JP2003500595A - Method for controlling regeneration of NOx absorption catalyst - Google Patents
Method for controlling regeneration of NOx absorption catalystInfo
- Publication number
- JP2003500595A JP2003500595A JP2000620236A JP2000620236A JP2003500595A JP 2003500595 A JP2003500595 A JP 2003500595A JP 2000620236 A JP2000620236 A JP 2000620236A JP 2000620236 A JP2000620236 A JP 2000620236A JP 2003500595 A JP2003500595 A JP 2003500595A
- Authority
- JP
- Japan
- Prior art keywords
- regeneration
- comparison value
- catalyst
- threshold value
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008929 regeneration Effects 0.000 title claims abstract description 64
- 238000011069 regeneration method Methods 0.000 title claims abstract description 64
- 239000003054 catalyst Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000010521 absorption reaction Methods 0.000 title abstract description 32
- 238000002485 combustion reaction Methods 0.000 claims abstract description 25
- 239000003638 chemical reducing agent Substances 0.000 claims description 15
- 230000002745 absorbent Effects 0.000 claims description 8
- 239000002250 absorbent Substances 0.000 claims description 8
- 230000001172 regenerating effect Effects 0.000 claims description 6
- 230000002427 irreversible effect Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 239000000446 fuel Substances 0.000 description 10
- 238000006477 desulfuration reaction Methods 0.000 description 7
- 230000023556 desulfurization Effects 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000012041 precatalyst Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
- F02D41/028—Desulfurisation of NOx traps or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/03—Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/04—Sulfur or sulfur oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
(57)【要約】 本発明は、NOX 吸収触媒の下流に配置されたNOX センサによって排ガスのNOX 濃度が検出される、燃焼機関の排気通路内に配置された少なくとも1個のNOX 吸収触媒の再生を制御するための方法に関する。(a)吸収触媒の後で測定されたNOX 濃度がNOX 目標濃度と比較され、NOX 目標濃度からのこのNOX 濃度の偏差に相応して比較値が決定され、(b)比較値が設定可能な閾値を上回るときに再生手段が講じられ、この再生手段において燃焼機関(14)の少なくとも1つの運転パラメータが少なくとも一時的に影響を及ぼされ、そして(c)再生手段が場合によってはその前に実施された再生手段に依存して選択される。 (57) Abstract: The present invention, NO X NO X concentration of an exhaust gas by placed NO X sensor downstream of the absorption catalyst is detected, at least one of the NO X disposed in the exhaust passage of a combustion engine A method for controlling regeneration of an absorption catalyst. NO X concentration measured after the (a) absorption catalyst is compared with the NO X target density, compared value correspondingly to the deviation of the concentration of NO X from the NO X target concentration is determined, (b) comparison value Is greater than a configurable threshold, wherein at least one operating parameter of the combustion engine (14) is at least temporarily affected, and (c) the regeneration means is possibly The selection is made depending on the previously implemented reproduction means.
Description
【0001】
本発明は、請求項1の前提部分に記載した特徴を有する、燃焼機関の排気通路
内に配置された少なくとも1個のNOX 吸収触媒の再生を制御するための方法に
関する。The invention relates to a method for controlling the regeneration of at least one NO x absorption catalyst arranged in the exhaust passage of a combustion engine, having the features of the preamble of claim 1.
【0002】
燃焼機関の排気通路内に配置される適当な触媒によって燃焼機関の排ガスを浄
化することが知られている。燃焼プロセス中、ガス状の有害物質が発生する。こ
の有害物質はCO,HCまたはH2 のような還元剤あるいはNOX またはSOX
のような酸化剤に分けることができる。この還元剤は触媒で酸素によって酸化さ
れ、酸化剤は還元剤によって転換される。It is known to purify the exhaust gas of a combustion engine by means of a suitable catalyst arranged in the exhaust passage of the combustion engine. During the combustion process, gaseous toxic substances are generated. The harmful substances can be divided into reducing agents such as CO, HC or H 2 or oxidizing agents such as NO x or SO x . This reducing agent is catalytically oxidized by oxygen and the oxidizing agent is converted by the reducing agent.
【0003】
その際、燃焼機関はいろいろな動作モードで運転可能である。その際、燃焼す
べき燃料と空気の混合物内に、燃料に対する酸素の過剰が存在すると、λ>1で
ある(リーン動作モード)。理論混合比の条件の下ではλ=1であり一方、酸素
よりも燃料が過剰のときにはラムダ値は1よりも小さい(リッチ動作モード)。
リッチ動作モードでは、不完全燃焼によって還元剤が増加し、これに対してリー
ン動作モードでは排ガス中の還元剤の割合が大幅に低下する。それにもかかわら
ず、酸素濃度の充分であるときにはリッチ雰囲気でも、還元剤の少なくとも一部
の転換が触媒で可能である。The combustion engine can then be operated in various operating modes. Then, if there is an excess of oxygen to the fuel in the mixture of fuel and air to be burned, λ> 1 (lean operating mode). Under the theoretical mixing ratio condition, λ = 1, while the lambda value is smaller than 1 when the fuel is in excess of oxygen (rich operation mode).
In the rich operation mode, the reducing agent increases due to incomplete combustion, whereas in the lean operation mode, the proportion of the reducing agent in the exhaust gas decreases significantly. Nevertheless, the conversion of at least part of the reducing agent is possible with the catalyst even in a rich atmosphere when the oxygen concentration is sufficient.
【0004】
これに対して、NOX またはSOX の還元はλ≦1の場合にのみ可能である。
それにもかかわらず、NOX の放出をできるだけ抑えるために、排気通路内にN
OX 貯蔵器を配置することが知られている。このNOX 貯蔵器は触媒と共にNO X
貯蔵触媒(NOX 吸収触媒)に統合することができる。NOX 吸収触媒はλ>
1のときにNOX を硝酸塩として吸収し、しかもNOX 吸収温度およびまたはN
OX 貯蔵能力を超えるまで吸収することができる。[0004]
On the other hand, NOXOr SOXCan be reduced only when λ ≦ 1.
Nevertheless, NOXN in the exhaust passage in order to suppress the emission of as much as possible.
OXIt is known to arrange a reservoir. This NOXReservoir NO with catalyst X
Storage catalyst (NOXAbsorption catalyst). NOXAbsorption catalyst is λ>
NO when 1XAbsorbs as nitrate, and NOXAbsorption temperature and / or N
OXCan be absorbed until it exceeds its storage capacity.
【0005】
従って、NOX 吸収触媒を規則的なサイクルで再生することが知られている(
NOX 再生)。NOX 再生の間、λ≦1の動作モードへの交代が短時間で行われ
る。このような条件下で、貯蔵されたNOX は再び吸収され、触媒で還元剤によ
って還元される。その際、再生は個々の運転パラメータに依存して必要となる。
この運転パラメータは適当な測定装置によって直接検出可能である。例えばドイ
ツ連邦共和国特許出願公開第19729676号公報により、所定の限界温度に
依存して再生を開始することが知られている。このような制御のための複雑なモ
デルがドイツ連邦共和国特許第19716275号公報から推測可能である。こ
の場合特に、実際の走行状況、負荷状態および実際のラムダ値(空気過剰率)を
考慮することができる。更に、再生中の条件を一定のパラメータに結びつけるこ
とができる。ドイツ連邦共和国特許出願公開第19744409号公報により、
触媒の酸素貯蔵能力およびまたはNOX 貯蔵器の貯蔵能力に依存して再生サイク
ルの時間を変化させることが知られている。ドイツ連邦共和国特許第19830
829号公報によって更に、NOX 吸収触媒の再生のために必要な還元剤流量を
、NOX センサによって検出された信号に依存して制御することが知られている
。Therefore, it is known to regenerate the NO x absorption catalyst in a regular cycle (
NO X reproduction). During NO x regeneration, switching to the operating mode of λ ≦ 1 is performed in a short time. Under such conditions, the stored NO x is reabsorbed and catalytically reduced by the reducing agent. Regeneration is then required depending on the individual operating parameters.
This operating parameter can be detected directly by suitable measuring equipment. It is known, for example, from German Patent Application DE 197 29 676 A1 to start regeneration in dependence on a predetermined limit temperature. A complex model for such a control can be deduced from the German patent DE 19716275. In this case, in particular, the actual driving situation, the load condition and the actual lambda value (excess air ratio) can be taken into consideration. Furthermore, the condition during reproduction can be tied to a certain parameter. From the German Patent Application Publication No. 19744409,
Depending on the storage capacity of the oxygen storage capacity and or NO X reservoir of catalysts are known to change the time of the regeneration cycle. Federal Republic of Germany Patent 19830
It is further known from Japanese Patent No. 829 to control the reducing agent flow rate required for regeneration of the NO X absorption catalyst depending on the signal detected by the NO X sensor.
【0006】
NOX 吸収触媒の運転の過程で勿論、いろいろな損傷がNOX 貯蔵能力や触媒
的な活性に関する機能性を損なうことがある。このような損傷は触媒と貯蔵器の
両方で発生し、その性質に従って可逆または不可逆である。In the course of operation of the NO X absorption catalyst, of course, various damages may impair the NO X storage capacity and the functionality related to catalytic activity. Such damage occurs in both the catalyst and the reservoir and is reversible or irreversible depending on its nature.
【0007】
可逆の損傷は例えば凝縮物または煤によって触媒を覆うことによって行われる
。それに加えて、硫黄を含む燃料の燃焼時にSOX が形成される。このSOX は
NOX と同様に、貯蔵器によって吸収される。硝酸塩としてのSOX の貯蔵は特
に、NOX 貯蔵能力を低下させ、しかも長期間経つと、例えば亜硫酸塩の形成に
よって、触媒の損傷を引き起こすことになる。更に、亜硫酸塩粒状体の形成は吸
収時にNOX 吸収触媒の組織のひずみを生じることになる。このひずみはNOX
吸収触媒の不可逆の損傷を招き得る。Reversible damage is achieved, for example, by covering the catalyst with condensate or soot. In addition, SO X is formed during the combustion of fuels containing sulfur. This SO x , like NO x , is absorbed by the reservoir. The storage of SO X as nitrate in particular reduces the NO X storage capacity and over a long period of time leads to catalyst damage, for example by the formation of sulfite. Furthermore, formation of sulfites granules would cause distortion of the tissue of the NO X absorbent catalyst upon absorption. This distortion can lead to irreversible damage of the NO X absorbent catalyst.
【0008】
従って、脱硫の必要性に依存してNOX を脱硫することが知られている(SO X
再生)。しかしそのためには、硝酸塩と比べて硫酸塩の熱力学的に高い安定性
に基づいて、高い温度が必要である。脱硫必要性は、硫化程度、実際の空気過剰
率または触媒温度のような、実際の触媒状態を表すパラメータに基づいて定める
ことができる。硫化程度は例えばNOX 吸収触媒の下流のNOX 濃度に依存して
決定することができる。NOX 濃度の検出のために、NOX センサのような成分
特有のセンサが適している。ドイツ連邦共和国特許出願公開第19837074
号公報から、脱硫相の間空気と燃料の比の制御に影響を与える方法が推測される
。その際、脱硫中に酸素濃度の実際値と目標値の比較が行われ、これから発生し
たエラー信号によって、脱硫中に供給される燃料濃度が新たに定められる。[0008]
Therefore, depending on the desulfurization needs, NOXIs known to desulfurize (SO X
Playback). However, for that purpose, the thermodynamic stability of sulfate is higher than that of nitrate.
On the basis of high temperature is required. Desulfurization needs, degree of sulfurization, actual excess air
Determined based on parameters that represent the actual catalyst state, such as rate or catalyst temperature
be able to. For example, the degree of sulfurization is NOXNO downstream of absorption catalystXDepending on the concentration
You can decide. NOXNO for concentration detectionXSensor-like component
A unique sensor is suitable. German Patent Application Publication No. 19837074
From the publication, methods are inferred to influence the control of the air to fuel ratio during the desulfurization phase.
. At that time, the actual value of oxygen concentration was compared with the target value during desulfurization, and
The error signal newly determines the fuel concentration supplied during desulfurization.
【0009】
一般的に、リッチ動作モードでの燃焼機関の燃料消費はリーン動作モードでの
燃料消費よりも多い。それによって、場合によって行われる排ガスの付加的な加
熱によって、NOX 再生またはSOX 再生中は燃料消費が更に高まる。従って、
燃焼機関の燃料消費を低下させる研究が進むにつれて、λ>1の運転をできるだ
け長くすることが望まれる。In general, the fuel consumption of the combustion engine in the rich operation mode is higher than that in the lean operation mode. Thereby, the additional heating of the exhaust gas performed by the case, in NO X regeneration or SO X regeneration is further enhanced fuel consumption. Therefore,
As research continues to reduce fuel consumption in combustion engines, it is desirable to have λ> 1 operation as long as possible.
【0010】
公知の方法の場合には、個々の再生手段の順序の調和が不充分であるという欠
点がある。その結果、燃料消費が増大し、実際の触媒状態に応じて再生手段を選
択することは不可能である。The known method has the disadvantage that the order of the individual regeneration means is poorly coordinated. As a result, fuel consumption increases, and it is impossible to select the regeneration means according to the actual catalyst state.
【0011】
本発明による方法の課題は、NOX 貯蔵能力と触媒的な活性に関するNOX 吸
収触媒の機能性を連続的に監視し、再生手段を実際の触媒状態に適合させること
である。The task of the method according to the invention is to continuously monitor the functionality of the NO x absorption catalyst with respect to its NO x storage capacity and catalytic activity and to adapt the regeneration means to the actual catalytic conditions.
【0012】
この課題は本発明に従い、NOX 吸収触媒の下流に配置されたNOX センサに
よって排ガスのNOX 濃度が検出される、請求項1の特徴を備えた、燃焼機関の
排気通路内に配置された少なくとも1個のNOX 吸収触媒の再生を制御するため
の方法によって解決される。
(a)吸収触媒の後で測定されたNOX 濃度がNOX 目標濃度と比較され、NO
X 目標濃度からのこのNOX 濃度の偏差に相応して比較値が決定され、
(b)比較値が設定可能な閾値を上回るときに再生手段が講じられ、この再生手
段において燃焼機関の少なくとも1つの運転パラメータが少なくとも一時的に
影響を及ぼされ、そして
(c)再生手段が場合によってはその前に実施された再生手段に依存して選択さ
れる
ことにより、連続する再生手段の進行を調和させ、実際の触媒状態に適合させる
ことができる。According to the present invention, the object is to provide an exhaust passage of a combustion engine having a feature of claim 1, in which the NO x concentration of exhaust gas is detected by a NO x sensor arranged downstream of the NO x absorption catalyst. It is solved by a method for controlling the regeneration of at least one NO x absorption catalyst arranged. NO X concentration measured after the (a) absorption catalyst is compared with the NO X target density, compared value correspondingly to the deviation of the concentration of NO X from the NO X target concentration is determined, (b) comparison value Is above a configurable threshold, at least one operating parameter of the combustion engine is at least temporarily affected in this regeneration step, and (c) the regeneration means is optionally before it. Depending on the regeneration means carried out in step 1, the progress of successive regeneration means can be coordinated and adapted to the actual catalytic conditions.
【0013】
方法の好ましい実施形では、再生手段の間または再生手段の後で比較値が新た
に決定される。この比較値が閾値を上回るときに少なくとも1つの他の再生手段
が講じられる。そのほかに、比較値に依存して、NOX 再生またはSOX 再生中
の排ガス中の還元剤の含有量を変更することが考えられる。これにより、実際の
触媒状態を簡単に考慮することができる。In a preferred embodiment of the method, the comparison value is newly determined during or after the regeneration means. When this comparison value exceeds the threshold value, at least one other regeneration measure is taken. In addition, it is possible to change the content of the reducing agent in the exhaust gas during NO X regeneration or SO X regeneration depending on the comparison value. This makes it possible to easily take into consideration the actual catalyst state.
【0014】
更に、NOX 再生中に比較値が閾値を上回る際、すなわち、リッチ雰囲気また
は理論混合比雰囲気において、続いてリーン動作モードに変更しないで排ガス温
度を高める再生手段が講じられると有利である。更に比較値が閾値を上回ると、
NOX 吸収触媒の触媒成分が損傷する。Furthermore, it is advantageous if a regeneration means is provided during NO x regeneration when the comparison value exceeds a threshold value, ie in a rich atmosphere or a stoichiometric mixture ratio, which subsequently raises the exhaust gas temperature without changing to a lean operating mode. is there. If the comparison value exceeds the threshold,
The catalyst component of the NO x absorption catalyst is damaged.
【0015】
更に、リーン雰囲気に交代した後で比較値を検出すると有利である。最初のN
OX 再生から出発して、各々の再生手段の後で、比較値が閾値よりも高いかどう
かが再び検査され、場合によっては他の再生手段が講じられる。その際、最初の
NOX 再生の後で新たなNOX 再生をそして排ガスの温度上昇を続けることが有
利であることが判った。更に、比較値が高すぎると、SOX 再生を開始すること
ができる。このSOX 再生は場合によっては繰り返される。新たなSOX 再生の
後でも比較値が閾値よりも大きいと、NOX 吸収触媒は高い確率で不可逆に損傷
する。Furthermore, it is advantageous to detect the comparison value after changing to a lean atmosphere. First N
Starting from O X regeneration, after each playback means, whether the comparison value is greater than the threshold is examined again, other playback means are taken in some cases. At that time, it has been found a new NO X regeneration after the first of the NO X regeneration, and may continue to increase in temperature of the exhaust gas is advantageous. Furthermore, if the comparison value is too high, SO X regeneration can be started. This SO X regeneration is repeated in some cases. By comparison value even after a new SO X regeneration is greater than the threshold, NO X absorbent catalyst is damaged irreversibly with high probability.
【0016】
本発明の他の有利な実施形は、従属請求項に記載されたその他の特徴から明ら
かである。Other advantageous embodiments of the invention are apparent from the other features of the dependent claims.
【0017】 次に、図に基づいて本発明の実施の形態を詳しく説明する。[0017] Next, embodiments of the present invention will be described in detail with reference to the drawings.
【0018】
図1は、燃焼機関14の排気通路12における触媒システム10の配置構造を
概略的に示している。触媒システム10はNOX 吸収触媒(貯蔵触媒)16と一
次触媒(プレ触媒)18と温度センサ22を含んでいる。FIG. 1 schematically shows an arrangement structure of the catalyst system 10 in the exhaust passage 12 of the combustion engine 14. The catalyst system 10 includes a NO x absorption catalyst (storage catalyst) 16, a primary catalyst (pre-catalyst) 18, and a temperature sensor 22.
【0019】
触媒システム10には更にガスセンサ19,20,21が付設されている。こ
のガスセンサは排ガスのガス成分のガス含有量を検出することができる。例えば
ラムダ酸素センサまたは成分特有のセンサが適している。その際、ガスセンサ2
1は少なくともNOX 濃度の検出を可能にし、従ってNOX センサである。The catalyst system 10 is further provided with gas sensors 19, 20, 21. This gas sensor can detect the gas content of the gas component of the exhaust gas. For example, a lambda oxygen sensor or a component-specific sensor is suitable. At that time, the gas sensor 2
1 allows for detection of at least NO X concentration, and thus is NO X sensor.
【0020】
燃焼機関14の動作モードはエンジン制御装置24によって制御することがで
きる。例えばλ<1(リッチ雰囲気)の動作モードが所望されると、燃料空気混
合物の燃焼の前に吸気管26内の酸素濃度を低下させなければならない。それに
よって同時に、排ガス中のCO,HC,H2 のような還元剤の含有量が酸素の含
有量と比べて高まる。例えばこのような動作モードは、スロットル弁28によっ
て吸込まれる空気の流量を低減することにより、および排ガス逆流弁30を介し
て酸素の少ない排ガスを同時に供給することにより、調節可能である。The operating mode of the combustion engine 14 can be controlled by the engine controller 24. If a mode of operation, for example λ <1 (rich atmosphere) is desired, the oxygen concentration in the intake pipe 26 must be reduced before combustion of the fuel-air mixture. At the same time, the content of reducing agents such as CO, HC and H 2 in the exhaust gas is increased compared with the content of oxygen. For example, such an operating mode can be adjusted by reducing the flow rate of the air sucked in by the throttle valve 28 and by simultaneously supplying the exhaust gas low in oxygen via the exhaust gas check valve 30.
【0021】
燃焼中、CO,HC,NOX またはSOX のようなガス状の有害物質は割合を
変化させて形成される。還元剤は一次触媒18で酸素によって酸化可能である。
充分な酸素濃度の場合、ほとんどすべての動作モードで完全なまたは充分な転換
が可能である。During combustion, gaseous pollutants such as CO, HC, NO x or SO x are formed in varying proportions. The reducing agent can be oxidized by oxygen in the primary catalyst 18.
With sufficient oxygen concentration, complete or sufficient conversion is possible in almost all operating modes.
【0022】
λ>1(リーン雰囲気)の動作モードでは、NOX のほかにSOX がNOX 吸
収触媒16に吸収され一方、少ない割合の還元剤は少なくとも低い空間速度の際
一次触媒18でほぼ完全に転換される。NOX 吸収触媒16のNOX 貯蔵容量と
NOX 脱離温度に依存して、燃焼機関14はNOX 再生のためにλ≦1で運転し
なければならない。このような動作モードでは、前もって吸収されたNOX がN
OX 吸収触媒16の触媒作用表面で還元される。In the operating mode of λ> 1 (lean atmosphere), SO X is absorbed by the NO X absorption catalyst 16 in addition to NO X , while a small proportion of the reducing agent is almost absorbed in the primary catalyst 18 at least at a low space velocity. Completely converted. Depending on the NO X storage capacity of the NO X absorption catalyst 16 and the NO X desorption temperature, the combustion engine 14 must operate at λ ≦ 1 for NO X regeneration. In this mode of operation, the previously absorbed NO x is N
It is reduced on the catalytic surface of the O x absorption catalyst 16.
【0023】
同様に吸収されたSOX は硫酸塩の形でNOX 吸収触媒16内に貯蔵される。
この場合勿論、この貯蔵プロセスの可逆性はNOX の貯蔵と異なりはるかに高い
温度を必要とする。従って、脱硫のために最低硫化温度とλ≦1の空気過剰率が
存在しなければならない(SOX 再生温度)。燃焼機関14の少なくとも1つの
運転パラメータに対して少なくとも一時的に影響を与えることにより、排ガス温
度を高めることができ、NOX 吸収触媒16を最低温度まで加熱することができ
る。Similarly, the absorbed SO X is stored in the NO X absorption catalyst 16 in the form of sulfate.
Of course in this case, reversibility of the storage process requires temperatures much higher Unlike storage NO X. Therefore, there must be a minimum sulfidation temperature and an air excess of λ ≦ 1 for desulfurization (SO x regeneration temperature). By providing at least temporary influence on at least one operating parameter of the combustion engine 14, it is possible to increase the exhaust gas temperature, it is possible to heat the NO X absorbent catalyst 16 to the lowest temperature.
【0024】
ガスセンサ21によって、NOX 吸収触媒16の背後の排ガスのNOX 濃度が
連続的に検出される。この濃度はNOX 目標濃度と比較され、目標濃度からの濃
度の偏差に相応して比較値が求められる。比較値が設定可能な閾値を上回ると、
再生手段が講じられる。再生手段は、凝縮物または煤による吸収触媒の被覆を除
去するために、SOX 再生(脱硫)、NOX 再生または排ガス温度の上昇を含ん
でいる。再生手段の選択の際、この再生手段を、もしかしてその前に行われた再
生手段に適合させることが重要である。これにより、個々の再生手段を調和させ
、吸収触媒16の再生の制御をきわめて効率的に実施することができる。再生手
段を実施した後の比較値が更に閾値を上回ると、他の再生手段が選択および実施
される。The gas sensor 21 continuously detects the NO X concentration of the exhaust gas behind the NO X absorption catalyst 16. This concentration is compared with NO X target density, compared value correspondingly to the deviation of the concentration from the target concentration is obtained. If the comparison value exceeds a configurable threshold,
Regeneration measures are taken. Reproducing means, in order to remove a coating of absorbent catalyst by condensate or soot, SO X regeneration (desulfurization), it includes an increase of the NO X regeneration or exhaust gas temperature. In selecting the regenerating means, it is important that this regenerating means be adapted to the regenerating means which was previously performed. As a result, the individual regeneration means can be harmonized and the regeneration of the absorption catalyst 16 can be controlled extremely efficiently. When the comparison value after implementing the reproducing means further exceeds the threshold value, another reproducing means is selected and implemented.
【0025】
図2は、リッチ雰囲気でのNOX 吸収触媒16の再生を制御するためのブロッ
ク図である。このような雰囲気では既に、NOX 吸収触媒16のNOX 再生を実
施することができる。比較40の際比較値が閾値を下回ると、他の手段(42)
は講じられない。しかし、比較値が閾値に達すると、排ガス温度が高められるよ
うに(排ガス温度上昇44)、燃焼機関14の運転温度に対して少なくとも一時
的に影響が及ぼされる。続いて、比較値と閾値の比較40が行われる。比較値が
閾値を上回ると、NOX 吸収触媒16の不可逆の損傷が推測される。FIG. 2 is a block diagram for controlling the regeneration of the NO X absorption catalyst 16 in the rich atmosphere. In such an atmosphere, NO X regeneration of the NO X absorption catalyst 16 can be already performed. If the comparison value falls below the threshold value during comparison 40, another means (42)
Cannot be taken. However, when the comparison value reaches the threshold value, the operating temperature of the combustion engine 14 is at least temporarily affected so that the exhaust gas temperature is increased (exhaust gas temperature increase 44). Then, a comparison 40 between the comparison value and the threshold value is performed. When the comparison value exceeds the threshold value, irreversible damage to the NO X absorption catalyst 16 is estimated.
【0026】
NOX 再生中のNOX 濃度の検出のほかに、図3のブロック図に示すように、
このNOX 濃度の検出はリーン雰囲気でも行うことができる。その際先ず最初に
、既に述べたように比較値と閾値の比較40が行われ、場合によってはNOX 再
生48が再生手段として開始される。続いて行われる比較40において比較値が
再び閾値よりも大きいと、第2のNOX 再生50が開始される。第2のNOX 再
生50が終了した後で再び比較値と閾値が比較される。再生手段が成果を収めた
ときには、他の手段42は講じられない。例えばNOX 吸収触媒16の不可逆の
小さな損傷を補償するために任意に、その前に検出された比較値に依存して、N
OX 再生中還元剤に対して排ガスの含有量を新たに適合52させることができる
。In addition to the detection of NO X concentration during NO X regeneration, as shown in the block diagram of FIG.
Detection of the NO X concentration can be carried out in a lean atmosphere. In that case, first, as already mentioned, the comparison 40 between the comparison value and the threshold value is carried out, and in some cases the NO X regeneration 48 is started as regeneration means. In the subsequent comparison 40, if the comparison value is again greater than the threshold value, the second NO X regeneration 50 is started. After the second NO X regeneration 50 is completed, the comparison value and the threshold value are compared again. When the regenerating means is successful, the other means 42 are not taken. For example, to compensate for small irreversible damage to the NO x absorption catalyst 16, optionally depending on the previously detected comparison value, N
O X content of exhaust gas can be newly adapted 52 to the reproduction in the reducing agent.
【0027】
しかし、比較値40が更に閾値を上回ると、高められた排ガス温度の排ガスが
NOX 吸収触媒16に供給される(排ガス温度上昇44)。この再生手段が比較
値を低下させないと、第1のSOX 再生54が開始され、場合によっては続いて
第2のSOX 再生56が行われる。続いて再び比較値と閾値の比較40が行われ
る。比較値が再び閾値を下回ると、NOX 再生中のプロセスに類似して、SOX
再生中還元剤に対して含有量を適合させることができる(適合58)。However, when the comparison value 40 further exceeds the threshold value, the exhaust gas having the increased exhaust gas temperature is supplied to the NO X absorption catalyst 16 (exhaust gas temperature increase 44). If this regeneration means does not reduce the comparison value, the first SO X regeneration 54 is started and, if appropriate, a second SO X regeneration 56 follows. Then, the comparison 40 between the comparison value and the threshold value is performed again. When the comparison value again falls below the threshold value, similar to the process in NO X regeneration, it is possible to adapt the content with respect to SO X regeneration the reducing agent (compatible 58).
【0028】
講じられた全部の再生手段が閾値よりも比較値を低下させないと、NOX 吸収
触媒16の不可逆的に損傷していると推測することができる。そのほかに、比較
値の状況からこの損傷の程度を推し量ることができる。必要になるかもしれない
保守整備作業がこの損傷の程度に左右され得る。It can be inferred that the NO X -absorbing catalyst 16 is irreversibly damaged unless all the regenerating measures taken reduce the comparison value below the threshold value. In addition, the degree of this damage can be estimated from the situation of comparative values. The maintenance work that may be required may depend on the extent of this damage.
【図1】 燃焼機関の排気通路内の触媒システムの配置構造を示す図である。[Figure 1] It is a figure which shows the arrangement structure of the catalyst system in the exhaust passage of a combustion engine.
【図2】
リッチ動作モードでのNOX 吸収触媒の再生の制御のためのブロック図である
。FIG. 2 is a block diagram for controlling regeneration of the NO X absorption catalyst in a rich operation mode.
【図3】
リーン動作モードでのNOX 吸収触媒の再生の制御のためのブロック図である
。FIG. 3 is a block diagram for controlling regeneration of the NO X absorption catalyst in a lean operation mode.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/20 F01N 3/28 301C 3/24 F02D 45/00 314Z 3/28 301 368F F02D 45/00 314 B01D 53/36 K 368 101B Fターム(参考) 3G084 AA04 BA09 DA10 EA11 FA27 FA30 3G091 AA11 AA12 AA17 AA28 AB06 BA11 BA14 CA13 CB01 DA01 DA02 DA03 DA04 DB11 EA17 EA18 EA33 EA34 FB02 FB10 FB11 FB12 FC04 FC07 GA06 HA03 HA08 HA36 HA37 HA42 HB03 HB05 3G301 HA15 JA25 MA01 NA08 NE17 PD02 PD09 PD11Z 4D048 AA06 AB07 BC01 BD01 BD03 CC51 DA01 DA02 DA06 DA08 DA20 EA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/20 F01N 3/28 301C 3/24 F02D 45/00 314Z 3/28 301 368F F02D 45/00 314 B01D 53/36 K 368 101B F-term (reference) 3G084 AA04 BA09 DA10 EA11 FA27 FA30 3G091 AA11 AA12 AA17 AA28 AB06 BA11 BA14 CA13 CB01 DA01 DA02 DA03 DA04 DB11 EA17 EA18 EA33 EA34 FB02 FB10 FB11 FB12 FC04 FC07 GA06 HA03 HA08 HA36 HA37 HA42 HB03 HB05 3G301 HA15 JA25 MA01 NA08 NE17 PD02 PD09 PD11Z 4D048 AA06 AB07 BC01 BD01 BD03 CC51 DA01 DA02 DA06 DA08 DA20 EA04
Claims (10)
ガスのNOX 濃度が検出される、燃焼機関の排気通路内に配置された少なくとも
1個のNOX 吸収触媒の再生を制御するための方法において、 (a)吸収触媒の後で測定されたNOX 濃度がNOX 目標濃度と比較され、NO X 目標濃度からのこのNOX 濃度の偏差に相応して比較値が決定され、 (b)比較値が設定可能な閾値を上回るときに再生手段が講じられ、この再生手 段において燃焼機関(14)の少なくとも1つの運転パラメータが少なくとも 一時的に影響を及ぼされ、そして (c)再生手段が場合によってはその前に実施された再生手段に依存して選択さ れることを特徴とする方法。1. A concentration of NO X exhaust gas by NO X sensor arranged downstream of the NO X absorbent catalyst is detected, reproduction of at least one of the NO X absorbent catalyst disposed in an exhaust passage of a combustion engine a method for controlling, (a) NO X concentration measured after the absorbent catalyst is compared with the NO X target density, compared value correspondingly to the deviation of the NO X concentration is determined from the NO X target concentration (B) regenerative measures are taken when the comparison value exceeds a settable threshold, at which at least one operating parameter of the combustion engine (14) is at least temporarily influenced, and ( c) A method characterized in that the reproduction means are optionally selected depending on the reproduction means carried out before it.
、この比較値が閾値を上回るときに少なくとも1つの他の再生手段が講じられる
ことを特徴とする請求項1記載の方法。2. A comparison value is newly determined during or after the reproduction means, and at least one other reproduction means is taken when the comparison value exceeds a threshold value. The method described.
を上回るときに、再生手段としてNOX 再生が開始されることを特徴とする請求
項1および請求項2記載の方法。When the comparison value exceeds the threshold value 3. A lean operating mode of the combustion engine (14), according to claim 1 and method of claim 2, characterized in that the NO X regeneration is initiated as a regeneration unit.
を上回るときに、再生手段として排ガス温度が高められることを特徴とする請求
項1および2記載の方法。4. The method according to claim 1, wherein the exhaust gas temperature is increased as the regeneration means when the comparison value exceeds a threshold value in the rich operating mode of the combustion engine (14).
温度が高められることを特徴とする請求項5記載の方法。6. The method according to claim 5, wherein the exhaust gas temperature is raised as the regeneration means when the comparison value is newly above the threshold value.
逆の損傷が決定可能であることを特徴とする請求項4および8記載の方法。9. The method according to claim 4, wherein the irreversible damage to the NO x -absorbing catalyst is determinable when the comparison value is above the threshold value.
ス中の還元剤の含有量が変更されることを特徴とする請求項1〜9のいずれか一
つに記載の方法。10. The content of the reducing agent in the exhaust gas during NO X regeneration or SO X regeneration is changed depending on the comparison value. the method of.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19923498A DE19923498A1 (en) | 1999-05-21 | 1999-05-21 | Controlling the regeneration of a nitrogen oxides storage catalyst in the exhaust gas channel of an IC engine comprises comparing the measured nitrogen oxides concentration with a set concentration after the storage catalyst |
DE19923498.1 | 1999-05-21 | ||
PCT/EP2000/004335 WO2000071878A1 (en) | 1999-05-21 | 2000-05-13 | METHOD OF CONTROLLING AN NOx STORAGE CATALYST |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003500595A true JP2003500595A (en) | 2003-01-07 |
Family
ID=7908846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000620236A Pending JP2003500595A (en) | 1999-05-21 | 2000-05-13 | Method for controlling regeneration of NOx absorption catalyst |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1183454B1 (en) |
JP (1) | JP2003500595A (en) |
DE (2) | DE19923498A1 (en) |
WO (1) | WO2000071878A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009512805A (en) * | 2005-10-21 | 2009-03-26 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Method for operating a nitrogen oxide storage catalyst in a diesel engine |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10004330A1 (en) * | 2000-02-01 | 2001-08-02 | Deutz Ag | Programmable control and regulating electronics for an internal combustion engine |
EP1270911B1 (en) * | 2001-06-28 | 2005-12-28 | Isuzu Motors Limited | Exhaust gas purifying facility with nitrogen oxides absorption-reduction catalyst |
JP3800080B2 (en) * | 2001-11-30 | 2006-07-19 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
DE10249610B4 (en) * | 2002-10-18 | 2010-10-07 | Volkswagen Ag | Method and device for controlling a NOx storage catalytic converter |
DE10318210B4 (en) * | 2003-04-22 | 2006-06-14 | Siemens Ag | Operating method for an internal combustion engine with a pre-catalyst and a storage catalyst |
DE10331331B4 (en) * | 2003-07-10 | 2012-03-01 | Volkswagen Ag | Method for operating an internal combustion engine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2985638B2 (en) * | 1993-10-18 | 1999-12-06 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP2888124B2 (en) * | 1994-01-27 | 1999-05-10 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
DE19543219C1 (en) * | 1995-11-20 | 1996-12-05 | Daimler Benz Ag | Diesel engine operating method |
JPH1071325A (en) * | 1996-06-21 | 1998-03-17 | Ngk Insulators Ltd | Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means |
DE19705335C1 (en) * | 1997-02-12 | 1998-09-17 | Siemens Ag | Process for the regeneration of a storage catalytic converter |
DE19716275C1 (en) * | 1997-04-18 | 1998-09-24 | Volkswagen Ag | Process for reducing nitrogen oxide in the exhaust gas of an internal combustion engine |
DE19729676C5 (en) * | 1997-07-11 | 2004-04-15 | Ford Global Technologies, LLC (n.d.Ges.d. Staates Delaware), Dearborn | Method for operating an internal combustion engine for protecting an exhaust gas treatment device |
US5983627A (en) * | 1997-09-02 | 1999-11-16 | Ford Global Technologies, Inc. | Closed loop control for desulfating a NOx trap |
DE19744409C2 (en) * | 1997-10-08 | 2001-11-08 | Ford Global Tech Inc | Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine and device for carrying out the process |
DE19801815A1 (en) * | 1998-01-19 | 1999-07-22 | Volkswagen Ag | Lean-burn i.c. engine exhaust gas cleaning process |
DE19830829C1 (en) * | 1998-07-09 | 1999-04-08 | Siemens Ag | NOX storage catalyst regeneration process |
-
1999
- 1999-05-21 DE DE19923498A patent/DE19923498A1/en not_active Withdrawn
-
2000
- 2000-05-13 JP JP2000620236A patent/JP2003500595A/en active Pending
- 2000-05-13 EP EP00931213A patent/EP1183454B1/en not_active Expired - Lifetime
- 2000-05-13 WO PCT/EP2000/004335 patent/WO2000071878A1/en active IP Right Grant
- 2000-05-13 DE DE50006263T patent/DE50006263D1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009512805A (en) * | 2005-10-21 | 2009-03-26 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Method for operating a nitrogen oxide storage catalyst in a diesel engine |
Also Published As
Publication number | Publication date |
---|---|
EP1183454A1 (en) | 2002-03-06 |
DE19923498A1 (en) | 2000-11-23 |
DE50006263D1 (en) | 2004-06-03 |
WO2000071878A1 (en) | 2000-11-30 |
EP1183454B1 (en) | 2004-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1904724B1 (en) | Method, device and computer program product for diagnosing of at least one exhaust emission control unit | |
JP3901194B2 (en) | Exhaust gas purification method and exhaust gas purification system | |
US6487851B1 (en) | Exhaust emission control device of internal combustion engine | |
US6021638A (en) | Engine management strategy to improve the ability of a catalyst to withstand severe operating enviroments | |
JPH1162656A (en) | Exhaust emission control device for internal combustion engine | |
EP1191196B1 (en) | NOx trap capacity | |
JP2003503622A (en) | Operation mode control method for internal combustion engine | |
JPWO2003069137A1 (en) | Exhaust gas purification system and exhaust gas purification method | |
JP4421162B2 (en) | Control device and control method for NOX regeneration of NOX storage catalyst | |
JP2008240640A (en) | Exhaust emission control device | |
JP3806399B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR20050013996A (en) | Spark ignition engine including three-way catalyst with nox storage component | |
JP2003500595A (en) | Method for controlling regeneration of NOx absorption catalyst | |
JP2001050042A (en) | Exhaust gas emission control system | |
EP0922840B1 (en) | Method for producing an NOx-purifying catalyst and apparatus for purifying exhaust gas of an internal combustion engine | |
JP3746179B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP1491737B1 (en) | METHOD OF DECIDING ON CATALYST DETERIORATION AND MEANS FOR DECIDING ON CATALYST DETERIORATION IN NOx PURGING SYSTEM | |
JP2000045752A (en) | Cleaning method for nitrogen oxide storage reduction catalyst in internal combustion engine | |
JP4127585B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2002371874A (en) | Internal combustion engine | |
JP4147702B2 (en) | NOx adsorption catalyst for exhaust gas purification of internal combustion engine | |
JP3896224B2 (en) | Control device for internal combustion engine | |
JP3896223B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH11190210A (en) | Exhaust emission control device | |
JP2002115534A (en) | Exhaust emission control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090721 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090911 |