EP1163384B1 - Method for optimizing and monitoring weft insertion in power looms - Google Patents

Method for optimizing and monitoring weft insertion in power looms Download PDF

Info

Publication number
EP1163384B1
EP1163384B1 EP00922537A EP00922537A EP1163384B1 EP 1163384 B1 EP1163384 B1 EP 1163384B1 EP 00922537 A EP00922537 A EP 00922537A EP 00922537 A EP00922537 A EP 00922537A EP 1163384 B1 EP1163384 B1 EP 1163384B1
Authority
EP
European Patent Office
Prior art keywords
force
yam
weft insertion
weft
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00922537A
Other languages
German (de)
French (fr)
Other versions
EP1163384A2 (en
Inventor
Urs Meyer
Ivan Castelli
Leonardo Fogu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iropa AG
Original Assignee
Iropa AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4189385&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1163384(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Iropa AG filed Critical Iropa AG
Publication of EP1163384A2 publication Critical patent/EP1163384A2/en
Application granted granted Critical
Publication of EP1163384B1 publication Critical patent/EP1163384B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03JAUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
    • D03J1/00Auxiliary apparatus combined with or associated with looms
    • D03J1/005Displays or displaying data
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D51/00Driving, starting, or stopping arrangements; Automatic stop motions
    • D03D51/18Automatic stop motions
    • D03D51/34Weft stop motions

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • the weft insertion is determined by a fixed program and monitored with mechanical, capacitive, triboelectric or optoelectric thread monitors.
  • mechanical, capacitive, triboelectric or optoelectric thread monitors In order to ensure reliable response of the sensors to thread breakage, they must react relatively slowly, that is to say with a response time of the order of 10 ms or more.
  • the course of the thread movement during weft insertion from weft to weft can thus be determined at most approximately by measuring the response times of various sensors arranged in the thread path. A continuous measurement and monitoring of the thread movement during weft insertion is therefore ruled out. It is also not possible to optimize the course of the weft insertion, for example by specifically controlling the air nozzles in the air nozzle weaving machine.
  • the weft thread acts on a tuning fork which, when the weft thread moves, transmits vibrations to the sensor, which has, for example, piezoelectric material.
  • the sensor which has, for example, piezoelectric material.
  • the sensor In the weft thread monitoring method known from US Pat. No. 3,688,958 A, the sensor only generates a signal when the weft thread is running, and even only when the weft thread has reached a certain speed. It is not the thread force that is measured, but the frequency when the thread runs on the sensor of thread irregularities rubbing.
  • a measurement of the tensile force in the weft thread is occasionally carried out experimentally for scientific purposes.
  • the sensors used use strain gauges as mechanical-electrical transducers.
  • the sensitivity, the overload capacity and the limit frequency are limited by the materials used in such a way that only carefully prepared laboratory measurements can be carried out on individual weft insertion cycles, and this only with particularly robust games that can withstand the additional stress caused by the deflection points of the sensor.
  • the use of this measurement method in industrial production is therefore out of the question, and also because of the limited service life, the demanding handling and the high costs of these experimental devices.
  • the aim of the present invention is to measure the thread force during the weft insertion with a cost-effective, robust, accurate and quick-reacting sensor and thus to optimize the course of the weft insertion better and to monitor it more reliably.
  • the sensor is based on the principle of thread deflection, the deflection angle being less than 45 degrees, preferably less than 30 degrees.
  • the limit frequency of the sensor is above 1 kHz, preferably above 5 kHz.
  • This sensor is preferably implemented with a piezoresistive or piezoelectric crystal.
  • a force sensor from Honeywell type PK 88870 is used, for example.
  • a force sensor from the Kistier range is used in conjunction with a charge amplifier.
  • a quasi-static output signal is generated by resetting the amplifier in the power-free phase of the entry cycle.
  • FIG. 1 the schematic relationship of the means according to the procedure is shown
  • FIG. 2 the thread force signal
  • FIG. 3 shows the application according to the method for monitoring the weft insertion
  • FIG. 4 the principles for the optimization of the weft insertion.
  • the principle of the measuring device is shown schematically in FIG. 1.
  • the weft thread 1 is drawn off the bobbin 2 with the aid of the weft thread store 3. Thereupon it passes through a thread brake 4 and the thread force sensor 5 according to the invention.
  • the force acting on the weft thread is measured in a known manner by deflecting the thread, by converting the reaction force 7 of the thread from the pressure-sensitive element 6 into an electrical signal 13.
  • the weft thread then runs through the so-called color selector, which ensures the assignment of different weft threads for the weft insertion.
  • the thread in element 9 is accelerated and driven further.
  • This element has different shapes depending on the type of weaving machine: it can be a projectile or a gripper, or the main nozzle and the following relay nozzles of an air weaving machine, or the injector of a water jet weaving machine.
  • the thread When the weft is inserted, the thread now passes through the shed 11 lying between the scissors 10 and 12.
  • the force measuring element 6 can be built on a plate 5 provided with thread guides or can be integrated into the thread path already present on the machine in such a way that the desired force component is generated thereon. In any case, it is arranged in the thread path after the brake 4, but before entering the shed 11, in the case of air and water looms in front of the main nozzle 9.
  • the electrical signal 13 supplied by the thread force sensor 5 is electronically amplified in the evaluation unit 14, evaluated and sent as a signal 15 to a display 16 which informs the operator of the course of the weft insertion and draws his attention to faults and corrections.
  • the evaluation unit 14 is connected via the data line 17 to the machine control 19, from where it receives the time signals of further machine functions involved in the weft insertion, for example the current angular position of the main shaft of the machine.
  • the machine control receives the monitoring signals of the thread force evaluation via the data line 18, for example for immediate stopping in the event of a thread break when weft insertion, or for activating a machine-related alarm means in the event of a fault which requires operator intervention.
  • the shape of the signal 13 is shown in its time course in FIG. 2 using the example of an air-jet weaving machine.
  • the diagram shows the thread tension in the vertical axis 20 and the time in the horizontal axis 21.
  • section 22 outside the actual weft insertion process, the thread is not under tension.
  • the thread is accelerated and enters the shed. This leads to a rapid increase in thread strength.
  • period 24 the thread runs into the shed.
  • the length of the thread predetermined by the prewinding device 3 is stopped by it, which leads to a typical peak force.
  • the thread then remains during the time period 26 until the reed strikes the thread against the tissue at time 27 and in turn generates a characteristic force peak.
  • the thread is then cut on both sides by the scissors 10 and 12, the thread force disappears and the cycle begins again.
  • FIG. 3 shows the force signal in the case of trouble-free weft insertion analogous to FIG. 2.
  • the monitoring of such a signal curve over certain time periods is part of the known prior art of digital signal processing.
  • the signal supplied in analog form by the sensor is digitized in time intervals of at most 10 ms, preferably less than 1 ms, and compared with the limit values assigned to the relevant time step.
  • These limit values can be entered by the user of the machine on the basis of game data or empirical values, or they can be determined by the evaluation device itself during practical use according to the principle of adaptive control. So-called teach-in by the operator is also provided.
  • the course of the thread force determined on the basis of the operational experience is to be averaged for each time step and thus to establish a pattern course. Now every single weft entry is compared with this pattern, and if a specified tolerance is exceeded, an alarm is triggered or the machine is stopped.
  • a decisive advantage is that the force curve leading to the stop is then available for diagnosis by the operator and can be compared with the image that the machine itself offers.
  • the limit values are, for example, the maximum tensile force 30 when the yarn is drawn in. As a result of the simultaneous acceleration of the yarn, this tensile force is limited to a certain value, which is generally lower than that when the yarn is stopped. A minimal thread force 31 must be monitored during the entire weft insertion in order to immediately detect thread breaks. Finally, the peak load of the yarn when stopping 32 must be monitored. The size of this force peak is, on the other hand, a characteristic of the successful insertion of the weft and is again monitored with a minimum value 33. Also the time sequences, given by the position of the force peaks 23, 25 and 27, are to be monitored in an analogous manner by the control. This function is not shown further here because it is handled in the same way as the monitoring of the arrival of the thread head in the area of the scissors 12 (FIG. 1), which is already common today, with an optical sensor.
  • the configuration of the method for optimizing the weft insertion is shown in FIG. 4.
  • the thread force is shown in the vertical axis 20.
  • the horizontal axis 40 is not divided in time here, but into sections 41 of the weaving cycle, which correspond to a certain number of angular degrees of the main shaft of the weaving machine. From this, the assignment of certain effects during weft insertion to the control functions of the weaving machine can be seen. This is decisive for the practical procedure when optimizing the weft insertion, because the operator has to decide on the necessary interventions, or at least be familiar and plausible with an automatic optimization process.
  • the normal force curve 42 is determined numerically by averaging a number of entry cycles and is shown in color on the screen (dotted here).
  • Deviations of individual cycles that lead to the machine stopping are made particularly noticeable.
  • An automatic error diagnosis immediately indicates the type of error, as is already done today in a simple manner with alphanumeric displays on the weaving machines, but only to a very limited extent, e.g. with the distinction of weft or warp defects.
  • the display draws attention to unfavorable setting values, for example excessive force peaks 45 in the area of the thread stop. While the machine is not stopped in this case, the arrow 46 clearly indicates the sensitive area, which can be remedied by changing the setting, for example by slowing down the weft insertion by lowering the pressure at the relay nozzles.

Abstract

A method for monitoring the cycle of the weft insertion into a weaving machine. The weft yarn passes a yarn brake and a yarn force sensor and the force acting on the weft yarn is measured in a known fashion and the reaction force of the yarn is converted by a pressure sensitive element into an electrical signal. The electrical signal outputted by the yarn force sensor is electronically amplified in an evaluation unit, is evaluated and is transmitted to an indicator informing the operator of the development of the weft insertion and of disturbances and corrections. For this purpose, the evaluation unit is connected via a data line with a machine control unit. Evaluation unit is supplied with time signals from the machine control unit associated with further machine functions participating at the weft insertion, e.g. the momentary angular position of the main shaft of the machine. The machine control unit receives monitoring signals of the yarn force evaluation via the data line, e.g. for immediate stoppage in case of a yarn breakage occurring during the weft insertion, or to activate a machine related alarm system in case of a disturbance needing the interference by an operator.

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method according to the preamble of claim 1.

Bei den bekannten Webmaschinen wird der Schusseintrag in seinem Ablauf von einem fest eingegebenen Programm bestimmt und mit mechanischen, kapazitiven, triboelektrischen oder optoelektrischen Fadenwächtern überwacht. Um ein zuverlässiges Ansprechen der Sensoren auf Fadenbruch sicher zu stellen, müssen diese verhältnismässig langsam reagieren, das heisst mit einer Ansprechzeit in der Grössenordnung von 10 ms oder mehr. Der Verlauf der Fadenbewegung beim Schusseintrag von Schuss zu Schuss lässt sich damit höchstens annähernd durch Messung der Ansprechzeitpunkte verschiedener, im Fadenlauf angeordneter Sensoren bestimmen. Eine kontinuierliche Messung und Überwachung der Fadenbewegung beim Schusseintrag ist damit ausgeschlossen. Auch eine Optimierung des Verlaufes des Schusseintrages, beispielsweise über die gezielte Ansteuerung der Luftdüsen bei der Luftdüsenwebmaschine, ist damit nicht möglich. Ebenso ist es schwierig, Schwierigkeiten beim Schusseintrag frühzeitig zu erkennen. Das zuverlässige Stoppen der Webmaschine bei Schussstörungen ist aber Voraussetzung, um Webfehler zu vermeiden. Vielfach werden deshalb die bestehenden Sensoren so empfindlich eingestellt, dass sie im Zweifelsfall die Maschine stoppen. Dies führt aber zu einem vermehrten Bedarf an Bedienungseingriffen.In the known weaving machines, the weft insertion is determined by a fixed program and monitored with mechanical, capacitive, triboelectric or optoelectric thread monitors. In order to ensure reliable response of the sensors to thread breakage, they must react relatively slowly, that is to say with a response time of the order of 10 ms or more. The course of the thread movement during weft insertion from weft to weft can thus be determined at most approximately by measuring the response times of various sensors arranged in the thread path. A continuous measurement and monitoring of the thread movement during weft insertion is therefore ruled out. It is also not possible to optimize the course of the weft insertion, for example by specifically controlling the air nozzles in the air nozzle weaving machine. It is also difficult to identify difficulties when entering weft early. The reliable stopping of the weaving machine in the event of weft disturbances is a prerequisite to avoid weaving errors. In many cases, the existing sensors are set so sensitively that they stop the machine when in doubt. However, this leads to an increased need for operator intervention.

Bei dem aus EP 0 117 571 A bekannten Verfahren zum Überwachen des Lieferstatus eines Fadens beim Schusseintrag in eine Webmaschine beaufschlagt der Schussfaden eine Stimmgabel, die bei einer Bewegung des Schussfadens Schwingungen auf den beispielsweise piezoelektrisches Material aufweisenden Sensor überträgt. Auf diese Weise wird ausschließlich die Schussfadenbewegung abgetastet und überwacht, um ein Signal abzuleiten, das ausschließlich die Laufbewegung des Schussfadens anzeigt. Aus einem Stillstand zu einem nicht erwarteten Zeitpunkt wird über eine Diagnose auf einen Fadenbruch geschlossen. Die sich aus der Spannung im Schussfaden ergebende Fadenkraft wird nicht gemessen. Im Stillstand des Schussfadens liefert der Sensor unabhängig von der Schussfadenspannung kein Signal.In the method known from EP 0 117 571 A for monitoring the delivery status of a thread when weft is inserted into a weaving machine, the weft thread acts on a tuning fork which, when the weft thread moves, transmits vibrations to the sensor, which has, for example, piezoelectric material. In this way, only the weft movement is sensed and monitored in order to derive a signal which only indicates the running movement of the weft. A standstill at an unexpected point in time becomes a Diagnosis of a thread break concluded. The thread force resulting from the tension in the weft thread is not measured. When the weft is at a standstill, the sensor delivers no signal regardless of the weft tension.

Bei dem aus US 3 688 958 A bekannten Schussfaden-Überwachungsverfahren wird von dem Sensor nur dann ein Signal erzeugt, wenn der Schussfaden läuft, und sogar erst dann, wenn der Schussfaden eine bestimmte Geschwindigkeit erreicht hat. Es wird nicht die Fadenkraft gemessen, sondern die Frequenz beim Fadenlauf am Sensor reibender Fadenunregelmäßigkeiten.In the weft thread monitoring method known from US Pat. No. 3,688,958 A, the sensor only generates a signal when the weft thread is running, and even only when the weft thread has reached a certain speed. It is not the thread force that is measured, but the frequency when the thread runs on the sensor of thread irregularities rubbing.

Eine Messung der Zugkraft im Schussfaden wird gelegentlich zu wissenschaftlichen Zwecken experimentell durchgeführt. Die dabei eingesetzten Sensoren benützen Dehnmessstreifen als mechanisch-elektrische Wandler. Die Empfindlichkeit, die Überlastfähigkeit und die Grenzfrequenz sind dabei durch die eingesetzten Werkstoffe derart begrenzt, dass nur sorgfältig vorbereitete Labormessungen an einzelnen Schusseintragszyklen durchgeführt werden können, und dies nur mit besonders robusten Gamen, welche die zusätzliche Beanspruchung durch die Umlenkstellen des Sensors aushalten. Ein Einsatz dieses Messverfahrens in der industriellen Produktion kommt deshalb, und auch wegen der begrenzten Lebensdauer, der anspruchsvollen Handhabung und der hohen Kosten dieser experimentellen Geräte, nicht in Frage.A measurement of the tensile force in the weft thread is occasionally carried out experimentally for scientific purposes. The sensors used use strain gauges as mechanical-electrical transducers. The sensitivity, the overload capacity and the limit frequency are limited by the materials used in such a way that only carefully prepared laboratory measurements can be carried out on individual weft insertion cycles, and this only with particularly robust games that can withstand the additional stress caused by the deflection points of the sensor. The use of this measurement method in industrial production is therefore out of the question, and also because of the limited service life, the demanding handling and the high costs of these experimental devices.

Die vorliegende Erfindung hat zum Ziel, mit einem kostengünstigen, robusten, genauen und rasch reagierenden Sensor die Fadenkraft beim Schusseintrag zu messen und damit den Verlauf des Schusseintrages besser zu optimieren und zuverlässiger zu überwachen. Der Sensor beruht auf dem Prinzip einer Fadenumlenkung, wobei der Umlenkwinkel weniger als 45 Grad, bevorzugt weniger als 30 Grad beträgt. Die Grenzfrequenz des Sensors liegt über 1 kHz, bevorzugt über 5 kHz. Dieser Sensor wird bevorzugt mit einem piezoresistiven oder piezoelektrischen Kristall realisiert. Für das piezoresisitive Messprinzip wird dazu beispielsweise ein Kraftsensor der Firma Honeywell Typ PK 88870 benützt. Dieser wird in Verbindung mit einem Gleichspannungsverstärker mit einer Grenzfrequenz von mindestens 1 kHz, bevorzugt über 5 kHz, eingesetzt. Für das piezoelektrische Messprinzip wird beispielsweise ein Kraftsensor aus dem Programm der Firma Kistier eingesetzt, in Verbindung mit einem Ladungsverstärker. In diesem Fall wird ein quasistatisches Ausgangssignal erzeugt, indem der Verstärker jeweils in der kraftfreien Phase des Eintragszyklus zurückgestellt wird. Die Einzelheiten des piezoelektrischen Messverfahrens sind in der Verkaufsdokumentation der Firma Kistler ausführlich beschrieben.The aim of the present invention is to measure the thread force during the weft insertion with a cost-effective, robust, accurate and quick-reacting sensor and thus to optimize the course of the weft insertion better and to monitor it more reliably. The sensor is based on the principle of thread deflection, the deflection angle being less than 45 degrees, preferably less than 30 degrees. The limit frequency of the sensor is above 1 kHz, preferably above 5 kHz. This sensor is preferably implemented with a piezoresistive or piezoelectric crystal. For the piezoresistive measuring principle, a force sensor from Honeywell type PK 88870 is used, for example. This is used in conjunction with a DC voltage amplifier with a cutoff frequency of at least 1 kHz, preferably above 5 kHz. For the piezoelectric measuring principle, for example, a force sensor from the Kistier range is used in conjunction with a charge amplifier. In this case, a quasi-static output signal is generated by resetting the amplifier in the power-free phase of the entry cycle. The details of the piezoelectric measuring method are described in detail in the Kistler sales documentation.

In Fig. 1 ist der schematische Zusammenhang der vertahrensgemässen Mittel, in Fig. 2 das Fadenkraftsignal dargestellt. Fig. 3 zeigt die verfahrensgemässe Anwendung zur Überwachung des Schusseintrages, und Fig. 4 die Prinzipien für die Optimierung des Schusseintrages.In Fig. 1 the schematic relationship of the means according to the procedure is shown, in Fig. 2 the thread force signal. FIG. 3 shows the application according to the method for monitoring the weft insertion, and FIG. 4 the principles for the optimization of the weft insertion.

Das Prinzip der Messeinrichtung ist in Fig. 1 schematisch dargestellt. Der Schussfaden 1 wird von der Spule 2 mit Hilfe des Schussfadenspeichers 3 abgezogen. Hierauf durchläuft er eine Fadenbremse 4 und den eifindungsgemässen Fadenkraftsensor 5. Die auf den Schussfaden wirkende Kraft wird auf bekannte Weise durch Auslenkung des Fadens gemessen, indem die Reaktionskraft 7 des Fadens vom druckempfindlichen Element 6 in ein elektrisches Signal 13 umgewandelt wird. Hierauf durchläuft der Schussfaden den sogenannten Farbwähler, der die Zuordnung unterschiedlicher Schussfäden für den Schusseintrag besorgt. Für den eigentlichen Schusseintrag wird der Faden im Element 9 beschleunigt und weiter angetrieben.The principle of the measuring device is shown schematically in FIG. 1. The weft thread 1 is drawn off the bobbin 2 with the aid of the weft thread store 3. Thereupon it passes through a thread brake 4 and the thread force sensor 5 according to the invention. The force acting on the weft thread is measured in a known manner by deflecting the thread, by converting the reaction force 7 of the thread from the pressure-sensitive element 6 into an electrical signal 13. The weft thread then runs through the so-called color selector, which ensures the assignment of different weft threads for the weft insertion. For the actual weft insertion, the thread in element 9 is accelerated and driven further.

Dieses Element hat je nach Art der Webmaschine verschiedene Gestalt: Es kann sich um ein Projektil oder um einen Greifer handeln, oder um die Hauptdüse und die folgenden Stafettendüsen einer Luftwebmaschine, oder um den Injektor einer Wasserstrahfwebmaschine. Beim Schusseintrag durchläuft der Faden nun das zwischen den Scheren 10 und 12 liegende Webfach 11.This element has different shapes depending on the type of weaving machine: it can be a projectile or a gripper, or the main nozzle and the following relay nozzles of an air weaving machine, or the injector of a water jet weaving machine. When the weft is inserted, the thread now passes through the shed 11 lying between the scissors 10 and 12.

Das Kraftmesselement 6 kann auf eine mit Fadenführern versehene Platte 5 aufgebaut oder so in den maschinenseits bereits vorhandenen Fadenlauf integriert werden, dass die gewünschte Kraftkomponente darauf erzeugt wird. Es ist im Fadenlauf jedenfalls nach der Bremse 4, jedoch vor dem Eintritt ins Webfach 11 angeordnet, bei Luft- und Wasserwebmaschinen vor der Hauptdüse 9.The force measuring element 6 can be built on a plate 5 provided with thread guides or can be integrated into the thread path already present on the machine in such a way that the desired force component is generated thereon. In any case, it is arranged in the thread path after the brake 4, but before entering the shed 11, in the case of air and water looms in front of the main nozzle 9.

Das vom Fadenkraftsensor 5 gelieferte elektrische Signal 13 wird in der Auswerteeinheit 14 elektronisch verstärkt, ausgewertet und als Signal 15 auf eine Anzeige 16 gegeben, welche den Bediener über den Verlauf des Schusseintrages orientiert und ihn auf Störungen und Korrekturen dazu aufmerksam macht. Die Auswerteeinheit 14 steht dazu über die Datenleitung 17 in Verbindung mit der Maschinensteuerung 19, von wo sie die Zeitsignale weiterer, am Schusseintrag beteiligter Maschinenfunktionen erhält, beispielsweise die momentane Winkellage der Hauptwelle der Maschine. Andererseits erhält die Maschinensteuerung über die Datenleitung 18 die Überwachungssignale der Fadenkraftauswertung, beispielsweise zum sofortigen Stillsetzen im Falle eines Fadenbruches beim Schusseintrag, oder zum Aktivieren eines maschinenbezogenen Alarmmittels im Falle einer Störung, welche einen Bedienereingriff verlangt.The electrical signal 13 supplied by the thread force sensor 5 is electronically amplified in the evaluation unit 14, evaluated and sent as a signal 15 to a display 16 which informs the operator of the course of the weft insertion and draws his attention to faults and corrections. For this purpose, the evaluation unit 14 is connected via the data line 17 to the machine control 19, from where it receives the time signals of further machine functions involved in the weft insertion, for example the current angular position of the main shaft of the machine. On the other hand, the machine control receives the monitoring signals of the thread force evaluation via the data line 18, for example for immediate stopping in the event of a thread break when weft insertion, or for activating a machine-related alarm means in the event of a fault which requires operator intervention.

Die Form des Signals 13 ist in ihrem zeitlichen Verlauf in Fig. 2 am Beispiel einer Luftwebmaschine dargestellt. Das Diagramm zeigt in der vertikalen Achse 20 den Fadenzug, in der horizontalen Achse 21 die Zeit. Im Abschnitt 22, ausserhalb des eigentlichen Schusseintragsvorganges, steht der Faden nicht unter Zug. Im Zeitpunkt 23 wird der Faden beschleunigt und tritt ins Webfach ein. Dies führt zu einem raschen Anstieg der Fadenkraft. Im Zeitabschnitt 24 läuft der Faden ins Webfach ein. Im Zeitpunkt 25 wird der in seiner Länge vom Vorspulgerät 3 vorbestimmte Faden von diesem gestoppt, was zu einer typischen Kraftspitze führt. Der Faden bleibt danach während dem Zeitabschnitt 26 gespannt, bis im Zeitpunkt 27 das Webblatt den Faden ans Gewebe anschlägt und dabei wiederum eine charakteristische Kraftspitze erzeugt. Anschliessend wird der Faden beidseits von den Scheren 10 und 12 geschnitten, die Fadenkraft verschwindet, und der Zyklus beginnt emeut.The shape of the signal 13 is shown in its time course in FIG. 2 using the example of an air-jet weaving machine. The diagram shows the thread tension in the vertical axis 20 and the time in the horizontal axis 21. In section 22, outside the actual weft insertion process, the thread is not under tension. At time 23 the thread is accelerated and enters the shed. This leads to a rapid increase in thread strength. In period 24 the thread runs into the shed. At the instant 25, the length of the thread predetermined by the prewinding device 3 is stopped by it, which leads to a typical peak force. The thread then remains during the time period 26 until the reed strikes the thread against the tissue at time 27 and in turn generates a characteristic force peak. The thread is then cut on both sides by the scissors 10 and 12, the thread force disappears and the cycle begins again.

Die verschiedenen Möglichkeiten zur Auswertung dieses Signals sind in der Folge beschrieben. In Fig. 3 ist das Kraftsignal bei störungsfreiem Schusseintrag analog zur Fig. 2 dargestellt. Die Überwachung eines solchen Signalverlaufes über bestimmte Zeitabschnitte hinweg gehört zum bekannten Stand der Technik der digitalen Signalverarbeitung. Das in analoger Form vom Sensor gelieferte Signal wird dazu in Zeitintervallen von maximal 10 ms, bevorzugt weniger als 1 ms, digitalisiert, und mit den dem betreffenden Zeitschritt zugeordneten Grenzwerten verglichen. Diese Grenzwerte können vom Benützer der Maschine auf Grund von Gamdaten oder Erfahrungswerten fest eingegeben werden, oder aber vom Auswertegerät selbst während des praktischen Einsatzes nach dem Prinzip der adaptiven Steuerung selbst festgelegt werden. Auch ein sogenanntes Teach-In durch den Bediener ist vorgesehen. Schliesslich ist auch vorgesehen, von dem auf Grund der Betriebserfahrung ermittelten Verlauf der Fadenkraft für jeden Zeitschritt den Mittelwert zu bilden und damit einen Musterverlauf festzulegen. Nun wird jeder einzelne Schusseintrag mit diesem Musterverlauf verglichen, und bei Überschreiten einer vorgegebenen Toleranz ein Alarm ausgelöst oder die Maschine gestoppt. Ein entscheidender Vorteil besteht darin, dass der zum Stopp führende Kraftverlauf anschliessend für die Diagnose durch den Bediener zur Verfügung steht und mit dem Bild verglichen werden kann, das ihm die Maschine selbst bietet.The various options for evaluating this signal are described below. FIG. 3 shows the force signal in the case of trouble-free weft insertion analogous to FIG. 2. The monitoring of such a signal curve over certain time periods is part of the known prior art of digital signal processing. For this purpose, the signal supplied in analog form by the sensor is digitized in time intervals of at most 10 ms, preferably less than 1 ms, and compared with the limit values assigned to the relevant time step. These limit values can be entered by the user of the machine on the basis of game data or empirical values, or they can be determined by the evaluation device itself during practical use according to the principle of adaptive control. So-called teach-in by the operator is also provided. Finally, it is also provided that the course of the thread force determined on the basis of the operational experience is to be averaged for each time step and thus to establish a pattern course. Now every single weft entry is compared with this pattern, and if a specified tolerance is exceeded, an alarm is triggered or the machine is stopped. A decisive advantage is that the force curve leading to the stop is then available for diagnosis by the operator and can be compared with the image that the machine itself offers.

Als Grenzwerte kommt, wie in Fig. 3 gezeigt, beispielsweise die Maximalzugkraft 30 beim Einziehen des Garnes in Betracht. Diese Zugkraft ist infolge der gleichzeitigen Beschleunigung des Garnes auf einen bestimmten Wert begrenzt, der in der Regel tiefer liegt als jener beim Stoppen des Garnes. Während des ganzen Schusseintrages ist eine minimale Fadenkraft 31 zu überwachen, um Fadenbrüche sofort zu erkennen. Schliesslich ist die Spitzenbelastung des Garnes beim Stoppen 32 zu überwachen. Die Grösse dieser Kraftspitze ist andererseits ein Merkmal für den erfolgreich vollzogenen Schusseintrag, und wird wiederum mit einem Minimalwert 33 überwacht. Auch die zeitlichen Abläufe, gegeben durch die Lage der Kraftspitzen 23, 25 und 27 sind auf analoge Weise durch die Steuerung zu überwachen. Diese Funktion ist hier nicht weiter dargestellt, weil sie gleich gehandhabt wird wie die heute bereits übliche Überwachung des Ankommens des Fadenkopfes im Bereich der Schere 12 (Fig. 1) mit einem optischen Sensor.The limit values, as shown in FIG. 3, are, for example, the maximum tensile force 30 when the yarn is drawn in. As a result of the simultaneous acceleration of the yarn, this tensile force is limited to a certain value, which is generally lower than that when the yarn is stopped. A minimal thread force 31 must be monitored during the entire weft insertion in order to immediately detect thread breaks. Finally, the peak load of the yarn when stopping 32 must be monitored. The size of this force peak is, on the other hand, a characteristic of the successful insertion of the weft and is again monitored with a minimum value 33. Also the time sequences, given by the position of the force peaks 23, 25 and 27, are to be monitored in an analogous manner by the control. This function is not shown further here because it is handled in the same way as the monitoring of the arrival of the thread head in the area of the scissors 12 (FIG. 1), which is already common today, with an optical sensor.

Die Ausgestaltung des Verfahrens zur Optimierung des Schusseintrages zeigt die Fig. 4. Die Fadenkraft ist in der vertikalen Achse 20 dargestellt. Die horizontale Achse 40 ist hier aber nicht zeitlich, sondern in Abschnitte 41 des Webzyklusses eingeteilt, welche einer bestimmten Anzahl Winkelgrade der Hauptwelle der Webmaschine entsprechen. Hieraus lässt sich die Zuordnung bestimmter Effekte beim Schusseintrag zu den Steuerungsfunktionen der Webmaschine erkennen. Dies ist für das praktische Vorgehen beim Optimieren des Schusseintrages entscheidend, denn über die dazu nötigen Eingriffe muss der Bediener entscheiden, oder sie müssen ihm bei einem automatischen Optimierungsverfahren zumindest bekannt und plausibel sein. Der normale Kraftverlauf 42 wird durch Mittelwertbildung einer Reihe von Eintragszyklen numerisch ermittelt und auf dem Bildschirm farbig (hier gepunktet) dargestellt. Abweichungen einzelner Zyklen, die zum Stopp der Maschine führen, wie beispielsweise die durch Fadenbruch abgebrochenen Schusseinträge 43 oder 44, werden davon abweichend besonders kenntlich gemacht. Dabei gibt eine automatische Fehlerdiagnose gleich die Art des Fehlers an, wie dies heute bereits in einfacher Weise mit alphanumerischen Anzeigen auf den Webmaschinen erfolgt, jedoch nur in sehr beschränktem Umfang, z.B. mit der Unterscheidung von Schuss- oder Kettfehler.The configuration of the method for optimizing the weft insertion is shown in FIG. 4. The thread force is shown in the vertical axis 20. However, the horizontal axis 40 is not divided in time here, but into sections 41 of the weaving cycle, which correspond to a certain number of angular degrees of the main shaft of the weaving machine. From this, the assignment of certain effects during weft insertion to the control functions of the weaving machine can be seen. This is decisive for the practical procedure when optimizing the weft insertion, because the operator has to decide on the necessary interventions, or at least be familiar and plausible with an automatic optimization process. The normal force curve 42 is determined numerically by averaging a number of entry cycles and is shown in color on the screen (dotted here). Deviations of individual cycles that lead to the machine stopping, such as the weft entries 43 or 44 broken off due to thread breakage, are made particularly noticeable. An automatic error diagnosis immediately indicates the type of error, as is already done today in a simple manner with alphanumeric displays on the weaving machines, but only to a very limited extent, e.g. with the distinction of weft or warp defects.

In ähnlicher Weise macht die Anzeige auf ungünstige Einstellwerte aufmerksam, beispielsweise auf zu hohe Kraftspitzen 45 im Bereich des Fadenstoppens. Während in diesem Fall die Maschine nicht angehalten wird, weist die Anzeige deutlich mit dem Pfeil 46 auf die heikle Stelle hin, welche mit einer geänderten Einstellung zu beheben ist, beispielsweise durch Verlangsamung des Schusseintrages über eine Senkung des Druckes an den Stafettendüsen.Similarly, the display draws attention to unfavorable setting values, for example excessive force peaks 45 in the area of the thread stop. While the machine is not stopped in this case, the arrow 46 clearly indicates the sensitive area, which can be remedied by changing the setting, for example by slowing down the weft insertion by lowering the pressure at the relay nozzles.

Claims (8)

  1. Method for monitoring the cycle of a weft insertion into a weaving machine, according to which the weft yam (1) actuates by deflection a signal generating sensor connected to an evaluation unit (14), the signal (13) is compared to a target pattern (42) and at least a diagnosis is derived from said comparison, characterised in that the yam force continuously is measured within the weft insertion and outside of the weft insertion by a piezo-resistive or piezo-electrical yam force sensor (5) with a limit frequency of at least 1 kHz and with a sampling rate of at least 100 Hz by a signal which analogously corresponds to the yam force, that said signal is evaluated in digitised fashion in time intervals, and that a weaving machine control function adjustment optimising the weft insertion is changed and/or a weaving machine control function optimising the weft insertion is initiated on the basis of the measured yam force.
  2. Method as in claim 1, characterised in that the yam force is measured by a piezo-resistive crystal in connection with a direct voltage amplifier having a limit frequency of at least 1 kHz, preferably more than 5 kHz.
  3. Method as in claim 1, characterised in that said yam force is measured by a piezo-electrical crystal in connection with a charge amplifier.
  4. Method as in claim 1, characterised In that said analogous signal (13) is evaluated in relation to weaving machine main shaft rotation angle positions associated to predetermined sections (41) of a weaving cycle.
  5. Method as in claim 1, characterised in that the yam force is monitored in view to a minimum limit value (33) in predetermined sections related to time or to the main shaft rotation angle, and that a predetermined function of the weaving machine is initiated if said yam force drops below said minimum limit value.
  6. Method as in claim 1, characterised in that said yam force is monitored in view of a maximum limit value (30, 32) during a predetermined section related to time or to the main shaft angle, and that a predetermined function of the weaving machine is initiated if said yam force exceeds said maximum limit value.
  7. Method as in claim 1, characterised in that the distance of predetermined force peaks (23, 25, 27) of the yam force cycle is monitored within predetermined tolerance fields related to time or to the main shaft rotation angle, and that a predetermined function of the weaving machine is initiated if said distance leaves said tolerance field.
  8. Method as in claim 1, characterised in that a target pattern picture is formed from the development of the yam force during a selected phase of the weft insertion, that the yam force is monitored in view to keeping said target pattern picture, and that a predetermine function of the weaving machine is initiated in case of a deviation from said target pattern picture.
EP00922537A 1999-03-22 2000-03-22 Method for optimizing and monitoring weft insertion in power looms Expired - Lifetime EP1163384B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH54199 1999-03-22
CH54199 1999-03-22
PCT/EP2000/002541 WO2000056964A2 (en) 1999-03-22 2000-03-22 Method for optimizing and monitoring weft insertion in power looms

Publications (2)

Publication Number Publication Date
EP1163384A2 EP1163384A2 (en) 2001-12-19
EP1163384B1 true EP1163384B1 (en) 2003-09-10

Family

ID=4189385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00922537A Expired - Lifetime EP1163384B1 (en) 1999-03-22 2000-03-22 Method for optimizing and monitoring weft insertion in power looms

Country Status (8)

Country Link
US (1) US6467512B1 (en)
EP (1) EP1163384B1 (en)
JP (1) JP4546649B2 (en)
KR (1) KR100432266B1 (en)
CN (1) CN1108406C (en)
AT (1) ATE249539T1 (en)
DE (1) DE50003645D1 (en)
WO (1) WO2000056964A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523442C2 (en) * 2001-04-19 2004-04-20 Eltex Sweden Ab Ways to monitor thread
BE1014133A3 (en) 2001-04-20 2003-05-06 Picanol Nv Method for optimizing a textile production and establishments to apply this procedure.
NL1018600C2 (en) * 2001-07-20 2003-01-21 Te Strake Bv Weaving machine.
DE10333292A1 (en) * 2003-07-22 2005-02-10 Iropa Ag Thread processing system and thread tensiometer
DE502005008310D1 (en) * 2004-11-22 2009-11-26 Itema Switzerland Ltd Method for braking a weft thread of a loom
DE502005007653D1 (en) * 2004-11-22 2009-08-20 Sultex Ag Method for braking a weft thread of a jet loom
EP2031106B1 (en) * 2007-08-31 2010-02-24 L.G.L. Electronics S.p.A. Method for controlling the tension of the yarn unwinding from a negative yarn-feeder for textile machines, and apparatus for carrying out such method
US8150543B2 (en) * 2007-09-28 2012-04-03 Siemens Aktiengesellschaft Methods, apparatus and articles for an air jet loom
DE102010026609B3 (en) * 2010-07-09 2011-11-17 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Method and apparatus for weaving patterns on fabrics with added weft effects
DE102010034969B3 (en) 2010-08-20 2011-11-03 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Weaving and weaving machine for weaving patterns in fabrics with additional pattern effects
CN102733048A (en) * 2012-07-06 2012-10-17 常熟市天豪机械有限公司 Alarm device used for correcting position of weft yarn tube of loom
JP6283489B2 (en) * 2013-02-27 2018-02-21 津田駒工業株式会社 Information display method and information display apparatus for loom
CN103558362A (en) * 2013-10-30 2014-02-05 苏州龙杰特种纤维股份有限公司 Industrial yarn detection method
ITUB20155266A1 (en) * 2015-10-30 2016-01-30 Roj S R L Pilot operated electromagnetic brake for checking the weft yarn tension in textile machines
CN107400972B (en) * 2017-07-12 2018-10-02 青岛高校百特创新科技发展有限公司 A kind of air-jet loom system and its control method weaving different patterns
IT201800006835A1 (en) * 2018-06-29 2019-12-29 OPTICAL DEVICE FOR DETECTION OF SHORT WEFT IN A TEXTILE FRAME
CN109750410B (en) * 2019-03-08 2023-10-10 浙江宁巍机械科技有限公司 Weft insertion system of water jet loom and debugging method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3688958A (en) 1970-11-16 1972-09-05 Rydborn S A O Device for sensing thread passage to control machine operation
IT1169113B (en) * 1983-02-24 1987-05-27 Tiziano Barea DEVICE FOR CHECKING THE ADVANCE STATE OF A THREAD FEEDING TO A WEAVING MACHINE
DE59510272D1 (en) * 1995-05-24 2002-08-14 Sulzer Textil Ag Rueti Sensor and device with sensor for detecting a thread tension
IT1283381B1 (en) * 1996-07-31 1998-04-17 Roj Electrotex Nuova Srl PROCEDURE FOR CHECKING THE INSERTION OF THE WEFT THREAD IN A WEAVING LOOM.
IT1310749B1 (en) * 1999-11-30 2002-02-22 Lgl Electronics Spa METHOD AND CONTROL DEVICE FOR ELECTRIC WEFT BRAKES FOR THE AUTOMATIC ADJUSTMENT OF THE MECHANICAL TENSION OF THE

Also Published As

Publication number Publication date
KR100432266B1 (en) 2004-05-22
WO2000056964A2 (en) 2000-09-28
EP1163384A2 (en) 2001-12-19
CN1347468A (en) 2002-05-01
ATE249539T1 (en) 2003-09-15
JP4546649B2 (en) 2010-09-15
WO2000056964A3 (en) 2000-12-28
DE50003645D1 (en) 2003-10-16
US6467512B1 (en) 2002-10-22
KR20010108375A (en) 2001-12-07
CN1108406C (en) 2003-05-14
JP2002543297A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
EP1163384B1 (en) Method for optimizing and monitoring weft insertion in power looms
DE2462129C3 (en) Arrangement for recognizing the incorrect operation of spinning machines
WO1993005222A1 (en) Device for detecting faults in a textile web
DE2543839B1 (en) DEVICE FOR CREATING A UNIFORM TEXTILE FIBER TAPE
AT507558A4 (en) DEVICE FOR REGULATING SHOOTING VOLTAGE ON A WEB PROTECTOR, WEB PROTECTORS EQUIPPED THEREWITH AND A WELDING MACHINE
KR20060046136A (en) Weft-insertion-condition display unit for loom
EP2013389A1 (en) Loom, in particular a ribbon loom
EP1440193B1 (en) Yarn processing system
EP0415875B1 (en) Method to adjust the weft thread extension in the shed and the air consumption of the auxiliary jets of an air jet loom
DE10104682B4 (en) Process for measuring unbalance and loading in washing machines
DE3900705A1 (en) Method for determining the water quantity in the washing container of a washing machine
DE102009030246B3 (en) Method and arrangement for non-contact determination of yarn tension values
EP1141456B1 (en) Yarn processing system and method for delivering weft yarns
WO2009039672A1 (en) Device and method for measuring the winding weight or winding thickness at the inlet of a carding machine
DE4213842C2 (en) Method and device for monitoring the function of the needles of a textile machine
EP0407824A2 (en) Warp tension monitoring device on a loom and the use of the device as warp stop motion
DE2528290A1 (en) METHOD AND DEVICE FOR MONITORING THE SPUNNED THREAD FOR DEFECTS ON OPEN-END ROTOR SPINNING MACHINES
EP1640485A2 (en) Device for determining the yarn tension of a single yarn in a yarn sheet in textile processing
EP1662030B1 (en) Method of braking a weft yarn in a weaving machine
WO2020234315A1 (en) Method for producing a woven fabric on a loom in a weaving process, and loom
DE102017104337A1 (en) Method for servicing workstations of a textile machine
EP1350878B1 (en) Method for monitoring the weft thread in a loom
CH719062A1 (en) Combing device for combing a fiber material.
CH711314A2 (en) A shuttle embroidery machine with a measuring device for monitoring the thread tension of the needle thread and the method thereof.
DD237295A1 (en) METHOD FOR DETERMINING TECHNOLOGICAL SPRAY PARAMETERS AND LENGTH MEASUREMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010918

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IROPA AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REF Corresponds to:

Ref document number: 50003645

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040322

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SULTEX AG

Effective date: 20040603

EN Fr: translation not filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: SULTEX AG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050322

Year of fee payment: 6

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061001

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20061001

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20061120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080429

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080325

Year of fee payment: 9

BERE Be: lapsed

Owner name: *IROPA A.G.

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180322

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190322