EP1176227A1 - Verfahren zur Herstellung einer Oberflächenschicht - Google Patents

Verfahren zur Herstellung einer Oberflächenschicht Download PDF

Info

Publication number
EP1176227A1
EP1176227A1 EP01117327A EP01117327A EP1176227A1 EP 1176227 A1 EP1176227 A1 EP 1176227A1 EP 01117327 A EP01117327 A EP 01117327A EP 01117327 A EP01117327 A EP 01117327A EP 1176227 A1 EP1176227 A1 EP 1176227A1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
metal
aluminum
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01117327A
Other languages
English (en)
French (fr)
Inventor
Tilman Dr. Haug
Patrick Dr. Izquierdo
Michael Scheydecker
Oliver Storz
Tanja Tschirge
Karl-Ludwig Dr. Weisskopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1176227A1 publication Critical patent/EP1176227A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a method for producing a Surface layer according to claim 1.
  • a construction element is known from DE 197 50 599 A1, which comprises an Al2O3-containing surface layer, which by high-temperature-resistant aluminides.
  • a construction element is a sintered, porous ceramic body in a die casting mold inserted and infiltrated with aluminum under pressure. While when infiltrating, the ceramic body reacts with the aluminum, wherein said aluminides are formed.
  • the construction element usually only fills parts of the component which is why the component is partly made of aluminum and partly, especially in the tribologically stressed component areas consists of the above-mentioned construction element.
  • a ceramic body has to be formed in a complex manner, be sintered and processed before being die cast is infiltrated with aluminum. There is also a discrete one Transition between the construction element and the rest Component that acts as a carrier element, which increases liability between the elements mentioned negatively affected.
  • the invention is therefore based on the object, one against the state of the art less expensive surface layer to provide, which has a high wear resistance.
  • the task is accomplished through a method of manufacturing a Surface layer solved according to claim 1.
  • a powdery mixture of a metal and a ceramic chemically reducible by this metal is applied to the surface of a carrier element.
  • a chemical redox reaction is stimulated by an energy input and proceeds according to the following reaction scheme: Me K X + Me S ⁇ Me K Me S + Me S X
  • Me K is a metal chemically bonded in the ceramic
  • X stands for a non-metal from the group oxygen (O), carbon (C), boron (B) and / or nitrogen (N).
  • Me S stands for the metal that is contained in the applied layer in elementary form (or as an alloy). According to equation 1, the metal Me S reacts with the ceramic in such a way that it both enters into an intermetallic connection with the metal Me K and at the same time takes up its place in the ceramic, thus replacing it and thus creating a new ceramic connection.
  • the surface layer produced in this way has a particularly high wear resistance.
  • Aluminum is particularly useful as Me S metal. Aluminum reduces most ceramic compounds in the form given in Equation 1. In addition, it forms high-temperature-resistant intermetallic compounds that are particularly wear-resistant (claim 2).
  • the ceramic of the layer preferably consists of an oxide ceramic. Oxidic ceramics are particularly easy to reduce from aluminum (Al), and many oxide-ceramic raw materials are also particularly inexpensive.
  • the metal Me K which is chemically bonded in the ceramic, is preferably a transition metal or the semimetal silicon (Si), titanium (Ti) or silicon are particularly preferably used. It is possible that the ceramic contains several metals. Accordingly, preferred ceramics include titanium dioxide (TiO 2 ), silicon dioxide (SiO 2 ) or mixed oxides such as spinels, silicates or ilmenite (claim 3).
  • the surface of the carrier element can be coated by most common coating processes take place. For this include physical and chemical deposition processes, such as Sputtering, sol-gel processes, electroplating or a CVD coating. Slurry techniques such as they are common in ceramic manufacturing or painting techniques (e.g. dip painting or spraying), which is a special inexpensive layer can be generated. Furthermore are Thermal spraying methods such as flame spraying High speed flame spraying, plasma spraying, the Arc wire spraying or kinetic cold gas compacting appropriate coating processes. The process of thermal Spraying ensures a particularly dense layer and are also inexpensive to manufacture (claim 4).
  • An energy input which stimulates the reaction between the carrier element and the ceramic layer can take place in situ, in particular in the thermal spraying processes mentioned. This happens when the powdery mixture of the metal Me S and the ceramic has a temperature sufficient to start the reaction when it hits the support material.
  • additional temperature treatment is introduced.
  • the temperature treatment can be carried out selectively, ie only the areas of the carrier element provided with the layer are heated. This is particularly expedient, since the carrier element has no additional load, for. B. is exposed to corrosion or structural change.
  • particularly concentrated heat radiation e.g. from high-energy infrared lamps
  • laser radiation or induction heating are suitable (claim 5).
  • the method according to the invention can also be used on inorganic, non-metallic carrier elements Use ceramic or glass. Particularly suitable as carrier elements are components that are in the drive train and Chassis of a motor vehicle are used and high tribological Are exposed to loads. These include a. Cylinder crankcases, cylinder heads, pistons, gearboxes and synchronizer rings.
  • Cylinder liners of a cylinder crankcase made of the alloy AlSi9Cu3 are plasma sprayed with a mixture made of aluminum and titanium oxide powder coated.
  • the Powder particles have diameters between 10 ⁇ m and 50 ⁇ m.
  • the particles are in the plasma gas (argon / hydrogen) to approx. Heated at 1800 ° C, at least partially melt and hit the surface of the cylinder race in the softened state.
  • the resulting layer thickness is approx. 200 ⁇ m.
  • the powder mixture heated by the plasma basically reacts according to the reaction given in equation 2: Al + TiO 2 ⁇ Al x Ti y + Al 2 O 3
  • the reaction given in equation 1 takes place during the heating of the powder in the plasma gas. This is an in situ reaction during the application of the layer.
  • the intermetallic compounds Al x Ti y formed during this reaction can have different stoichiometric compositions x and y depending on the composition of the powder mixture and depending on the spray parameters.
  • the functional properties of the layer can be influenced by the stoichiometric composition of the intermetallic compounds. A high proportion of aluminum leads to better oxidation resistance, while a high proportion of titanium leads to better ductility and a higher melting point of the layer.
  • a suspension of a powdery mixture of aluminum (alloy AlSi12) and titanium oxide is sprayed with a spray gun, how it is used for painting, on the Cylinder liner of a cylinder crankcase (alloy Al-Si9Cu3) applied. Evaporates during a drying process the solvent, the resulting layer thickness is approximately 250 ⁇ m.
  • an infrared heater is used an energy input that is set so that a temperature of approx. 560 ° C is generated in the layer. This temperature leads to a reaction analogous to the equation 2. Also takes place at the interface between the layer and the carrier element also has a reaction according to equation 2 instead, resulting in good adhesion between the surface layer and the support element results.
  • the temperature in the layer be regulated by the amount of energy introduced.
  • the reaction temperature and the heating time can affect the course of the reaction to be controlled. It is so. B. possible the reaction before stop complete implementation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Oberflächenschicht, die mit intermetallischen Phasen durchzogen ist, die sich dadurch auszeichnet, dass auf einem Trägerelement eine Schicht aus einem Metall und einer Keramik aufgebracht wird, dass durch einen Energieeintrag während des Aufbringens der Schicht oder durch einen nachträglichen Energieeintrag eine Reaktion zwischen dem Metall und der Keramik der Schicht erfolgt und hierdurch unter Bildung von intermetallischen Phasen die Oberflächenschicht hergestellt wird.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Oberflächenschicht nach Patentanspruch 1.
Aus der DE 197 50 599 A1 ist ein Konstruktionselement bekannt, das eine Al2O3-haltige Oberflächenschicht umfasst, die von hochtemperaturbeständigen Aluminiden durchzogen ist. Zur Herstellung eines derartigen Konstruktionselementes wird ein gesinterter, poröser keramischer Körper in eine Druckgußform eingelegt und unter Druck mit Aluminium infiltriert. Während des Infiltrieren reagiert der keramische Körper mit dem Aluminium, wobei die genannten Aluminide gebildet werden. Das Konstruktionselement füllt in der Regel nur Teile des Bauteils aus, weshalb das Bauteil teilweise aus Aluminium und teilweise, insbesondere an den tribologisch belasteten Bauteilbereichen aus dem genannten Konstruktionselement besteht.
Zur Herstellung des Konstruktionselementes nach der DE 197 50 599 A1 muss in aufwendiger Weise ein keramischer Körper geformt, gesintert und bearbeitet werden, bevor er im Druckguß mit Aluminium infiltriert wird. Des Weiteren besteht ein diskreter Übergang zwischen dem Konstruktionselement und dem restlichen Bauteil, das als Trägerelement fungiert, was die Haftung zwischen den genannten Elementen negativ beeinflusst.
Der Erfindung liegt demnach die Aufgabe zu Grunde, eine gegenüber dem Stand der Technik kostengünstigere Oberflächenschicht bereitzustellen, die eine hohe Verschleißbeständigkeit aufweist.
Die Aufgabe wird durch eine Verfahren zur Herstellung einer Oberflächenschicht nach Patentanspruch 1 gelöst.
Bei dem erfindungsgemäßen Verfahren nach Patentanspruch 1 wird eine pulverförmige Mischung aus einem Metall und einer durch dieses Metall chemisch reduzierbaren Keramik auf die Oberfläche eines Trägerelementes aufgebracht. Durch einen Energieeintrag wird eine chemische Redox-Reaktion angeregt, die nach folgendem Reaktionsschema abläuft: MeKX + MeS → MeKMeS + MeSX
(Ohne Berücksichtigung von Stöchiometriekoeffizienten.) Hierbei ist MeK ein in der Keramik chemisch gebundenes Metall, X steht für ein Nichtmetall aus der Gruppe Sauerstoff (O), Kohlenstoff (C), Bor (B) und/oder Stickstoff (N). Die Bezeichnung MeS steht für das Metall, das in der aufgebrachten Schicht in elementarer Form (oder als Legierung) enthalten ist. Nach Gleichung 1 reagiert das Metall MeS mit der Keramik auf der Art, dass es sowohl eine intermetallische Verbindung mit dem Metall MeK eingeht und gleichzeitig dessen Platz in der Keramik einnimmt, dieses demnach ersetzt und somit eine neue keramische Verbindung erzeugt wird. Die so hergestellte Oberflächenschicht weist eine besonders hohe Verschleißfestigkeit auf.
Als Metall MeS ist Aluminium besonders zweckmäßig. Aluminium reduziert die meisten keramischen Verbindungen in der in Gleichung 1 angegebenen Form. Zudem bildet es hochtemperaturbeständige intermetallischen Verbindungen, die besonders verschleißfest sind (Anspruch 2).
Die Keramik der Schicht besteht bevorzugt aus einer oxidischen Keramik. Oxidische Keramiken lassen sich insbesondere von Aluminium (Al) gut reduzieren, zudem sind viele oxidkeramische Rohstoffe besonders kostengünstig. Das Metall MeK, das in der Keramik chemisch gebunden ist, ist bevorzugt ein Übergangsmetall oder das Halbmetall Silizium (Si), besonders bevorzugt finden Titan (Ti) oder Silizium Verwendung. Hierbei ist es möglich, dass die Keramik mehrere Metalle enthält. Demnach sind bevorzugte Keramiken u. a. das Titandioxid (TiO2), das Siliziudimoxid (SiO2) oder Mischoxide wie Spinelle, Silikate oder Ilmenit (Anspruch 3).
Die Beschichtung der Oberfläche des Trägerelementes kann durch die meisten gängigen Beschichtungsverfahren erfolgen. Hierzu gehören physikalische und chemische Abscheideverfahren, wie Sputtern, Sol-Gel-Prozesse, Galvanisieren oder eine CVD-Beschichtung. Besonders geeignet sind Schlickertechniken wie sie bei der Keramikherstellung üblich sind oder Lackiertechniken (z. B. Tauchlackieren oder Spritzen), womit eine besonders kostengünstige Schicht erzeugt werden kann. Des Weiteren sind Verfahren des thermischen Spritzens wie das Flammspritzen, das Hochgeschwindigkeits-Flammspritzen, das Plasmaspritzen, das Lichtbogen-Drahtspritzen oder das kinetische Kaltgaskompaktieren zweckmäßige Beschichtungsverfahren. Die Verfahren des thermischen Spritzens gewährleisten eine besonders dichte Schicht und sind ebenfalls kostengünstig herstellbar (Anspruch 4).
Ein Energieeintrag, der die Reaktion zwischen dem Trägerelement und der keramischen Schicht anregt, kann insbesondere bei den genannten thermischen Spritzverfahren in situ erfolgen. Dies geschieht, wenn die pulverförmige Mischung aus dem Metall MeS und der Keramik beim Auftreffen auf das Trägermaterial eine, für einen Reaktionsstart ausreichende Temperatur aufweist. Bei anderen Beschichtungsverfahren wird eine zusätzliche Temperaturbehandlung eingeführt. Die Termperaturbehandlung kann selektiv erfolgen, das heißt, nur die mit der Schicht versehenen Bereiche des Trägerelements werden erwärmt. Dies ist besonders zweckmäßig, da so das Trägerelement keiner zusätzlichen Belastung z. B. durch Korrosion oder Gefügeumwandlung ausgesetzt wird. Für die selektive Beheizung eignen sich besonders kozentrierte Wärmestrahlung (z. B. durch hochenergetische Infrarotlampen), Laserbestrahlung oder Induktionsbeheizung (Anspruch 5).
Es ist darauf zu achten, dass die Erweichungstemperatur oder die Zersetzungstemperatur des Trägerelementes über der Reaktionstemperatur liegt. Als Trägerelemente kommen daher insbesondere Metalle auf Eisen-Basis, aber auch Metall auf Aluminium-Basis und Nickel-Basis in Anwendung. Das erfindungsgemäße Verfahren läßt sich zudem auf anorganische, nichtmetallische Trägerelemente aus Keramik oder Glas anwenden. Besonders geeignet als Trägerelemente sind Bauteile, die im Antriebsstrang und Fahrwerk eines Kraftfahrzeuges eingesetzt werden und hohen tribologischen Belastungen ausgesetzt sind. Hierzu zählen u. a. Zylinderkurbelgehäuse, Zylinderköpfe, Kolben, Getriebegehäuse und Synchronringe.
Das erfindungsgemäße Verfahren wird in den folgenden Beispielen näher erläutert.
Beispiel 1
Zylinderlaufbahnen eines Zylinderkurbelgehäuses aus der Legierung AlSi9Cu3 werden im Plasmaspritzverfahren mit einer Mischung aus Aluminium- und Titanoxid-Pulver beschichtet. Die Pulverpartikel weisen Durchmesser zwischen 10 µm und 50 µm auf. Die Partikel werden im Plasmagas (Argon/Wasserstoff) auf ca. 1800° C erhitzt, schmelzen dabei zumindest partiell auf und treffen im erweichten Zustand auf die Oberfläche der Zylinderlaufbahn. Die hieraus resultierende Schichtdicke beträgt ca. 200 µm.
Die durch das Plasma erhitzte Pulvermischung reagiert prinzipiell nach der in Gleichung 2 angegebenen Reaktion: Al + TiO2 → AlxTiy + Al2O3
Die Gleichung ist ohne Stöchiometriekoeffizienten angegeben.
Die in Gleichung 1 angegebene Reaktion findet währen des Aufheizen des Pulvers im Plasmagas statt. Es handelt sich hier um eine in situ Reaktion während des Aufbringen der Schicht.
Die während dieser Reaktion entstehenden intermetallischen Verbindungen AlxTiy können je nach Zusammensetzung der Pulvermischung und in Abhängigkeit der Spritzparameter unterschiedliche stöchiometrische Zusammensetzungen x und y haben. Durch die stöchiometrische Zusammensetzung der intermetallischen Verbindungen können die funktionellen Eigenschaften der Schicht beeinflußt werden. Ein hoher Anteil an Aluminium führt zu einer besseren Oxidationsbeständigkeit, ein hoher Anteil an Titan führt hingegen zu einer besseren Duktilität und zu einem höheren Schmelzpunkt der Schicht.
Beispiel 2
Eine Suspension aus einer pulvrige Mischung aus Aluminium (Legierung AlSi12) und Titanoxid wird mit Hilfe einer Spritzpistole, wie sie beim Lackieren eingesetzt wird, auf die Zylinderlaufbahn eines Zylinderkurbelgehäuses (Legierung Al-Si9Cu3) aufgebracht. Während eines Trocknungsprozesses verdampft das Lösungsmittel, die resultierende Schichtdicke beträgt ca. 250 µm.
In einem weiteren Verfahrensschritt erfolgt durch einen Infrarotheizstrahler ein Energieeintrag, der so eingestellt wird, dass in der Schicht eine Temperatur von ca. 560°C erzeugt wird. Diese Temperatur führt zu einer Reaktion analog der Gleichung 2. Ferner findet an der Grenzfläche zwischen der Schicht und dem Trägerlement ebenfalls eine Reaktion nach Gleichung 2 statt, woraus eine gute Haftung zwischen der Oberflächenschicht und dem Trägerelement resultiert.
Während des Energieeintrages kann die Temperatur in der Schicht durch die eingebrachte Energiemenge geregelt werden. Durch die Reaktionstemperatur und die Heizdauer kann der Reaktionsablauf gesteuert werden. Es ist so z. B. möglich, die Reaktion vor der vollständigen Umsetzung zu stoppen. Es bleibt hierbei eine Restmenge an Aluminium in der Schicht, was sich positiv auf die Duktilität der Schicht auswirkt. Durch die Heizparameter kann somit gezielt auf die funktionellen Eigenschaften der Oberflächenschicht Einfluß genommen werden.

Claims (5)

  1. Verfahren zur Herstellung einer Oberflächenschicht, die mit intermetallischen Phasen durchzogen ist,
    dadurch gekennzeichnet, dass
    auf einem Trägerelement eine Schicht aus einem Metall und einer Keramik aufgebracht wird,
    durch einen Energieeintrag während des Aufbringens der Schicht oder durch einen nachträglichen Energieeintrag eine Reaktion zwischen dem Metall und der Keramik der Schicht erfolgt und
    hierdurch unter Bildung von intermetallischen Phasen die Oberflächenschicht hergestellt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Metall der Schicht Aluminium oder eine Aluminiumlegierung ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Keramik der Schicht eine oxidische Keramik ist.
  4. Verfahren nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    die Schicht durch ein thermisches Spritzverfahren oder durch eine Schlickertechnik oder durch eine Lackiertechnik aufgebracht wird.
  5. Verfahren nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet, dass
    der Energieeintrag über eine Infrarotheizquelle und/oder einen Laser und/oder eine Induktionswärmequelle erfolgt.
EP01117327A 2000-07-26 2001-07-18 Verfahren zur Herstellung einer Oberflächenschicht Withdrawn EP1176227A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10036264 2000-07-26
DE10036264A DE10036264B4 (de) 2000-07-26 2000-07-26 Verfahren zur Herstellung einer Oberflächenschicht

Publications (1)

Publication Number Publication Date
EP1176227A1 true EP1176227A1 (de) 2002-01-30

Family

ID=7650183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01117327A Withdrawn EP1176227A1 (de) 2000-07-26 2001-07-18 Verfahren zur Herstellung einer Oberflächenschicht

Country Status (3)

Country Link
US (1) US6803078B2 (de)
EP (1) EP1176227A1 (de)
DE (1) DE10036264B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785508A2 (de) * 2005-11-08 2007-05-16 Linde Aktiengesellschaft Verfahren zur Herstellung einer photokatalytisch aktiven Schicht

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306919B4 (de) * 2003-02-19 2006-08-17 Daimlerchrysler Ag Verbundwerkstoff aus intermetallischen Phasen und Keramik, Herstellungsverfahren und Verwendung
DE10324576A1 (de) * 2003-05-30 2004-12-23 Daimlerchrysler Ag Brennkraftmaschine
DE10345827A1 (de) * 2003-10-02 2005-05-04 Daimler Chrysler Ag Verfahren zur Beschichtung von metallischen Substraten mit oxidierenden Werkstoffen mittels Lichtbogendrahtspritzen
DE102005005359B4 (de) 2005-02-02 2009-05-07 Siemens Ag Verfahren zum Kaltgasspritzen
GB0515276D0 (en) * 2005-07-26 2005-08-31 Accentus Plc Catalyst
KR20170127903A (ko) * 2016-05-13 2017-11-22 현대자동차주식회사 인서트 주조용 실린더 라이너 및 그 제조 방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496971A (en) * 1943-04-24 1950-02-07 Sol B Wiczer Thermite coating process
JPS5036302A (de) * 1973-08-02 1975-04-05
GB2001947A (en) * 1977-07-13 1979-02-14 Castolin Sa Pulverulent coating material
JPS61270376A (ja) * 1985-01-22 1986-11-29 Toyota Motor Corp 耐摩耗性Al合金部材
US4732778A (en) * 1985-08-30 1988-03-22 Toyota Jidosha Kabushiki Kaisha Method for forming composite layer by laser irradiation upon aluminum alloy substrate surface of powder mixture containing metal carbide ceramic particles, silicon, and metal element forming inter metallic compound with silicon
US4933241A (en) * 1987-05-29 1990-06-12 United States Department Of Energy Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
EP0451093A1 (de) * 1990-04-04 1991-10-09 Alusuisse-Lonza Services Ag Hochschmelzende, metallische Verbindung
EP0497119A1 (de) * 1991-01-29 1992-08-05 Thyssen Edelstahlwerke AG Verfahren zum Beschichten von Substraten
GB2264719A (en) * 1992-01-31 1993-09-08 Welding Inst Spraying onto rotating substrates; coating internal tubular surfaces using exothermic mixture; centrifugal force
WO1994016859A1 (en) * 1993-01-25 1994-08-04 University Of Cincinnati Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
JPH101767A (ja) * 1996-06-12 1998-01-06 Takao Araki チタン−アルミニウム金属間化合物の粉体形成方法及び溶射皮膜形成方法
JP2000119835A (ja) * 1998-10-13 2000-04-25 Agency Of Ind Science & Technol 耐エロージョン性の優れた被膜の形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2015213C (en) * 1990-04-23 1998-04-14 Gilles Cliche Tic based materials and process for producing same
US5137422A (en) 1990-10-18 1992-08-11 Union Carbide Coatings Service Technology Corporation Process for producing chromium carbide-nickel base age hardenable alloy coatings and coated articles so produced
DE69109077T2 (de) * 1991-01-31 1995-12-14 Gen Electric Aluminisieren von Gegenständen, geschützt durch ein thermisch gesperrtes Überzugssystem.
JP2785087B2 (ja) 1991-07-12 1998-08-13 プラクセア・エス・ティー・テクノロジー・インコーポレイテッド 炭化クロム−時効硬化性ニッケル基合金を被覆した回転シール部材
DE4447130A1 (de) * 1994-12-29 1996-07-04 Nils Claussen Herstellung eines aluminidhaltigen keramischen Formkörpers
TW374825B (en) * 1996-01-22 1999-11-21 Klinair Environmental Technologies Ireland Ltd A pre-combustion catalytic converter and a process for producing same
DE19605858A1 (de) * 1996-02-16 1997-08-21 Claussen Nils Verfahren zur Herstellung von Al¶2¶O¶3¶-Aluminid-Composites, deren Ausführung und Verwendung
DE19750599A1 (de) 1997-01-10 1998-07-30 Claussen Nils Metall-keramisches Konstruktionselement - sein Aufbau und seine Herstellung
US6319617B1 (en) * 1999-12-17 2001-11-20 Agere Systems Gaurdian Corp. Oxide-bondable solder

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2496971A (en) * 1943-04-24 1950-02-07 Sol B Wiczer Thermite coating process
JPS5036302A (de) * 1973-08-02 1975-04-05
GB2001947A (en) * 1977-07-13 1979-02-14 Castolin Sa Pulverulent coating material
JPS61270376A (ja) * 1985-01-22 1986-11-29 Toyota Motor Corp 耐摩耗性Al合金部材
US4732778A (en) * 1985-08-30 1988-03-22 Toyota Jidosha Kabushiki Kaisha Method for forming composite layer by laser irradiation upon aluminum alloy substrate surface of powder mixture containing metal carbide ceramic particles, silicon, and metal element forming inter metallic compound with silicon
US4933241A (en) * 1987-05-29 1990-06-12 United States Department Of Energy Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
EP0451093A1 (de) * 1990-04-04 1991-10-09 Alusuisse-Lonza Services Ag Hochschmelzende, metallische Verbindung
EP0497119A1 (de) * 1991-01-29 1992-08-05 Thyssen Edelstahlwerke AG Verfahren zum Beschichten von Substraten
GB2264719A (en) * 1992-01-31 1993-09-08 Welding Inst Spraying onto rotating substrates; coating internal tubular surfaces using exothermic mixture; centrifugal force
WO1994016859A1 (en) * 1993-01-25 1994-08-04 University Of Cincinnati Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
JPH101767A (ja) * 1996-06-12 1998-01-06 Takao Araki チタン−アルミニウム金属間化合物の粉体形成方法及び溶射皮膜形成方法
JP2000119835A (ja) * 1998-10-13 2000-04-25 Agency Of Ind Science & Technol 耐エロージョン性の優れた被膜の形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197632, Derwent World Patents Index; Class M26, AN 1976-60353X, XP002183333 *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 133 (C - 418) 25 April 1987 (1987-04-25) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05 30 April 1998 (1998-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 07 29 September 2000 (2000-09-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1785508A2 (de) * 2005-11-08 2007-05-16 Linde Aktiengesellschaft Verfahren zur Herstellung einer photokatalytisch aktiven Schicht
EP1785508A3 (de) * 2005-11-08 2007-08-22 Linde Aktiengesellschaft Verfahren zur Herstellung einer photokatalytisch aktiven Schicht

Also Published As

Publication number Publication date
DE10036264B4 (de) 2004-09-16
DE10036264A1 (de) 2002-02-21
US6803078B2 (en) 2004-10-12
US20020034593A1 (en) 2002-03-21

Similar Documents

Publication Publication Date Title
EP2746613B1 (de) Bremsscheibe für ein fahrzeug
EP1176228A2 (de) Oberflächenschicht und Verfahren zur Herstellung einer Oberflächenschicht
DE3914010C2 (de) Verfahren zur Herstellung von Metall-Keramik-Verbundwerkstoffen sowie Verwendung des Verfahrens zur Steuerung der Materialeigenschaften von Verbundwerkstoffen
DE19733205B4 (de) Beschichtung für eine Zylinderlauffläche einer Hubkolbenmaschine aus einer übereutektischen Aluminium/Siliziumlegierung, Spritzpulver zu deren Herstellung und deren Verwendung
DE2632739A1 (de) Verfahren zum aufbringen eines selbsthaftenden ueberzugs aus einer nickel-aluminium-legierung oder einer nickel-titan-legierung auf ein substrat durch aufspritzen unter verwendung einer lichtbogen-spritzpistole und der dabei erhaltene formkoerper
DE102007020891A1 (de) Bremsscheibe und Verfahren zur Herstellung einer Bremsscheibe
DE102010062357B4 (de) Vorrichtung und Verfahren zur Herstellung eines mit zumindest einer Korrosionsschutzschicht beschichteten magnesiumhaltigen Substrats
EP0438971A1 (de) Beschichtetes metallisches Substrat
EP1176227A1 (de) Verfahren zur Herstellung einer Oberflächenschicht
WO2019219551A1 (de) Bremskörper und verfahren zur herstellung
DE19640789A1 (de) Verschleißfeste beschichtete Bauteile für Verbrennungskraftmaschinen, insbesondere Kolbenringe und Verfahren zu deren Herstellung
DE102004002303B4 (de) Verfahren zur Herstellung eines beschichteten Kohlenstoff/Kohlenstoff-Verbundwerkstoffes und danach hergestellter beschichteter Kohlenstoff/Kohlenstoff-Verbundwerkstoff
DE102007016411B4 (de) Halbzeug aus Molybdän, welches mit einer Schutzschicht versehen ist, und Verfahren zu dessen Herstellung
WO2012175668A2 (de) Giesstechnisches bauteil und verfahren zum aufbringen einer korrosionsschutzschicht
EP0742187B1 (de) Keramisches Bauteil
DE4419838C2 (de) Funktionsbeschichtetes Bauteil, Verfahren zur Herstellung und Verwendung
DE102004029070B4 (de) Verfahren zum Eingießen eines Rohlings aus Eisenlegierung in ein Aluminium-Gussteil
DE2715914C2 (de)
DE19651851C1 (de) Verfahren zur Herstellung von mit Platin beschichteten oxidkeramischen Gegenständen
EP1832670A2 (de) Verfahren zur dekorativen anodischen Oxidation
DE10110803A1 (de) Verfahren zum Herstellen einer metallischen Schicht auf dem Oberteil eines Kolbens einer Verbrennungskraftmaschine sowie Kolben einer Verbrennungskraftmaschine
DE102004052135A1 (de) Beschichtetes Metallsubstrat und Verfahren zu seiner Herstellung
DD296110A5 (de) Verfahren zur herstellung von hartstoffschichten mittels vakuumbogenverdampfung
DE4337571A1 (de) Verfahren zur Oberflächenbeschichtung von metallischen und keramischen Werkstoffen und dadurch beschichtete Werkstoffe sowie deren Verwendung
DD249719A1 (de) Verfahren zur erhoehung der lebensdauer thermisch beanspruchter bauteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020112

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070202