EP1183133B1 - Jet spray tool and device containing a jet spray tool - Google Patents

Jet spray tool and device containing a jet spray tool Download PDF

Info

Publication number
EP1183133B1
EP1183133B1 EP00940351A EP00940351A EP1183133B1 EP 1183133 B1 EP1183133 B1 EP 1183133B1 EP 00940351 A EP00940351 A EP 00940351A EP 00940351 A EP00940351 A EP 00940351A EP 1183133 B1 EP1183133 B1 EP 1183133B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
jet
spray tool
jet spray
means according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00940351A
Other languages
German (de)
French (fr)
Other versions
EP1183133A1 (en
Inventor
Dieter Werner
Christof Zorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1183133A1 publication Critical patent/EP1183133A1/en
Application granted granted Critical
Publication of EP1183133B1 publication Critical patent/EP1183133B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor

Definitions

  • the present invention relates to a jet tool and to a device for the treatment, in particular for the cleaning of surfaces by means of a CO 2 snow jet.
  • Such blasting tools and devices are used in the optical industry, medical technology, the pharmaceutical industry, painting technology, micro-and precision engineering for the treatment of surfaces, including the treatment of soft surface coatings, gels and the like.
  • the basis of this treatment or cleaning process is the cleaning by means of CO 2 -iscrystals.
  • the method is also used for the dry local cleaning of particulate and cinematic impurity of structured and composed of elements of different materials surfaces to the submicron range.
  • a jet tool according to the preamble of Claim 1 is at US-A-5,681,206 known.
  • the progressive miniaturization with simultaneous hybridization of assemblies requires a cleaning process that allows local cleaning of functional surfaces without contaminating adjacent areas by cross-contamination.
  • the use of conventional cleaning methods, such as ultrasound or the use of aggressive chemicals is due to material incompatibilities only rarely possible. Blasting with CO 2 particles is an interesting alternative here.
  • CO 2 ice cleaning is a dry, deep-cold, residue-free blasting process with a wide range of applications.
  • dry ice blasting can be divided into two different processes - cleaning with airborne dry ice pellets and cleaning with CO 2 snow.
  • the cleaning effect is fundamentally based on three mechanisms.
  • the contamination or the coating on the surface is strongly supercooled, as a result of which they shrink and become brittle. Due to the different thermal expansion of the base material and contamination or coating stresses arise so that the connection between the pollution and the base material is loosened or dissolved.
  • the embrittled impurity is further released and mechanically removed by the impulse transmitted by the CO 2 pellets.
  • the material removed by the dry ice pellets is held in suspension by the sublimated CO 2 and possibly further supporting gas and transported away from the cleaning zone.
  • the blasting process using dry ice pellets is for example in “edged or round, metal salts and carbon dioxide pellets are exotic agents in blasting technology "by Reinhold Shufer in Maschinenre Würzburg 98 (1992).
  • a disadvantage of the blasting technique using dry ice pellets is that the cooling during and after the cleaning carried out a recontamination of the surface by deposition previously contained in the air and remaining during the drying of the CO 2 ice film remaining substances.
  • the ambient moisture precipitates on the cooled surface following the radiation, so that the object to be cleaned becomes moist.
  • dry ice crystals can also be used as blasting agents.
  • a jet of CO 2 snow is generated, which is blasted at high speed onto the surface to be cleaned.
  • a disadvantage of the blasting method using CO 2 -snow crystals is that they have a much lower pulse than the dry ice pellets with a diameter of several millimeters, so that the cleaning effect compared to dry ice pellets is considerably lower.
  • Object of the present invention is a Blasting tool and a jet device containing this to provide with the surfaces easy and reliable without recondensation treated by water or cross-contamination, in particular can be radiated.
  • the suction device according to the invention is advantageously the radiated, sublimated CO 2 and the high-volume support or pressure jet, which flows without further deflection from the sample table, collected and then sucked from there, whereby a cross-contamination of other surface areas is reliably minimized.
  • the suction device according to the invention also does not generate any whirl or the like outside of the suction device itself, so that the laminar flow of the inflowing air is not disturbed and its purity is reliably maintained.
  • the Trokkeneisstrahlvon invention a variety of materials can be cleaned, provided that they withstand the short-term temperature shock.
  • the cleaning of blind undercuts is not possible or only very limited. The same applies to depressions with a relatively large aspect ratio, which fill relatively quickly with sublimed CO 2 and thus impede or even prevent the further penetration of the ice crystals.
  • Fig. 1 shows schematically the inventive method.
  • a surface of an object for example a sample table, is irradiated with CO 2 ice crystals (CO 2 snow) 3 from a spray nozzle 2.
  • the CO 2 snow thereby forms a CO 2 beam 5, which emits an impurity 4 from the surface of the object 1.
  • There are two mechanisms of action With a, a mechanism of action is described, in which a CO 2 crystal 3 impinges on the surface of the object 1 and thereby the impurity 4 is broken off. With b another mechanism is described, in which the CO 2 snow crystal impinges on the surface of the object 1 and sublimated there. In this sublimation, the contaminant 4 is released from the surface of the object 1 by the gas pressure and is carried along by the effluent CO 2 .
  • Fig. 2 shows a device according to the invention for Treating, in particular for radiating Surfaces.
  • This device has a cleaning chamber 36, in which a sample table 1 and a jet tool 2 for generating a CO 2 snow jet 5 are arranged and are surrounded by laminar flowing air.
  • the extraction of the process gases is therefore outside the sample table 1 by means of the flow trap 21, which is arranged laterally to the sample table 1 in the plane of its surface and the sample table completely surrounding.
  • This flow trap 21 catches the CO 2 flowing off as surface flow 35, which is generated by the CO 2 snow jet 5 on the surface of the sample table 1, laterally.
  • the sample table 1 is movable in all three dimensions, heated by a heater 22 and is of below via a valve 24 and a vacuum connection 23 connected to a vacuum line.
  • the sample table 1 consists of a metal perforated plate, so that to be radiated by means of this negative pressure objects fixed on the surface of the sample table 1 can be.
  • a controller 25 for the Heating 22 of the sample table 1 provided to this to bring to a constant temperature.
  • a laminar flow 6 is generated which flows along the walls 36 of the cleaning chamber and in the direction of the CO 2 snow jet 5.
  • the jet tool 2 is supplied via a cooler 26, a filter 27 and a high-pressure valve 28 liquid CO 2 from a CO 2 tank 34.
  • the jet device 2 is supplied via a valve with pressure reducer 32, a high pressure valve 30 and a further valve 31 gaseous N 2 from a N 2 tank 33.
  • the two high pressure valves 28 and 30 are connected to a controller 29.
  • This device generates a low-turbulence Pure air flow in the cleaning chamber 36, which is directed so that the jet tool 2 in front of the sample table 1 and the sample table 1 is flowed perpendicular bouncing.
  • the suction device 21 In combination with the suction device 21 is therefore a by the injection effect of the cleaning jet taking place uncontrollable pollution from the air avoided. At the same time it is prevented that with the Time dirt nests in the area of the entire plant form.
  • the jet tool 2 is composed essentially of two nozzles integrated into one another: Firstly, a capillary, through which the carbon dioxide liquefied under high pressure is passed, as the first nozzle. At the flared end of the capillary liquid carbon dioxide exits, with about 55% of the mass evaporated by expansion and about 45% solidifies by resublimation into small crystals, the CO 2 ice snow. The amount of effluent CO 2 can be adjusted by variation and the capillary diameter.
  • the jet tool 2 has a second nozzle which concentrically surrounds the first nozzle and the capillary.
  • This second nozzle is a Laval nozzle which discharges ultrapure, dry compressed gas (N 2 ) at room temperature.
  • N 2 ultrapure, dry compressed gas
  • This pressure or support beam can be started or terminated with a time delay to the CO 2 snow jet, so that when switching on the CO 2 snow jet after the start of the compressed gas jet, the ambient air is kept away from the cleaning point. Thus, the condensation of humidity at the cooled by the cleaning jet cleaning point is successfully prevented.
  • the support beam can be switched off only after the CO 2 snow jet.
  • the support jet of dry compressed gas continues to lead to ensure that the substrate surface after Cleaning quickly reheated at the cleaning point becomes.
  • Fig. 3 shows a cross section through an inventive Blasting tool, which will now be described in more detail shall be.
  • the jet tool is composed essentially of two nozzles integrated into one another: a capillary 42, through which the CO 2 liquefied under high pressure is passed and at whose conically widened end 49 the CO 2 expands. This produces a mixture of gas and dry ice snow. The proportion of snow is approximately 45% of the total mass flowing out.
  • the amount of effluent CO 2 can be adjusted by varying the diameter of the capillary 42.
  • the capillary 42 is concentric with a special Laval nozzle 51 enclosed from the over a line 56 supplied, dry compressed gas (Pure air or pure nitrogen) supersonic fast flows.
  • This compressed gas jet bundles the steel from dry ice snow to a parallel jet and accelerated this.
  • this Pressurized gas jet the ambient air from the cleaning point kept away and the substrate surface warmed up again quickly after cleaning. The condensation of humidity is thus successfully prevented.
  • the Laval nozzle 51 is through the outer contour of a nozzle needle 45, which contains the capillary 42 and through the inner contour of a nozzle head 46 is formed.
  • the Laval nozzle 51 can by changing the minimum Cross section by moving the nozzle needle 45th relative to the nozzle head 46 finely adjusted and optimal be set. The fixation then takes place Inserting suitable spacers between a arranged on the nozzle needle 45 flange 43rd and the nozzle head 46.
  • Both the liquid CO 2 and the compressed gas is supplied via the nozzle needle 45.
  • the compressed gas then flows to calm over four inlet side of the Laval nozzle 51 arranged star-shaped holes in the antechamber of the Laval nozzle 51. From the Laval nozzle, the pressurized gas flows with supersonic, twist-free and symmetrical.
  • the CO 2 is supplied via the capillary 42, which is guided in the channel of the nozzle needle 45.
  • a plug 48 at the lower end of the nozzle needle 45 centers the capillary 42 and at the same time seals the compressed gas channel downwards.
  • At the upper end of the compressed gas channel is closed by the CO 2 line 40 and the screw 41.
  • the two nozzles, the Laval nozzle 41 and formed at the end of the capillary 42 snow nozzle 49 are arranged so that the supporting gas until the finished dry ice snow beam is mixed. Otherwise, the function of the jet tool would not be guaranteed.
  • a metal ring 50 with three ionization tips is isolated by an insulator 47, which is connected via a high voltage cable 53 to a rotatable ionizer. Via the ionization peaks of the metal ring 50, the strongly negative charge of the CO 2 jet during crystallization of the CO 2 at the outlet of the capillary 42 is compensated by continuous deionization.
  • the capillary 42 is grounded by means of a ground cable, so that the charge separation in the peripheral layer of flowing through the capillary liquid CO 2 is raised in mind.
  • FIG. 4 shows a cross section through the plane of the sample table 1.
  • the sample table 1 is completely surrounded by a suction tube 65 of the suction device 21 in the plane of the sample table 1.
  • the gas jet 5, which is usually aligned perpendicularly to the sample carrier, is deflected by 90 ° on the mostly flat cleaning objects or on the sample table itself and flows radially from the point of impact on the surface of the object or the sample table as a laminar flow 35.
  • the extraction of the process gases takes place in the suction device 21 according to the invention therefore only outside the sample table.
  • the suction tube 65 has a kidney-shaped cross section with indentations in the plane of the sample table 1.
  • this indentation is opened as a gas inlet opening.
  • the effluent from the sample table 1 gas 35 thus hits the inner wall of the suction ring 65 and is, supported by the center bend 66 due to the kidney-shaped constriction in the plane of the sample table 1, up or down deflected.
  • the process gas 35 compressed gas, CO 2 gas, abraded particles 4
  • the process gas 35 flowing off the sample table 1 at high speed is transferred into a swirl flow 63 flowing to the corners of the suction ring 65.
  • fans 61 In the corners of the suction ring 65 are fans 61, which communicate with the suction ring 65 via suction openings 64. These fans generate a suction volume flow through a suction channel 60 which assists in the flow of this jet flow and prevents backflow to the sample carrier.
  • the openings 64 between the suction ring 65 and the Suction channel 60 are located above and below of the center crease 66 so that the vertebrae formed 63 are sucked off.
  • the suction volume of the fans 61 is continuously adapted via a speed control the sum of laminar supply air gas stream 6 (see FIG. 2) and cleaning gas stream 5.
  • the supply air flow is determined by the free cross-sectional area of the suction ring 65 and the supply air velocity (velocity of the high purity gas stream 6).
  • the calculation of the cleaning gas stream 5 is essentially based on the diameter of the capillary 42 of the CO 2 supply, the geometry of the Laval nozzle 51 and the form of the pressure / supporting gas in a conventional manner.
  • the extracted gas is then removed by the fans 61 blown to a process exhaust system 62, where the extracted air cleaned, treated and / or can be recycled.
  • microsystem or precision engineering successful cleaned include, for example, contact surfaces of micro switches, nozzle elements of printing technology, on a ceramic carrier built microchips and stampings for the construction of switching elements. Both particulate deposits and biotic and / or abiotic coating such as Fingerprints or thin layers of paint away.
  • the CO 2 supply is designed so that short CO 2 beam bursts can be generated. These are much more effective compared to a continuous CO 2 jet, since higher thermal stresses are generated here compared to the longer exposure time of the dry ice jet.
  • Fig. 6 shows an example of a cleaning with the Device according to the invention. Above are encrusted Nozzles of an ink jet printhead are shown, the were purified according to the invention. In the lower part of the Illustration is a microchip on a ceramic carrier shown, its scaling on the right side you can see. On the left side in this picture is the to recognize the cleaned area.
  • Fig. 7 shows a paint layer, with the inventive Device was treated.
  • the representation in Fig. 7 is enlarged 50 times. How to recognize is, the lacquer layer is partially with the inventive Procedure has been removed. Clear is cracking and blasting from the base material to recognize.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Nozzles (AREA)

Abstract

The invention relates to a jet spray tool (2) and to a device for treating, especially for cleaning, surfaces (1) using a CO2 snow stream (5). According to the invention, the jet spray tool (2) comprises a first nozzle (49) for producing a CO2 snow stream and has a second nozzle (51) for producing a support or pressure stream, whereby the second nozzle (51) surrounds the first nozzle (49) in a concentric manner, and whereby a supersonic stream of a pressure/support gas is produced by the second nozzle (51).

Description

Die vorliegende Erfindung bezieht sich auf ein Strahlwerkzeug sowie auf eine Vorrichtung zur Behandlung, insbesondere zur Abreinigung von Oberflächen mittels eines CO2-Schnee-Strahles. Derartige Strahlwerkzeuge und Vorrichtungen werden in der optischen Industrie, der Medizintechnik, der pharmazeutischen Industrie, der Lackiertechnik, der Mikro- und Feinwerktechnik zur Behandlung von Oberflächen, u.a. zur Behandlung weicher Oberflächenbeschichtungen, Gele und dergleichen verwendet. Die Basis dieses Behandlungs- bzw. Reinigungsverfahrens ist die Reinigung mittels CO2-Eiskristallen. Das Verfahren wird auch zur trockenen lokalen Abreinigung teilchenförmiger und filmischer Verunreigigung von strukturierten sowie aus Elementen unterschiedlicher Materialien zusammengesetzten Oberflächen bis in den Submikrometerbereich eingesetzt.The present invention relates to a jet tool and to a device for the treatment, in particular for the cleaning of surfaces by means of a CO 2 snow jet. Such blasting tools and devices are used in the optical industry, medical technology, the pharmaceutical industry, painting technology, micro-and precision engineering for the treatment of surfaces, including the treatment of soft surface coatings, gels and the like. The basis of this treatment or cleaning process is the cleaning by means of CO 2 -iscrystals. The method is also used for the dry local cleaning of particulate and cinematic impurity of structured and composed of elements of different materials surfaces to the submicron range.

Ein Strahlwerkzeug gemäß Oberbegriff des Anspruch 1 ist am des US-A-5 681 206 bekannt. A jet tool according to the preamble of Claim 1 is at US-A-5,681,206 known.

Die fortschreitendene Miniaturisierung bei gleichzeitiger Hybridisierung von Baugruppen verlangt nach einem Reinigungsverfahren, welches ein lokales Reinigen von Funktionsflächen erlaubt, ohne dabei angrenzende Bereiche durch Querkontamination zu verunreinigen. Der Einsatz herkömmlicher Reinigungsverfahren, wie z.B. Ultraschall oder der Einsatz agressiver Chemikalien ist aufgrund von Materialunverträglichkeiten nur noch selten möglich. Das Strahlen mit CO2-Partikeln stellt hier eine interessante Alternative dar.The progressive miniaturization with simultaneous hybridization of assemblies requires a cleaning process that allows local cleaning of functional surfaces without contaminating adjacent areas by cross-contamination. The use of conventional cleaning methods, such as ultrasound or the use of aggressive chemicals is due to material incompatibilities only rarely possible. Blasting with CO 2 particles is an interesting alternative here.

Die CO2-Eisreinigung ist ein trockenes, tiefkaltes, rückstandsfreies Strahlverfahren mit breitem Anwendungsgebiet. Prinzipiell läßt sich das Trockeneisstrahlen in zwei verschiedene Verfahren einteilen - dem Reinigen mit luftgetragenen Trockeneispellets und der Reinigung mittels CO2-Schnee.CO 2 ice cleaning is a dry, deep-cold, residue-free blasting process with a wide range of applications. In principle, dry ice blasting can be divided into two different processes - cleaning with airborne dry ice pellets and cleaning with CO 2 snow.

Das Strahlen mit Trockeneispellets wird seit 1987 zum Entlacken und Reinigen von Flugzeugkomponenten und Flugzeugen verwendet. Vor allem aufgrund der Eigenschaft von Trockeneis, während des Reinigungsprozesses zu sublimieren und somit kein kontaminiertes Reinigungsmittel zu hinterlassen, konnten Teile in eingebautem Zustand gereinigt und die Reinigungskosten an Flugzeugen bis zu 50 % gesenkt werden.The blasting with dry ice pellets is since 1987 to Paint stripping and cleaning of aircraft components and Aircraft used. Especially because of the property of dry ice during the cleaning process to sublimate and thus no contaminated To leave cleaning agents, parts could built-in condition and cleaning costs be reduced on aircraft up to 50%.

Heute hat sich das Strahlen mit Trockeneispellets bereits in vielen Bereichen wie z. B. der Entlackung von Flugzeugen, der Fassadenreinigung oder dem Beseitigen grober Verschmutzungen an Maschinen durchgesetzt. Seine Stärke der rückstandsfreien Reinigung spielt es besonders in der Baugruppenreinigung bereits installierter Anlagen aus. Today, the blasting with dry ice pellets already has in many areas such. B. the Entlackung aircraft, facade cleaning or removal coarse dirt on machines enforced. Its strength of residue-free cleaning it plays especially in the assembly cleaning already installed systems.

Die Reinigungswirkung stützt sich dabei grundsätzlich auf drei Mechanismen. Zum einen werden beim Auftreffen der CO2-Kristalle auf die Oberfläche die Verunreinigung bzw. die Beschichtung auf der Oberfläche stark unterkühlt, wodurch diese schrumpfen und verspröden. Aufgrund der unterschiedlichen Wärmeausdehnung von Grundmaterial und Verschmutzung bzw. Beschichtung entstehen Spannungen so daß die Verbindung zwischen der Verschmutzung und dem Grundmaterial gelockert bzw. gelöst wird. Weiterhin wird durch den von den CO2-Pellets übertragenen Impuls die versprödeten Verunreinigung weiter gelöst und mechanisch abgetragen. Zuletzt wird das durch die Trockeneispellets abgelöste Material durch das sublimierte CO2 und ggf. weiteres Stützgas in der Schwebe gehalten und von der Reinigungszone abtransportiert.The cleaning effect is fundamentally based on three mechanisms. On the one hand, when the CO 2 crystals impinge on the surface, the contamination or the coating on the surface is strongly supercooled, as a result of which they shrink and become brittle. Due to the different thermal expansion of the base material and contamination or coating stresses arise so that the connection between the pollution and the base material is loosened or dissolved. Furthermore, the embrittled impurity is further released and mechanically removed by the impulse transmitted by the CO 2 pellets. Finally, the material removed by the dry ice pellets is held in suspension by the sublimated CO 2 and possibly further supporting gas and transported away from the cleaning zone.

Das Strahlverfahren unter Verwendung von Trockeneispellets ist beispielsweise in "Kantig oder rund, Metallsalze und Kohlendioxidpellets sind exotische Mittel in der Strahltechnik" von Reinhold Schäfer in Maschinenmarkt Würzburg 98 (1992) beschrieben.The blasting process using dry ice pellets is for example in "edged or round, metal salts and carbon dioxide pellets are exotic agents in blasting technology "by Reinhold Schäfer in Maschinenmarkt Würzburg 98 (1992).

Nachteilig an der Strahltechnik unter Verwendung von Trockeneispellets ist, daß die Abkühlung während und nach der erfolgten Reinigung eine Rekontamination der Oberfläche durch Abscheidung vormals in der Luft enthaltener und während der Abtrocknung des CO2-Eis-Films zurückbleibender Stoffe bewirkt. Insbesondere schlägt sich auf der abgekühlten Oberfläche im Anschluß an die Abstrahlung die Umgebungsfeuchtigkeit nieder, so daß der zu reinigende Gegenstand feucht wird. A disadvantage of the blasting technique using dry ice pellets is that the cooling during and after the cleaning carried out a recontamination of the surface by deposition previously contained in the air and remaining during the drying of the CO 2 ice film remaining substances. In particular, the ambient moisture precipitates on the cooled surface following the radiation, so that the object to be cleaned becomes moist.

Alternativ können als Strahlmittel statt Trockeneispellets auch Trockeneiskristalle verwendet werden. In diesem Falle wird ein Strahl aus CO2-Schnee erzeugt, der unter hoher Geschwindigkeit auf die zu reinigende Oberfläche gestrahlt wird.Alternatively, instead of dry ice pellets, dry ice crystals can also be used as blasting agents. In this case, a jet of CO 2 snow is generated, which is blasted at high speed onto the surface to be cleaned.

Zur Verhinderung der durch Resublimieren der Luftfeuchtigkeit während der Reinigung stattfindenden Vereisung der Oberfläche, durch die ein weiteres reinigendes Einwirken der CO2-Schnee-Kristalle erschwert bis verhindert wird, sind nach dem Stand der Technik zwei Methoden bekannt. Zum einen wird eine beheizte Platte als Unterlage des Reinigungsgutes verwendet, um das Reinigungsgut möglichst rasch nach dem Überstreichen des Trockeneisstrahles wieder zu erwärmen. Die Wirksamkeit dieses Verfahrens als Einzelmaßnahme ist durch das Material, die Geometrie und die Baugröße des Reinigungsgutes teilweise stark beeinträchtigt oder gar nicht gegeben. Alternativ kann der CO2-Schnee-Strahl von einem Hüllstrahl umgeben werden, der beheizt wird. Damit wird beim Überstreichen einer Oberfläche durch den CO2-Strahl unmittelbar anschließend die Oberfläche wieder durch den Stützstrahl aufgewärmt, so daß die Kondensation der Luftfeuchtigkeit verringert bzw. verhindert wird. Dieses Verfahren bewirkt jedoch eine unerwünschte Aufheizung des CO2-Eis-Strahles durch den warmen Stützstrahl, so daß die Wirksamkeit des Strahlverfahrens beeinträchtigt wird. Ein derartiges Verfahren ist in der US 5,725,154 beschrieben.In order to prevent the held by resublimation the humidity during the cleaning icing of the surface through which a further cleaning action of the CO 2 snow crystals difficult to be prevented, two methods are known in the prior art. On the one hand, a heated plate is used as a base for the items to be cleaned, in order to reheat the items as quickly as possible after sweeping the dry ice jet. The effectiveness of this method as an individual measure is partially greatly impaired by the material, the geometry and the size of the cleaning material or not at all. Alternatively, the CO 2 snow jet may be surrounded by a sheath jet that is heated. Thus, when passing over a surface by the CO 2 beam immediately thereafter, the surface is reheated by the support beam, so that the condensation of the humidity is reduced or prevented. However, this method causes an undesirable heating of the CO 2 ice jet by the warm support beam, so that the effectiveness of the blasting process is impaired. Such a method is described in US 5,725,154.

Nachteilig am Strahlverfahren unter Verwendung von CO2-Schneekristallen ist, daß diese einen erheblich geringeren Impuls als die Trockeneispellets mit einem Durchmesser von mehreren Millimetern besitzen, so daß die Reinigungswirkung verglichen mit Trockeneispellets erheblich geringer ist.A disadvantage of the blasting method using CO 2 -snow crystals is that they have a much lower pulse than the dry ice pellets with a diameter of several millimeters, so that the cleaning effect compared to dry ice pellets is considerably lower.

In der US 5 725 154 wird vorgeschlagen, ein induktives Magnetfeld zu erzeugen, um die Aufladung des heranfließenden flüssigen CO2 zu kompensieren. Die durch Ladungstrennung bei der Expansion des CO2 und der Auskristallisierung des CO2-Schnees erfolgende Ionisierung wird nicht kompensiert.In US Pat. No. 5,725,154, it is proposed to generate an inductive magnetic field in order to compensate for the charging of the incoming liquid CO 2 . The ionization due to charge separation during the expansion of the CO 2 and the crystallization of the CO 2 snow is not compensated.

Problematisch bei all diesen Verfahren nach dem Stand der Technik ist die Querkontamination von Oberflächenbereichen durch den Abtrag, der an anderer Stelle durch den CO2-Eisstrahl erzeugt wird.The problem with all these prior art processes is the cross-contamination of surface areas due to the erosion produced elsewhere by the CO 2 ice jet.

Aufgabe der vorliegenden Erfindung ist es, ein Strahlwerkzeug und eine dieses enthaltende Strahlvorrichtung zur Verfügung zu stellen, mit der Oberflächen einfach und zuverlässig ohne Rekondensation von Wasser oder Querkontamination behandelt, insbesondere abgestrahlt werden können.Object of the present invention is a Blasting tool and a jet device containing this to provide with the surfaces easy and reliable without recondensation treated by water or cross-contamination, in particular can be radiated.

Diese Aufgabe wird durch das Strahlwerkzeug nach Anspruch 1 und die Vorrichtung nach Anspruch 19 gelöst. Vorteilhafte Weiterbildungen des erfindungsgemäßen Strahlwerkzeuges und der erfindungsgemäßen Vorrichtung werden in den abhängigen Ansprüchen gegeben. Erfindungsgemäß können das erfindungsgemäße Strahlwerkzeug und die erfindungsgemäße Vorrichtung wie in den Ansprüchen 35 bis 38 angegeben, verwendet werden.This object is achieved by the jet tool according to claim 1 and the device according to claim 19 solved. Advantageous developments of the invention Blasting tool and the device according to the invention are given in the dependent claims. According to the invention can the jet tool according to the invention and the inventive device as in the Claims 35 to 38, can be used.

Durch das erfindungsgemäße Strahlwerkzeug wurden folgende Verbesserungen erzielt:By the jet tool according to the invention were the following Improvements achieved:

Zum einen wird eine sehr hohe Strahlgeschwindigkeit durch Verwendung einer Lavaldüse erzielt, so daß die sehr kleinen Eiskristalle durch das sich auf der zu reinigenden Oberfläche bildende Gaspolster geschossen werden können. Weiterhin wird die statische Aufladung des festen Kohlendioxid-Schnees, die ein Problem bei der Reinigung elektronischer Bauteile darstellt, mittels der Ionisierungsvorrichtung aufgehoben. Weiterhin wird durch die Düse und durch die erfindungsgemäße Einrichtung der Reinigungsvorrichtung eine Laminarströmung in der Reinigungskammer erzeugt, so daß keine Schmutznester innerhalb der Reinigungsanlage gebildet werden. Insbesondere ist der Strahldurchmesser äußerst gering, so daß er sich für Anwendung in der Mikrosystem- bzw. Feinwerktechnik eignet und die Anlage flexibel in der Produktion von Mikrosystemen eingesetzt werden kann. Das Strahlwerkzeug ist voll beweglich und der Reinigungsablauf ist ohne weiteres automatisierbar. Insgesamt ergibt sich ein hoher Wirkungsgrad bei einer kurzen Reinigungszeit.On the one hand, there is a very high jet velocity achieved by using a Laval nozzle, so that the very small ice crystals due to the on cleaning surface forming gas cushion shot can be. Furthermore, the static charge of solid carbon dioxide snow, which is a problem the cleaning of electronic components, means the ionization device lifted. Farther is through the nozzle and by the invention Device of the cleaning device a Laminar flow generated in the cleaning chamber, so that no dirt nests within the cleaning system be formed. In particular, the beam diameter extremely low, so that he can apply in microsystem or precision engineering and the plant flexible in the production of microsystems can be used. The jet tool is fully mobile and the cleaning process is without further automatable. Overall, a result high efficiency with a short cleaning time.

Durch die erfindungsgemäße Absaugvorrichtung wird vorteilhafterweise das aufgestrahlte, sublimierte CO2 und der volumenstarke Stütz- bzw. Druckstrahl, der ohne weitere Umlenkung vom Probentisch abströmt, aufgefangen und anschließend von dort abgesaugt, wodurch eine Querkontamination anderer Oberflächenbereiche zuverlässig minimiert wird. Die erfindungsgemäße Absaugvorrichtung erzeugt auch keinerlei Wirbel oder dergleichen außerhalb der Absaugvorrichtung selbst, so daß die Laminarströmung der anfließenden Luft nicht gestört wird und deren Reinheit zuverlässig erhalten bleibt.By the suction device according to the invention is advantageously the radiated, sublimated CO 2 and the high-volume support or pressure jet, which flows without further deflection from the sample table, collected and then sucked from there, whereby a cross-contamination of other surface areas is reliably minimized. The suction device according to the invention also does not generate any whirl or the like outside of the suction device itself, so that the laminar flow of the inflowing air is not disturbed and its purity is reliably maintained.

Insgesamt ergibt sich ein sehr hoher Wirkungsgrad bei kurzer Behandlungsdauer unter Verwendung der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Strahlwerkzeuges. Weitere vorteilhafte Eigenschaften sind ein einfacher, kompakter Geräteaufbau, eine hohe Gerätesicherheit, geringe Anlagen,- Betriebs- und Wartungskosten, ein hoher Automatisierungsgrad, gute Reproduzierbarkeit des Reinigungsergebnisses sowie eine einfache Handhabung der Vorrichtung und des Strahlwerkzeuges.Overall, a very high efficiency results short treatment period using the inventive Device and the invention Beam tool. Further advantageous properties are a simple, compact device design, a high Equipment safety, low equipment, - operational and Maintenance costs, a high degree of automation, good Reproducibility of the cleaning result as well a simple handling of the device and the Beam tool.

Insgesamt ist eine schnelle und vereisungsfreie Reinigung von Bauteilen während der Produktion möglich unter Wegfall komplizierter und aufwendiger Reinigungsvorbereitungen. Mit dem erfindungsgemäßen Trokkeneisstrahlverfahren kann eine Vielzahl von Materialien gereinigt werden, sofern sie dem kurzzeitig auftretenden Temperaturschock widerstehen. Bei den auftretenden Strukturen gibt es nur geringfügige Einschränkungen, da es sich beim Trockeneisstrahlen wie bei allen Strahlverfahren um ein Sichtlinienverfahren handelt. Daher können nur Oberflächen abgereinigt werden, die in Strahlrichtung liegen. Das Reinigen von uneinsehbaren Hinterschneidungen ist somit nicht oder nur sehr eingeschränkt möglich. Gleiches gilt für Vertiefungen mit relativ großem Aspektverhältnis, die sich relativ rasch mit sublimiertem CO2 füllen und so das weitere Eindringen der Eiskristalle behindern oder gar verhindern.Overall, a fast and icing-free cleaning of components during production is possible with the elimination of complicated and expensive cleaning preparations. The Trokkeneisstrahlverfahren invention, a variety of materials can be cleaned, provided that they withstand the short-term temperature shock. There are only minor limitations to the structures involved, as dry ice blasting, as with all blasting processes, is a line of sight process. Therefore, only surfaces can be cleaned, which lie in the beam direction. The cleaning of blind undercuts is not possible or only very limited. The same applies to depressions with a relatively large aspect ratio, which fill relatively quickly with sublimed CO 2 and thus impede or even prevent the further penetration of the ice crystals.

Im folgenden wird ein Beispiel eines erfindungsgemäßen Strahlwerkzeuges und einer erfindungsgemäßen Vorrichtung beschrieben. Dabei werden in sämtlichen Figuren gleiche Teile mit denselben Bezugszeichen bezeichnet.The following is an example of an inventive Blasting tool and an inventive Device described. It will be in all Figures like parts with the same reference numerals.

Es zeigen

  • Fig. 1 das erfindungsgemäße Strahlverfahren;
  • Fig. 2 eine erfindungsgemäße Vorrichtung;
  • Fig. 3 ein erfindungsgemäßes Strahlwerkzeug;
  • Fig. 4 eine erfindungsgemäße Absaugvorrichtung;
  • Fig. 5 einen Schnitt durch die erfindungsgemäße Absaugvorrichtung nach Fig. 4;
  • Fig. 6 ein Reinigungsergebnis nach dem erfindungsgemäßen Verfahren; und
  • Fig. 7 ein weiteres Reinigungsergebnis nach dem erfindungsgemäßen Verfahren.
  • Show it
  • Fig. 1, the blasting process according to the invention;
  • 2 shows a device according to the invention;
  • 3 shows a blasting tool according to the invention;
  • 4 shows a suction device according to the invention;
  • 5 shows a section through the suction device according to the invention according to Fig. 4.
  • 6 shows a cleaning result according to the method of the invention; and
  • Fig. 7 shows a further cleaning result according to the inventive method.
  • Fig. 1 zeigt schematisch das erfindungsgemäße Verfahren. Eine Oberfläche eines Objektes 1, beispielsweise eines Probentisches wird mit CO2-Eiskristallen (CO2-Schnee)3 aus einer Sprühdüse 2 bestrahlt. Der CO2-Schnee bildet dabei einen CO2-Strahl 5, der eine Verunreinigung 4 von der Oberfläche des Objektes 1 abstrahlt. Dabei treten zwei Wirkmechanismen auf. Mit a ist ein Wirkmechanismus beschrieben, bei dem ein CO2-Kristall 3 auf die Oberfläche des Objektes 1 auftrifft und dabei die Verunreinigung 4 absprengt. Mit b ist ein anderer Mechanismus beschrieben, bei dem der CO2-Schneekristall auf die Oberfläche des Objektes 1 auftrifft und dort sublimiert. Bei dieser Sublimation wird durch den Gasdruck die Verunreinigung 4 von der Oberfläche des Objektes 1 gelöst und wird von dem abfließenden CO2 mitgenommen.Fig. 1 shows schematically the inventive method. A surface of an object 1, for example a sample table, is irradiated with CO 2 ice crystals (CO 2 snow) 3 from a spray nozzle 2. The CO 2 snow thereby forms a CO 2 beam 5, which emits an impurity 4 from the surface of the object 1. There are two mechanisms of action. With a, a mechanism of action is described, in which a CO 2 crystal 3 impinges on the surface of the object 1 and thereby the impurity 4 is broken off. With b another mechanism is described, in which the CO 2 snow crystal impinges on the surface of the object 1 and sublimated there. In this sublimation, the contaminant 4 is released from the surface of the object 1 by the gas pressure and is carried along by the effluent CO 2 .

    Fig. 2 zeigt eine erfindungsgemäße Vorrichtung zum Behandeln, insbesondere zum Abstrahlen von Oberflächen.Fig. 2 shows a device according to the invention for Treating, in particular for radiating Surfaces.

    Diese erfindungsgemäße Vorrichtung weist eine Reinigungskammer 36 auf, in der ein Probentisch 1 und ein Strahlwerkzeug 2 zur Erzeugung eines CO2-Schnee-Strahles 5 angeordnet sind und von laminar anfließender Luft umströmt sind. Der gewöhnlich senkrecht zum Probenträger 1 ausgerichtete Gasstrahl 5 aus dem Strahlwerkzeug 2 wird an den meist flachen Reinigungsobjekten bzw. am Probentisch 1 selbst um 90° umgelenkt und strömt radial vom Auftreffpunkt und parallel zum Probentisch 1 ab. Durch die hohe Strömungsgeschwindigkeit und das entstehende Gasvolumen ist es nicht möglich, das abgelöste Material lokal an der Wirkungsstelle abzusaugen. Die Absaugung der Prozeßgase erfolgt daher außerhalb des Probentisches 1 mittels der Strömungsfalle 21, die seitlich zu dem Probentisch 1 in der Ebene seiner Oberfläche und den Probentisch vollständig umgebend angeordnet ist. Diese Strömungsfalle 21 fängt das als Oberflächenströmung 35 abströmende CO2, das von dem CO2-Schnee-Strahl 5 auf der Oberfläche des Probentisches 1 erzeugt wird, seitlich auf.This device according to the invention has a cleaning chamber 36, in which a sample table 1 and a jet tool 2 for generating a CO 2 snow jet 5 are arranged and are surrounded by laminar flowing air. The gas jet 5, which is usually aligned perpendicular to the sample carrier 1, out of the jet tool 2 is deflected by 90 ° on the mostly flat cleaning objects or on the sample table 1 itself and flows radially from the point of impingement and parallel to the sample table 1. Due to the high flow velocity and the resulting gas volume, it is not possible to suck off the loosened material locally at the site of action. The extraction of the process gases is therefore outside the sample table 1 by means of the flow trap 21, which is arranged laterally to the sample table 1 in the plane of its surface and the sample table completely surrounding. This flow trap 21 catches the CO 2 flowing off as surface flow 35, which is generated by the CO 2 snow jet 5 on the surface of the sample table 1, laterally.

    Der Probentisch 1 ist in allen drei Dimensionen beweglich, über eine Heizung 22 beheizbar und ist von unterhalb über ein Ventil 24 und einen Vakuumanschluß 23 an einer Vakuumleitung angeschlossen. Der Probentisch 1 besteht aus einer metallischen Lochplatte, so daß mittels dieses Unterdruckes abzustrahlende Objekte auf der Oberfläche des Probentisches 1 fixiert werden können. Weiterhin ist ein Regler 25 für die Heizung 22 des Probentisches 1 vorgesehen, um diesen auf eine konstante Temperatur zu bringen.The sample table 1 is movable in all three dimensions, heated by a heater 22 and is of below via a valve 24 and a vacuum connection 23 connected to a vacuum line. The sample table 1 consists of a metal perforated plate, so that to be radiated by means of this negative pressure objects fixed on the surface of the sample table 1 can be. Furthermore, a controller 25 for the Heating 22 of the sample table 1 provided to this to bring to a constant temperature.

    In der Probenkammer wird eine Laminarströmung 6 erzeugt, die längs der Wände 36 der Reinigungskammer und in Richtung des CO2-Schnee-Strahles 5 fließt.In the sample chamber, a laminar flow 6 is generated which flows along the walls 36 of the cleaning chamber and in the direction of the CO 2 snow jet 5.

    Dem Strahlwerkzeug 2 wird über einen Kühler 26, einen Filter 27 und ein Hochdruckventil 28 flüssiges CO2 aus einem CO2-Behälter 34 zugeführt. In gleicher Weise wird der Strahlvorrichtung 2 über eine Armatur mit Druckminderer 32, ein Hochdruckventil 30 und ein weiteres Ventil 31 gasförmiges N2 aus einem N2-Behälter 33 zugeführt. Die beiden Hochdruckventile 28 und 30 sind an eine Steuerung 29 angeschlossen.The jet tool 2 is supplied via a cooler 26, a filter 27 and a high-pressure valve 28 liquid CO 2 from a CO 2 tank 34. In the same way, the jet device 2 is supplied via a valve with pressure reducer 32, a high pressure valve 30 and a further valve 31 gaseous N 2 from a N 2 tank 33. The two high pressure valves 28 and 30 are connected to a controller 29.

    Damit besteht die beschriebene erfindungsgemäße Vorrichtung im Kern aus folgenden Komponenten:

  • 1. Eine mit Reinstluft durchströmte Reinigungskammer 36 (z.B. Reinheitsklasse 1 gemäß VDI 2083 Blatt 1, Strömungsgeschwindigkeit 0,4 m/s),
  • 2. ein Strahlwerkzeug 2 mit einer Beschleunigungsund Mischdüse sowie einer Ionisierungseinheit (nicht gezeigt),
  • 3. der Absaugvorrichtung 21,
  • 4. einer Aufbereitungsanlage (nicht gezeigt) für das von der Absaugvorrichtung 21 abgesogene Gas, und
  • 5. einem beheizten Probentisch 1.
  • Thus, the device according to the invention described in the core consists of the following components:
  • 1. A cleaning chamber 36 through which clean air flows (eg cleanliness class 1 in accordance with VDI 2083 Part 1, flow rate 0.4 m / s),
  • 2. a jet tool 2 with an acceleration and mixing nozzle and an ionization unit (not shown),
  • 3. the suction device 21,
  • 4. a treatment plant (not shown) for the sucked from the suction device 21 gas, and
  • 5. a heated sample table. 1
  • Diese erfindungsgemäße Vorrichtung erzeugt eine turbulenzarme Reinstluftströmung in der Reinigungskammer 36, die so gerichtet ist, daß das Strahlwerkzeug 2 vor dem Probentisch 1 liegt und der Probentisch 1 senkrecht prallend angeströmt wird. In Kombination mit der Absaugvorrichtung 21 wird daher eine durch die Injektionswirkung des Reinigungsstrahles erfolgende unkontrollierbare Verunreinigung aus der Luft vermieden. Zugleich wird verhindert, daß sich mit der Zeit Schmutznester im Bereich der gesamten Anlage bilden.This device according to the invention generates a low-turbulence Pure air flow in the cleaning chamber 36, which is directed so that the jet tool 2 in front of the sample table 1 and the sample table 1 is flowed perpendicular bouncing. In combination with the suction device 21 is therefore a by the injection effect of the cleaning jet taking place uncontrollable pollution from the air avoided. At the same time it is prevented that with the Time dirt nests in the area of the entire plant form.

    Das Strahlwerkzeug 2 setzt sich im wesentlichen aus zwei ineinander integrierten Düsen zusammen: Zum einen als erste Düse eine Kapillare, durch die das unter hohem Druck verflüssigte Kohlendioxid geleitet wird. Am konisch erweiterten Ende der Kapillare tritt das flüssige Kohlendioxid aus, wobei etwa 55 % der Masse durch Expansion verdampft und etwa 45 % sich durch Resublimation zu kleinen Kristallen, zu dem CO2-Eisschnee, verfestigt. Die Menge des ausströmenden CO2 kann durch Variation und des Kapillardurchmessers eingestellt werden.The jet tool 2 is composed essentially of two nozzles integrated into one another: Firstly, a capillary, through which the carbon dioxide liquefied under high pressure is passed, as the first nozzle. At the flared end of the capillary liquid carbon dioxide exits, with about 55% of the mass evaporated by expansion and about 45% solidifies by resublimation into small crystals, the CO 2 ice snow. The amount of effluent CO 2 can be adjusted by variation and the capillary diameter.

    Zum anderen weist das Strahlwerkzeug 2 eine zweite Düse auf, die konzentrisch die erste Düse und die Kapillare umschließt. Diese zweite Düse ist eine Lavaldüse, die bei Raumtemperatur überschallschnelles, trockenes Druckgas (N2) ausstößt. Durch dieses Druckgas wird zum einen der Trockeneisschnee-Strahl gestützt und weiterhin zu einem parallelen Strahl gebündelt und beschleunigt.On the other hand, the jet tool 2 has a second nozzle which concentrically surrounds the first nozzle and the capillary. This second nozzle is a Laval nozzle which discharges ultrapure, dry compressed gas (N 2 ) at room temperature. By this compressed gas on the one hand, the dry ice snow beam is supported and further bundled and accelerated to a parallel beam.

    Dieser Druck- bzw. Stützstrahl kann zeitversetzt zu dem CO2-Schnee-Strahl gestartet bzw. beendet werden, so daß bei einem Zuschalten des CO2-Schnee-Strahls nach dem Start des Druckgasstrahles die Umgebungsluft vom Reinigungspunkt ferngehalten wird. Damit wird die Kondensation von Luftfeuchtigkeit an dem durch den Reinigungsstrahl gekühlten Reinigungspunkt erfolgreich unterbunden. Zum selben Zweck kann der Stützstrahl erst nach dem CO2-Schnee-Strahl abgeschaltet werden.This pressure or support beam can be started or terminated with a time delay to the CO 2 snow jet, so that when switching on the CO 2 snow jet after the start of the compressed gas jet, the ambient air is kept away from the cleaning point. Thus, the condensation of humidity at the cooled by the cleaning jet cleaning point is successfully prevented. For the same purpose, the support beam can be switched off only after the CO 2 snow jet.

    Der Stützstrahl aus trockenem Druckgas führt weiterhin dazu, daß die Substratoberfläche nach erfolgter Reinigung am Reinigungspunkt rasch wieder erwärmt wird.The support jet of dry compressed gas continues to lead to ensure that the substrate surface after Cleaning quickly reheated at the cleaning point becomes.

    Fig. 3 zeigt einen Querschnitt durch ein erfindungsgemäßes Strahlwerkzeug, das nunmehr genauer beschrieben werden soll.Fig. 3 shows a cross section through an inventive Blasting tool, which will now be described in more detail shall be.

    Das Strahlwerkzeug setzt sich im wesentlichen aus zwei ineinander integrierte Düsen zusammen: Eine Kapillare 42, durch die das unter hohem Druck verflüssigte CO2 geleitet wird und an deren konisch erweitertem Ende 49 das CO2 expandiert. Hierbei entsteht ein Gemisch aus Gas- und Trockeneisschnee. Der Schneeanteil beträgt ungefähr 45 % der ausströmenden Gesamtmasse. Die Menge des ausströmenden CO2 kann durch Variation des Durchmessers der Kapillare 42 eingestellt werden.The jet tool is composed essentially of two nozzles integrated into one another: a capillary 42, through which the CO 2 liquefied under high pressure is passed and at whose conically widened end 49 the CO 2 expands. This produces a mixture of gas and dry ice snow. The proportion of snow is approximately 45% of the total mass flowing out. The amount of effluent CO 2 can be adjusted by varying the diameter of the capillary 42.

    Weiterhin wird die Kapillare 42 konzentrisch von einer speziellen Lavaldüse 51 umschlossen, aus der über eine Leitung 56 zugeführtes, trockenes Druckgas (Reinstluft oder Reinststickstoff) überschallschnell ausströmt. Dieser Druckgasstrahl bündelt den Stahl aus Trockeneisschnee zu einem Parallelstrahl und beschleunigt diesen. Zusätzlich wird durch diesen Druckgas-Stützstrahl die Umgebungsluft vom Reinigungspunkt ferngehalten und die Substratoberfläche nach erfolgter Reinigung recht schnell wieder erwärmt. Die Kondensation von Luftfeuchtigkeit wird somit erfolgreich unterbunden.Furthermore, the capillary 42 is concentric with a special Laval nozzle 51 enclosed from the over a line 56 supplied, dry compressed gas (Pure air or pure nitrogen) supersonic fast flows. This compressed gas jet bundles the steel from dry ice snow to a parallel jet and accelerated this. In addition, through this Pressurized gas jet the ambient air from the cleaning point kept away and the substrate surface warmed up again quickly after cleaning. The condensation of humidity is thus successfully prevented.

    Die Lavaldüse 51 wird durch die Außenkontur einer Düsennadel 45, die die Kapillare 42 enthält und durch die Innenkontur eines Düsenkopfes 46 gebildet. Die Lavaldüse 51 kann durch Veränderung des minimalen Querschnitts mittels Verschiebens der Düsennadel 45 relativ zum Düsenkopf 46 feinjustiert und optimal eingestellt werden. Die Fixierung erfolgt dann durch Unterlegen von geeigneten Distanzscheiben zwischen einem an der Düsennadel 45 angeordneten Flansch 43 und dem Düsenkopf 46.The Laval nozzle 51 is through the outer contour of a nozzle needle 45, which contains the capillary 42 and through the inner contour of a nozzle head 46 is formed. The Laval nozzle 51 can by changing the minimum Cross section by moving the nozzle needle 45th relative to the nozzle head 46 finely adjusted and optimal be set. The fixation then takes place Inserting suitable spacers between a arranged on the nozzle needle 45 flange 43rd and the nozzle head 46.

    Sowohl das flüssige CO2 als auch das Druckgas wird über die Düsennadel 45 zugeführt. Das Druckgas strömt dann zur Beruhigung über vier einlaßseitig an der Lavaldüse 51 angeordnete sternförmigen Bohrungen in die Vorkammer der Lavaldüse 51. Aus der Lavaldüse strömt das Druckgas mit Überschall, drallfrei und symmetrisch aus.Both the liquid CO 2 and the compressed gas is supplied via the nozzle needle 45. The compressed gas then flows to calm over four inlet side of the Laval nozzle 51 arranged star-shaped holes in the antechamber of the Laval nozzle 51. From the Laval nozzle, the pressurized gas flows with supersonic, twist-free and symmetrical.

    Das CO2 wird über die Kapillare 42 zugeführt, die im Kanal der Düsennadel 45 geführt wird. Ein Stopfen 48 am unteren Ende der Düsennadel 45 zentriert die Kapillare 42 und dichtet zugleich den Druckgaskanal nach unten ab. Am oberen Ende wird der Druckgaskanal durch die CO2-Leitung 40 und deren Verschraubung 41 verschlossen.The CO 2 is supplied via the capillary 42, which is guided in the channel of the nozzle needle 45. A plug 48 at the lower end of the nozzle needle 45 centers the capillary 42 and at the same time seals the compressed gas channel downwards. At the upper end of the compressed gas channel is closed by the CO 2 line 40 and the screw 41.

    Da das CO2 aufgrund von Druckänderung innerhalb der Geometrie der Lavaldüse 51 den Aggregatzustand wechsen würde, sind die beiden Düsen, die Lavaldüse 41 und die am Ende der Kapillare 42 ausgebildete Schnee-Düse 49 so angeordnet, daß das Stützgas erst dem fertigen Trockeneisschnee-Strahl zugemischt wird. Ansonsten wäre die Funktion des Strahlwerkzeugs nicht gewährleistet.Since the CO 2 due to pressure change within the geometry of the Laval nozzle 51 would change the state of aggregation, the two nozzles, the Laval nozzle 41 and formed at the end of the capillary 42 snow nozzle 49 are arranged so that the supporting gas until the finished dry ice snow beam is mixed. Otherwise, the function of the jet tool would not be guaranteed.

    Abgedichtet wird das ganze System durch zwei Dichtungen, nämlich einer Packung 44 mit Flansch 43 sowie einer dünnen Metallfolie zwischen Düsenkopf 46 und einer Anschlußplatte 55.Sealed the whole system by two seals, namely a pack 44 with flange 43 as well a thin metal foil between the nozzle head 46 and a connection plate 55.

    Am Düsenende ist ein Metallring 50 mit drei Ionisationsspitzen durch einen Isolator 47 isoliert angebracht, der über ein Hochspannungkabel 53 mit einem rgelbaren Ionisator verbunden ist. Über die Ionisationsspitzen des Metallrings 50 wird die stark negative Aufladung des CO2-Strahles beim Kristallisieren des CO2 am Ausgang der Kapillare 42 durch kontinuierliches Deionisieren kompensiert.At the nozzle end, a metal ring 50 with three ionization tips is isolated by an insulator 47, which is connected via a high voltage cable 53 to a rotatable ionizer. Via the ionization peaks of the metal ring 50, the strongly negative charge of the CO 2 jet during crystallization of the CO 2 at the outlet of the capillary 42 is compensated by continuous deionization.

    Weiterhin ist die Kapillare 42 mittels eines Massekabels geerdet, so daß die Ladungstrennung in der Randschicht des durch die Kapillare strömenden flüssigen CO2 hineichend aufgehoben wird.Furthermore, the capillary 42 is grounded by means of a ground cable, so that the charge separation in the peripheral layer of flowing through the capillary liquid CO 2 is raised in mind.

    Die Absaugung des vom Trockeneisstrahl abgelösten Materials direkt an der Wirkungsstelle, ist aufgrund der hohen Strömungsgeschwindigkeit und des entstehenden Gasvolumens mit einer herkömmlichen Absaugvorrichtung nicht möglich. Daher wurde eine erfindungsgemäße Absaugvorrichtung 21 eingesetzt.The extraction of the material detached from the dry ice jet directly at the impact site, is due the high flow rate and the resulting Gas volume with a conventional suction device not possible. Therefore, an inventive Suction device 21 used.

    Fig. 4 zeigt einen Querschnitt durch die Ebene des Probentisches 1. Der Probentisch 1 ist vollständig von einem Absaugrohr 65 der Absaugvorrichtung 21 in der Ebene des Probentisches 1 umgeben. Der gewöhnlich senkrecht zum Probenträger ausgerichtete Gasstrahl 5 wird an den meist flachen Reinigungsobjekten bzw. am Probentisch selbst um 90° umgelenkt und strömt radial vom Auftreffpunkt auf der Oberfläche des Objektes oder des Probentisches als laminare Strömung 35 ab. Die Absaugung der Prozeßgase erfolgt bei der erfindungsgemäßen Absaugvorrichtung 21 daher nur außerhalb des Probentisches. Wie in Fig. 5 zu erkennen ist, weist das Absaugrohr 65 einen nierenförmigen Querschnitt mit Einbuchtungen in der Ebene des Probentisches 1 auf. Auf der Seite des Probentisches 1 ist diese Einbuchtung als Gaseinlaßöffnung geöffnet. Das vom Probentisch 1 abströmende Gas 35 trifft folglich auf die Innenwand des Absaugringes 65 und wird, unterstützt durch den Mittenknick 66 aufgrund der nierenförmigen Einschnürung in der Ebene des Probentisches 1, nach oben bzw. nach unten umgelenkt. Durch die Geometrie dieser Strömungsfalle 21 wird das mit hoher Geschwindigkeit vom Probentisch 1 abströmende Prozeßgas 35 (Druckgas, CO2-Gas, abgetragene Partikel 4) in eine zu den Ecken des Absaugringes 65 fließende Drallströmung 63 überführt. In den Ecken des Absaugringes 65 befinden sich Ventilatoren 61, die mit dem Absaugring 65 über Absaugöffnungen 64 in Verbindung stehen. Diese Ventilatoren erzeugen einen Absaugvolumenstrom über einen Absaugkanal 60, der den Fluß dieser Strahlströmung unterstützt und ein Rückfließen zum Probenträger verhindert.FIG. 4 shows a cross section through the plane of the sample table 1. The sample table 1 is completely surrounded by a suction tube 65 of the suction device 21 in the plane of the sample table 1. The gas jet 5, which is usually aligned perpendicularly to the sample carrier, is deflected by 90 ° on the mostly flat cleaning objects or on the sample table itself and flows radially from the point of impact on the surface of the object or the sample table as a laminar flow 35. The extraction of the process gases takes place in the suction device 21 according to the invention therefore only outside the sample table. As can be seen in FIG. 5, the suction tube 65 has a kidney-shaped cross section with indentations in the plane of the sample table 1. On the side of the sample table 1, this indentation is opened as a gas inlet opening. The effluent from the sample table 1 gas 35 thus hits the inner wall of the suction ring 65 and is, supported by the center bend 66 due to the kidney-shaped constriction in the plane of the sample table 1, up or down deflected. Due to the geometry of this flow trap 21, the process gas 35 (compressed gas, CO 2 gas, abraded particles 4) flowing off the sample table 1 at high speed is transferred into a swirl flow 63 flowing to the corners of the suction ring 65. In the corners of the suction ring 65 are fans 61, which communicate with the suction ring 65 via suction openings 64. These fans generate a suction volume flow through a suction channel 60 which assists in the flow of this jet flow and prevents backflow to the sample carrier.

    Die Öffnungen 64 zwischen dem Absaugring 65 und dem Absaugkanal 60 befinden sich dabei ober- und unterhalb des Mittenknicks 66, so daß die gebildeten Wirbel 63 abgesaugt werden.The openings 64 between the suction ring 65 and the Suction channel 60 are located above and below of the center crease 66 so that the vertebrae formed 63 are sucked off.

    Das Absaugvolumen der Ventilatoren 61 wird über eine Drehzahlsteuerung ständig der Summe von laminarem Zuluft-Gasstrom 6 (siehe Fig. 2) und Reinigungsgasstrom 5 angepaßt. Der Zuluftstrom ermittelt sich über die freie Querschnittsfläche des Absaugringes 65 und die Zuluftgeschwindigkeit (Geschwindigkeit des Reinstgasstromes 6). Die Berechnung des Reinigungsgasstromes 5 erfolgt im wesentlichen anhand des Durchmesseres der Kapillare 42 der CO2-Zuführung, der Geometrie der Lavaldüse 51 sowie des Vordruckes des Druck/Stützgases in herkömmlicher Weise.The suction volume of the fans 61 is continuously adapted via a speed control the sum of laminar supply air gas stream 6 (see FIG. 2) and cleaning gas stream 5. The supply air flow is determined by the free cross-sectional area of the suction ring 65 and the supply air velocity (velocity of the high purity gas stream 6). The calculation of the cleaning gas stream 5 is essentially based on the diameter of the capillary 42 of the CO 2 supply, the geometry of the Laval nozzle 51 and the form of the pressure / supporting gas in a conventional manner.

    Das abgesaugte Gas wird anschließend von den Ventilatoren 61 zu einer Prozeßabluftanlage 62 geblasen, wo die abgesaugte Luft gereinigt, aufbereitet und/oder weiterverwertet werden kann.The extracted gas is then removed by the fans 61 blown to a process exhaust system 62, where the extracted air cleaned, treated and / or can be recycled.

    Mit diesem System wurden bereits verschiedene Teile aus der Mikrosystem- bzw. Feinwerktechnik erfolgreich gereinigt. Dazu gehören beispielsweise Kontaktflächen von Mikroschaltern, Düsenelemente aus der Drucktechnik, auf einem Keramikträger aufgebaute Mikrochips und Stanzteile für den Bau von Schaltelementen. Dabei wurden sowohl partikuläre Ablagerungen als auch biotische und/oder abiotische Beschichtung wie beispielsweise Fingerabdrücke oder dünne Lackschichten entfernt.With this system have already been different parts from microsystem or precision engineering successful cleaned. These include, for example, contact surfaces of micro switches, nozzle elements of printing technology, on a ceramic carrier built microchips and stampings for the construction of switching elements. Both particulate deposits and biotic and / or abiotic coating such as Fingerprints or thin layers of paint away.

    Als weitere vorteilhafte Ausgestaltung, ist die CO2-Zuführung so ausgebildet, daß kurze CO2-Strahlstöße erzeugt werden können. Diese sind verglichen mit einem kontinuierlichen CO2-Strahl wesentlich effektiver, da hier im Vergleich zu der längeren Einwirkzeit des Trockeneisstrahles höhere Thermospannungen erzeugt werden.As a further advantageous embodiment, the CO 2 supply is designed so that short CO 2 beam bursts can be generated. These are much more effective compared to a continuous CO 2 jet, since higher thermal stresses are generated here compared to the longer exposure time of the dry ice jet.

    Fig. 6 zeigt ein Beispiel für eine Reinigung mit der erfindungsgemäßen Vorrichtung. Oben sind verkrustetet Düsen eines Tintenstrahldruckkopfes dargestellt, die erfindungsgemäß gereinigt wurden. Im unteren Teil der Abbildung ist ein Mikrochip auf einem Keramikträger dargestellt, dessen Verzunderung auf der rechten Seite zu sehen ist. Linksseitig ist in diesem Bild der gereinigte Bereich zu erkennen.Fig. 6 shows an example of a cleaning with the Device according to the invention. Above are encrusted Nozzles of an ink jet printhead are shown, the were purified according to the invention. In the lower part of the Illustration is a microchip on a ceramic carrier shown, its scaling on the right side you can see. On the left side in this picture is the to recognize the cleaned area.

    Fig. 7 zeigt eine Lackschicht, die mit der erfindungsgemäßen Vorrichtung behandelt wurde. Die Darstellung in Fig. 7 ist 50fach vergößert. Wie zu erkennen ist, ist die Lackschicht teilweise mit dem erfindungsgemäßen Verfahren abgetragen worden. Deutlich ist die Rißbildung und die Absprengung vom Grundmaterial zu erkennen.Fig. 7 shows a paint layer, with the inventive Device was treated. The representation in Fig. 7 is enlarged 50 times. How to recognize is, the lacquer layer is partially with the inventive Procedure has been removed. Clear is cracking and blasting from the base material to recognize.

    Claims (45)

    1. Jet spray tool (2) for the generating of a jet consisting of CO2 foam with a CO2 container (34) and a pressure gas supply (33) as well as a first nozzle (49) for the generating of a CO2 foam jet and a second nozzle (51) for the generating of a supporting, i.e. a pressure jet, whereby the second nozzle (51) consists of a nozzle for the generating of a supersonic jet, characterised in that the first nozzle (49) is connected with the CO2 container (34), and in that the second nozzle (51) is connected with the pressure gas supply, as well as in that the second nozzle (51) encloses the first nozzle (49).
    2. Jet spray tool (2) according to the preceding Claim, characterised in that the second nozzle consists of a Laval nozzle (51).
    3. Jet spray tool (2) according to one of the preceding Claims, characterised in that the second nozzle (51) is formed in such a way that the same bundles the jet of the first nozzle, preferably parallel, and/or accelerates the same.
    4. Jet spray tool (2) according to one of the preceding Claims, characterised in that the first nozzle (49) is connected with a capillary (42) representing the supply line.
    5. Jet spray tool (2) according to one of the preceding Claims, characterised in that the capillary (42) is electrically earthed.
    6. Jet spray tool (2) according to one of the preceding Claims, characterised in that the first nozzle (49) takes the form of the conic expansion of the capillary (42).
    7. Jet spray tool (2) according to one of the preceding Claims, characterised in that the second nozzle (51) concentrically encloses the first nozzle (49).
    8. Jet spray tool (2) according to one of the preceding Claims, characterised in that the said jet spray tool (2) incorporates a nozzle pin (45) and a nozzle head (46) enclosing the same, whereby the first nozzle (49) is positioned within the nozzle pin (45).
    9. Jet spray tool (2) according to the preceding Claim, characterised in that the second nozzle (51) takes the form of an interim space between the nozzle pin (45) and the nozzle head (46).
    10. Jet spray nozzle (2) according to the preceding Claim, characterised in that the contour of the second nozzle (51) is formed by the outer contour of the nozzle pin (45) and/or by the inner contour of the nozzle head (46).
    11. Jet spray tool (2) according to the preceding Claims 8 to 10, characterised in that the nozzle pin (45) is longitudinally reciprocable in relation to the nozzle head (46).
    12. Jet spray tool (2) according to one of the preceding Claims 7 to 11, characterised in that a means for the centring of the bearingly positioned nozzle pin (45) within the nozzle head (46) is located at the lower end of the nozzle pin (45).
    13. Jet spray tool (2) according to one of the preceding Claims, characterised in that the second nozzle (51) incorporates several star-shaped bores in the direction of the gas supply within its inlet.
    14. Jet spray tool (2) according to one of the preceding Claims, characterised in that a means (50) for the deionisation of the CO2 foam jet is located behind the first nozzle (49) in the direction of the jet.
    15. Jet spray tool (2) according to one of the preceding Claims, characterised in that the means (50) for the deionisation incorporates a concentric metal ring leading in the direction of the first nozzle (49).
    16. Jet spray tool (2) according to one of the preceding Claims, characterised in that the metal ring incorporates at least one ionisation tip projecting in the direction of the jet.
    17. Jet spray tool (2) according to one of the preceding Claims 14 to 16, characterised in that the means (50) for the deionisation is connected with an ioniser via a high voltage cable (53).
    18. Jet spray tool (2) according to the preceding Claim, characterised in that the ioniser is controllable.
    19. Means for the treatment, for example for the cleaning of the surface of an object (1), for example a workpiece or a sample table through the blasting of the said surface with CO2 foam, characterised in that the same uses a jet spray tool (2) for the generating of a jet consisting of CO2 foam according to one of the preceding Claims.
    20. Means according to the preceding Claim, characterised in that the jet spray tool (2) and the object (1) are located within a cleaning chamber (36).
    21. Means according to the preceding Claim, characterised in that pure air (6) flows through the cleaning chamber (36).
    22. Means according to one of the two preceding Claims, characterised in that pure air (6) flows quasilaminarily and with low turbulence through the cleaning chamber (36).
    23. Means according to one of the three preceding Claims, characterised in that the cleaning chamber (36) incorporates a sample table (1) for the installation of a workpiece that is to treated or cleaned.
    24. Means according to the preceding Claim, characterised in that the sample table (1) can be heated.
    25. Means according to the preceding Claim, characterised in that the sample table (1) can be heated electrically.
    26. Means according to one of the preceding Claims 19 to 25, characterised in that the sample table (1) incorporates a flat metal plate for the affixing of the workpiece to be treated or cleaned.
    27. Means according to the preceding Claim, characterised in that the metal plate incorporates several bores, and that a vacuum pump (23) for the applying of a vacuum to the same bores is envisaged.
    28. Means according to one of the preceding Claims 21 to 27, characterised in that the object is positioned within the cleaning chamber (36) in such a way that pure air (6) flows vertically and parallel across the surface of the same.
    29. Means according to one of the preceding Claims 19 to 28, characterised in that a suction means (21) for the suctioning of air from the surface of the object (1) possibly located within the cleaning chamber (36) incorporates a suction pipe (65) which completely encloses the surface of the object (1) and which further incorporates gas entry ports along its inner circumference.
    30. Means according to the preceding Claim, characterised in that the cross-section of the suction pipe (65) is formed in such a way that the suctioned air forms a maelstrom within the pipe (65) along the cross-section of the same.
    31. Means according to one of the two preceding Claims, characterised in that the suction pipe (65) incorporates a kidney-shaped cross-section with an indentation along its outer circumference.
    32. Means according to the preceding Claim, characterised in that the suction pipe (65) is open along the indentation along its inner circumference in the form of a gas inlet port.
    33. Means according to one of the two preceding Claims, characterised in that the indentation located along the outer circumference of the suction pipe (65) incorporates a central fold (66) in the form of an edge extending towards the inside which tapers to a point.
    34. Means according to one of the preceding Claims 29 to 33, characterised in that the suction pipe (65) is connected with at least one ventilator (61) for the suctioning of air from the suction pipe (65).
    35. Means according to the preceding Claim, characterised in that the rotation speed of the minimum of one ventilator (61) is controllable.
    36. Means according to one of the two preceding Claims, characterised in that the minimum of one ventilator (61) is connected with the suction pipe (65) via ports (64), whereby the same are located upon the upper and/or lower side of the suction pipe (65).
    37. Means according to one of the three preceding Claims, characterised in that the minimum of one ventilator (61) is connected with the suction pipe (65) via ports (64), whereby the same are located to the side of the central fold (66).
    38. Means according to one of the preceding Claims 29 to 37, characterised in that the suction pipe (65) is formed in an annular fashion.
    39. Means according to one of the preceding Claims 29 to 37, characterised in that the suction pipe (65) takes the form of a polygon.
    40. Means according to the preceding Claim, characterised in that the suction pipe (65) is formed in an arcuate fashion between two adjacent comers in the direction of the object (1).
    41. Means according to one of the two preceding Claims, characterised in that a preferably controllable ventilator (61) according to one of the preceding Claims 34 to 37 is located in every comer of the polygon.
    42. Means according to one of the preceding Claims 29 to 41, characterised in that a preparation system for suctioned air and particles possibly contained therein is envisaged.
    43. Use of a jet spray tool (2) and/or a means for the treatment, specially the cleaning, of surfaces according to one of the preceding Claims, i.e. for the cleaning of surfaces and/or the removal of coatings within a branch of the optical industry, medical technology, pharmaceutical industry, lacquer technology, micro technology and/or micro processing technology and others.
    44. Use according to the preceding Claim for the treatment of soft surfaces, i.e. the removal of particulate, biological and/or non-biological coatings and/or deposits and/or the removal of lacquer layers.
    45. Use according to one of the two preceding Claims for the treatment of surfaces within the sub-µm range.
    EP00940351A 1999-06-08 2000-06-08 Jet spray tool and device containing a jet spray tool Expired - Lifetime EP1183133B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19926119 1999-06-08
    DE19926119A DE19926119C2 (en) 1999-06-08 1999-06-08 Blasting tool
    PCT/EP2000/005323 WO2000074897A1 (en) 1999-06-08 2000-06-08 Jet spray tool and device containing a jet spray tool

    Publications (2)

    Publication Number Publication Date
    EP1183133A1 EP1183133A1 (en) 2002-03-06
    EP1183133B1 true EP1183133B1 (en) 2004-09-01

    Family

    ID=7910562

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00940351A Expired - Lifetime EP1183133B1 (en) 1999-06-08 2000-06-08 Jet spray tool and device containing a jet spray tool

    Country Status (5)

    Country Link
    EP (1) EP1183133B1 (en)
    AT (1) ATE275024T1 (en)
    AU (1) AU5531300A (en)
    DE (1) DE19926119C2 (en)
    WO (1) WO2000074897A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008061352A1 (en) 2008-12-10 2010-06-17 Linde Aktiengesellschaft Method for producing cryogenic particle beam utilized for cooling or cleaning surface of work piece, involves adding particle stream to compressed gas stream at downstream position
    DE102011004724A1 (en) 2011-02-25 2012-08-30 Robert Bosch Gmbh Binary fuel nozzle for use with cleaning chamber of injector for injecting fuel into combustion chamber of internal combustion engine, is provided with nozzle body and inlet for supply of gaseous medium

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10243693B3 (en) * 2002-09-20 2004-04-01 Jens Werner Kipp Process for cleaning electronic circuit boards comprises feeding a carrier gas under pressure through a jet line to a jet nozzle, introducing liquid carbon dioxide via a feed line, converting into dry snow, and injecting into the jet line
    ES2260691T3 (en) 2002-09-20 2006-11-01 Jens-Werner Kipp CLEANING PROCEDURE AND DEVICE BY PROJECTION.
    DE10356141B4 (en) * 2003-12-02 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for detaching and removing filling material from a channel with the aid of solids
    DE102004018133B3 (en) * 2004-04-08 2005-08-25 Frenzel-Bau Gmbh & Co. Kg Dry ice beam arrangement e.g. for cleaning of surfaces, has source for liquid CO2, nozzle jet with nozzle exit opening for dry ice particle jet as well as line for transfer of CO2 of source to nozzle jet
    DE102004047050B3 (en) * 2004-09-28 2005-12-15 Venjakob Maschinenbau Gmbh & Co. Kg Cleaning method for workpiece to be lacquered using CO2 snow, using core jet of CO2 snow surrounded by outer jet of compressed air at lower speed
    DE102005002365B3 (en) * 2005-01-18 2006-04-13 Air Liquide Gmbh Jet process for surface cleaning involves expanding carbon dioxide in the mixing region into carrier gas at static pressure less than 70 per cent of overall pressure
    DE102005005638B3 (en) * 2005-02-05 2006-02-09 Cryosnow Gmbh Method for cleaning, activating or treating workpieces using carbon dioxide snow streams comprises adding a carbon dioxide mixture via a nozzle opening of a mixing chamber into which a central gas stream and further processing
    DE102005054246C5 (en) * 2005-11-15 2011-08-18 MESSER Group GmbH, 65843 Apparatus and method for irradiating a surface with dry ice particles
    DE102006016314B3 (en) * 2006-04-06 2007-09-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Jet spray tool for the production of a jet of carbon dioxide snow for dry cleaning of tube cavity, has hose-shaped shaft, carbon dioxide jet nozzle and inlet line for carbon dioxide, which is attached to the nozzle and runs along the shaft
    DE102007014857A1 (en) 2007-03-22 2008-09-25 Acp-Advanced Clean Production Gmbh Nozzle e.g. for pre-treatment and cleaning of surfaces using carbon dioxide snow, has propellant flow provided over supply nozzle and with chamber and which crosses into expanded outlet
    DE102007018338B4 (en) 2007-04-13 2010-09-23 Technische Universität Berlin Apparatus and method for particle blasting using frozen gas particles
    DE102007046791B3 (en) * 2007-09-29 2008-06-19 Messer Group Gmbh Device for producing a stream of dry ice particles comprises a unit for super-cooling liquid carbon dioxide with a compression refrigerating machine for withdrawing heat from the liquid carbon dioxide
    DE102007052390B4 (en) * 2007-10-31 2021-01-28 Air Liquide Deutschland Gmbh Method and device for cleaning surfaces
    DE102008007531A1 (en) * 2008-02-05 2009-08-06 Manroland Ag Apparatus for cleaning rewritable printing plate, has nozzle for spraying dry ice snow onto surface of printing plate, to remove contaminants from plate
    DE102010064406A1 (en) 2010-12-30 2012-07-05 ipal Gesellschaft für Patentverwertung Berlin mbH Apparatus and method for particle blasting using frozen gas particles
    DE102012006567A1 (en) * 2012-03-30 2013-10-02 Dürr Systems GmbH Dry ice cleaning device for a paint shop
    FR2997332B1 (en) * 2012-10-30 2015-01-02 Air Liquide CARBON ICE PROJECTION DEVICE FOR CLEANING ELECTRONIC CARDS
    WO2014131771A1 (en) 2013-02-26 2014-09-04 Robert Veit Device and method for particle blasting by means of frozen gas particles
    DE102015009676A1 (en) 2015-07-25 2017-01-26 Messer Group Gmbh Process for treating surfaces with a dry ice blasting abrasive
    DE102015219430A1 (en) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Device for cleaning adhesive surfaces
    DE102015219429A1 (en) 2015-10-07 2017-04-13 Bayerische Motoren Werke Aktiengesellschaft Process for cleaning with solid carbon dioxide
    DE102018208750A1 (en) * 2018-06-04 2019-12-05 Bausch + Ströbel Maschinenfabrik Ilshofen GmbH + Co. KG Method and device for cleaning machines in pharmaceutical plants
    DE102019108289A1 (en) 2019-03-29 2020-10-01 acp systems AG Device for generating a CO2 snow jet
    DE102019118717A1 (en) * 2019-07-10 2021-01-14 acp systems AG Method for generating a CO2 snow jet
    EP3822023B1 (en) * 2019-11-15 2024-05-15 Egger PowAir Cleaning GmbH Device for dry ice treatment of surfaces and method for treating surfaces

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH0349224A (en) * 1989-07-17 1991-03-04 Mitsubishi Electric Corp Treating method for substrate
    US5125979A (en) * 1990-07-02 1992-06-30 Xerox Corporation Carbon dioxide snow agglomeration and acceleration
    US5512106A (en) * 1993-01-27 1996-04-30 Sumitomo Heavy Industries, Ltd. Surface cleaning with argon
    US5364472A (en) * 1993-07-21 1994-11-15 At&T Bell Laboratories Probemat cleaning system using CO2 pellets
    US5421766A (en) * 1993-12-06 1995-06-06 Church & Dwight Co., Inc. Blast nozzle for preventing the accumulation of static electric charge during blast cleaning operations
    US5733174A (en) * 1994-01-07 1998-03-31 Lockheed Idaho Technologies Company Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids
    US5779523A (en) * 1994-03-01 1998-07-14 Job Industies, Ltd. Apparatus for and method for accelerating fluidized particulate matter
    US5725154A (en) * 1995-08-18 1998-03-10 Jackson; David P. Dense fluid spray cleaning method and apparatus
    US5837064A (en) * 1996-10-04 1998-11-17 Eco-Snow Systems, Inc. Electrostatic discharge protection of static sensitive devices cleaned with carbon dioxide spray
    JP3315611B2 (en) * 1996-12-02 2002-08-19 三菱電機株式会社 Two-fluid jet nozzle for cleaning, cleaning device, and semiconductor device
    FR2764215B1 (en) * 1997-06-04 1999-07-16 Carboxyque Francaise LANCE AND APPARATUS FOR PRODUCING A LIQUID C02 JET, AND ITS APPLICATION TO A SURFACE CLEANING INSTALLATION

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008061352A1 (en) 2008-12-10 2010-06-17 Linde Aktiengesellschaft Method for producing cryogenic particle beam utilized for cooling or cleaning surface of work piece, involves adding particle stream to compressed gas stream at downstream position
    DE102011004724A1 (en) 2011-02-25 2012-08-30 Robert Bosch Gmbh Binary fuel nozzle for use with cleaning chamber of injector for injecting fuel into combustion chamber of internal combustion engine, is provided with nozzle body and inlet for supply of gaseous medium

    Also Published As

    Publication number Publication date
    AU5531300A (en) 2000-12-28
    EP1183133A1 (en) 2002-03-06
    DE19926119C2 (en) 2001-06-07
    ATE275024T1 (en) 2004-09-15
    WO2000074897A9 (en) 2002-09-06
    WO2000074897A1 (en) 2000-12-14
    DE19926119A1 (en) 2000-12-21

    Similar Documents

    Publication Publication Date Title
    EP1183133B1 (en) Jet spray tool and device containing a jet spray tool
    DE60009712T2 (en) METHOD AND DEVICE FOR SPRAY COATING
    DE69123370T2 (en) Surface treatment by blasting with submicron particles
    DE19740996B4 (en) Two-fluid cleaning jet nozzle and cleaning device and method of application
    EP2566627B1 (en) Coating device with jets of coating medium which are broken down into drops
    DE69209957T2 (en) Arrangement and method for fine cleaning by spray steel
    DE69310660T2 (en) Control of electrostatic discharge while removing contaminants from surfaces using a jet
    EP1585601B1 (en) Method and injection nozzle for interspersing a gas flow with liquid droplets
    EP1394283B1 (en) Process and apparatus for coating of large area of substrates under atmospheric pressure
    DE69730349T2 (en) ROTATING AND SHIFTABLE SPRAY NOZZLE
    DE4410119A1 (en) Method and device for cleaning an implement with emery CO¶2¶ snow
    EP0916442B1 (en) Process and device for removal of surface layer
    DE102006002653B4 (en) Dry Ice Blasting
    DE19926084B4 (en) Suction device and device containing a suction device
    DE68927035T2 (en) Method and device for cleaning an electrostatic spray head
    EP2136965B1 (en) Apparatus and method for particle radiation by frozen gas particles
    EP1765551A1 (en) Method and device for generating a jet of dry ice particles
    EP3578297B1 (en) Device and method for producing a matt surface
    DE19747841A1 (en) Suction apparatus and method for laser treatment and cleaning of materials
    DE10348805B4 (en) Method of producing a water abrasive jet
    EP3482877B1 (en) Method for treating the surface of a fibre composite component
    EP2319628A1 (en) Coating device for workpieces and method for operating the coating device
    DE4417114A1 (en) Appts. for particle-selective deposition of thin films
    EP3308410B1 (en) Method for the production of a piezoelectric layer stack, and piezoelectric layer stack
    EP3822023B1 (en) Device for dry ice treatment of surfaces and method for treating surfaces

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011204

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20040901

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040901

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: TROESCH SCHEIDEGGER WERNER AG

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040901

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041212

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040901

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050608

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050608

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050630

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050602

    BERE Be: lapsed

    Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

    Effective date: 20050630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20190619

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20190619

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20190619

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20190621

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20190619

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20200607

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20200607

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 275024

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20200608

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20200607