EP1180591B1 - Méthode et dispositif de commande et/ou de régulation du fonctionnement d'un moteur à combustion interne - Google Patents

Méthode et dispositif de commande et/ou de régulation du fonctionnement d'un moteur à combustion interne Download PDF

Info

Publication number
EP1180591B1
EP1180591B1 EP20010119026 EP01119026A EP1180591B1 EP 1180591 B1 EP1180591 B1 EP 1180591B1 EP 20010119026 EP20010119026 EP 20010119026 EP 01119026 A EP01119026 A EP 01119026A EP 1180591 B1 EP1180591 B1 EP 1180591B1
Authority
EP
European Patent Office
Prior art keywords
filling
intake manifold
value
rlhfm
rldss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010119026
Other languages
German (de)
English (en)
Other versions
EP1180591A3 (fr
EP1180591A2 (fr
Inventor
Ernst Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1180591A2 publication Critical patent/EP1180591A2/fr
Publication of EP1180591A3 publication Critical patent/EP1180591A3/fr
Application granted granted Critical
Publication of EP1180591B1 publication Critical patent/EP1180591B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the present invention relates to a method for operating an internal combustion engine, in particular for a motor vehicle, in which air is supplied via an intake pipe at least one combustion chamber and in which a value for the filling of the combustion chamber is determined from the air mass flow in the intake pipe.
  • a control device for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine is known.
  • the computing unit executes an algorithm whose parameters contain partly measured and partly calculated operating parameters of the internal combustion engine. At least one calculated operating parameter is additionally measured.
  • the algorithm is constructed so as to self-correct according to a difference between the value of the calculated and the value of the additionally measured operation parameter.
  • Such a method is also known from the market. To control an internal combustion engine, it is necessary to determine the air mass located in the combustion chamber. On the basis of this located in the combustion chamber air mass, the amount of fuel to be injected, the ignition timing and the engine torque is calculated. In the known method, the air mass flowing through the intake pipe is first measured by means of a hot-wire air mass meter, and from this finally the air mass located in the combustion chamber is calculated.
  • the known method suffers from a problem:
  • the signals corresponding to the air mass flow are very accurate in a stationary operating state of the internal combustion engine, in a transient operating state, that is to say in the case of a dynamic behavior of the internal combustion engine however, such high accuracy is not always available. In the transient operating state, this leads to incorrect definitions of the quantity of fuel to be injected and / or of the ignition time, which increases fuel consumption and worsens the emission behavior of the internal combustion engine.
  • a further disadvantage of the known method appears when it is used on an internal combustion engine with a turbocharger: If a throttle valve present in the intake pipe is closed, a generally existing recirculation valve opens, whereby air flows in the direction of the sensor which detects the air mass flow in the intake pipe. The recirculation valve is used to let back the air supplied by the compressor too much back to a point in front of the compressor. However, the air mass flow thus detected no longer corresponds exactly to the actual air mass flow actually reaching the combustion chamber, so that the correspondingly determined charge value does not correspond to the actual conditions.
  • internal combustion engines are generally installed very many components for optimal control of the filling of the combustion chamber of the internal combustion engine. These components include, for example, throttle valves, Charge moving flaps, adjustable intake and exhaust camshafts, exhaust gas recirculation, etc. Each of these components changes the relationship between the pressure prevailing in the intake manifold of the internal combustion engine and the air charge in the combustion chamber.
  • the present invention therefore has the object of developing a method of the aforementioned type so that very accurate values for the air filling of the combustion chamber can be determined with it on the one hand in the stationary operating state of the internal combustion engine, but on the other hand in a transient, dynamic state of the internal combustion engine.
  • This object is achieved in the method mentioned at the outset by additionally determining a value for the filling of the combustion chamber from the intake manifold pressure, forming the difference between intake pipe pressure filling value and air mass flow charge value and varying at least one factor used in determining both charge values, that the difference between the two filling values becomes approximately zero.
  • the filling value obtained from the pressure in the intake pipe is adapted to the filling value determined more precisely in this case from the air mass flow in the intake pipe, whereas in a transient operating condition of the internal combustion engine the less accurate charge value resulting from the air mass flow is determined in the intake pipe, is adapted to the more accurate in this case filling value, which is determined from the pressure in the intake pipe.
  • a characteristic curve can generally be used. This results in the possibility of the method according to the invention indicated in a further development, a multiplicative factor, thus e.g. a straight line slope, to vary.
  • multiplicative factor in the case of a straight-line equation that is the slope, on the filling values is greater, the higher the pressure in the intake manifold.
  • the multiplicative factor be varied at high intake manifold pressure, preferably at an intake manifold pressure above 500 hPa.
  • an additive factor is varied. In the case of a straight line equation, this would correspond to an offset. Its influence on the calculation of the filling values increases with decreasing intake manifold pressure. Therefore, it is particularly advantageous if the additive factor at low intake manifold pressure, preferably at a Saugrohr horr below 500 hPa, is varied.
  • the signal of a hot wire air mass meter is preferably used. This delivers highly accurate signals, especially in the stationary state.
  • the intake manifold pressure fill value is most easily obtained on the basis of a signal from a pressure sensor, which is preferably located downstream of a throttle valve. This position of the pressure sensor has particular advantages in internal combustion engines with turbocharger.
  • the present invention also relates to a computer program suitable for carrying out the above method when executed on a computer. It is particularly advantageous if the computer program is stored on a memory, in particular on a flash memory.
  • the present invention further relates to a control and / or regulating device for operating an internal combustion engine, in particular for a motor vehicle, in which air is supplied via an intake pipe at least one combustion chamber, with means for determining a value for the filling of the combustion chamber from the air mass flow in the intake pipe ,
  • control and / or regulating device additionally comprises means for determining a value for the filling of the combustion chamber from the pressure in the intake pipe and Means comprising the difference between the intake manifold pressure filling value and the air mass flow filling value and the at least one factor used in determining both fill values vary such that the difference between the two fill values becomes approximately zero.
  • an internal combustion engine carries the reference number 10 as a whole. It comprises a combustion chamber 12, to which air is supplied via an intake pipe 14. The exhaust gases are discharged from the combustion chamber 12 via an exhaust pipe 16.
  • a turbine 18 is arranged, which is mechanically connected to a compressor 20. This is in turn arranged in the intake pipe 14 and compresses the combustion chamber 12 supplied air. Upstream of the compressor 20 branches from the intake manifold 14 from a recirculation line 22, which opens with the interposition of a valve 24 downstream of the compressor 20 back into the intake pipe 14.
  • a throttle valve 26 is arranged, which is moved by a servomotor 28.
  • the valve 24 and the recirculation line serve to air at closed throttle 26 again to leave a spot in front of the compressor 20.
  • Fuel is supplied to the combustion chamber 12 via injectors 30. From an ignition 32, not shown in the figure, spark plugs are fed.
  • the operation of the internal combustion engine 10 is controlled by a control and regulating device 34, which is connected on the output side to the servomotor 28, the injection valves 30 and the ignition 32.
  • the control and regulating device 34 receives signals from a hot-wire air mass meter 36, which is arranged in the intake pipe 14 upstream of the compressor 20.
  • the control and regulating device 34 signals from a servomotor 38 of the throttle valve 26, supplied by a arranged between the throttle valve 26 and the combustion chamber 12 pressure sensor 40 and from a speed sensor 42 which picks up the speed of a crankshaft 44.
  • the internal combustion engine 10 shown in Fig. 1 is operated by a method which is stored in the form of a computer program on a flash memory (not shown) in the control and regulating device 34. The method will now be explained with reference to FIG. 2:
  • a mass air flow mshfm is determined from the signal of the hot-wire air mass meter 36 in a block 48.
  • a conversion factor is calculated from a constant F (block 49) and the engine speed received from the speed sensor 42 is calculated.
  • the air mass flow mshfm divided by the factor umsrln results in block 52 relative to a standard filling relative filling mass rlroh.
  • the difference between the relative filling mass rlroh and the relative air filling rlhfm is calculated.
  • the value for the relative air charge rlhfm corresponds to a fixed start value during the first pass of the method illustrated in FIG. 2, otherwise the relative air charge rlhfm ascertained in a block 56 during a preceding run of the method.
  • the block 56 and the determination of the relative air charge rlhfm will be discussed below.
  • the difference determined in block 54 is processed in block 58 in an integrator and converted into an intake manifold pressure psmod. From this, in turn, the partial pressure of the residual gas present in the combustion chamber pirg (block 60) is withdrawn in block 62, which leads to a suction pipe partial pressure psphfm. This partial pressure is applied in block 56 already mentioned above with a multiplicative factor fupsrl provided in block 64, from which the said relative air charge rlhfm results.
  • the relative air filling rlhfm is thus the filling of the combustion chamber 12 of the internal combustion engine 10, which is determined from the air mass flow mshfm (block 48) in the intake pipe 14.
  • the partial pressure pspdss in the intake pipe 14 is determined in parallel to the method steps described above in block 66, in that the partial pressure pirg of the residual gas in the combustion chamber 12 is subtracted from the intake pipe pressure psdss obtained from the pressure sensor 40.
  • This method step corresponds to the method step performed in block 62, wherein the calculation here is based on the intake manifold pressure psdss determined by the pressure sensor 40, whereas in block 62 it ultimately results from the intake manifold pressure psmod modeled on the basis of the air mass flow mshfm.
  • a relative air charge rldss is calculated by multiplying the intake manifold partial pressure pspdss by the conversion factor fupsrl (block 64).
  • the difference ⁇ hfmdss between the filling value rlhfm obtained from the signal of the hot-wire air mass meter 36 and the filling value rldss obtained from the signal of the pressure sensor 40 is formed. If both sensors 36 and 40 had no tolerances and the sizes pirg (block 60) and fupsrl (block 64) were chosen correctly then the modeled intake manifold pressure psmod would have to be measured with the measured intake manifold pressure psdss and the relative air charge rlhfm based on the hot air mass meter 36 in the combustion chamber 12 with the relative to the pressure sensor 40 based relative air filling rldss match. In this case, therefore, the difference ⁇ hfmdss determined in block 70 would be zero.
  • the accuracy of the signal provided by the hot-wire air mass meter 36 drops.
  • the signal provided by the pressure sensor 40 is not optimal in a stationary operating state of the internal combustion engine 10. In practice, therefore, the two values rlhfm and rldss will differ from each other.
  • this deviation is used to determine a relative air charge rlhfm or rldss which has the dynamic pressure corresponding to the pressure sensor 40 and the steady-state quality corresponding to the hot-wire air mass meter 36. This happens as follows:
  • a decision block 72 queries whether the intake manifold pressure psdss measured by the pressure sensor 40 is greater than a limit value G provided in a read-only memory 74.
  • the limit G is typically in the range of 500 hPa. If the answer in decision block 72 is yes, the conversion factor fupsrl is corrected in an integrator block 76 so that in a subsequent run of the method illustrated in FIG Difference ⁇ hfmdss becomes smaller.
  • the change in the conversion factor fupsrl only at an intake manifold pressure psdss above a limit value G results from the fact that the conversion factor fupsrl is the slope of the characteristic curve from which the relative air charge rlhfm is calculated. The influence of the slope is again relatively small at small intake pipe pressures psdss, whereas its influence is relatively high at high intake pipe pressures psdss.
  • the method illustrated in FIG. 2 is an iterative method.
  • the aim of the iteration is that the difference .DELTA.hfmdss determined in block 70 between the air mass-based relative air charge rlhfm and the suction pipe pressure based relative air filling rldss to zero.
  • the multiplicative factor fupsrl in the integrator block 76 or the additive factor pirg in the integrator block 78 the calculations in blocks 56 and 62 are influenced in the following pass, which in turn influence the calculation in block 54 in the following pass.
  • the method can be checked by artificially delaying the signal of the hot air mass meter 36 and at the same time the signal of the pressure sensor 40 is artificially stationary falsified. After a short settling process, the original quality of the filling signal rlhfm or rldss is restored. This can be determined by measuring in the exhaust gas (lambda).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (10)

  1. Procédé de gestion d'un moteur à combustion interne (10), notamment d'un véhicule automobile, selon lequel l'air est fourni à au moins une chambre de combustion (12) par une conduite d'admission (14) et à partir du débit massique d'air (mshfm) dans la conduite d'admission (14) on détermine une valeur (rlhfm) pour le remplissage de la chambre de combustion (12),
    caractérisé en ce qu'
    en plus, à partir de la pression dans la conduite d'admission (psdss) on détermine une valeur (rldss) du remplissage de la chambre de combustion (12), on forme la différence (Δhfmdss) entre la valeur de remplissage résultant de la pression de la conduite d'admission (rldss) et de la valeur de remplissage résultant du débit massique d'air (rlhfm) et on fait modifier au moins un coefficient (pirg, fupsrl) utilisé pour déterminer les deux valeurs de remplissage (rldss, rlhfm) pour annuler sensiblement la différence (Δhfmdss) entre les deux valeurs de remplissage (rldss, rlhfm).
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on modifie un coefficient par multiplication (fupsrl).
  3. Procédé selon la revendication 2,
    caractérisé en ce qu'
    on modifie le coefficient multiplicateur (fupsrl) pour une pression élevée de la conduite d'admission (psdss), de préférence pour une pression de la conduite d'admission (psdss) supérieure à 500 hPa.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on modifie un coefficient additif (pirg).
  5. Procédé selon la revendication 4,
    caractérisé en ce qu'
    on modifie le coefficient additif (pirg) pour une faible pression dans la conduite d'admission (psdss), de préférence pour une pression de la conduite d'admission (psdss) inférieure à 500 hPa.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on obtient la valeur de remplissage pour le débit massique d'air (rlhfm) à partir du signal d'un débitmètre massique à fil chaud (36).
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    on obtient la valeur de remplissage de la pression de la conduite d'admission (rldss) à partir d'un signal fourni par un capteur de pression (40) installé de préférence en aval d'un volet d'étranglement (26).
  8. Programme d'ordinateur comportant des codes de programmes pour exécuter toutes les étapes selon l'une des revendications 1 à 7 lorsque le programme est exécuté par un ordinateur.
  9. Produit de programmes d'ordinateur avec des codes de programmes enregistrés sur un support lisible par une machine pour la mise en oeuvre du procédé selon l'une des revendications 1 à 7, lorsque le programme est exécuté sur un ordinateur.
  10. Installation de commande et/ou de régulation pour la gestion d'un moteur à combustion interne (10), notamment d'un véhicule automobile selon lequel l'air alimente au moins une chambre de combustion (12) par l'intermédiaire d'une conduite d'admission (14) comprenant des moyens pour déterminer une valeur (rlhfm) pour remplir la chambre de combustion (12) à partir du débit massique d'air (mshfm) dans la conduite d'admission (14),
    caractérisée en ce qu'
    elle comporte des moyens supplémentaires pour déterminer une valeur (rldss) du remplissage de la chambre de combustion (12) à partir de la pression (psdss) dans la conduite d'admission (14) et des moyens qui forment la différence (Δhfmdss) entre la valeur de remplissage obtenue à partir de la pression dans la conduite d'admission (rldss) et la valeur de remplissage obtenue à partir du débit massique d'air (rlhfm) et on modifie au moins l'un des coefficients (fupsrl, pirg) utilisés pour déterminer les deux valeurs de remplissage (rldss, rlhfm) pour annuler sensiblement la différence (Δhfmdss) entre les deux valeurs de remplissage (rldss, rlhfm).
EP20010119026 2000-08-19 2001-08-07 Méthode et dispositif de commande et/ou de régulation du fonctionnement d'un moteur à combustion interne Expired - Lifetime EP1180591B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000140764 DE10040764A1 (de) 2000-08-19 2000-08-19 Verfahren, Computerprogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine
DE10040764 2000-08-19

Publications (3)

Publication Number Publication Date
EP1180591A2 EP1180591A2 (fr) 2002-02-20
EP1180591A3 EP1180591A3 (fr) 2003-02-05
EP1180591B1 true EP1180591B1 (fr) 2007-01-17

Family

ID=7653112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010119026 Expired - Lifetime EP1180591B1 (fr) 2000-08-19 2001-08-07 Méthode et dispositif de commande et/ou de régulation du fonctionnement d'un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP1180591B1 (fr)
DE (2) DE10040764A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052644A1 (de) 2010-11-29 2012-05-31 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine, Steuerelement, Brennkraftmaschine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68904437T4 (de) * 1988-01-29 1996-04-04 Hitachi Ltd Steuerung für Motor-Kraftstoffeinspritzung.
JPH07167747A (ja) * 1993-12-14 1995-07-04 Hitachi Ltd 内燃機関の二次空気供給システムの故障診断装置
DE4422184C2 (de) * 1994-06-24 2003-01-30 Bayerische Motoren Werke Ag Steuergerät für Kraftfahrzeuge mit einer Recheneinheit zur Berechnung der in einen Zylinder der Brennkraftmaschine strömenden Luftmasse

Also Published As

Publication number Publication date
EP1180591A3 (fr) 2003-02-05
DE50111883D1 (de) 2007-03-08
DE10040764A1 (de) 2002-02-28
EP1180591A2 (fr) 2002-02-20

Similar Documents

Publication Publication Date Title
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE602004003390T2 (de) Verfahren zur echtzeitbestimmung einer kraftstoffeinspritzungsströmungscharakteristik
DE2849554C2 (de) Einrichtung zum Festlegen der Zusammensetzung des Gas-Inhalts von Zylindern bei Brennkraftmaschinen
DE4007557C2 (de) Treibstoffregler für Verbrennungsmotor
WO2006069853A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
WO2007048676A1 (fr) Procede pour faire fonctionner un moteur a combustion interne
DE3020131A1 (de) Vorrichtung zur luftdurchsatzsteuerung bei einem brennkraftmotor
DE102004004490A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mindestens zwei Abgasturboladern
DE10232337B4 (de) Verfahren und Vorrichtung zur Überwachung einer Luftmassenmessvorrichtung
DE102005022691A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE69022316T2 (de) System zur Steuerung der Kraftstoffeinspritzung für turbogeladene Dieselmotoren.
WO2006117287A1 (fr) Procede pour commander un systeme d'alimentation en carburant dans un moteur a combustion interne
DE102005016809A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in wenigstens einen Brennraum einer Brennkraftmaschine
DE10163751A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10041076B4 (de) Verfahren zur Erkennung von fehlerhaften Veränderungen des Gasdurchflusses durch eine Abgasrückführleitung einer Brennkraftmaschine
DE102016006327A1 (de) Verfahren und Vorrichtung zum Adaptieren eines Abgasrückführventils
WO2009013058A1 (fr) Procédé de détermination de la masse de carburant injecté lors d'une pré-injection
WO2009095333A1 (fr) Procédé pour la commande d'un moteur à combustion interne
DE102008042819B4 (de) Verfahren und Vorrichtung zum Bestimmen einer gesamten Zylinderfüllung und/oder der aktuellen Restgasrate bei einem Verbrennungsmotor mit Abgasrückführung
DE102004038733A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE4022704C2 (de) System zur Steuerung des Zündzeitpunkts einer Brennkraftmaschine
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP2142783B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
EP1180591B1 (fr) Méthode et dispositif de commande et/ou de régulation du fonctionnement d'un moteur à combustion interne
DE102006061683A1 (de) Verfahren zur Bestimmung der eingespritzten Kraftstoffmenge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030805

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50111883

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110825

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140819

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50111883

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50111883

Country of ref document: DE

Effective date: 20150506

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161027

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111883

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301