR ARRANGED IN AN EXHAUST GAS CHANNEL OF AN INTERNAL COMBUSTION ENGINE
EP1192343B1 (en) METHOD FOR INITIATING AND MONITORING A DESULFURIZATION OF AT LEAST ONE NOx STORAGE-TYPE CATALYTIC CONVERTER ARRANGED IN AN EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
DE10309422B4 (en) Method and device for calibrating a NOx sensor
EP1183454B1 (en) METHOD OF CONTROLLING AN NOx STORAGE CATALYST
DE10026359A1 (en) Exhaust cleaning unit for remote-ignition internal combustion engine has two 3-way catalytic converters with turbo charger in between and controllable secondary air pump and regulating and measuring devices to reduce toxic emissions
EP1224385B1 (en) METHOD FOR DIAGNOSING THE LEVEL OF DETERIORATION OF AN NOx CATALYST LOCATED IN THE EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
EP1106798A1 (en) Apparatus and method for NOx- and/or SOx-regeneration of an NOx storage catalyst
EP1190164B1 (en) METHOD FOR DETECTING DETERIORATION OF AT LEAST ONE NOx STORAGE CATALYST ARRANGED IN THE EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
DE10153901B4 (en) Method and device for desulfurization of a diesel engine downstream NOx storage catalyst
EP1204815B1 (en) Method for regulating the exhaust gas temperature of a lean combustion engine during the desulphurization of a catalyst
DE102016210897B4 (en) Control of nitrogen oxide emissions in high-load operating phases
DE19929293A1 (en) Method of control of the operating condition of an IC engine uses the catalyser cell parameters for engine control circuitry
EP1244871B1 (en) Device and method for controlling a rate of recirculated exhaust gas of an exhaust gas recirculation device for combustion engines during lean operation
EP1325218B1 (en) Method and device for diagnosing the storing properties of a nox storage catalyst
DE19946044C1 (en) Exhaust gas purification apparatus used on Otto engines has lambda probe arranged between two three-way catalysts
EP1391592B1 (en) Method for operating a lean burn internal combustion engine having an exhaust gas purification system
EP1241336A2 (en) Method and device for regulating an external exhaust gas recirculation rate and /or an air fuel ratio
EP1300572B1 (en) Method and device for controlling a combustion engine capable of lean running
DE10018062A1 (en) Multiple cylinder engine used for vehicles comprises multiple flooding exhaust gas purifier consisting of exhaust gas pipes into which one or more cylinders open, nitrogen oxides storage catalysts and gas sensor, and suction device
EP1252420A1 (en) Device and method for controlling a nox regeneration of a nox storage catalyst
DE102017201399A1 (en) aftertreatment system
EP1287249B1 (en) Direct-injection, spark-ignited internal combustion engine and method for reducing the residual oxygen content in the exhaust gas thereof
DE19939053A1 (en) Method for regulating a combustion process in an internal combustion engine during regeneration of a storage catalytic converter
EP1435444A2 (en) Method for operating an internal combustion engine with stabilized emissions and vehicle with stabilized emissions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040428

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006263

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040804

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120618

Year of fee payment: 13

Ref country code: GB

Payment date: 20120531

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006263

Country of ref document: DE

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531