EP1167757B1 - Pumpe für niedrige Flussraten - Google Patents
Pumpe für niedrige Flussraten Download PDFInfo
- Publication number
- EP1167757B1 EP1167757B1 EP01114608A EP01114608A EP1167757B1 EP 1167757 B1 EP1167757 B1 EP 1167757B1 EP 01114608 A EP01114608 A EP 01114608A EP 01114608 A EP01114608 A EP 01114608A EP 1167757 B1 EP1167757 B1 EP 1167757B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- pump
- liquid
- transport
- transport liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Definitions
- the present invention relates to a pump for flow rates in the range of about 1 to 1000 nl / min.
- pumps according to the invention are for applications in the medical field Diagnostics such as microdialysis or ultrafiltration are suitable.
- a pump for low flow rates which has a channel that at least is partially filled with a transport liquid and one that can be wetted by the transport liquid Membrane, which closes an opening of the channel and through which an evaporation can be done.
- Located on the side of the membrane opposite the transport liquid a room with a substantially constant vapor pressure of the transport liquid. to Invention also include microdialysis and ultrafiltration systems, with a pump like mentioned above.
- Miniaturized pumps are known in the art e.g. Peristaltic pumps, with which flow rates down to about 100nl / min can be achieved. In the focus of development miniaturized pumps generally have the highest possible delivery rate with minimal Pump volume. It has also been shown that such pumps in long-term applications in lower conveyor range do not work reliably and in particular larger fluctuations of the flow rates achieved can hardly be avoided. In the field of ultrafiltration and microdialysis Arrangements are also known in which a vacuum reservoir (for example a drawn-up syringe) connected to a fluid system via a capillary throttle section is. The disadvantage here is the non-linear pressure curve over time. Another Arrangement for achieving low flow rates is known from document WO 95/10221.
- This arrangement becomes a liquid in a channel with a sorbent brought into direct contact.
- Such a system typically has flow rates in the range of a few ⁇ l / min.
- the long-term constancy (measured over several days) of this pump is fair low.
- the object of the present invention was to provide a pump for very low flow rates to provide, which works reliably and a sufficiently high constancy of the flow rate, over has a longer period (e.g. several days). Furthermore, it was the task of the present Invention to propose a pump for such low flow rates that is very simple and is inexpensive to manufacture. The pump should also be easy to manufacture with integrated microfluidic systems based on planar technologies (e.g. micro technology) compatible his.
- a transport liquid in a channel which has an opening which is closed by a membrane wettable by the transport liquid is. Due to capillary effects, transport liquid enters the membrane and is essentially through capillary channels through the membrane into a gas space constant vapor pressure of the transport liquid removed, or from a suitable sorbent physically or chemically bound (absorbed) so that further evaporation can take place freely through the membrane.
- the constant vapor pressure conditions cause a constant flow rate in the gas space.
- transport fluids can generally be used, which in penetrate a membrane and evaporate through it.
- aqueous transport liquids are preferred within the scope of the present Invention.
- aqueous Transport fluids contain substances or mixtures of substances that affect the surface tension and / or influence the viscosity, so the penetration behavior of the transport liquid into the To be able to adjust the membrane to a desired value.
- the transport liquids preferably contain however no substances that cannot be evaporated at room temperature, such as e.g. B. Salts as these could clog the membrane.
- suitable embodiments are described.
- the channel of the pump according to the invention preferably has an area in the range from 1 to 10 5 ⁇ m 2 and a length of 1-1000 mm.
- the cross section is preferably enlarged laterally (1 to 1000 mm 2 ) in order to provide a sufficiently large exchange surface with the adjacent gas space.
- the evaporation process on the membrane removes transport liquid from the fluid channel, so that a negative pressure is generated which produces the desired pumping action.
- the pump can be used to transport the transport liquid itself if it is used, for example, as a perfusion liquid in the context of a microdialysis.
- a working fluid which is used, for example, as a perfusate or else for other purposes is located in the fluid channel, segmented by the transport liquid.
- evaporation of the transport liquid creates a negative pressure in the channel, which transports a fluid from the environment into the fluid channel. In the field of ultrafiltration, this would be an external fluid (interstitial fluid) that enters the channel through an ultrafiltration membrane.
- membrane in the sense of the present invention is intended to generally include structures is sucked and evaporated by the liquid through capillary forces from the fluid channel.
- the one Arrays also have a large number of generally disordered capillary channels (Under certain circumstances only a few) capillary channels can be covered by the term membrane.
- a Such an embodiment is described in more detail in connection with the figures.
- Such Capillary arrays can be manufactured using microtechnical methods, with very small ones and constant cross sections can also be achieved. With such capillary-active membranes can be realized very low flow rates, the manufacturing technology on the number and Cross-section of the capillary channels can be adjusted.
- the Evaporation rate can also be checked.
- a hydrophobic, non-wettable membrane e.g. Teflon
- the detour can be made via an additional one Transport liquid (e.g. degassed and deionized water) the function of the Ensure the pump.
- Transport liquid e.g. degassed and deionized water
- the two liquids e.g. Ringer's solution and pure water
- a diffusion barrier can also be used, in which the above-mentioned Example the Ringer's solution one or more interconnected reservoirs (i.e., a dilution cascade) displaced water volume and the associated dilution ensures a sufficient reduction in the salt concentration on the evaporation membrane. Salting out of the membrane, which can change the pumping rate, can occur Consequences would have to be avoided or at least reduced.
- the advantage of this solution is that Avoid moving parts (e.g. a sagging membrane) and in the simple manufacture and integration into the pump body.
- Another advantage of this solution is that the reservoirs depend on the geometric design of the transport route in whole or in part as a bubble trap for possible in the to be transported Gases present in the liquid or released during transport can act and so one Help prevent direct contact of gas bubbles with the evaporation membrane.
- Transport liquid Another easy way to segment liquid and liquid to be transported Transport liquid consists in introducing a gas bubble that both liquids permanently separates from each other.
- the volume of this gas bubble must be large enough to to guarantee segmentation for all changes in cross-section of the transport route, if necessary also in the container that serves as a storage medium for the transport liquid.
- An advantage of the solution with one or more reservoirs for the dilution of the transported Liquid versus gas bubble for segmentation is that even after stronger shaking movements, which in the case of gas bubble segmentation to mix the could carry liquids, the function is still guaranteed.
- a possible resolution the gas bubble in the liquid also has the disadvantage of an additional temperature dependence the flow rate due to temperature-related expansion / contraction of the gas buffer on.
- An essential aspect of the present invention is that which can be wetted by the transport liquid Membrane.
- the pumping effect of the membrane is based on the fact that there is a liquid is sucked up by surface forces in capillaries or pores of the membrane.
- the one on this Capillary pressure that can be generated in this way is directly proportional to the surface tension of the liquid and the cosine of the contact angle of the liquid with the membrane material and vice versa proportional to the radius of the capillaries or pores.
- membranes are therefore suitable, the contact angle of which on the part of the transport fluid is between 0 and 90 degrees. From the given context it can also be seen that the capillary pressure increases with decreasing diameter of the capillaries or pores.
- typical Pore diameters of capillaries in the membrane are in the range from 10nm to 100 ⁇ m. It is important for the present invention that the transport liquid is in direct contact occurs with the membrane so that a capillary effect occurs. Accordingly, must be prevented be that the liquid contact between the transport fluid and membrane breaks off, which is the case can be when the pore diameter of the membrane becomes too large and thereby the capillary pressure decreases, or also be caused by a defect (hole) in the membrane can, which leads to a pressure compensation by back-flowing gas.
- membrane systems that in addition a wettable membrane have another membrane on which the transport liquid facing away from the first membrane.
- you can such membranes in which no liquid with high surface tension can penetrate, for example membranes made of PTFE, Cuprophan ® or Gambran ®.
- membranes made of PTFE, Cuprophan ® or Gambran ® about the Properties of this second membrane can reduce the evaporation rate of the transport liquid be modulated.
- membranes can be used, the different Have areas of which an area facing the transport liquid is wettable and a remote area is not wettable.
- Integrated manufacture of pump body and diaphragm is also possible or the use of customized membranes with a defined pore size and distribution in a hybrid approach.
- the integrated manufacture of such membranes is e.g. B. based on silicon described in T. A. Desai et al, Biomedical Microdevices 2 (1999), 11-41.
- Another possibility is to use a microporous Si membrane with statistical Distribution of pore sizes (R.W. Tjerkstra et al., Micro Total Analyors Systems '98, Kluwer 1998, pp. 133-136).
- polymer substrates such membranes can e.g. B. with Laser ablation, hot stamping, etc. can be produced.
- the pumping action of the membrane used is maintained as long as the partial pressure the liquid to be pumped on the side of the membrane facing away from the liquid (gas side) is less than the saturation vapor pressure at the respective working temperature.
- vapor pressure constant (and minimizing any environmental impact) is suggested to provide a gas space containing a sorbent which is not in direct contact to the wettable membrane. Due to the constant sorption of the vaporized liquid becomes a constant difference in vapor pressure across the liquid in the pores and the Saturation vapor pressure maintained.
- sorbent is intended to include both adsorbent and absorbent.
- Sorbents are, for example, silica gels, molecular sieves, aluminum oxides, Ceolithe, Clays, activated carbon, sodium sulfate, phosphorus pentoxide, etc. are suitable.
- a liquid sorbent e.g. a highly concentrated or saturated saline solution use.
- Another option is to place the wettable membrane in one of the transport liquids to modify the area facing away or facing the sorbent, that the membrane is not wettable and thus the function of a second non-wettable Membrane takes over.
- Such a modification of the membrane can, for example can be achieved by a plasma reaction.
- the one have a wettable area and a non-wettable area, the sorbent Contact the non-wettable area directly without creating a fluid short circuit.
- the sorbent should be in a vessel (container) be arranged, which closes it from the outside and in particular penetration of Moisture from outside is largely prevented.
- the vessel has an opening that is closed by the wettable membrane or the non-wettable membrane. Consequently Vaporized transport fluid penetrates into the vessel through the membrane and becomes there by the sorbent added.
- the sorbent should be chosen so that the resulting Equilibrium vapor pressure of the transport liquid, which is lower than the saturation vapor pressure of the fluid is in the gas phase, above which the sorbent is constant for a long time. This is important to set a defined evaporation rate of the transport liquid, which the Flow rate constancy increased.
- the completely without sorbent also leads to very constant delivery rates.
- this embodiment is above the side facing away from the transport liquid Membrane or the membrane composite through walls that form a housing a room enclosed, the walls having omissions between 0.001% and 100% the surface of the walls, i.e. in extreme cases, the housing is dispensed with.
- the gas permeable membranes can transport liquid vapor into the surrounding area Gas phase can be set over a wide range.
- the side of the membrane opposite the transport liquid arranged space is not surrounded by a housing belonging to the pump.
- the transport rate depends on a number of factors, of which the above Viscosity of the liquid and the membrane properties were mentioned. These influencing factors in turn depend on the temperature. For example, the temperature rises with increasing temperature Evaporation rate and also the rate of diffusion in the gas phase. In opposite In contrast, increasing temperature affects the viscosity of the liquid, the surface tension of the liquid and the interfacial tension between the membrane and the liquid. This results in a complex relationship between the transport rate and the temperature. By appropriate selection of the relevant materials, such as the membrane (s) and the sorbent However, it can be ensured that the temperature dependence is low.
- the present The invention is particularly suitable for applications under thermostatic conditions.
- active thermostatting can be carried out, for example, by with a Peltier element the temperature in the surrounding area of the membrane to one preselected range.
- An inventive one can be particularly advantageous Pump can be used in close contact with the human body. This is a direct one Contact of the housing in which the pump is located with the body surface is an advantage. Temperature control can also be supported by the pump or a microdialysis or ultrafiltration system thermally insulated on the sides that do not touch the body becomes.
- a temperature measuring unit can also be used in a system with a pump according to the invention be integrated, which reports deviations from a target temperature range or but also takes into account a currently measured temperature when evaluating analytical measured values.
- the pump according to the invention preferably has no direct one Contact of transport fluid and wettable membrane to an unnecessary consumption of To avoid liquid.
- the contact can by the user through a targeted pressure surge Commissioning of the pump can be generated.
- Microdialysis and ultrafiltration systems can be used very advantageously with the liquid pumps according to the invention being constructed.
- the transport liquid can be used directly for microdialysis used as perfusate which is passed through a microdialysis catheter to take up analyte.
- the consumption of transport liquid can be caused by the evaporation process used to create a negative pressure in the canal, the body fluid (interstitial Liquid) into an ultrafiltration catheter.
- Both in microdialysis and Ultrafiltration can also be downstream of the microdialysis membrane or ultrafiltration membrane a sensor for detecting one or more analytes can be provided.
- FIG. 1 shows a cross section through a pump according to a first embodiment.
- the arrangement shown has a channel (2) with a diameter of 100 microns in which there is a transport liquid.
- water was used as the transport liquid selected.
- the channel is in an area of the transport channel with an enlarged cross section closed with a wettable membrane (4).
- it was used as a membrane a BTS 65 from Memtec (now: USF Filtration and Separations Group, San Diego, CA, USA) (PESu hydrophilized with hydroxypropyl cellulose).
- This highly hydrophilic Membrane is asymmetrical with pores in the range of 10 ⁇ m on one and 0.1 ⁇ m on the other Page. The side with larger pores faces the liquid.
- the wettable Membrane (4) is a non-wettable membrane made of expanded PTFE.
- the Non-wettable membrane is attached to the wettable membrane so that the transport liquid (3) facing away from the wettable membrane (4) is completely covered.
- the system of wettable (4) and non-wettable membrane (5) is thus of a housing (7) surround that evaporated transport liquid only in the interior of the housing or vessel (7) can get.
- FIG. 2 shows a system which is very economical in terms of production technology and can be miniaturized well.
- the The pump according to FIG. 2 has a base plate (9) with depressions that work together form a capillary system (11) with a cover (10). It can be seen from FIG. 2B how Base plate and lid are arranged to each other. Located between these two units there is a wettable membrane (12) which is arranged above a channel system (13). The membrane can be attached by simply clamping it between the base plate and the cover. Lid and base plate can e.g. by gluing, pressing or ultrasonic welding be connected to each other.
- the channel system (13) can be easily in the bottom plate are formed by a recess in which there are additional webs that sag prevent the membrane.
- FIG. 3 shows a measurement of flow rates as achieved with an apparatus according to FIG. 1 were over a 6 day period.
- the measurement of the flow rate was by gravimetric Detection of the liquid taken in the reservoir made.
- the pump that too had the results shown in Figure 3, had a circular exchange surface the transport liquid with the membrane (diameter 2 mm). It became hydrophilic Membrane with the designation BTS 65 (see description above) and a non-wettable Polytetrafluoroethylene membrane used as an evaporation limiter.
- As a sorbent for the transport liquid (water) was used 8g silica gel. Aside from the advanced Part of the channel below the membrane had a diameter of 100 microns and a length of 40 cm. It can be seen from FIG.
- FIG. 4 shows a pump according to the invention without a sorbent.
- the wettable (4) and the non-wettable membrane (5) corresponds to this Pump that shown in Figure 1.
- a housing is located above the non-wettable membrane (7 '), which is arranged so that transport liquid (3) only in the space (16) of this housing is evaporated into it.
- the housing (7 ') differs from that shown in Fig. 1 Housing in that it has openings (17) on the evaporated transport liquid can escape from the room (16).
- Membranes can be provided instead of omissions, which allow diffusion of gaseous transport liquid. So for example it is possible to form the housing completely and without recesses from one material, that allows sufficient diffusion.
- FIG. 5 shows a top view and in cross section of a dilution cascade as used can be sufficient to separate transport fluid and working fluid so that a Change in the evaporation rate on the membrane due to non-evaporable components (e.g. Salts) in the working fluid can be avoided.
- the dilution cascade shown (20) has a base body (21) which, for example, can be made of plastic and in case shown 8 has reservoirs. The reservoirs are through through holes formed in the base body (21), which are closed by cover plates (23, 23 ').
- cover plates 23, 23 '
- microstructured channels (24) are also provided in the base body, which after covering of the base body with the cover plates a fluid exchange between the individual Reservoirs and an inlet and outlet of liquid into the dilution cascade or from the dilution cascade.
- the operation of the dilution cascade (20) shown is as follows:
- the dilution cascade (20) is connected at its inlet opening (26) to a fluid system in which liquid is to be transported. With its outlet opening (27), the dilution cascade is connected to a pump according to the invention.
- the dilution cascade When commissioning, the dilution cascade is filled with an evaporable liquid that contains no or only minor additions of non-evaporable components. Due to the action of a pump according to the invention, the liquid contained in the dilution cascade is now pulled out of the outlet opening (27) and the liquid to be pumped flows in at the inlet opening (26).
- the first reservoir (22 1 ) now mixes the liquid to be pumped with the dilution fluid contained in the dilution cascade.
- the further reservoirs (22 2 , 22 3 , 22 4 ...) are used for successive dilutions, so that, at the outlet opening (27) of the dilution cascade, virtually only dilution fluid emerges without substantial additions of the fluid to be transported.
- the total volume pumped by the pump should be less than half, preferably less than a quarter, of the total volume of the dilution liquid in the dilution cascade
- FIG. 6 shows the diaphragm area of a pump based on capillary channels produced using microtechnology.
- the fluid channel (2) branches into several capillaries (30) with a defined "pore diameter" and thus forms a membrane with a small number of pores.
- the end of one Capillary can be viewed as a single pore from which evaporation into the Gas phase takes place.
- the evaporation rate from the menisci in the capillaries can by a non-wettable hydrophobic membrane can also be regulated.
- FIG. 6 shows a cavity (32) into which evaporation takes place from the capillaries.
- the cavity is closed off from the outside space by a membrane (31) to ensure substantially constant vapor pressure of the fluid in the cavity.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Sampling And Sample Adjustment (AREA)
- External Artificial Organs (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Description
- Figur 1:
- Querschnitt durch eine erste Ausführungsform einer Pumpe mit Sorptionsmittel
- Figur 2:
- Aufsicht und Querschnitt durch eine Pumpe gemäß einer zweiten Ausführungsform
- Figur 3:
- Flußrate einer Pumpe gemäß Fig. 1
- Figur 4:
- Querschnitt durch eine Pumpe ohne Sorptionsmittel
- Figur 5:
- Aufsicht und Querschnitt durch eine Verdünnungskaskade
- Figur 6:
- Querschnitt durch einen Membranbereich mit einzelnen Kapillaren
Die Verdünnungskaskade (20) wird an ihrer Einlaßöffnung (26) mit einem Fluidsystem verbunden, in dem Flüssigkeit transportiert werden soll. Mit ihrer Auslaßöffnung (27) wird die Verdünnungskaskade mit einer erfindungsgemäßen Pumpe verbunden. Bei Inbetriebnahme ist die Verdünnungskaskade mit einer verdampfbaren Flüssigkeit gefüllt, die keine oder nur geringfügige Beimengungen an unverdampfbaren Bestandteilen enthält. Durch die Wirkung einer erfindungsgemäßen Pumpe wird nunmehr die in der Verdünnungskaskade enthaltene Flüssigkeit aus der Auslaßöffnung (27) herausgezogen und an der Einlaßöffnung (26) strömt die zu pumpende Flüssigkeit nach. Im ersten Reservoir (221) findet nunmehr eine Durchmischung der zu pumpenden Flüssigkeit mit dem in der Verdünnungskaskade enthaltenen Verdünnungsfluid statt. Durch die weiteren Reservoirs (222, 223, 224...) werden sukzessive Verdünnungen vorgenommen, so daß an der Austrittsöffnung (27) der Verdünnungskaskade quasi nur Verdünnungsfluid ohne substanzielle Beimengungen des zu transportierenden Fluids austritt. Um eine ausreichende Funktion der Verdünnungskaskade zu gewährleisten, sollte das mit der Pumpe insgesamt gepumpte Volumen kleiner sein als die Hälfte, vorzugsweise kleiner als ein Viertel des Gesamtvolumens der Verdünnungsflüssigkeit in der Verdünnungskaskade
Claims (22)
- Pumpe für niedrige Flußraten beinhaltendeinen Kanal, der zumindest teilweise mit einer Transportflüssigkeit (3) gefüllt ist dadurch gekennzeichnet, dass die Pumpe weiterhineine von der Transportflüssigkeit benetzbare Membran (4, 12), die eine Öffnung des Kanales beinhaltet, sowieeinen auf der der Transportflüssigkeit gegenüberliegenden Seite der Membran angeordneten Raum mit im Wesentlichen konstantem Dampfdruck der Transportflüssigkeit, so dass eine Verdampfung der Transportflüssigkeit durch die Membran erfolgt.
- Pumpe gemäß Anspruch 1, bei der der Raum ein Sorptionsmittel (6, 15), das verdampftes Transportfluid sorbiert, enthält.
- Pumpe gemäß Anspruch 1, bei der Raum und die Transportflüssigkeit durch die Membran voneinander getrennt sind.
- Pumpe gemäß Anspruch 2 oder 3, bei der das Sorptionsmittel in einem Gehäuse (7) mit einer Öffnung angeordnet ist, wobei die Öffnung durch die Membran verschlossen ist.
- Pumpe gemäß Anspruch 3 oder 4, bei der das Sorptionsmittel keinen direkten Kontakt mit der Membran hat.
- Pumpe gemäß Anspruch 1, bei der der Raum durch ein Gehäuse (7') gebildet ist, das verdampfte Transportflüssigkeit mit dem Außenraum austauscht.
- Pumpe gemäß Anspruch 1, bei der die Membran hydrophil ist.
- Pumpe gemäß Anspruch 1, bei der die Membran einen der Transportflüssigkeit zugewandten Bereich besitzt, der hydrophil ist, sowie einen hydrophoben Bereich, der dem Sorptionsmittel zugewandt ist.
- Pumpe gemäß Anspruch 8, bei der das Sorptionsmittel in Kontakt mit dem hydrophoben Bereich der Membran steht.
- Pumpe gemäß Anspruch 1, die mindestens eine nicht benetzbare Membran (5) aufweist, die auf einer der Transportflüssigkeit abgewandten Seite der benetzbaren Membran angeordnet ist.
- Pumpe gemäß Anspruch 1, bei der der Kanal eine von der Transportflüssigkeit segmentierte Arbeitsflüssigkeit enthält.
- Pumpe gemäß Anspruch 1, bei dem die Membran durch ein Array von Kapillarkanälen gebildet wird.
- Pumpe gemäß Anspruch 12, bei dem sich die Kapillarkanäle in einem Körper befinden, in dem auch der die Transportflüssigkeit führende Kanal angeordnet ist.
- Pumpe gemäß Anspruch 12 oder 13, bei dem die Kapillarkanäle mikrotechnisch durch Ätzverfahren, Laserbearbeitung, Präge-, Spritzguß- oder Gießverfahren erzeugt sind.
- Pumpe gemäß Anspruch 12, bei dem das Array 3 bis 100, vorzugsweise 5 bis 25 Kapillarkanäle umfaßt.
- Pumpe gemäß Anspruch 12, bei dem die Kapillarkanäle des Arrays einen Durchmesser der Einzelkanäle im Bereich von 10nm bis 100µm aufweisen.
- Mikrodialysesystem beinhaltend eine Pumpe gemäß Anspruch 1, sowie eine Mikrodialysemembran an der durch die Pumpe die Transportflüssigkeit oder eine Arbeitsflüssigkeit vorbeitransportiert wird.
- Mikrodialysesystem gemäß Anspruch 17 mit einem stromabwärts der Mikrodialysemembran angeordneten Sensor zur Detektion eines oder mehrerer Analyten in der Transport- oder Arbeitsflüssigkeit.
- Ultrafiltrationseinrichtung beinhaltend eine Pumpe gemäß Anspruch 1, sowie eine Ultrafiltrationsmembran durch die Körperflüssigkeit in den Kanal eingezogen wird.
- Ultrafiltrationseinrichtung gemäß Anspruch 19 mit einem stromabwärts der Ultrafiltrationsmembran angeordneten Sensor zur Detektion eines oder mehrerer Analyte in der Körperflüssigkeit.
- System zum Pumpen einer Arbeitsflüssigkeit mit geringer Flußrate, wobei zwischen dem Fluidsystem, in dem sich die Arbeitsflüssigkeit befindet und einer Pumpe gemäß Anspruch 1 mindestens ein Verdünnungsreservoir (22) angeordnet ist, in welchem sich eine Flüssigkeit befindet, die im wesentlichen frei von an der Membran unverdampfbaren Substanzen ist.
- System gemäß Anspruch 21, bei dem zwischen dem Fluidsystem der Arbeitsflüssigkeit und der Pumpe zwei oder mehr miteinander verbundene Reservoirs (221, 222, 223, 224, 225, 226, 227, 228) angeordnet sind, die eine Verdünnungskaskade bilden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10029453A DE10029453C2 (de) | 2000-06-21 | 2000-06-21 | Pumpe für sehr niedrige Flußraten |
DE10029453 | 2000-06-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1167757A2 EP1167757A2 (de) | 2002-01-02 |
EP1167757A3 EP1167757A3 (de) | 2003-07-09 |
EP1167757B1 true EP1167757B1 (de) | 2004-10-06 |
Family
ID=7645800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01114608A Expired - Lifetime EP1167757B1 (de) | 2000-06-21 | 2001-06-19 | Pumpe für niedrige Flussraten |
Country Status (5)
Country | Link |
---|---|
US (2) | US6860993B2 (de) |
EP (1) | EP1167757B1 (de) |
AT (1) | ATE278874T1 (de) |
DE (2) | DE10029453C2 (de) |
ES (1) | ES2228700T3 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004039404A1 (de) * | 2004-08-13 | 2006-03-02 | Humboldt-Universität Zu Berlin | Verfahren zum regelbaren Pumpen einer Flüssigkeit und Mikropumpe für die Mikrofluidik |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7828749B2 (en) | 1996-05-17 | 2010-11-09 | Roche Diagnostics Operations, Inc. | Blood and interstitial fluid sampling device |
US7235056B2 (en) | 1996-05-17 | 2007-06-26 | Amira Medical | Body fluid sampling device and methods of use |
US20020010406A1 (en) | 1996-05-17 | 2002-01-24 | Douglas Joel S. | Methods and apparatus for expressing body fluid from an incision |
EP1579814A3 (de) | 1996-05-17 | 2006-06-14 | Roche Diagnostics Operations, Inc. | Verfahren und Vorrichtung zur Probenahme und Analyse von Körperflüssigkeit |
EP1432353A1 (de) * | 2001-09-26 | 2004-06-30 | Hoffman-La Roche AG | Verfahren und vorrichtung zur entnahme von körperflüssigkeiten |
US10502448B1 (en) | 2002-01-02 | 2019-12-10 | United States Of America As Represented By The Secretary Of The Air Force | Self-clearing vents based on droplet expulsion |
US8679233B1 (en) * | 2002-01-02 | 2014-03-25 | The United States Of America As Represented By The Secretary Of The Air Force | Modification of the degree of liquid contact with a solid by control of surface and micro-channel capillary geometry |
DE10222228A1 (de) * | 2002-05-16 | 2003-11-27 | Roche Diagnostics Gmbh | Mikropumpe mit Heizelementen für einen pulsierten Betrieb |
EP1624913B1 (de) * | 2003-05-08 | 2010-07-21 | Novo Nordisk A/S | Eine auf die haut aufbringbare injektionsvorrichtung mit abtrennbarem betätigungsteil zum einführen der nadel |
EP1475113A1 (de) * | 2003-05-08 | 2004-11-10 | Novo Nordisk A/S | Externer Nadeleinsetzer |
ATE392223T1 (de) * | 2003-05-08 | 2008-05-15 | Novo Nordisk As | Interne nadeleinführvorrichtung |
EP1502613A1 (de) * | 2003-08-01 | 2005-02-02 | Novo Nordisk A/S | Gerät mit Rückziehvorrichting für eine Nadel |
KR20060099520A (ko) * | 2003-10-21 | 2006-09-19 | 노보 노르디스크 에이/에스 | 의료용 피부 장착 장치 |
WO2005094920A1 (en) * | 2004-03-30 | 2005-10-13 | Novo Nordisk A/S | Actuator system comprising lever mechanism |
DE102004022678A1 (de) | 2004-05-05 | 2005-12-15 | Humboldt-Universität Zu Berlin | Verfahren zum Regeln eines Volumenflusses einer Flüssigkeit in einer osmotischen Mikropumpe und osmotische Mikropumpe |
DE102004042578A1 (de) * | 2004-09-02 | 2006-03-23 | Roche Diagnostics Gmbh | Mikropumpe zur Förderung von Flüssigkeiten mit niedrigen Förderraten im Druck/Saug-Betrieb |
DE102004042987A1 (de) * | 2004-09-06 | 2006-03-23 | Roche Diagnostics Gmbh | Push-Pull betriebene Pumpe für ein mikrofluidisches System |
WO2006032689A1 (en) * | 2004-09-22 | 2006-03-30 | Novo Nordisk A/S | Medical device with transcutaneous cannula device |
EP1804859A1 (de) * | 2004-09-22 | 2007-07-11 | Novo Nordisk A/S | Medizinische vorrichtung mit kanüleneinführer |
EP1824536B1 (de) * | 2004-12-06 | 2009-08-26 | Novo Nordisk A/S | Belüftete an der haut befestigbare vorrichtung |
WO2006077262A1 (en) * | 2005-01-24 | 2006-07-27 | Novo Nordisk A/S | Medical device with protected transcutaneous device |
CN101175516B (zh) * | 2005-05-13 | 2011-02-16 | 诺和诺德公司 | 适于检测经皮装置脱离的医疗装置 |
US8197231B2 (en) | 2005-07-13 | 2012-06-12 | Purity Solutions Llc | Diaphragm pump and related methods |
US20090221082A1 (en) * | 2005-10-06 | 2009-09-03 | Rhodia Operations | Microfluidic Evaporators And Determining Physical And/Or Chemical Properties Of Chemical Compounds Therewith |
WO2007104755A1 (en) * | 2006-03-13 | 2007-09-20 | Novo Nordisk A/S | Secure pairing of electronic devices using dual means of communication |
JP2009529930A (ja) * | 2006-03-13 | 2009-08-27 | ノボ・ノルデイスク・エー/エス | 二目的通信手段を備えた医療システム |
EP2012852A1 (de) * | 2006-04-26 | 2009-01-14 | Novo Nordisk A/S | Auf der haut befestigbare vorrichtung in einer verpackung mit einem beschichteten dichtungselement |
JP2009539444A (ja) * | 2006-06-06 | 2009-11-19 | ノボ・ノルデイスク・エー/エス | 皮膚に取付け可能な装置及び同装置のパッケージを含むアセンブリ |
IL180877A (en) * | 2007-01-22 | 2011-09-27 | Mfs Medical Flow Systems Ltd | Improved flow regulator |
WO2008107467A1 (en) * | 2007-03-06 | 2008-09-12 | Novo Nordisk A/S | Pump assembly comprising actuator system |
EP2209500B1 (de) * | 2007-10-31 | 2015-07-22 | Novo Nordisk A/S | Nichtporöses material als sterilisationsbarriere |
US7526917B1 (en) * | 2008-08-11 | 2009-05-05 | Hoffman John C | Gas diffusion vacuum device |
FR2967915B1 (fr) * | 2010-11-26 | 2014-05-16 | Commissariat Energie Atomique | Dispositif d'evaporation |
CN104271765B (zh) | 2012-02-13 | 2017-04-26 | 纽莫德克斯莫勒库拉尔公司 | 用于处理和检测核酸的系统和方法 |
US11485968B2 (en) | 2012-02-13 | 2022-11-01 | Neumodx Molecular, Inc. | Microfluidic cartridge for processing and detecting nucleic acids |
US9637775B2 (en) | 2012-02-13 | 2017-05-02 | Neumodx Molecular, Inc. | System and method for processing biological samples |
US11648561B2 (en) | 2012-02-13 | 2023-05-16 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9604213B2 (en) | 2012-02-13 | 2017-03-28 | Neumodx Molecular, Inc. | System and method for processing and detecting nucleic acids |
US9610392B2 (en) | 2012-06-08 | 2017-04-04 | Fresenius Medical Care Holdings, Inc. | Medical fluid cassettes and related systems and methods |
EP2912174B1 (de) | 2012-10-25 | 2019-06-19 | Neumodx Molecular, Inc. | Verfahren und materialien zur isolierung von nukleinsäurematerialien |
CN114401703A (zh) | 2019-09-25 | 2022-04-26 | 3M创新有限公司 | 伤口敷料材料及其制造和使用方法 |
US20220378621A1 (en) | 2019-10-28 | 2022-12-01 | 3M Innovative Properties Company | Wound dressing material and methods of making and using the same |
US20240115427A1 (en) | 2021-02-01 | 2024-04-11 | 3M Innovative Properties Company | Reinforced fiber web and wound dressing material including the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1245567A (en) * | 1983-09-16 | 1988-11-29 | Michio Inoue | Hollow-fiber filtering module and water purification device utilizing it |
WO1987002907A1 (en) * | 1985-11-18 | 1987-05-21 | Stearns Donald M | Centrifugal oxygenator for treatment of waste water and system |
US4832034A (en) | 1987-04-09 | 1989-05-23 | Pizziconi Vincent B | Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids |
GB8717567D0 (en) * | 1987-07-24 | 1987-09-03 | Thorn Emi Ltd | Suction pump |
US4976866A (en) * | 1989-04-03 | 1990-12-11 | The Dow Chemical Company | Concentric tubular membrane device and process useful in ion exchange or absorbent processes |
IT1241940B (it) * | 1989-11-09 | 1994-02-01 | Grace W R & Co | Dispositivo di multiconcentrazione di liquidi a perdere. |
US5938928A (en) * | 1991-08-01 | 1999-08-17 | Nonap Pty. Ltd. | Osmotic distillation process using a membrane laminate |
GB9320850D0 (en) | 1993-10-09 | 1993-12-01 | Terwee Thomas H M | Monitoring the concentration of a substance or a group of substances in a body fluid of a human or an animal |
US5552046A (en) * | 1995-01-23 | 1996-09-03 | Johnston; Arthur W. | Multi-stage microbiological water filter |
US5693230A (en) * | 1996-01-25 | 1997-12-02 | Gas Research Institute | Hollow fiber contactor and process |
US6039792A (en) * | 1997-06-24 | 2000-03-21 | Regents Of The University Of California And Bp Amoco Corporation | Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation |
US6136189A (en) * | 1998-01-20 | 2000-10-24 | Innova Pure Water Inc. | Enhanced in-bottle filtration mechanism and techniques |
JP2001269572A (ja) * | 2000-03-28 | 2001-10-02 | Forestry & Forest Products Research Inst Forestry Agency | 無機質多孔粒体の再生方法及び水の浄化方法並びに水の連続浄化装置 |
-
2000
- 2000-06-21 DE DE10029453A patent/DE10029453C2/de not_active Expired - Fee Related
-
2001
- 2001-06-19 AT AT01114608T patent/ATE278874T1/de not_active IP Right Cessation
- 2001-06-19 US US09/884,879 patent/US6860993B2/en not_active Expired - Fee Related
- 2001-06-19 EP EP01114608A patent/EP1167757B1/de not_active Expired - Lifetime
- 2001-06-19 DE DE50103943T patent/DE50103943D1/de not_active Expired - Fee Related
- 2001-06-19 ES ES01114608T patent/ES2228700T3/es not_active Expired - Lifetime
-
2004
- 2004-08-05 US US10/912,705 patent/US6872315B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004039404A1 (de) * | 2004-08-13 | 2006-03-02 | Humboldt-Universität Zu Berlin | Verfahren zum regelbaren Pumpen einer Flüssigkeit und Mikropumpe für die Mikrofluidik |
DE102004039404B4 (de) * | 2004-08-13 | 2007-01-25 | Humboldt-Universität Zu Berlin | Verfahren zum regelbaren Pumpen einer Flüssigkeit und Mikropumpe für die Mikrofluidik |
Also Published As
Publication number | Publication date |
---|---|
US20020087110A1 (en) | 2002-07-04 |
EP1167757A2 (de) | 2002-01-02 |
US6872315B2 (en) | 2005-03-29 |
US6860993B2 (en) | 2005-03-01 |
ATE278874T1 (de) | 2004-10-15 |
US20050006309A1 (en) | 2005-01-13 |
DE50103943D1 (de) | 2004-11-11 |
EP1167757A3 (de) | 2003-07-09 |
DE10029453A1 (de) | 2002-01-10 |
DE10029453C2 (de) | 2002-06-13 |
ES2228700T3 (es) | 2005-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1167757B1 (de) | Pumpe für niedrige Flussraten | |
DE69718011T2 (de) | Filter beinhaltende vorrichtungen zum filtern fluider proben | |
DE69828594T2 (de) | Vorrichtung zum Entgasen von Flüssigkeiten | |
DE69425325T2 (de) | Verfahren zum verbinden eines porösen mediums mit einem substrat | |
DE10297347B4 (de) | Poröse Drossel für Gaslager | |
DE60033394T2 (de) | Pneumatische steuerung der bildung und des transports von flüssigproben kleinen volumens | |
DE112016003938T5 (de) | Membran - Gas/Flüssigkeits - Kontaktor | |
DE10222228A1 (de) | Mikropumpe mit Heizelementen für einen pulsierten Betrieb | |
DE19753849A1 (de) | Analytisches Testelement mit sich verjüngendem Kapillarkanal | |
WO2005107835A1 (de) | Verfahren zum regeln eines volumenflusses einer flüssigkeit in einer osmotischen mikropumpe und osmotische mikropumpe | |
EP1315553B1 (de) | Vorrichtung und verfahren zur separation von ungelösten bestandteilen aus biologischen flüssigkeiten | |
DE19848112C2 (de) | Minimalinvasives Sensorsystem | |
DE10140565B4 (de) | Vorrichtung zur Gas- oder Flüssigkeitsabscheidung aus microfluidischen Durchflusssystemen | |
DE102012108584A1 (de) | Membran-Destillationsmodule unter Verwendung oleophob und antimikrobiell behandelter mikroporöser ePTFE-Membranen | |
DE1285984B (de) | Membranaustauscher | |
DE102004042578A1 (de) | Mikropumpe zur Förderung von Flüssigkeiten mit niedrigen Förderraten im Druck/Saug-Betrieb | |
EP2522427B1 (de) | Mikrofluidvorrichtung und Verfahren zum Herstellen derselben | |
WO2022037912A1 (de) | Mikrofluidische vorrichtung | |
DE102007008509B4 (de) | Verfahren zur Messung der Viskosität und viskosimetrischer Affinitätssensor | |
DE10340012A1 (de) | Vorrichtung zur Gas-oder Flüssigkeitsabscheidung aus mikrofluidischen Durchflusssystemen | |
EP2279038B1 (de) | Mikrodialysemembran und kammersystem mit eingeschlossenen kolloidalen stoffen und verfahren zu dessen herstellung | |
EP3524350A1 (de) | Vorrichtung und verfahren zur flüssigkeitsanalyse | |
DE3207174A1 (de) | Oxygenator zur sauerstoffanreicherung von blut | |
DE102020134915A1 (de) | Mikrofluidikvorrichtung mit Eingangsaktorik | |
WO2020239776A2 (de) | Mikrofluidisches system und verfahren zur gezielten einstellung der permeationseigenschaften einer semipermeablen membran |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 01D 67/00 B Ipc: 7A 61M 1/14 B Ipc: 7B 01D 61/22 B Ipc: 7F 04B 17/00 A Ipc: 7F 04B 43/06 B |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040109 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17Q | First examination report despatched |
Effective date: 20040211 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041006 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50103943 Country of ref document: DE Date of ref document: 20041111 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050106 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050115 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2228700 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050619 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050619 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050707 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: *ROCHE DIAGNOSTICS G.M.B.H. Effective date: 20050630 Owner name: F. *HOFFMANN-LA ROCHE A.G. Effective date: 20050630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050306 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090623 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090605 Year of fee payment: 9 Ref country code: IT Payment date: 20090623 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090630 Year of fee payment: 9 Ref country code: GB Payment date: 20090507 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100619 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100619 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100620 |