EP1165939B1 - Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine - Google Patents

Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine Download PDF

Info

Publication number
EP1165939B1
EP1165939B1 EP00920564A EP00920564A EP1165939B1 EP 1165939 B1 EP1165939 B1 EP 1165939B1 EP 00920564 A EP00920564 A EP 00920564A EP 00920564 A EP00920564 A EP 00920564A EP 1165939 B1 EP1165939 B1 EP 1165939B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
turbine blade
core
vane
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00920564A
Other languages
German (de)
English (en)
Other versions
EP1165939A1 (fr
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00920564A priority Critical patent/EP1165939B1/fr
Publication of EP1165939A1 publication Critical patent/EP1165939A1/fr
Application granted granted Critical
Publication of EP1165939B1 publication Critical patent/EP1165939B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc

Definitions

  • the invention relates to a coolant-flowed, cast Gas turbine blade, in particular gas turbine blade, according to the preamble of claim 1.
  • the invention further relates to a device for casting a Gas turbine blade with a casting core, the supply channels has forming core ribs, as well as a method of manufacture a cast gas turbine blade.
  • a gas turbine blade is known from US Pat. No. 4,344,738, the one with a blade root in a disc groove of a rotatable Disk of the gas turbine is used, the Washer a supply duct for supplying the gas turbine with coolant.
  • the supply duct opens below of the blade root in the for receiving the blade root certain disc transverse groove.
  • Supply channels go from the blade root through which the coolant enters the internal cooling system is directed. The supply channels predominantly point edged entry openings.
  • U.S. Patent 4,992,026 discloses a coolant flow Gas turbine blade with an internal cooling system, the Coolant introduced into the blade root through supply channels and through supply channels into the internal cooling system initiated.
  • the supply channels point at their transitions edges set at right angles from the blade root.
  • the internal cooling of the gas turbine blade is said to be high Operating temperatures, strong heating of the Avoid blade material that can cause serious damage can lead.
  • the cooling medium especially those far from its inflow area Parts of the gas turbine blades that have the greatest loads are easily achieved.
  • the cooling medium can only be increased Pressure through the supply lines what is often not possible to a sufficient extent.
  • the object of the invention is therefore to provide a coolant through which cast gas turbine blade, in particular gas turbine blade to indicate the flow optimized Has transitions from a supply channel to the supply channels, that is, low flow resistances at the transitions. Transitions and internal cooling system are said to be in a single manufacturing process, the Casting process, can be produced.
  • Another object of the invention consists of an apparatus and a method for Production of such a coolant-flowed, cast Gas turbine blade with a corresponding transition specify.
  • the on a coolant-flowed, cast gas turbine blade directed problem is solved in that the gas turbine blade a cast one Has distribution space over which the supply space with communicates the supply channels, and that the distribution room rounded or has flattened inlet openings of the supply channels.
  • the medium fed through the supply channel of the disc no longer has to enter the internal cooling system at two 90 ° angles be introduced, but is in a flowing, continuous flow movement directly to the internal cooling system directed. It arises with the flow around Cooling medium no cavities in which the cooling medium as in Dead zones stands.
  • the cooling medium supplied is due to the Rounding or flattening of the inlet openings very little swirled.
  • the inlet openings of the supply channels close directly to the distribution room and are in a manufacturing process generated with it.
  • the roundings or flattenings are designed to be reproducible through the casting process.
  • a series of gas turbine blades the same, predetermined sizes or dimensions for the inlet openings and the distribution space.
  • This becomes the basis for reliable prediction the coolant requirement or the coolant function delivered. This is particularly important to ensure that even remote parts of the gas turbine blades be reliably cooled and thus wear is minimized by overheating.
  • the coolant is already at a low pressure due to the low flow resistance through the distribution room into the supply channels introduced and thus escapes only slightly Dimensions through the space between the blade root and rotating Disk of the gas turbine. This will reduce the losses of the coolant is minimized and the coolant is used optimally.
  • the distribution room is preferably in the form of a semi-ellipsoid. Its base area also corresponds to the largest cross section of the ellipsoid and is inserted into a disk groove Gas turbine blade limited by the disc.
  • the side faces of the semi-ellipsoid and also the transitions between the side surfaces are rounded. This simple one Geometry is easy to manufacture and reliably prevents the formation of dead zones in which the introduced coolant stands. Due to the missing edges only arise little turbulence on the walls of the distribution room, the lead to negligible flow losses. Through the ellipsoidal shape, it is possible to the coolant inflow the supply channels adjacent to different areas of the ellipsoid targeted control.
  • a predetermined coolant supply can thus be easily set be that the cross section of the supply channel and the local changes in the cross-section of the distribution room on the cross sections of the inlet openings downstream are coordinated.
  • the cross-sectional changes of the Distribution room correspond for example in height and width in the shape of a semi-ellipsoid.
  • the transitions between the Inlet openings or around the inlet openings are called transition cross-sections. Due to the rounding or flattening of the inlet openings a larger inlet opening cross section directly at the distributor space, which then occurs at the transition to the supply channel reduced.
  • the feed channel essentially has one constant cross section, but there may also be a rounding or a flattening of a supply channel available to improve the flow properties his; which increases the cross section to the distribution room.
  • the cross sections described are on top of each other coordinated, i.e. there are predetermined cross-sectional ratios taken into account to coordinate the coolant supply. This is necessary if, for example, an increased coolant requirement due to a high operating temperature respectively special training of the internal cooling system in one Gas turbine blade consists of the high pressures of the coolant need or have a high leakage rate.
  • the lowest longitudinal rib of the Blade root closest to the axis of rotation of the gas turbine, extended along a major axis of the gas turbine blade is.
  • the blade root With its longitudinal ribs, the blade root is at undercuts the disc groove in which it is inserted is.
  • the distribution space for is in the lowest longitudinal rib the cooling medium housed.
  • the blade root is in the range the lowest longitudinal rib extended. This extension takes place along the major axis of the gas turbine blade, the means when the gas turbine blade is inserted perpendicular to the circumference the disc. Due to the extended training of the lower Longitudinal rib is the stability of the holding device in the Blade base still guaranteed and the extension leaves become easy in the manufacturing process of the gas turbine blade accomplish this by thickening the core base of the casting core is trained.
  • the inlet openings of the supply channels on the Height of the transition flank between the lowest longitudinal rib and the overlying longitudinal rib. In this way it is ensured that the area of the distribution room is only is covered by the lowest longitudinal rib. Between two Longitudinal ribs each have a transition flank, the slope ensures that the blade root is held securely the gas turbine blade in the undercut of the disc given is.
  • the proposed arrangement of the inlet openings of the supply channels ensures that a subsequent Machining of the blade root after the casting process in one defined area can take place without the shovel is damaged, the area of the distribution room itself each located within the lowest longitudinal rib. The extension the longitudinal rib can thus be adjusted almost as desired.
  • the on a casting device for producing a gas turbine blade task with a distribution room by a device for casting a gas turbine blade with a casting core the core ribs forming supply channels has solved, the casting core forming a distribution space Core foot with which the core ribs are integrally formed are and a smooth transition from the core to the Core ribs is present.
  • the casting device has one inner core.
  • the casting core becomes when the gas turbine blade is cast inserted to a predetermined, inner area to keep the gas turbine blade free of casting material.
  • This free area includes the internal cooling system, the supply channels and the distribution room.
  • the supply channels through elongated approaches of the casting core kept free, the so-called core ribs.
  • the distribution room is widened compared to the core ribs and formed a certain thickness and height area, the so-called core foot.
  • the core base is with the core ribs integrally formed.
  • the rounded design of the transition between the supply channels and the distribution room always takes place in the same Way according to the shape of the casting core. This enables exact adherence to predetermined dimensions. It is possible desired dimensions of the internal cooling system of the gas turbine blade so ensure they are reproducible for a whole series of gas turbine blades can be set can. This provides a basis for an inexpensive and reliable manufacture of internally cooled gas turbine blades.
  • the casting core is formed in one piece, it is against the deformation forces caused by the solidification of the Melt occur very stable.
  • the transition from the core foot to the core ribs is like this designed to be fluent by changing the cross section preferably continuously from the core ribs to the core foot increased. After the casting process is due to the smooth transition of the core ribs into the core foot none Post-processing of the inlet openings of the supply channels Ensuring a low flow resistance is necessary. Accordingly, one step in the production of the Gas turbine blade.
  • the core ribs with increasing Cross section into the core foot which has a thickness, which is larger than the thickness of the core ribs. On this is a further reduction in flow resistance of the coolant flow possible.
  • a further improvement in the flow properties of the This creates a transition from the distribution room to the supply channels delivered that the rounded core ribs into a curved Expire area that ends in the core base.
  • This The area forms one of the actual entrances to the supply channels imagined narrowing that is a continuous and low turbulence redirection of the coolant flow in the Supply channels supported.
  • Casting core easier to manufacture and also in terms of to better calculate its flow characteristics.
  • the on a method of manufacturing a gas turbine blade using a described device for casting directed problem is solved in that the distribution room and the supply channels by using the one-piece Pouring core.
  • the casting process is one-piece through the use of the Casting core more accurate and at the same time less time-consuming because the individual parts of the casting core set up together can be.
  • the distribution room must use this procedure can no longer be incorporated mechanically.
  • This complex essentially to be carried out by hand Measure, represents a time-consuming and costly step in the manufacture of a gas turbine blade with a distributor space
  • This process is through the proposed use of the one-piece casting core is now superfluous. Furthermore are the dimensions and thus the coolant flow through the Inlet openings of the supply channels and the distribution room reproducibly adjustable.
  • the distribution room can be necessary or desired can also be mechanically reworked. This is opposite simplifies the usual mechanical processing, that most of the material to be worked out is missing. So it's just make minor corrections that require less manufacturing require.
  • Fig.1 is a schematic and not to scale a principle Construction of the base area of a gas turbine blade 1, shown inserted in a disk 3 of a gas turbine.
  • the disk 3 is rotatable about the axis of rotation 14 of the gas turbine.
  • the gas turbine blade 1 is with your blade root 2, which has two longitudinal ribs 13, 13 ', in a disk transverse groove 60 of the disc 3 held.
  • the blade root 2 supports undercuts 12 of the disc 3 with its longitudinal ribs 13,13 'against the parallel to the longitudinal direction 15 of the Gas turbine blade 15 acting centrifugal forces around the axis of rotation 14 rotating disc 3.
  • the disc 3 has a supply channel 6 and the blade root 2 several supply channels 4 through a distribution room 5 are in fluid communication with each other.
  • This line system allows coolant 80 from the Disk 3 in the internal cooling system of the gas turbine blade 1 be directed.
  • the coolant 80 is preferably cooling air.
  • the distribution space 5 has rounded or flattened Inlet openings 7 of the supply channels 4. To this Way, the coolant 80 passed through the distribution space 5 and in the supply channels 4 to the internal cooling system headed with minimal flow losses.
  • the distribution space 5 is on its base side 70 to the supply duct 6 open. On this base page 70 arise almost no flow losses.
  • the distribution room 5 is rounded like an ellipsoid. It shows in its cross-sectional shape parallel to its base side 70 a shape of itself shrinking ellipse. In the perpendicular cross-sectional area 9, shown in Fig. 4b, it has the cross-sectional shape half an ellipse with itself continuously changing cross section. This semi-elliptical shape will through the rounded inlet openings 7 of the supply channels 4 interrupted. The transitions between the inlet openings 7 of the supply channels 4 and half the ellipse of the distribution room 5 are rounded, so that they do not form appreciable flow resistance.
  • the Inlet openings 7 are both directly next to each other, that is bump or be adjacent to each other.
  • the areas between the inlet openings 7 of the supply channels 4 are rounded in terms of flow, i.e. it there are no edges.
  • the cross section 8 of the feed channel 6 is preferred to the local changes in cross-sections 9 of the Distribution space 5 aligned perpendicular to its base plane 70, just as with the cross sections 10 of the flow downstream inlet openings 7. In this way one for cooling the most distant areas of the gas turbine blade 1 necessary coolant flow 80 safely set become.
  • the supply channels 4 limit with different Cross-sections 10 and each transition cross-sections adapted to it 11, which merge into the distribution room 5 to the Distribution room 5. This way one can be different strong coolant flow 80, each of the cross section 10 of the supply channel 4 depends on a predetermined Area of the internal cooling system. this makes possible an individual adjustment of the cooling.
  • the gas turbine blade 1 which is shown in Fig.1, is Made in a single casting process, with the distribution space 5 by a casting core 18 with the core ribs 19, the keep the supply channels 4 free of casting material, formed becomes.
  • the distribution space 5 has a height 90, which with the Height 16 of the distance of the lower part of the lower longitudinal rib 13 for the transition into the subsequent longitudinal rib 13 'of Blade base 2 approximately matches.
  • FIG. 2 shows a plan view of the base side 70 of the blade root 2 in a perspective view. From the distribution room 5 rounded or flattened inlet openings 7 of the supply channels 4. The longitudinal ribs 13, 13 'are with Undercuts 12 formed.
  • the supply channels 4 have an oval or elliptical shape, which is particularly streamlined is.
  • the inlet openings are correspondingly elliptical 7 adapted, the cross section of the elliptical Inlet openings 7 from the distribution space 5 to the Supply channels 4 continuously reduced.
  • the coolant flow 80 runs from the supply duct 6 with diameter 8 in the distribution space 5 and through the inlet openings 7 in the supply channels 4. Through the rounded inlet openings 7 and the rounded distribution space 5 as well as the rounded opening 110 of the feed channel 6, the coolant flow 80 is unhindered in the Internal cooling system of the gas turbine blade 1 introduced.
  • the distribution space 5 has a maximum height 90.
  • FIG. 4b shows a cross section through the view of Fig.3.
  • the blade root 2 of the gas turbine blade is shown, which is cut through the distribution space 5.
  • the distribution room has an elliptical cross-section with the cross-sectional area 9th
  • the casting core 18 shows a casting core 18, which is the essential component the device for casting a gas turbine blade 1 represents.
  • the casting core 18 has core ribs 19 and one Core foot 20 on.
  • the core ribs 19 with the thickness 21 form the Supply channels 4 of the gas turbine blade 1 when casting.
  • the Core foot 20 and core ribs 19 are integrally formed and the core rib 19 go with an increasing cross section 21 in the core foot 20 over. This transition takes place in a continuously increasing cross section 21, so that none abrupt changes in thickness occur.
  • the core ribs 19 are rounded and preferably run into a curved one Surface 24, which ends in the core base 20. In this way is the distribution space 5 after the casting particularly streamlined shaped.
  • 6 shows in a longitudinal section through the Core foot 20 and a core rib 19 the continuous transition the thickness 23 of the core rib 19 in the thickness 22 of the core base 20th
  • a casting core 18 described above is used in the manufacture of the gas turbine blade 1 described above. He enables easy manufacture of both a large distribution space 5 as well as a continuous transition from Distribution space 5 to the supply ducts 4 of the gas turbine blade, without reworking the gas turbine blade 1 would be necessary in this area. However it is easily possible, such a cast gas turbine blade 1 mechanically rework in their distribution room 5, for example, changed around the gas turbine blade 1 Adjust the requirements later or the same Casting core 18 to use for different models. By the Core foot 20 becomes an essential part of what is to be worked out Materials kept free. The subsequent mechanical Editing is therefore just a correction can be carried out quickly and inexpensively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

L'invention concerne une aube de turbine à gaz moulée (1) parcourue par un réfrigérant, comprenant un pied (2) présentant plusieurs canaux d'alimentation (4) et une chambre distributrice (5). Un réfrigérant peut être amené aux canaux d'alimentation (4) au moyen d'un canal d'amenée (6) du disque (3) qui communique avec lesdits canaux d'alimentation (4), via la chambre distributrice (5). En vue d'obtenir des résultats optimums quant à l'écoulement et quant à la fabrication, l'invention est caractérisée en ce qu'il est prévu une chambre distributrice moulée (5) présentant des orifices d'admission arrondis ou aplatis (7) pour les canaux d'alimentation (4), et en ce que ladite chambre distributrice (5) est produite au moyen d'un noyau de coulée en une seule pièce.

Claims (11)

  1. Aube (1) de turbine à gaz, qui est coulée et dans laquelle passe du fluide de refroidissement, notamment aube mobile de turbine à gaz, ayant un pied (2) d'aube qui est mis dans un disque (3) toumant de la turbine à gaz et qui a plusieurs canaux (4) d'alimentation d'un système de refroidissement interne, du fluide de refroidissement pouvant être apporté aux canaux (4) d'alimentation au moyen d'un canal (6) d'apport du disque (3), caractérisée en ce que l'aube de turbine à gaz a une chambre (5) formant répartiteur, par laquelle le canal (6) d'apport communique avec les canaux (4) d'alimentation, et en ce qu'il est prévu une chambre (5) coulée formant répartiteur, en ce que la chambre (5) formant répartiteur a des ouvertures (7) d'entrée arrondies ou aplaties des canaux (4) d'alimentation.
  2. Aube de turbine à gaz suivant la revendication 1, caractérisée en ce que la chambre (5) formant répartiteur est arrondie en forme d'ellipsoïde.
  3. Aube de turbine à gaz suivant la revendication 1 ou 2, caractérisée en ce que les ouvertures (7) arrondies ou aplaties d'entrée sont voisines les unes des autres de manière optimisée du point de vue du courant.
  4. Aube de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 3, caractérisée en ce que la section (8) transversale du canal (6) d'apport et les modifications locales des sections (9) transversales de la chambre (5) formant répartiteur sont adaptées aux sections (10) transversales des ouvertures (7) d'entrée en aval dans la direction du courant.
  5. Aube de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 4, caractérisée en ce qu'il y a plusieurs canaux (4) d'alimentation de section (10) transversale différente et respectivement des sections (11) transversales de transition des ouvertures (7) d'entrée qui y sont adaptées.
  6. Aube de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 5, caractérisée en ce que le pied (2) de l'aube a des nervures (13, 13') longitudinales pénétrant dans des contre-dépouilles (12) du disque (3), parmi lesquelles celle (13) la plus basse et la plus proche de l'axe (14) de rotation de la turbine à gaz s'étend le long d'un axe (15) principal de l'aube (1) de la turbine à gaz.
  7. Aube de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 6, caractérisée en ce que les ouvertures (7) d'entrée des canaux (4) d'alimentation se trouvent au niveau (16) des flancs (17) de transition compris entre la nervure (13) longitudinale la plus basse et la nervure (13') longitudinale se trouvant au-dessus.
  8. Dispositif de coulée d'une aube (1) de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 7, comprenant un noyau (18) de coulée qui a des nervures (19) de noyau moulant les canaux (4) d'alimentation, caractérisé en ce que le noyau (18) de coulée a un pied (20) de noyau moulant la chambre (5) formant répartiteur et d'un seul tenant avec les nervures (19) de noyau, et il est prévu une transition douce du pied (20) de noyau aux nervures (19) de noyau.
  9. Dispositif de coulée d'une aube (1) de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que les nervures (19) de noyau se transforment par une section (21) transversale qui s'agrandit en le pied (20) du noyau qui a une épaisseur (22) qui est plus grande que l'épaisseur (23) des nervures (19) du noyau.
  10. Dispositif de coulée d'une aube (1) de turbine à gaz suivant l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que les nervures (19) arrondies du noyau se prolongent en une surface (24) incurvée qui se termine en le pied (20) du noyau.
  11. Procédé de fabrication d'une aube (1) de turbine à gaz suivant l'une ou plusieurs des revendications 8 à 10, caractérisé en ce que l'on coule la chambre (5) formant répartiteur et les canaux (4) d'alimentation en utilisant le noyau (18) de coulée.
EP00920564A 1999-03-29 2000-03-23 Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine Expired - Lifetime EP1165939B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00920564A EP1165939B1 (fr) 1999-03-29 2000-03-23 Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99106454A EP1041246A1 (fr) 1999-03-29 1999-03-29 Aube de turbine à gaz coulée avec refroidissement interne, procédé et dispositif de fabrication d'un collecteur dans l'aube de turbine à gaz
EP99106454 1999-03-29
EP00920564A EP1165939B1 (fr) 1999-03-29 2000-03-23 Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine
PCT/EP2000/002606 WO2000058606A1 (fr) 1999-03-29 2000-03-23 Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine

Publications (2)

Publication Number Publication Date
EP1165939A1 EP1165939A1 (fr) 2002-01-02
EP1165939B1 true EP1165939B1 (fr) 2003-08-13

Family

ID=8237884

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99106454A Withdrawn EP1041246A1 (fr) 1999-03-29 1999-03-29 Aube de turbine à gaz coulée avec refroidissement interne, procédé et dispositif de fabrication d'un collecteur dans l'aube de turbine à gaz
EP00920564A Expired - Lifetime EP1165939B1 (fr) 1999-03-29 2000-03-23 Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99106454A Withdrawn EP1041246A1 (fr) 1999-03-29 1999-03-29 Aube de turbine à gaz coulée avec refroidissement interne, procédé et dispositif de fabrication d'un collecteur dans l'aube de turbine à gaz

Country Status (5)

Country Link
US (1) US6565318B1 (fr)
EP (2) EP1041246A1 (fr)
JP (1) JP4567206B2 (fr)
DE (1) DE50003266D1 (fr)
WO (1) WO2000058606A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474946B2 (en) * 2001-02-26 2002-11-05 United Technologies Corporation Attachment air inlet configuration for highly loaded single crystal turbine blades
US7216694B2 (en) * 2004-01-23 2007-05-15 United Technologies Corporation Apparatus and method for reducing operating stress in a turbine blade and the like
US7059825B2 (en) * 2004-05-27 2006-06-13 United Technologies Corporation Cooled rotor blade
CA2602385A1 (fr) * 2005-03-29 2006-10-05 The Research Foundation Of State University Of New York Nanoparticules inorganiques hybrides, leurs procedes d'utilisation et de production
US7357623B2 (en) * 2005-05-23 2008-04-15 Pratt & Whitney Canada Corp. Angled cooling divider wall in blade attachment
US7690896B2 (en) * 2005-05-27 2010-04-06 United Technologies Corporation Gas turbine disk slots and gas turbine engine using same
US7632071B2 (en) * 2005-12-15 2009-12-15 United Technologies Corporation Cooled turbine blade
EP1806426A1 (fr) * 2006-01-09 2007-07-11 Siemens Aktiengesellschaft Dispositf de fixation pour composants métalliques d'une turbine
CH699996A1 (de) * 2008-11-19 2010-05-31 Alstom Technology Ltd Verfahren zum bearbeiten eines gasturbinenläufers.
EP2236746A1 (fr) * 2009-03-23 2010-10-06 Alstom Technology Ltd Turbine à gaz
EP2243574A1 (fr) * 2009-04-20 2010-10-27 Siemens Aktiengesellschaft Dispositif de coulée destiné à la fabrication d'une aube directrice de turbine d'une turbine à gaz et aube directrice de turbine
US8622702B1 (en) * 2010-04-21 2014-01-07 Florida Turbine Technologies, Inc. Turbine blade with cooling air inlet holes
EP2639407A1 (fr) * 2012-03-13 2013-09-18 Siemens Aktiengesellschaft Agencement de turbine à gaz pour diminuer les contraintes sur des disques de turbine et turbine à gaz associée
US20140208771A1 (en) * 2012-12-28 2014-07-31 United Technologies Corporation Gas turbine engine component cooling arrangement
EP2956626B1 (fr) * 2013-02-12 2019-11-20 United Technologies Corporation Aube de soufflante comprenant des cavités extérieures
US9777575B2 (en) 2014-01-20 2017-10-03 Honeywell International Inc. Turbine rotor assemblies with improved slot cavities
FR3025444B1 (fr) * 2014-09-04 2016-09-23 Snecma Procede de production d'un noyau ceramique
CN106890945A (zh) * 2015-12-17 2017-06-27 通用电气公司 模芯组件及熔模铸造方法
US20170234447A1 (en) * 2016-02-12 2017-08-17 United Technologies Corporation Methods and systems for modulating airflow
DE102016124806A1 (de) 2016-12-19 2018-06-21 Rolls-Royce Deutschland Ltd & Co Kg Turbinen-Laufschaufelanordnung für eine Gasturbine und Verfahren zum Bereitstellen von Dichtluft in einer Turbinen-Laufschaufelanordnung
WO2019008656A1 (fr) * 2017-07-04 2019-01-10 東芝エネルギーシステムズ株式会社 Aube de turbine et turbine
KR102028804B1 (ko) * 2017-10-19 2019-10-04 두산중공업 주식회사 가스 터빈 디스크
FR3087479B1 (fr) 2018-10-23 2022-05-13 Safran Aircraft Engines Aube de turbomachine
CN110043328B (zh) * 2018-12-17 2021-10-22 中国航发沈阳发动机研究所 一种冷却式变几何低压涡轮导向叶片

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH495496A (de) * 1969-02-26 1970-08-31 Bbc Sulzer Turbomaschinen Turbomaschine mit gekühltem Rotor
US3918835A (en) * 1974-12-19 1975-11-11 United Technologies Corp Centrifugal cooling air filter
US4203705A (en) * 1975-12-22 1980-05-20 United Technologies Corporation Bonded turbine disk for improved low cycle fatigue life
US4344738A (en) 1979-12-17 1982-08-17 United Technologies Corporation Rotor disk structure
DE3540752A1 (de) 1985-11-16 1987-05-21 Blaupunkt Werke Gmbh Schaltungsanordnung mit steuerbarem verstaerkungsfaktor
JPS62203902A (ja) * 1986-03-04 1987-09-08 Toshiba Corp ガスタ−ビンホイ−ル
JPS62228603A (ja) 1986-03-31 1987-10-07 Toshiba Corp ガスタ−ビンの翼
JPH0231355U (fr) * 1988-08-19 1990-02-27
GB2224082A (en) * 1988-10-19 1990-04-25 Rolls Royce Plc Turbine disc having cooling and sealing arrangements
DE3835932A1 (de) * 1988-10-21 1990-04-26 Mtu Muenchen Gmbh Vorrichtung zur kuehlluftzufuehrung fuer gasturbinen-rotorschaufeln
US5117626A (en) * 1990-09-04 1992-06-02 Westinghouse Electric Corp. Apparatus for cooling rotating blades in a gas turbine
US5403156A (en) * 1993-10-26 1995-04-04 United Technologies Corporation Integral meter plate for turbine blade and method
DE4422965A1 (de) * 1994-06-30 1996-01-04 Mtu Muenchen Gmbh Einrichtung zur Abscheidung von Fremdpartikeln aus der den Laufschaufeln einer Turbine zuzuführenden Kühlluft
JPH0828297A (ja) * 1994-07-28 1996-01-30 Hitachi Ltd 高温ガスタービン及び複合発電プラント
JPH0970642A (ja) * 1995-09-05 1997-03-18 Mitsubishi Materials Corp 鋳型の製造方法及びこの鋳型を用いた精密鋳造品の製造方法
EP0894941B1 (fr) * 1997-07-28 2003-03-12 ALSTOM (Switzerland) Ltd Rotor d'une turbomachine

Also Published As

Publication number Publication date
JP2002540347A (ja) 2002-11-26
DE50003266D1 (de) 2003-09-18
EP1041246A1 (fr) 2000-10-04
JP4567206B2 (ja) 2010-10-20
WO2000058606A1 (fr) 2000-10-05
US6565318B1 (en) 2003-05-20
EP1165939A1 (fr) 2002-01-02

Similar Documents

Publication Publication Date Title
EP1165939B1 (fr) Aube de turbine a gaz moulee parcourue par un refrigerant, et dispositif et procede de production d'une chambre distributrice pour l'aube de turbine
EP1113145B1 (fr) Aube pour turbine a gaz avec section de mesure sur le bord de fuite
DE69823236T2 (de) Einrichtung zur kühlung von gasturbinenschaufeln und methode zu deren herstellung
DE60305100T2 (de) Verbundene, nichtverstopfende Kühlkreisläufe
DE3789514T2 (de) Gekühlte Gasturbinenschaufel.
DE60025074T2 (de) Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel
EP1223308B1 (fr) Composante d'une turbomachine
DE60035757T2 (de) Turbolader mit variablem förderrahmen
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
CH697919B1 (de) Turbinenblatt mit konkavem Kühlströmungskanal und darin angeordneten, entgegengesetzte Drallströme bewirkenden Turbulatoren.
EP3182011A1 (fr) Paroi d'un composant à refroidir à l'aide d'air de refroidissement, en particulier paroi de chambre de combustion de turbine à gaz
DE102007007090A1 (de) Gasturbine mit Kühlluft-Übertragungssystem
DE1946535B2 (de) Bauteil für ein Gasturbinentriebwerk
EP0964981B1 (fr) Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP0892149B1 (fr) Système de refroidissement pour le bord d'attac d'une aube creuse pour turbine à gaz
EP1668236B1 (fr) Chambre de combustion comprenant un dispositif de refroidissement, et procede de production de cette chambre de combustion
DE112020000789B4 (de) Hochtemperaturbauteil und verfahren zur herstellung des hochtemperaturbauteils
EP1292760B1 (fr) Configuration d'une aube de turbine pouvant etre refroidie
EP1288435B1 (fr) Aube de turbine avec au moins un orifice de refroidissement
EP0892150B1 (fr) Système de refroidissement pour le bord de fuite des aubes creuses d'une turbine à gaz
DE2127454A1 (de) Gasturbine
DE102017110052A1 (de) Innere Rippe mit definierter konkaver Oberflächenkrümmung für ein Schaufelblatt
DE69031713T2 (de) Wirbelstromgebläse und Verfahren zu dessen Herstellung
EP1644614A1 (fr) Aube refroidie pour une turbine a gaz
CH707746A2 (de) Turbomaschineneinlass-Übergangssektion und modulares Turbomaschineneinlass-Baugruppensystem.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003266

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160311

Year of fee payment: 17

Ref country code: GB

Payment date: 20160310

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50003266

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001