EP1175812B1 - Procede de reproduction de son audio a l'aide de haut-parleurs a ultrasons - Google Patents

Procede de reproduction de son audio a l'aide de haut-parleurs a ultrasons Download PDF

Info

Publication number
EP1175812B1
EP1175812B1 EP00925256A EP00925256A EP1175812B1 EP 1175812 B1 EP1175812 B1 EP 1175812B1 EP 00925256 A EP00925256 A EP 00925256A EP 00925256 A EP00925256 A EP 00925256A EP 1175812 B1 EP1175812 B1 EP 1175812B1
Authority
EP
European Patent Office
Prior art keywords
ultrasound
signal
frequency
sound
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00925256A
Other languages
German (de)
English (en)
Other versions
EP1175812A1 (fr
Inventor
Wolfgang Niehoff
Vladimir Gorelik
Oliver Gelhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sennheiser Electronic GmbH and Co KG
Original Assignee
Sennheiser Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sennheiser Electronic GmbH and Co KG filed Critical Sennheiser Electronic GmbH and Co KG
Priority to EP04021692A priority Critical patent/EP1484944A3/fr
Publication of EP1175812A1 publication Critical patent/EP1175812A1/fr
Application granted granted Critical
Publication of EP1175812B1 publication Critical patent/EP1175812B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/02Synthesis of acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the invention relates to a method for reproducing audio sound with Ultrasound speakers as well as a construction of the ultrasound speakers and their application.
  • DE-A-28 41 680 relates to a wireless transmission method for audio signals based on ultrasound. Audio signals are recorded using a reproduced ultrasound generating device. The thing to be played Audio signal is by a sideband amplitude modulation with a Carrier signal linked in the ultrasonic frequency range, the modulated Ultrasound signal is fed to an ultrasound transducer and the amplitude of the Ultrasound carrier signal is reduced.
  • the invention has for its object a method for reproducing Audio sound and an ultrasound speaker compared to the previous ones Approaches to improve, so that high quality sound reproduction is possible.
  • the object is achieved according to the invention with a method Claim 1 and an ultrasound speaker according to claim 2 solved.
  • the method according to the invention combines low-frequency audio sound with the strong directional characteristic of ultrasound.
  • the directional characteristic of the loudspeaker is therefore almost independent of the signal frequency.
  • the frequencies of these waves correspond to the sum and difference frequencies of the original waves and multiples thereof (n ⁇ ⁇ 1 ⁇ m ⁇ ⁇ 2 where ⁇ 1 and ⁇ 2 are frequencies of the initiated sound waves (tones) and n, m are integers).
  • the sum and difference frequencies occur in every frequency range. There are clear advantages over conventional loudspeakers in the ultrasound range in that a very strong directional characteristic of the transducers can be realized and which is outside the human hearing range.
  • the initiating signals - i.e. the ultrasonic waves - are inaudible.
  • a first tone with a frequency of 200 kHz and a second tone with a frequency of 201 kHz is emitted into the air at high sound pressure, so arise in the overlapping zone of the two tones sum and difference tones.
  • This difference tone is much louder than all other tones resulting from the interaction. Sum and difference tones only arise in a nonlinear medium such as air as distortion products.
  • the difference tones generated have the property that the spread of the Difference tones (secondary sound) in the direction of the ultrasound to be generated (initiating tones, primary sound). Furthermore, the difference tones are only in the range of the ultrasound is audible, i.e. the directional characteristic of the difference tones corresponds to that of ultrasound. Finally, the sound pressure of the differential tones increases with the frequency of ultrasound.
  • the still low-frequency audio signal to be reproduced becomes a Subject to frequency response linearization ( Figure 1, Figure 2).
  • This signal will then by a double sideband amplitude modulation with a carrier signal in Ultrasound frequency range linked. Then this ultrasound signal becomes one Dynamics (error compensation (compression)) subjected to the compressed signal subjected to a second frequency response linearization and this signal in turn fed to the ultrasound speaker.
  • the ultrasound carrier preferably by a few dB, for example 12dB, is suppressed ( Figure 2).
  • the ideal center frequency i.e. the mean between the ultrasound carrier frequency and the sideband frequency (range) of the emitted ultrasound signal results from the intended application.
  • the level of the audible sound pressure depends significantly the sound pressure of the ultrasound signal, the non-linearity parameter of the medium, the frequency of the resulting audio signal as well as the distance to the source and the Damping the medium.
  • the differential frequency wave DFW the audible sound build with increasing distance from the source. Due to the damping of the Ultrasonic wave in the air becomes the greatest sound pressure at a certain distance reached until the level increases again as the distance increases due to damping drops.
  • the attenuation of ultrasound in the air depends on the Ultrasound frequency. The higher the frequency, the higher the absorption of ultrasound in air.
  • an ideal frequency range from approx. 40kHz to 500kHz (or more) can be specified.
  • the frequency range is one hand chosen high enough to generate a DFW and one as effectively as possible to ensure sufficient frequency distance to audible sound, on the other hand but low enough that airborne damping does not have too much of an impact has the audio sound.
  • Another criterion is the directional characteristics of the Ultrasonic emitter. The higher the emitted frequency, the more directional it is the radiation.
  • the frequency shift of the low-frequency signal (speech, music, noises, Sounds) in the ultrasound range is done by amplitude modulation.
  • the carrier signal e.g. 200kHz and the lower sideband emitted via a converter and in the air superimposed.
  • the non-linear behavior of the air creates a signal whose Frequency corresponds to the difference between the carrier and sideband frequencies.
  • the sound pressure of the differential tones increases quadratic with the difference frequency of the emitted ultrasound tones.
  • the sound pressure of the differential frequencies results, among other things, from the product of the signals to be mixed.
  • the carrier When an amplitude-modulated signal is emitted, the carrier is emitted in full even in the case of a modulation pause, ie when there is no signal at the modulator.
  • the amplitude of the wearer means constant noise pollution for the ears and permanent electrical stress on the transducers.
  • the carrier is continuously emitted and has a greater amplitude than the sideband that is modulated in time with the low frequency.
  • a noise reduction can be achieved if the amplitude of the carrier is reduced, for example by a filter or already in the modulator by partial carrier suppression, and at the same time the amplitude of the upper sideband is increased. This reduces the continuous level and increases the relative carrier-related change in the level due to the modulation. In the event of carrier suppression, the lower sideband must be strongly suppressed to prevent mixing of the two sidebands with one another, which would cause severe distortion.
  • carrier reduction The measure described above can also be generally referred to as "carrier reduction”.
  • the carrier amplitude is modulated with the amplitude of the signal to be transmitted, in the event of a pause in modulation, no signal is emitted. Then is required an additionally controlled compressor stage that compensates for amplitude errors that occur result from the modulation of the carrier. To eliminate the above So a problem can be a modulation of the carrier amplitude in time with the modulating signal can be made.
  • a problem described above can be countered by a Compression of the signal to be modulated is achieved so that the signal in its dynamics is reduced and in particular the quiet signal passages in their volume can be raised. This makes the modulator optimal disqualify. After the modulation, the compression must be done by an expansion be balanced again to maintain the original dynamics. With the compression of the modulation signal described before the modulation could very good results are achieved.
  • Modulation breaks to control the converter with the carrier signal suppress (mute) so that the modulator output signal disappears if there is no input signal.
  • the amplitude-modulated low-frequency vibration is associated with high sound pressure radiated from a converter.
  • a difference frequency spectrum that corresponds to the spectrum of the low frequency.
  • single sideband modulation is particularly preferred Way suitable.
  • the carrier is in an ordinary double sideband amplitude modulation is partially suppressed, so is a suppression of the lower one Sideband indispensable because the mixture of the two sidebands with each other causes additional difference frequencies, which is in the form of a harmonic distortion undesirably noticeable.
  • the radiation of the modulated signal is like this narrow band, that the lower sideband is only reproduced very quietly.
  • the Mixing the side bands with each other is therefore sound pressure negligible. But that presupposes that the carrier is so loud that the mixture of carrier and sideband gives a much louder signal than the mixture of Sidebands with each other.
  • the modulation is therefore either as ordinary Double sideband amplitude modulation realized or as single sideband amplitude modulation, in which the carrier for further functional optimization for example 12dB is suppressed.
  • the Equalization can take place before the modulation in the low frequency range or after the Modulation in the ultrasound range. Equalization after modulation has the advantage that thereby the modulation reserve of the modulator when a Frequency range is not restricted.
  • the difference sound wave arises in the emitted ultrasound cone.
  • the cross section of the Kegels has an influence on the resulting audio frequency response.
  • the audible signal is created at the interface that is held into the sound beam.
  • the lower limit frequency depends on the cross-sectional area of the beam brought object.
  • the maximum of the sound pressure results at a certain distance from the Ultrasound source. It occurs in different audio frequencies Distances on.
  • a linear frequency response can therefore be for a specific one Set the distance only with a special distance-related equalization.
  • the Signal processing therefore has to be special for a linear frequency response include distance-dependent frequency response equalization.
  • the described analog amplitude modulation can also be implemented digitally.
  • Frequency response contours can also be used when using a Perform digital signal processor relatively easily.
  • the audio sound pressure can also be further increased by other measures become. Due to the increasing division of the wavefront in the course of Propagation, which is synonymous with the creation of harmonics. After a Energy balance does not stand for the energy that is in the harmonics Difference sound wave available. In a way, there is an energy flow from the Fundamental to the harmonics. If it succeeds in stopping this flow of energy, so the audio sound pressure could be increased. A realization suggests this as follows:
  • a sound-permeable medium contains small cavities, which together with the Material results from a variety of Helmholz resonators.
  • the resonators are on the tuned the first harmonic of the signal and thereby slow down the energy flow higher harmonics. If the cavities are filled with a non-linear medium, e.g. a liquid, this measure allows a higher value for the Achieve nonlinearity parameters, which increases the sound pressure of the differential tones would.
  • This technology makes it possible to build reflectors that passively pass through Increase the sound pressure of the differential tones.
  • the frequencies of these waves correspond to the sum and difference frequencies of the original waves and multiples thereof. (n * ⁇ 1 ⁇ m ⁇ 2 with ⁇ 1 , ⁇ 2 : frequencies of the initiated tones and n, m: gaäne numbers).
  • a tone with a frequency of 200 kHz and a second tone with a frequency of 201 kHz are used high sound pressure emitted into the air, so arise in the overlay zone both tones sum and difference tones.
  • Figure 1 and Figure 2 show block diagrams of an ultrasonic speaker, wherein Figure 2 shows an improved circuit compared to Figure 1.
  • the low-frequency audio signal becomes one Subjected to frequency response linearization and then double sideband amplitude modulation (and / or a frequency and / or phase modulation) subjected, the carrier frequency being in the ultrasound range. After that will possibly a dynamic compression or dynamic error compensation (depending on the signal). Then another one follows Frequency response linearization and that then output signal is the Ultrasound transducer supplied.
  • the circuit according to FIG. 2 differs from FIG. 1 essentially in that that instead of double sideband amplitude modulation, single sideband amplitude modulation is carried out, the carrier in the ultrasonic range about 12dB is suppressed.
  • the level of the audible sound pressure depends on Sound pressure of the ultrasound signal, the non-linearity parameter of the medium Frequency of the resulting audio signal as well as the distance to the source and the Damping the medium.
  • the differential frequency wave builds up with increasing Decency to the source. Due to the damping of the ultrasonic wave in the air the greatest sound pressure is reached at a certain distance until the level at distance increases due to damping.
  • the damping of the Ultrasound in the air depends on the frequency. The higher the frequency is, the higher the absorption of the sound in air.
  • an ideal frequency range from approx. 80 kHz to 180 kHz is specified can be.
  • the frequency range is chosen high enough to be as possible to effectively generate a DFW and a sufficient frequency separation from the to ensure audible sound, but low enough that the attenuation does not have too much of an impact on audio sound through the air.
  • Another criterion is the directional characteristic of the emitter. The higher the radiated frequency, the more The radiation is more directed.
  • a higher frequency makes sense for the close range, because the absorption of air is in the near range of negligible size, while the dimensions of the Depending on the application, transducers are so small that a stronger directivity is not achieved by shaping the converter, but only by increasing the Ultrasonic frequency can be realized.
  • the frequency shift of the low-frequency signal (speech, music, noises, Sounds) in the ultrasound range is done by an amplitude modulation. there creates a carrier signal and an upper and a lower sideband, which the contain modulated information.
  • the carrier signal e.g. 200kHz
  • the upper sideband radiated via a converter and superimposed in the air. Because of the nonlinear Behavior of the air creates a signal whose frequency is the difference from the Carrier and the sideband frequency corresponds. The higher the frequencies of the radiated tones with constant amplitude, the louder the resulting Difference tones.
  • the sound pressure of the differential tones increases quadratically with the Differential frequency of the emitted ultrasound tones.
  • the sound pressure of the differential frequencies results, among other things, from the product of the signals to be mixed.
  • the carrier When an amplitude-modulated signal is emitted, the carrier is emitted in full even in the case of a modulation pause, ie when there is no signal at the modulator.
  • the high amplitude of the wearer means constant noise pollution for the ears and permanent electrical stress on the transducers.
  • the carrier is continuously emitted and has a larger amplitude than the sideband, which is modulated in time with the low frequency. The following measures therefore make sense:
  • Noise reduction can be achieved if the amplitude of the carrier is reduced e.g. through a filter or already partially in the modulator Carrier suppression, while increasing the amplitude of the upper sideband becomes. This reduces the continuous level and the relative level on the wearer related change in level by modulation larger.
  • the lower sideband must be strongly suppressed in order to Prevent mixing of the two sidebands from each other, which is strong would cause distortion.
  • the carrier amplitude is modulated with the amplitude of the signal to be transmitted, so no signal is emitted in the event of a pause in modulation. Then one is required additional controlled compressor stage that compensates for amplitude errors that result from the modulation of the carrier.
  • the modulator output signal is hidden if none Input signal is present.
  • the amplitude-modulated low-frequency vibration is associated with high sound pressure radiated from a converter.
  • a difference frequency spectrum that corresponds to the spectrum of the low frequency.
  • single sideband modulation is optimal. If the carrier at of an ordinary double sideband AM is partially suppressed Suppression of the lower sideband is essential because of the mixture of the two Sidebands cause additional differential frequencies, which change in shape of distortion noticeable.
  • the modulation is therefore implemented either as a normal two-sideband AM or as a single sideband AM, in which the carrier is used for further function optimization about 12dB is suppressed.
  • the relationship between the electrical input signal of the piezoelectric Converter and the sound pressure level of the differential tones is non-linear. With a Compensation circuit can achieve linear transmission.
  • the Equalization can take place before the modulation in the low frequency range or after the Modulation in the ultrasound range. Equalization after modulation has the advantage that thereby the modulation reserve of the modulator when a Frequency range is not restricted.
  • the difference sound wave arises in the emitted ultrasound cone.
  • the cross section of the Kegels has an influence on the resulting audio frequency response.
  • the audible signal is created at the interface that is held into the sound beam.
  • the lower limit frequency depends on the cross-sectional area of the beam brought object.
  • the maximum of the sound pressure results at a certain distance from the Source. It occurs at different intervals for different audio frequencies.
  • a linear frequency response can therefore only for a certain distance set a special equalization equalization.
  • the signal processing must therefore have a special distance-dependent for a linear frequency response Frequency response equalization include.
  • the arrangement of the transducers plays a role here: are the transducers on a plate arranged as close as possible, the bass reproduction of the loudspeaker is quieter than in an arrangement in which the same number of transducers are attached in a ring is.
  • the described analog amplitude modulation can also be done digitally Multiplication of a sine wave (carrier) with a Low frequency signal, partial suppression of the carrier and suppression of the lower sideband are possible with a DSP module - Figure 3 -. Frequency response corrections can also be carried out relatively easily.
  • the level of audio sound pressure depends, among other things. from the nonlinearity parameter of the Medium.
  • a suitable medium between the ultrasound emitter and the receiver can be the sound pressure increase the audio signal.
  • the audio sound pressure can be increased by another measure. conditioned due to the increasing division of the wavefront as it spreads is synonymous with the creation of harmonics. After an energy balance the energy contained in the harmonics is not available for the differential sound wave Available. In a way, there is an energy flow from the fundamental to Harmonics. If it is possible to slow down this flow of energy, then that would be possible Increase audio sound pressure.
  • a sound-permeable medium contains small cavities, which together with the Material results in a large number of Heimholtz resonators.
  • the resonators are on the the first harmonics of the signal and thereby slow down the energy flow higher harmonics. If the cavities are filled with a non-linear medium, e.g. a liquid, this measure allows a higher value for the Achieve nonlinearity parameters, which increases the sound pressure of the differential tones has been.
  • This technology makes it possible to build reflectors that passively pass through Increase the sound pressure of the differential tones.
  • the process combines low-frequency audio with strong Polar pattern of ultrasound.
  • the directional characteristic of the speaker is almost independent of the signal frequency.
  • the filter is not required for narrowband converters because the transfer function of the Converter is already equivalent to that of a narrow-band filter.
  • the system must be tuned so that the carrier frequency is approximately at the -6dB point the filter edge comes to rest. Cutting the lower sideband causes a reduction in distortion.
  • Temperature-dependent drift of the filter flank of narrowband converters and Filtering must be compensated for by tracking the carrier frequency.
  • the carrier frequency is tracked as far as possible in signal pauses.
  • the filter is to be designed so that from the signal frequency of 1 kHz an attenuation of 3 dB / oct. he follows.
  • the transducer dimensions exceed approximately 1 ⁇ 4 of the lowest low-frequency wavelength to be emitted, so occur in the near field of the transducer increasing distortion due to differences in transit time of the signals.
  • the Dimensions of the transducer should therefore be smaller than the stated wavelength be dimensioned.
  • An even more directed radiation of the audio tape can be achieve as follows:
  • the sound pressure of the audio tape depends on the product of the sound pressure of the Carrier signal and the sideband. By increasing the sound pressure-either of the carrier or the sideband - the resulting increases Sound pressure in the audio frequency range.
  • the radiation of a broad Frequency range at high sound pressure poses certain difficulties.
  • a special, very narrow-band, sensitive and very directional converter generates the carrier signal, while the sideband with a broadband Converter / converter array is superimposed. Since the sound pressure from the Product of the two ultrasound sound pressures to be superimposed can be over the sound pressure of the wearer within wide limits the sound pressure of the audio wave adjust and at the same time the level of the Reduce the ultrasound carrier. The superposition of sound waves and generation of mixed products, however, takes place only in the area where both sound waves equally fill the room. Because of the very strong possible Directional characteristics of the carrier radiator also result from this for the audio wave a very pronounced directivity.
  • A is used to generate the audio signal from the modulated ultrasound signal certain distance required along which the wave is in the air demodulated. If the ultrasound has covered the required distance, then so causes a permeable for audio frequencies, but for ultrasound impermeable filter that the audio wave is clearly audible, the ultrasonic signal but is strongly dampened.
  • the filter has on the directional characteristic of the converter no significant impact.
  • the filter must be designed so that there are frequencies above the listening range heavily attenuated, while audio frequencies experience little attenuation. It is sensibly arranged at the end of the generation zone.
  • the modulator contains one Circuit that fulfills this function.
  • Moving the audio sound can also be done with a Running speed of the treadmill / escalator synchronized switching from ultrasound emitters located above the listener, which always only the areas of the room where the listener is moving.
  • the method is a combination of the "phased array” technique and the one above described “ultrasonic speakers”.
  • FIGS. 4a and 4b show the propagation of an audio sound wave that is generated by an ultrasound transducer.
  • virtual audio sound sources virtual loudspeakers
  • Small loudspeakers are mounted close to each other on a bar, all of which can emit audio sound as spherical emitters (FIG. 5) and which are controlled with the same audio signal with a time delay.
  • the sound coming from the first loudspeaker is amplified by the second, etc.
  • the large number of loudspeakers an infinite number of virtual sound sources arise in the ultrasound beam, which are switched on depending on the location with the duration of the sound, results in a very strong concentration of the audio sound.
  • the audio sound in the ultrasound beam according to the invention arises in Ultrasound beam itself.
  • the speaker becomes louder until the Ultrasound level has decreased so far that the non-linear effect of the air is not works more and therefore no more parts are added to the audio sound generation become.
  • the length of the active zone of audio sound generation in the ultrasound beam determines the lower limit frequency of the directional audio sound source. To have to there should be at least as many virtual sound sources as the active zone is several wavelengths long at the lower cutoff frequency. Therefore require Audio frequencies below 100 Hz large distances between the listener and the ultrasound emitter (and thus also high output powers). Use offers a solution psychoacoustic signal processing as described above.
  • the level and the lower Playback frequency of the audio signal are location-dependent.
  • the one to generate the Audio ultrasound levels which are in principle necessary, only have to be in the active zone of the ultrasound beam. Is the directional audio sound beam first generated, you can the ultrasound portion with an acoustic low-pass filter Eliminate (ultrasound absorber permeable to sound).
  • FIGS. 6a and 6b show typical application examples of the ultrasound emitter, which is arranged under a ceiling and which are modulated with audio signals Directs ultrasound rays to a wall, one of which is ultrasound absorbing Coating (ultrasound reflection coating) aligned so that ultrasound absorbs will have. The then reflected audio signals are free from ultrasound and can be transmitted from the People are heard in front of the wall.
  • Coating ultrasound reflection coating
  • Ultrasonic film transducers are also particularly suitable of a capacitor (electret) converter a foil and one accordingly (with grooves or holes) formed counter electrode.
  • the embodiment variant is also advantageous, in which a Distance measuring device to an ultrasonic measuring device is determined where there is a listener to be sonicated. If this is in a critical area Ultrasound beam, which could be harmful to health, will Ultrasound playback is switched off so that the respective person (or the animal) is not exposed to high ultrasound levels. If the ultrasound is on you certain area should be directed and if this area is still moved (this is the case, for example, with a single listener who is on a Stage should be moved and sonicated) so it is advantageous if one Device is designed by means of which the listener to be sounded is currently localized can be, so that the sound is then preferably only on the localized Area.
  • the sonic listener carries a transmitter with navigation (e.g. GPS) and thus constantly its own navigation data to a receiving device which in turn sends to control the pivoting of the ultrasound beam is used.
  • the listener to be sounded could also use a so-called TAG identifier, its exact position from a corresponding one Interogator (query unit for the TAG) is determined, with which then in turn the pivoting of the ultrasound beams is controlled.
  • TAG identifier so-called TAG identifier, its exact position from a corresponding one Interogator (query unit for the TAG) is determined, with which then in turn the pivoting of the ultrasound beams is controlled.
  • Such applications are particularly advantageous in a theater (for the prompter) or also in the television studio at a TV show, when it’s over the stage moving moderator should receive instructions that are not for the rest of the audience should be audible.
  • the panning of the ultrasound beam can be done with that in this application Descriptive different techniques take place, that is, by pivoting the Ultrasound emitter or through a swiveling reflector or through the So-called "phased array” control, the ultrasound beams is determined electronically.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Claims (31)

  1. Dispositif de reproduction de son audio au moyen d'un équipement à ultrasons, le signal audio à reproduire étant associé à un signal porteur dans la gamme de fréquence ultrasonique via une modulation d'amplitude à bande latérale, avec
    des moyens destinés à réduire l'amplitude du signal porteur ultrasonore, caractérisé par
    des moyens qui soumettent le signal ultrasonore modulé à une compensation d'erreur dynamique, et
    le cas échéant, des moyens qui soumettent le signal ultrasonore compensé à une linéarisation de la réponse harmonique et l'amènent à un convertisseur à ultrasons.
  2. Dispositif selon la revendication 1, caractérisé par des moyens destinés à réprimer le signal ultrasonore en pauses de modulation, si aucun signal audio ne doit ainsi être reproduit et/ou des moyens qui soumettent le signal ultrasonore compensé à une linéarisation de la réponse harmonique.
  3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal audio à reproduire est soumis à une linéarisation de la réponse harmonique avant la modulation.
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal audio à reproduire est soumis à une modulation d'amplitude à double bande latérale ou à une modulation d'amplitude à bande latérale unique.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens qui répriment le support à ultrasons à un chiffre compris approximativement entre 8 et 20 dB.
  6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la fréquence du signal porteur ultrasonore est comprise dans la gamme allant approximativement de 40 kHz à 500 kHz.
  7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens destinés à réprimer la bande latérale inférieure lors d'une modulation d'amplitude à bande latérale unique.
  8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens destinés à effectuer une correction après la modulation d'amplitude.
  9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par plusieurs convertisseurs à ultrasons montés en parallèle.
  10. Dispositif selon la revendication 9, caractérisé en ce que les convertisseurs sont disposés le plus serré possible sur une plaque.
  11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un processeur numérique de signaux destiné à la réalisation de la modulation.
  12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par la disposition d'un mélange eau/bulles d'air sur le parcours de propagation des ultrasons du dispositif.
  13. Dispositif selon la revendication 12, caractérisé par un écouteur casque avec un mélange eau/bulles d'air.
  14. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un milieu de transmission acoustique sur le parcours de propagation des faisceaux ultrasonores, ledit milieu comportant des cavités présentant, avec le matériau du milieu, plusieurs résonateurs de Helmholtz qui s'harmonisent avec la première harmonique du signal ultrasonore.
  15. Dispositif selon la revendication 14, caractérisé en ce que les cavités sont remplies d'un milieu non-linéaire.
  16. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par plusieurs convertisseurs disposés en cercle.
  17. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le signal porteur ultrasonore est amené à un premier convertisseur et en ce que le signal à bande latéral est amené à un second convertisseur.
  18. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle d'ouverture d'un convertisseur à ultrasons est compris dans une gamme allant approximativement de 0,5 à 10°.
  19. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens destinés à préaccentuer le signal audio.
  20. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens destinés à orienter le faisceau ultrasonore dans une direction souhaitée.
  21. Dispositif selon la revendication 20, caractérisé en ce que les moyens destinés à orienter le signal ultrasonore se composent d'une unité mécanique pivotante de l'émetteur d'ultrasons et/ou d'une attaque électronique de l'émetteur d'ultrasons à la manière d'un « phased array » et/ou en ce qu'un réflecteur orientable réfléchissant les ultrasons dans une direction souhaitée est réalisé.
  22. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif à ultrasons forme un papier peint à ultrasons, de manière à ce que lors de l'écoute, on a l'impression que le son provient directement du mur.
  23. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la bande support de la bande de faisceau ultrasonore et la bande latérale du faisceau ultrasonore sont générées par différents convertisseurs.
  24. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par des moyens destinés au prétraitement psychoacoustique du signal audio basse fréquence.
  25. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif est réalisé sous forme de tapis roulant acoustique, de manière à ce qu'en cas de passage d'un auditeur devant un convertisseur à ultrasons, seul l'auditeur en mouvement est sonorisé, et non l'espace environnant.
  26. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par au moins un convertisseur à ultrasons qui sert exclusivement ou en complément à l'émission d'ultrasons d'équipement d'émission et/ou de réception d'un équipement de mesure des distances s'appuyant sur des ultrasons.
  27. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les caractéristiques du signal audio à reproduire sont déterminées par la taille de la surface de réflexion, afin de compenser ainsi la linéarisation de la réponse harmonique et/ou la correction du signal audio.
  28. Dispositif selon l'une quelconque des revendications précédentes, caractérisé par un modulateur destiné à la modulation de fréquence et/ou de phase du signal audio à reproduire.
  29. Utilisation d'un dispositif de reproduction d'ultrasons selon l'une quelconque des revendications précédentes dans une exposition d'oeuvres d'art et/ou dans un musée ou destinée à la compensation active du bruit et/ou dans des systèmes de conférence et/ou comme haut-parleur en remplacement d'écouteurs casques et/ou destinée à la sonorisation dirigée sur une scène et/ou comme haut-parleur adressable et/ou destiné à la sonorisation de postes de travail informatiques et/ou comme haut-parleur d'ambiance et/ou destinée à la sonorisation acoustique de zones bien définies et/ou dans un dispositif mains libres.
  30. Utilisation selon la revendication 29, destinée à la sonorisation d'une zone à travers laquelle l'auditeur se déplace et/ou à travers laquelle l'auditeur est déplacé, le niveau de reproduction du signal ultrasonore étant toujours dirigé vers l'auditeur en mouvement.
  31. Procédé de reproduction de son audio au moyen d'un équipement à ultrasons, le signal audio à reproduire étant associé à un signal porteur dans la gamme de fréquence ultrasonique via une modulation d'amplitude à bande latérale, avec les étapes suivantes :
    réduction de l'amplitude du signal porteur ultrasonore,
    amenée du signal à un convertisseur à ultrasons, caractérisée par
    réalisation d'une compensation d'erreur dynamique,
    réalisation d'une linéarisation de la réponse harmonique du signal ultrasonore compensé.
EP00925256A 1999-04-30 2000-05-02 Procede de reproduction de son audio a l'aide de haut-parleurs a ultrasons Expired - Lifetime EP1175812B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04021692A EP1484944A3 (fr) 1999-04-30 2000-05-02 Procédé de reproduction d'un signal audio avec un haut-parleur ultrasonore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19919980 1999-04-30
DE19919980 1999-04-30
PCT/EP2000/003931 WO2001008449A1 (fr) 1999-04-30 2000-05-02 Procede de reproduction de son audio a l'aide de haut-parleurs a ultrasons

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04021692A Division EP1484944A3 (fr) 1999-04-30 2000-05-02 Procédé de reproduction d'un signal audio avec un haut-parleur ultrasonore

Publications (2)

Publication Number Publication Date
EP1175812A1 EP1175812A1 (fr) 2002-01-30
EP1175812B1 true EP1175812B1 (fr) 2004-09-15

Family

ID=7906594

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00925256A Expired - Lifetime EP1175812B1 (fr) 1999-04-30 2000-05-02 Procede de reproduction de son audio a l'aide de haut-parleurs a ultrasons
EP04021692A Withdrawn EP1484944A3 (fr) 1999-04-30 2000-05-02 Procédé de reproduction d'un signal audio avec un haut-parleur ultrasonore

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04021692A Withdrawn EP1484944A3 (fr) 1999-04-30 2000-05-02 Procédé de reproduction d'un signal audio avec un haut-parleur ultrasonore

Country Status (6)

Country Link
US (1) US20050207590A1 (fr)
EP (2) EP1175812B1 (fr)
AT (1) ATE276636T1 (fr)
AU (1) AU4403600A (fr)
DE (1) DE50007789D1 (fr)
WO (1) WO2001008449A1 (fr)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577738B2 (en) 1996-07-17 2003-06-10 American Technology Corporation Parametric virtual speaker and surround-sound system
JP2000050387A (ja) 1998-07-16 2000-02-18 Massachusetts Inst Of Technol <Mit> パラメトリックオ―ディオシステム
US7391872B2 (en) 1999-04-27 2008-06-24 Frank Joseph Pompei Parametric audio system
CN100358393C (zh) 1999-09-29 2007-12-26 1...有限公司 定向声音的方法和设备
US6934402B2 (en) 2001-01-26 2005-08-23 American Technology Corporation Planar-magnetic speakers with secondary magnetic structure
EP1402755A2 (fr) * 2001-03-27 2004-03-31 1... Limited Procede et appareil permettant de creer un champ acoustique
DE10117528B4 (de) * 2001-04-07 2004-04-01 Daimlerchrysler Ag Ultraschallbasiertes parametrisches Mehrwege-Lautsprechersystem
DE10117529B4 (de) * 2001-04-07 2005-04-28 Daimler Chrysler Ag Ultraschallbasiertes parametrisches Lautsprechersystem
DE10140646C2 (de) * 2001-08-18 2003-11-20 Daimler Chrysler Ag Verfahren und Vorrichtung zur gerichteten Audio-Beschallung
US7109789B2 (en) 2002-01-18 2006-09-19 American Technology Corporation Modulator—amplifier
GB0203895D0 (en) * 2002-02-19 2002-04-03 1 Ltd Compact surround-sound system
US20040114770A1 (en) 2002-10-30 2004-06-17 Pompei Frank Joseph Directed acoustic sound system
US6793177B2 (en) 2002-11-04 2004-09-21 The Bonutti 2003 Trust-A Active drag and thrust modulation system and method
DE10255794B3 (de) * 2002-11-28 2004-09-02 Daimlerchrysler Ag Akustische Schallführung im Fahrzeug
GB0301093D0 (en) * 2003-01-17 2003-02-19 1 Ltd Set-up method for array-type sound systems
GB0304126D0 (en) 2003-02-24 2003-03-26 1 Ltd Sound beam loudspeaker system
GB0321676D0 (en) * 2003-09-16 2003-10-15 1 Ltd Digital loudspeaker
KR200355341Y1 (ko) * 2004-04-02 2004-07-06 주식회사 솔리토닉스 초음파 스피커 시스템을 구비하는 이동통신 단말기용 보드
SG115665A1 (en) 2004-04-06 2005-10-28 Sony Corp Method and apparatus to generate an audio beam with high quality
GB0415625D0 (en) * 2004-07-13 2004-08-18 1 Ltd Miniature surround-sound loudspeaker
GB0415626D0 (en) * 2004-07-13 2004-08-18 1 Ltd Directional microphone
WO2006016156A1 (fr) * 2004-08-10 2006-02-16 1...Limited Batterie de transducteurs non-planaires
GB0514361D0 (en) * 2005-07-12 2005-08-17 1 Ltd Compact surround sound effects system
DE102005058826A1 (de) * 2005-12-09 2007-06-14 Robert Bosch Gmbh Lautsprechersystem
US8116482B2 (en) * 2006-08-28 2012-02-14 Southwest Research Institute Low noise microphone for use in windy environments and/or in the presence of engine noise
EP2109328B1 (fr) 2008-04-09 2014-10-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Appareil pour le traitement d'un signal audio
JP5597702B2 (ja) * 2009-06-05 2014-10-01 コーニンクレッカ フィリップス エヌ ヴェ サラウンド・サウンド・システムおよびそのための方法
US8340435B2 (en) 2009-06-11 2012-12-25 California Institute Of Technology Method and system for object recognition search
JP4752963B2 (ja) * 2009-08-05 2011-08-17 株式会社デンソー 車両存在報知装置
US9002032B2 (en) 2010-06-14 2015-04-07 Turtle Beach Corporation Parametric signal processing systems and methods
DE102012000745A1 (de) * 2011-04-07 2012-10-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wiedergabegerät für Ton und Bild
US9036831B2 (en) 2012-01-10 2015-05-19 Turtle Beach Corporation Amplification system, carrier tracking systems and related methods for use in parametric sound systems
ES2375857B1 (es) * 2012-01-13 2012-09-12 Universitat Ramón Llull Fundació Privada Fuente sonora omnidireccional y procedimiento para generar sonidos omnidireccionales.
WO2013158298A1 (fr) 2012-04-18 2013-10-24 Parametric Sound Corporation Procédés associés à des transducteurs paramétriques
US8934650B1 (en) 2012-07-03 2015-01-13 Turtle Beach Corporation Low profile parametric transducers and related methods
CN104620601A (zh) * 2012-09-14 2015-05-13 Nec卡西欧移动通信株式会社 扬声器设备和电子装置
WO2014127126A1 (fr) * 2013-02-14 2014-08-21 New York University Téléphone portable
US8903104B2 (en) 2013-04-16 2014-12-02 Turtle Beach Corporation Video gaming system with ultrasonic speakers
US9332344B2 (en) 2013-06-13 2016-05-03 Turtle Beach Corporation Self-bias emitter circuit
US8988911B2 (en) 2013-06-13 2015-03-24 Turtle Beach Corporation Self-bias emitter circuit
US9525953B2 (en) * 2013-10-03 2016-12-20 Russell Louis Storms, Sr. Method and apparatus for transit system annunciators
US9510089B2 (en) 2013-10-21 2016-11-29 Turtle Beach Corporation Dynamic location determination for a directionally controllable parametric emitter
US20150110286A1 (en) * 2013-10-21 2015-04-23 Turtle Beach Corporation Directionally controllable parametric emitter
US9596529B2 (en) * 2013-10-21 2017-03-14 Turtle Beach Corporation Parametric transducer with adaptive carrier amplitude
US9565284B2 (en) 2014-04-16 2017-02-07 Elwha Llc Systems and methods for automatically connecting a user of a hands-free intercommunication system
US9779593B2 (en) 2014-08-15 2017-10-03 Elwha Llc Systems and methods for positioning a user of a hands-free intercommunication system
US9131068B2 (en) 2014-02-06 2015-09-08 Elwha Llc Systems and methods for automatically connecting a user of a hands-free intercommunication system
US20160118036A1 (en) 2014-10-23 2016-04-28 Elwha Llc Systems and methods for positioning a user of a hands-free intercommunication system
AT515579A1 (de) * 2014-03-04 2015-10-15 Siemens Ag Oesterreich Beschallungssystem
TWI544807B (zh) * 2014-07-18 2016-08-01 緯創資通股份有限公司 具喇叭模組的顯示裝置
DE102017211923A1 (de) * 2017-07-12 2019-02-07 Zf Friedrichshafen Ag Lokalisierte Informationsausgabe
CN108777139A (zh) * 2018-04-08 2018-11-09 杭州电子科技大学 一种声音定向传播的闹钟
US10887368B2 (en) * 2019-02-25 2021-01-05 International Business Machines Corporation Monitoring quality of a conference call for muted participants thereto
CN113573207B (zh) * 2020-04-29 2022-09-23 维沃移动通信有限公司 电子设备
US20220130369A1 (en) * 2020-10-28 2022-04-28 Gulfstream Aerospace Corporation Quiet flight deck communication using ultrasonic phased array
US11256878B1 (en) * 2020-12-04 2022-02-22 Zaps Labs, Inc. Directed sound transmission systems and methods
CN112995840A (zh) * 2021-02-19 2021-06-18 歌尔科技有限公司 基于超声波的传声方法、装置、设备及可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2841680C3 (de) * 1978-09-25 1981-03-26 Sennheiser Electronic Kg, 30900 Wedemark Mittels Ultraschall arbeitendes drahtloses Übertragungsverfahren für Tonsignale und Empfangseinrichtung zur Durchführung des Verfahrens
US4376916A (en) * 1980-05-29 1983-03-15 Cbs Inc. Signal compression and expansion system
US5159703A (en) * 1989-12-28 1992-10-27 Lowery Oliver M Silent subliminal presentation system
US5095509A (en) * 1990-08-31 1992-03-10 Volk William D Audio reproduction utilizing a bilevel switching speaker drive signal
DE19628849C2 (de) * 1996-07-17 2002-10-17 Eads Deutschland Gmbh Akustischer Richtstrahler durch modulierten Ultraschall
US5859915A (en) * 1997-04-30 1999-01-12 American Technology Corporation Lighted enhanced bullhorn

Also Published As

Publication number Publication date
ATE276636T1 (de) 2004-10-15
DE50007789D1 (de) 2004-10-21
EP1175812A1 (fr) 2002-01-30
EP1484944A2 (fr) 2004-12-08
US20050207590A1 (en) 2005-09-22
EP1484944A3 (fr) 2004-12-15
AU4403600A (en) 2001-02-13
WO2001008449A1 (fr) 2001-02-01

Similar Documents

Publication Publication Date Title
EP1175812B1 (fr) Procede de reproduction de son audio a l&#39;aide de haut-parleurs a ultrasons
DE69921558T2 (de) Parametrisches Audiosystem
EP3280161B1 (fr) Système d&#39;haut-parleurs
DE102008019660B4 (de) Audiowiedergabevorrichtung
DE2910117C2 (de) Lautsprecherkombination zur Wiedergabe eines zwei- oder mehrkanalig übertragenen Schallereignisses
US6577738B2 (en) Parametric virtual speaker and surround-sound system
DE10255794B3 (de) Akustische Schallführung im Fahrzeug
JP2004527968A5 (fr)
DE102006017791A1 (de) Wiedergabegerät und Wiedergabeverfahren
EP3677053B1 (fr) Système de haut-parleurs pour son ambiophonique avec suppression des bruits directs non souhaités
DE102005003431B4 (de) Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
DE112018001396T5 (de) Sprachverschlüsselungssystem und/oder dazugehöriges Verfahren
DE112018001333T5 (de) Sprachverschlüsselungssystem und/oder dazugehöriges verfahren
DE10117529A1 (de) Ultraschallbasiertes parametrisches Lautsprechersystem
EP1868412A2 (fr) Dispositif de haut-parleur pour la sonorisation directionnelle d&#39;un siège de véhicule automobile
JP3852413B2 (ja) 指向性拡声装置
WO1995030323A1 (fr) Procede et dispositif pour la compensation de falsifications acoustiques
JP2688051B2 (ja) 放送空間の限定装置
DE102019107173A1 (de) Verfahren und Vorrichtung zum Erzeugen und Ausgeben eines Audiosignals zum Erweitern des Höreindrucks bei Live-Veranstaltungen
DE3233990C2 (de) Verfahren und Vorrichtungen zur verbesserten Wiedergabe von Phantomschallquellen
DE4426696C1 (de) Elektroakustischer Wandler zur Aufnahme oder Wiedergabe stereophonischer Signale
DE3620170A1 (de) Schaltungsanordnung fuer eine tonwiedergabeeinrichtung
AT407687B (de) Anlage zur wiedergabe eines schallereignisses in einem grossflächigen zuhörerraum
DE202009017930U1 (de) Virtuelles Mikrofon mit fremdmoduliertem Ultraschall
DE2637881A1 (de) Elektroakustisches wiedergabeverfahren zur optimierung der stereomusikabstrahlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040915

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50007789

Country of ref document: DE

Date of ref document: 20041021

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040915

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050502

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050616

BERE Be: lapsed

Owner name: *SENNHEISER ELECTRONIC G.M.B.H. & CO. K.G.

Effective date: 20050531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *SENNHEISER ELECTRONIC G.M.B.H. & CO. K.G.

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150521

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150519

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160517

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160502

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50007789

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201