EP1158266A1 - Wegmesssystem - Google Patents
Wegmesssystem Download PDFInfo
- Publication number
- EP1158266A1 EP1158266A1 EP01112304A EP01112304A EP1158266A1 EP 1158266 A1 EP1158266 A1 EP 1158266A1 EP 01112304 A EP01112304 A EP 01112304A EP 01112304 A EP01112304 A EP 01112304A EP 1158266 A1 EP1158266 A1 EP 1158266A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- measuring system
- position measuring
- encoder
- inductive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/28—Means for indicating the position, e.g. end of stroke
- F15B15/2815—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
- F15B15/2861—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using magnetic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/28—Means for indicating the position, e.g. end of stroke
- F15B15/2815—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
- F15B15/2846—Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using detection of markings, e.g. markings on the piston rod
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/003—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2013—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/202—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2033—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2205/00—Indexing scheme relating to details of means for transferring or converting the output of a sensing member
- G01D2205/70—Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
- G01D2205/77—Specific profiles
- G01D2205/775—Tapered profiles
Definitions
- the invention relates to a position measuring system with an encoder, a sensor, which comprises an inductive element, to the the encoder electromagnetically couples and with an evaluation unit for a sensor signal, with sensor and encoder relative are positionable to each other.
- Such measuring systems are used, for example, for position measurement used on pneumatic cylinders, for measurement valve position (especially in control loops) or at Grippers. For such applications, it is very beneficial if a relative path between encoder and sensor is absolutely measurable is.
- DE 25 11 683 C3 and DE 39 13 861 A1 are inductive Position transmitter known in which a ferromagnetic Core together with one through which alternating current flows Primary coil is designed as a sensing element, which in turn forms a magnetic flux. This magnetic flux is with a secondary winding and chained in this winding induced voltage depends on the position of the core.
- a displacement sensor is known from FR 2 682 760 A1, in which on a carrier a primary circuit and a secondary circuit are arranged.
- the primary circuit is with one AC power is applied and couples to the secondary circuit, in which an alternating voltage is induced.
- a giver out a ferromagnetic material influences this induction voltage depending on its relative position to that Secondary circuit.
- the invention is based on the object Generic measuring system to create, which is simple is formed and can thus be manufactured inexpensively and that can be used universally.
- This task is carried out in the position measuring system mentioned at the beginning solved according to the invention in that the inductive element an oscillator is coupled and its quality and / or effective inductance this affects that goodness and / or effective inductance of the inductive element is determined is due to the size of an effective sensor area which the donor couples, and / or by the size of an effective one Encoder area that is connected to an effective sensor area couples and that the sensor and / or the encoder designed so are that the size of the effective sensor area to which the Encoder couples, and / or the size of the effective encoder area, that couples to the effective sensor area, depending is from the relative position between encoder and Sensor across a distance direction between them.
- the inductive element is coupled to an oscillator is and about its quality and / or effective inductance Characteristics of the oscillator such as amplitude, phase position and frequency is influenced, a - location-dependent - Coupling an encoder to the inductive element on simple Evaluate way by the corresponding parameters of the Oscillators are evaluated.
- the inductive element, which is coupled to the oscillator is so to the Oscillator coupled that it can be influenced itself.
- the inductive element itself is the inductor of the oscillator.
- the invention not one induced by a primary coil in a secondary coil Voltage measured, but a goodness and / or effective Inductance of the inductive element of the sensor by means of of the oscillator evaluated. So there is no need Primary coil are supplied with energy, so that the invention Position measuring system is constructed more simply.
- the quality and / or effective inductance of the inductive element which a Measure is for the relative position between encoder and sensor, by the size of the effective sensor area and / or the Size of the effective donor area is determined.
- the sensor signal is due to the geometric structure of the sensor or the donor.
- the effective Sensor range or effective encoder range which couple with each other is the information about the relative Position between encoder and sensor and thus the route information or position information of the relative position included between encoder and sensor.
- the effective sensor area or the effective donor area is in turn due to the Shaping of the sensor and thus especially the inductive one Element or determined by the shape of the encoder.
- the encoder measuring system according to the invention can be used universally use and in particular also use in an encoder.
- the inductive element there is no need for a further secondary coil or the like can be provided.
- a measurement resolution is directly via the shape of the effective sensor area or the effective sensor area adjustable. You can easily do resolutions at least on the order of a thousandth of the total Distance, which sensor and encoder relative to each other can take, realize.
- the sensor signal is determined by an effective one Sensor range and / or by an effective encoder range, and so that the sensor signal is determined directly by a effective inductance of the inductive element of the sensor, can by known evaluation circuits for inductive Proximity switches, where the approach of a metallic Object to an oscillator coil, for example a change in amplitude or frequency of the oscillator is used. It can already be on existing evaluation units can be used.
- the Position measuring system according to the invention can in particular with a type of evaluation unit, regardless of how the special design of the encoder or inductive Element is because the evaluation unit essentially only one Characteristic of this inductive element determined.
- the sensor and / or the transmitter is like this are formed that an overlap area between a Projection of an effective encoder surface on the sensor with an effective sensor area depends on the relative Position between sensor and encoder transverse to the projection direction.
- the shape of the sensor and in particular the inductive element and / or the shape of the encoder, by each the effective sensor surface or the effective one Is determined then determines the dependency of the Coupling between sensor and encoder perpendicular to the projection direction. From this dependence, in turn, the Relative position between sensor and encoder across the projection direction (transverse to the distance direction between the sensor and encoder).
- the relative position between the sensor and encoder can be easily determine if the evaluation unit is a parameter of the oscillator.
- a transducer which is metallic is formed and in particular is electrically conductive or is magnetic, provides a mutual inductance to that inductive element of the sensor. The coupling of the inductors causes a change in the effective inductance of the inductive element. This change in effective inductance can be measured easily.
- Characteristic of the oscillator is a frequency of the oscillator is measured, to which the inductive element is coupled.
- the frequency of an LC resonant circuit is essentially inversely proportional to the root from the effective Inductance. This can then be determined in a simple manner.
- This variant is particularly advantageous if the Encoder is a magnet because it causes a relatively strong change in inductance can occur, accordingly affects the frequency of the resonant circuit, especially if a soft magnetic material that can be saturated is arranged on the sensor.
- an amplitude of the oscillator at which the inductive element is coupled determines an amplitude of the oscillator at which the inductive element is coupled.
- the amplitude of an oscillator and the resonant circuit in particular depends on the effective inductance or quality of the inductive element of the Sensor. It can be determined in a simple manner. In particular can be determined amplitude changes that are relatively small.
- the effective inductance of the inductive Elements can also be evaluated in particular if the encoder is a non-magnetic metal.
- the inductive element is flat and in particular designed as a flat coil is.
- a flat coil is also easy to manufacture and in particular producible with high manufacturing reproducibility; for wound three-dimensional coils, this is Production spread considerably larger than with flat coils.
- the inductive Element is designed as a print spool. The corresponding Coil turns can be easily done, for example by means of an exposure process on a Bring the circuit board. This in turn allows a variety of coil forms in order to achieve a high degree of variability to achieve the application.
- the evaluation unit is on a circuit board is arranged on which the inductive element sits. It are then evaluation unit and inductive element on one Integrated circuit board. This allows the invention Manufacture sensor easily and inexpensively and accordingly Installation in a housing is also easy. It is beneficial if the measurable distance between the sensors and sensor essentially by a length of inductive Elements can then be used for a special application selectively set a measuring path within which the relative Position between sensor and encoder can be determined. Through the easy manufacture of the inductive element in particular as a print spool is then about the shape of the inductive Elements a targeted setting of the corresponding Parameters of the position measuring system according to the invention achieved.
- the encoder is a passive element and in particular from an electrical conductive or magnetically conductive material is made.
- a passive encoder is one that does not participate is connected to an energy source, and yet an electromagnetic Coupling to the inductive element is effected.
- the encoder comprises a magnet.
- the magnetic field of the magnet affects that inductive element and this influence manifests itself in particular in a change in the effective inductance of the inductive element. This change in effective inductance in turn depends on the effective sensor range of the inductive element, which is acted upon by the magnetic field is.
- Such an encoder can also by metallic Walls can be measured through. For example, the position of a piston provided with such an encoder through a wall of an aluminum pressure medium cylinder detect from the outside.
- the inductive Element is a soft magnetic material is arranged.
- the soft magnetic material is, for example a mu-metal in foil form, which is as high as possible magnetic permeability and the smallest possible electrical Has conductance.
- the soft magnetic material can be saturated locally bring, and through this local saturation is an effective one Sensor range defined.
- the local saturation most effective
- the sensor area in turn causes a relatively strong change the effective inductance, which is therefore easy to determine is.
- the inductive element sits soft magnetic material for example on one side or applied on both sides.
- the sensor according to the invention can be then easily manufacture.
- it can be provided be that a board on which the inductive Element sits, wrapped with a soft magnetic material is.
- an effective sensor area which depends on the positioning of an encoder the sensor, can be adjusted in that the inductive Element is designed such that its shape is longitudinal a measuring section varies across the measuring section. It is also alternatively or additionally possible that the soft magnetic Material is arranged in such a form that the Shape dimension transverse to a measuring section along the measuring path varies. Because of the soft magnetic material effective sensor area can be brought into saturation locally through the shape of the soft magnetic material itself also determines an effective sensor range. Outside of the soft magnetic material is the field application of the sensor differently than on the soft magnetic Material, and then the effective sensor range is then through determines the form of application of the soft magnetic material. In particular, it is provided that the soft magnetic Material is arranged in a triangle. This changes the transverse dimension of the application along the measuring path of the soft magnetic material and from the variation of the The relative position between the encoder can be measured in the transverse dimension and determine sensor.
- the inductive element is designed such that its shape is transverse to a measuring path varies along the measurement path. This can be done in a simple way via the appropriate winding formation reach a flat coil. By changing its shape the effective sensor range varies across the measuring section. The size of the effective sensor area is responsible for the sensor signal and this sensor signal includes then the information about the relative position between sensor and encoder. With an easy to manufacture
- the inductive element has a variant of an embodiment triangular turns. It is then in the range of one Triangle tip a larger enclosed area in front than in Area of a base of the triangle. This in turn varies the size of an effective sensor area when an encoder is on couples the inductive element.
- this extends inductive element in an angular range to measure rotations to be able to. If the encoder is then in a circular path above the inductive element moves, then the relative rotational position determine between encoder and sensor.
- the inductive Element is designed so that an effective sensor area varies along the angular range. In particular is it is advantageous if the angular range is essentially one Full circle includes. This allows rotational positions in one full angular range can be measured.
- the transmitter comprises an electrical one conductive or magnetically conductive element.
- This Element couples inductively as a mutual inductance to the inductive element of the sensor and thereby changes the effective inductance of the inductive element. From this Change in turn, which is dependent on the relative Position between sensor and encoder, this can be determine relative position. Is particularly advantageous it when the coverage area is between an effective Encoder area and the inductive element along one Travel distance varies. This variation can basically as already stated above, through appropriate training of the inductive element can be achieved.
- the giver can be used, for example, as a tongue, as a hanger, which is movable over the inductive element, as a ring with, for example, a round or rectangular cross section or be designed as a tube, etc.
- the encoder is designed so that an effective encoder area, which couples to the inductive element in its Shape transverse to a measurement path along the measurement path varies.
- the effective encoder range determines the coupling of the encoder to the sensor.
- this effective donor area and in particular through a Variation along the measuring path is then the coupling depending on the relative position between encoders and sensor. This in turn can be from the sensor signal clearly determine this relative position.
- the Measuring distance is linear.
- the Measuring path section circular, so that in particular the position measuring system according to the invention can be used as a rotary encoder is.
- the effective one is Trained encoder area. In particular, the changes Areal density of the encoder along the measuring path by one to design an effective encoder area with a cross variation.
- the encoder is provided with a triangular structure.
- a such structure can easily be a variation an effective donor area. Is the triangular one Structure arranged in a ring, then can thus also measure rotary movements.
- the effective encoder range can be determined, for example, by a Form a coating on the encoder.
- the coating material can be, for example, a Mu metal or trade a ferrite coating.
- the encoder is provided with recesses and in particular with through openings. On these recesses missing encoder material and thus the effective encoder range depending on the size and distribution of the recesses in the Giver.
- a displacement measuring system is the sensor of one inductive proximity sensor with an oscillating circuit, which has an inductive element.
- proximity sensors which are in particular analog sensors are known. These can be done with an appropriately trained Use encoders to measure absolute displacement for the relative Position between encoder and sensor.
- a magnetic shield for the inductive element is provided. This makes the inductive Protected elements from stray fields and the like, which in can couple the inductive element and thus the measurement signal can falsify. With a magnetic shield, which in particular is designed as a magnetic cage accuracy can be increased.
- inductive elements it is expedient if a plurality of inductive elements is provided. This allows a wide variety of applications to reach. For example, differential measurements or sum measurements are carried out or the inductive elements can be arranged so that the sensor includes several measurement tracks, for example for rough measurements and fine measurements.
- the senor comprises a plurality of tracks formed by inductive elements.
- the tracks can be used for differential measurements, for example become, d. H. it can be a differential system form.
- the tracks can run in opposite directions or be trained equally. It can also change the shape of the coils differ, for example one Track for a fine measurement and a track for a rough measurement the relative position between the sensor and encoder.
- a distance measurement can be carried out, which is essentially independent from the distance of the encoder to the sensor. Basically depends on the electromagnetic coupling of the encoder the inductive element from its distance from the inductive Element. If this distance changes, it becomes Sensor signal affected without changing the relative position between sensor and encoder changes transversely to the distance direction.
- an encoder is between two in one Distance inductive elements is positioned.
- the inductive elements run in opposite directions guided. But they can also be run in the same direction. Becomes a difference with respect to sensor signals of the two performed inductive elements, then the Eliminate distance dependency.
- a sum formation with respect to sensor signals of two inductive elements is performed. From the sum signal can then just the distance between the encoder and Determine sensor. According to the invention, it can therefore be a Position determination between sensor and encoder across the distance direction between sensor and encoder and also a position determination with regard to the distance between Sensor and encoder, d. H. regarding the height above which the Encoder is arranged above the sensor.
- the inductive element is arranged on a flexible carrier.
- the inductive element is on a flexible film arranged. This allows the carrier with the applied inductive element in a certain shape bring, for example, the carrier with the inductive Adapt element to contours of a web guide or the like.
- the measuring section due to a wave-like movement of the encoder is adapted to the movement of the encoder so that the Distance between sensor and encoder essentially constant is held.
- the inductive element must then also be in be arranged in a waveform. This can be done through a flexible carrier, which on a corresponding wavy Position is achieved.
- a single evaluation unit which performs a difference formation and / or sum formation in order to to receive a corresponding measurement signal;
- an evaluation unit has a plurality of sensor elements and in particular a plurality of is assigned to inductive elements.
- the sensor and / or the sensors are designed so that they have the appropriate shape a specific characteristic curve of the measuring system for a sensor signal is set depending on a measuring path is. This enables a characteristic curve course desired for an application be set specifically.
- an error signal is sent by the evaluation unit can be branched, which can be checked by the evaluation unit is whether one or more parameters of the inductive element in within a tolerance range. In particular, it is checked whether the quality and / or effective inductance does not go up or deviates too much below from still tolerable values. It will a plausibility check was carried out using the For example, a coil break, a short circuit or Detect a missing / moving away of the encoder from the measuring range leaves.
- an inventive Position measuring system which is designated as a whole by 10 in FIG a, in particular stationary, sensor 12 is provided, which comprises a circuit board 14 on which a flat coil 16 sits as an inductive element.
- the flat coil 16 is in particular a print spool, which is printed on the circuit board 14 is.
- the flat coil 16 comprises a plurality of turns 18 and thereby occupies an area 20.
- the turns are essentially spaced in parallel spirally.
- turns 18 have a uniform sense of turn on.
- turns are meandering are arranged with alternating turns (in the Drawing not shown).
- the flat coil 16 is aligned in a direction 22 and a length 1 of the flat coil 16 essentially defines that Path, which by means of the measuring system according to the invention 10 is measurable.
- Evaluation unit 24 is provided. This is particularly on the Board 14 arranged so that sensor 12 and evaluation unit 24 are integrated on the board 14.
- the evaluation unit 24 is known per se. For example, it has two voltage supply inputs 26, 28, a signal output 30 and optional an error output 31.
- the evaluation unit 24 is integrated an oscillator to which the flat coil 16 so is coupled that parameters of the oscillator such as frequency and quality are influenced by the flat coil 16.
- the flat coil 16 itself the inductance of a Form oscillator.
- the flat coil 16 Via the flat coil 16 is, for example, a tongue or transmitter 32 designed as a bracket made of a metallic Slidable material.
- the encoder 32 is a passive encoder that directly electromagnetically couples to the flat coil 16 without that it must be energized.
- the encoder 32 is there at a distance above the flat coil 16 (in FIG. 1) this distance perpendicular to the drawing plane) on an object arranged, the relative positioning along the Direction 22 is to be determined relative to the sensor 12.
- the flat coil 16 by a "magnetic cage" 34 is shielded, for example is formed by ferrite foils or the like.
- the position measuring system according to the first embodiment 10 works as follows:
- the metallic tongue 32 is in the vicinity of the flat coil 16 brought, then there is an inductive coupling between the Flat coil 16 and the encoder 32.
- This has the consequence that the effective inductance of the flat coil 16 and thus their Quality due to the electromagnetic coupling of the encoder 32 changes.
- the scope of the change depends on which surface of the flat coil 16 is covered by the encoder 32 will, d. H. how big the overlap area of a projection of the sensor 32 to the sensor 12 with an effective sensor area is.
- the encoder 32 is outside the Flat coil 16, then the overlap area is zero and effective inductance, which can be measured on the flat coil 16 is essentially their inductance without inductive negative feedback of a metal element.
- the maximum Coverage area is reached when one end 36 of the encoder 32 lies above one end 38 of the flat coil 16 and the encoder 32 is above the flat coil, d. H. if the flat coil 16 is covered to a maximum.
- the sensor signal which is determined by the evaluation unit 24 is determined by the effective inductance or quality of the flat coil 16; is such a size in particular the amplitude of a resonant circuit of the oscillator, to which the flat coil 16 is coupled. This amplitude depends on the quality of the flat coil 16.
- the flat coil 16 can form the resonant circuit inductance itself or on be coupled to another voice circuit coil and thereby the Influence the inductance of the resonant circuit and thus again its effective inductance.
- the effective inductance of the flat coil 16 thereof depends on where the end 36 of the encoder 32 above the flat coil 16 stands, because this determines the area with which the metal tongue 32 can couple to the flat coil, can by determining the effective inductance of the flat coil 16 clearly determine the quality of a resonant circuit, where the end 36 of the encoder 32 is located.
- the evaluation unit 24 checks in particular whether the Quality / effective inductance of the flat coil 16 within a Tolerance range. If this is not the case, a Signal given to error output 31. For example, lets thereby the flat coil 16 on a broken coil in a simple manner monitor.
- a sensor 44 arranged to which an evaluation unit 46 is connected is.
- the evaluation unit 46 is basically the same formed like the above in connection with the first embodiment described evaluation unit 24.
- the evaluation unit 46 on a sensor board 48 arranged.
- the sensor 44 comprises a flat coil 50, which acts as a print coil is formed on the sensor board 48.
- the flat coil 50 is formed with triangular turns and oriented so that the shape of the flat coil 50 transverse to a direction 52, which is the direction of measurement for the relative position between Sensor 44 and an encoder 54 along this measurement direction 52nd varies.
- the encoder 54 is formed by a metal tongue, which in its longitudinal direction 56 is oriented transversely to the measuring direction 52 and above the flat coil 50 at a distance in a vertical Direction 58 is positioned to this.
- the relative can be measured by the position measuring system according to the invention Position between the encoder 54 and the sensor 44 in the Determine measuring direction 52. If the encoder is in the measuring direction 52 shifted, as long as the encoder 54 above the Sensor 44 is positioned, the projection surface of the encoder 54 (projection direction 58) onto the sensor 44 independently of the position of the encoder 54 in relation to the measuring direction 52.
- the effective sensor range is determined through a surface area of the flat coil 50. Since this Area due to the triangular shape of the Flat coil 50 along a path 60 parallel to Direction of measurement 52 changes, consequently the effective changes Sensor range.
- the electromagnetic coupling of the metal tongue 54 as a mutual inductance to the flat coil 50 is of it depending on how large the possible coupling area of the flat coil 50 is d. H. how large the effective sensor area is. Since the effective sensor area is along path 60 changes, the coupling also changes as a result.
- the position of the Determine encoder 54 on route 60 By measuring the effective inductance of the flat coil 50, which by coupling the encoder 54 to the flat coil 50 is determined, the position of the Determine encoder 54 on route 60. By measuring the Inductance of the flat coil 50 or one dependent thereon Size like the quality of a resonant circuit to which the flat coil 50 is coupled, the relative position between the encoder 54 and the sensor 44 along the measuring direction 52 can be determined.
- the distance 60 is essentially by the length of the flat coil 50 on the sensor board 48 determined.
- a further sensor 62 with a Evaluation unit 64 is provided, one on sensor 62 Flat coil 66 is arranged, which is substantially the same is formed like the flat coil 50.
- the sensor 62 is in particular arranged so that the flat coil 66 over the Flat coil 50 of sensor 44 is located.
- the encoder 54 is between the sensor 62 and the sensor 44 positioned or guided (two-sensor arrangement).
- the two sensors 44 and 62 are assigned so that the two-sensor arrangement has a corresponding one Outputs measurement signal via the only evaluation unit.
- the sensor signal i.e. H. the effective inductance of the flat coil 50 or one dependent thereon Size depends on the distance between encoder 54 and the flat coil 50 as an inductive element in the vertical Direction 58.
- the coupling of the metal tongue 54 as a mutual inductance to the flat coil 50 the stronger, the smaller this distance in the vertical direction 58.
- this distance of the encoder 54 over the Flat coil 50 therefore occurs a signal change that is not by changing the relative position between encoder 54 and sensor 44 comes about along the measuring direction 52.
- the additional sensor 62 allows changes in the distance between encoder 54 and sensor 44 in the vertical Take direction 58 into account.
- there is one Difference evaluation between the sensor signal of the flat coil 66 and the flat coil 50 are provided. Such a difference signal is then essentially independent of the distance of the encoder 54 to the flat coil 50 (and thus also from the Distance of the encoder 54 to the flat coil 66).
- Such evaluation can thus be the distance 60 along the Measuring direction 52 for the relative position between encoder 54 and determine sensor 44 even if the distance changes between encoder 54 and sensor 44 changes.
- a Sum formation of the sensor signal of the flat coil 50 and the Flat coil 66 is performed. Such a sum signal then depends on the distance of the sensor 54 from the sensor 44 (and thus also from the distance to the sensor 62). Since this Sum signal contains distance information can be omitted the distance between the encoder 54 and the sensor 44 determine; it can also be a distance 68 along the direction 58 determine.
- Figure 3 is a top view of a copied artwork a circuit board 70 with a print spool 72 in a triangular shape Shown shape.
- the print spool 72 has power connections 74 and 76 provided, between which turns 77 run.
- a contour line 78 of the triangular structure is essentially aligned parallel to a longer board edge 80.
- the Windings 77 are designed such that they are each triangular and the corresponding turn triangles in the essentially have the contour 78.
- the inductive element on a flexible support is arranged like a flex film.
- the carrier can then be adapt to the contours of a machine, for example. It can thereby, for example, wavy movements of a Encoder are detected, the distance between the encoder and Sensor by adapting the carrier to a surface is constantly stable.
- a position measuring system according to the invention can also be used for angle measurements and especially in connection with rotary encoders (rotary encoders).
- FIG Whole denoted by 82 are one sensor 84 and one Evaluation unit 86 arranged on a circuit board 88.
- a giver 90 which is designed in particular as a metal tongue about an axis of rotation 92 which is substantially perpendicular to the Board 88 is oriented, relative to this on a circular path rotatable.
- a flat coil 94 sits on the sensor 84.
- This flat coil 94 is in particular a print spool and is designed such that their shape is transverse to the circular path of the encoder 90 this circular path varies. This is because of this, for example achievable that a triangular structure, as in Figure 3 shown, formed with a circular contour line 78 will, d. H. the triangular structure into a ring shape brought. Such a shape of the flat coil 94 is shown in Figure 4.
- the position measuring system according to the third embodiment 82 basically works the same as that already described above.
- the encoder 90 couples to inductance 94.
- the coupling is determined through the overlap area of a projection surface the sensor 90 to the sensor 84 and an effective sensor area, d. H. through the overlap area of the projection surface of the encoder 90 on the flat coil 94. Since this overlap area due to the corresponding design the flat coil 94 along the circular path of the encoder 90 changes, can thus be clearly from the sensor signal Determine the angle of rotation (modulo 2 ⁇ ) and thus the position of the Encoder 90 on its circular path.
- an inductive proximity switch 98 arranged with a sensor 100.
- the sensor includes a resonant circuit with an inductive element.
- the Characteristics of the resonant circuit changed and in particular changed the quality of the resonant circuit. This change can be measured.
- Such inductive proximity switches are used in particular as analog switches, to generate an analog switching signal when there is a metallic object in a certain switching distance Proximity switch 98 approximates.
- the position measuring system can be via the proximity switch 98 relative position between an encoder 102 and the sensor 100 in a direction 104 (measuring direction) transverse to a distance direction 106 between sensor 100 and encoder 102.
- the Encoder 102 is designed such that the coverage area the sensor area between the encoder and the sensor with its inductive element along the measuring direction 104 varies.
- the strength of the Coupling of the encoder 102 to the sensor 100 is in the Structure 108 different from the rest of the donor. this means then that structure 108 is an effective donor area which couples to the sensor 100 and the in its shape transverse to a measurement path along the direction 104 varies.
- the proximity switch 98 then delivers clear signal (e.g. the quality of an oscillator), which depends on the relative position between the encoder 102 and the sensor 100. From this signal the relative position between sensor 100 and Determine encoder 102.
- the measurable distance along the measuring direction 104 corresponds essentially to the length of the Structure 108 in the measurement direction 104.
- Wegmeßsystem 96 another proximity switch 110 is provided, which is aligned with the proximity switch 98 is aligned and the encoder 102 is between them two proximity switches 98 and 110 performed.
- the encoder 102 is on its one facing the proximity switch 110 Provide side with a structure which corresponds to structure 108 corresponds.
- proximity switches 98 and 110 can also be used as inductive sensors Elements are provided, d. H. Coils provided be connected to an evaluation unit.
- the Using "finished" proximity switches 98, 110 has the advantage that from the voltage signal the proximity switch or the relative position signal directly the relative position between encoder 102 and sensor 110 along measuring direction 104 is readable.
- a structure 112 an encoder 114 to thereby create an effective encoder range create, which varies across the measurement direction 104, are a plurality of triangular surfaces 116 are arranged on the encoder 114.
- a triangular surface 116 is, for example formed by a Mu metal or by a ferrite coating.
- Structure 112 includes three triangular surfaces 116.
- the contour lines of the through the outline of a triangular surface 116 triangles formed are essentially aligned parallel to a side edge 118 of the encoder 114 and the respective contour lines of the triangular surfaces 116 spaced parallel to each other.
- the tips of the triangular surface 116 lie on a line parallel to one narrower side edge 120 of encoder 114.
- an inventive Encoder 122 which is shown in FIG. 7, is the Provide encoder with through openings 124, where the opening size and / or the opening density of the openings 124 changes transversely to a longitudinal direction 126 of the encoder 122. Then the longitudinal direction 126 becomes along the measuring direction 104 aligned, then the effective encoder range varies across to the measuring direction 104 along the measuring direction 104, so that accordingly the strength of the coupling of the encoder 122 to one Sensor depends on the relative position between Sensor and encoder 122 with respect to the measuring direction 104.
- an encoder can be a Position measuring system according to the invention also designed as a rotary encoder be, with a corresponding structure of the Encoder is guided on a circular path and the effective one Encoder area on the circular path varies across this.
- This can be achieved, for example, in that a triangular structure analogous to that shown in FIGS or 6 is annular; for example it can alternatively be provided that a distribution of openings analogous to the embodiment which is shown in Figure 7, is arranged on a circular path with varying size and / or density such that the effective Encoder area through which a sensor can be acted on is varied along a circular line transverse to the circular line.
- a fifth embodiment which is shown in Figure 8a designated as a whole by 128 is on a circuit board 130 an evaluation unit 132 and a sensor 134 are arranged.
- the Sensor 134 comprises a print spool Flat coil 136; this corresponds, for example, in its design the print spool 72, as shown in Figure 3 and accordingly an effective sensor area varies across a measuring direction.
- a soft magnetic material is indicated on the board 130 by reference numeral 138.
- the board is 130 wrapped with the soft magnetic material.
- a magnet 140 is used as the encoder, its position vary in a measuring direction 142 relative to the sensor 134 can. By the magnetic field of the encoder 140, the Flat coil 136 applied and their effective inductance changed.
- the magnetic field of the magnet 140 brings the soft magnetic Material 138 locally in saturation. Through this local saturation effect changes the effective inductance of the Flat coil 136. Since the saturation effect is local and the flat coil 136 in its shape transverse to the measuring direction 142 varies, the inductance changes depending on the position of the magnet 140 across the flat coil 136 lengthways the measuring direction 142.
- a is used as the soft magnetic material Mu metal used.
- the flat coil 136 in its shape along the measuring direction in essentially does not vary (see, for example, the flat coil 16 according to the first embodiment of Figure 1) that but the soft magnetic material is applied so that its shape varies across the direction of measurement.
- the soft magnetic material For example is then a triangular Mu metal strip or one corresponding ferrite coating arranged on the board 130. This causes an effective sensor area lengthways the measuring direction varies across the measuring direction.
- the effective Simply measure inductance due to the relatively strong field exposure of the flat coil 136 through the magnet 140, the effective Simply measure inductance, since signal swings in of the order of 20% or more can occur.
- the Inductance itself can be, for example, via a Frequency measurement of an oscillator frequency of an oscillator, to which the flat coil 136 is coupled. The Frequency depends on the root of the effective Inductance of the flat coil 136 from.
- the flat coil 136 (or appropriate structuring of the soft magnetic material 138) is the change in inductance over the distance measured, d. H. about the relative distance between the encoder 140 and the sensor 134 in the measuring direction 142, essentially linear, as indicated in Figure 8b.
- a sensor 144 comprises two flat coils 146 and 148, which are formed in triangular turns and in opposite directions are arranged to each other. This is a differential system two flat coils 146, 148 are provided. On in this way, in particular, the accuracy of the path determination be improved or the influence of disturbances can be reduced.
- the encoder 140 between two Flat coils 136 is guided, which in the same direction (see FIG 2) or can be arranged in opposite directions. This allows the Distance dependence of a sensor signal on the distance of the Encoder 140 can be reduced relative to the sensor 144.
- the sensor is also used the flat coils or the encoder according to the intended Application trained.
- the structuring of the flat coils in particular with regard to their length, their number of turns and their shape or the formation of a structure on the Encoder influences the measuring range length, the measuring accuracy and the measurement resolution.
- Effective donor areas, which couple a sensor or effective sensor areas to which an encoder is coupled vary along a measuring direction the relative positioning between sensor and encoder and an absolute distance can be derived from this variation determine without contact. It is basically indifferent whether the encoder or the sensor on a movable Element is arranged. By appropriate geometric design the effective sensor area and / or effective A specific characteristic of the Adjust the measuring system according to the invention.
- the location information is directly about the effective inductance of the inductive element and / or the change in quality read out.
- the latter can be easily done, for example about the amplitude or frequency of an oscillator determine to which the inductive element is coupled.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
- Figur 1
- eine schematische Darstellung in Draufsicht einer ersten Ausführungsform des erfindungsgemäßen Wegmeßsystems;
- Figur 2
- eine schematische perspektivische Darstellung einer zweiten Ausführungsform des erfindungsgemäßen Wegmeßsystems;
- Figur 3
- eine Draufsicht auf einen Sensor mit einer Printspule als induktivem Element;
- Figur 4
- eine schematische Darstellung einer dritten Ausführungsform eines erfindungsgemäßen Wegmeßsystems ins Draufsicht;
- Figur 5
- eine schematische perspektivische Darstellung einer vierten Ausführungsform eines erfindungsgemäßen Wegmeßsystems mit einer Metallzunge als Geber;
- Figur 6
- eine Draufsicht auf ein Ausführungsbeispiel einer Metallzunge;
- Figur 7
- eine Draufsicht auf ein weiteres Ausführungsbeispiel einer Metallzunge;
- Figur 8a
- eine schematische Darstellung einer fünften Ausführungsform eines erfindungsgemäßen Wegmeßsystems in Draufsicht;
- Figur 8b
- ein Induktivitäts (L)-Weg (x)-Diagramm, in welchem die Abhängigkeit der Induktivität des induktiven Elements in Abhängigkeit von dem Ort eines Gebermagneten (Fig. 8a) gezeigt ist und
- Figur 9
- ein Ausführungsbeispiel eines induktiven Elements.
Claims (40)
- Wegmeßsystem mit einem Geber (32; 54; 90; 102; 140), einem Sensor (12; 44; 84; 100; 134), welcher ein induktives Element (16; 50; 94; 136) umfaßt, an das der Geber elektromagnetisch koppelt, und mit einer Auswerteeinheit (24; 46; 86; 132), wobei Sensor und Geber relativ zueinander positionierbar sind,
dadurch gekennzeichnet, daß das induktive Element (16; 50; 94; 136) an einen Oszillator gekoppelt ist und über seine Güte und/oder effektive Induktivität diesen beeinflußt, daß die Güte und/oder effektive Induktivität des induktiven Elements (16; 50; 94; 136) bestimmt ist durch die Größe eines wirksamen Sensorbereichs, an den der Geber koppelt, und/oder durch die Größe eines wirksamen Geberbereichs, der an einen wirksamen Sensorbereich koppelt, und daß der Sensor und/oder der Geber so ausgebildet sind, daß die Größe des wirksamen Sensorbereichs, an den der Geber koppelt, und/oder die Größe des wirksamen Geberbereichs, der an den wirksamen Sensorbereich koppelt, abhängig ist von der relativen Position zwischen Geber und Sensor quer zur einer Abstandsrichtung (58; 106) zwischen diesen. - Wegmeßsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Sensor (12; 44; 84; 100; 134) und/oder der Geber (32; 54; 90; 102; 140) so ausgebildet sind, daß ein Überlappungsbereich zwischen einer Projektion einer wirksamen Geberfläche auf den Sensor mit einer wirksamen Sensorfläche abhängig ist von der relativen Position zwischen Sensor und Geber quer zur Projektionsrichtung (58; 106).
- Wegmeßsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Auswerteeinheit (24; 46; 86; 132) eine Kenngröße des Oszillators ermittelt.
- Wegmeßsystem nach Anspruch 3, dadurch gekennzeichnet, daß eine Frequenz des Oszillators ermittelt wird.
- Wegmeßsystem nach Anspruch 3, dadurch gekennzeichnet, daß eine Amplitude des Oszillators ermittelt wird.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß das induktive Element (16; 50; 94; 136) flächig ausgebildet ist. - Wegmeßsystem nach Anspruch 6, dadurch gekennzeichnet, daß das induktive Element (16; 50; 94; 136) als Printspule ausgebildet ist.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß die Auswerteeinheit (24; 64; 86; 132) auf einer Platine (14; 48; 88; 130) angeordnet ist, auf welcher das induktive Element (16; 50; 94; 136) sitzt. - Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß die meßbare Wegstrecke zwischen Geber (32; 54; 90; 140) und Sensor (12; 44; 84; 134) im wesentlichen durch eine Länge des induktiven Elements (16; 50; 94; 136) bestimmt ist. - Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß der Geber (32; 54; 90; 102; 140) ein passives Element ist. - Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß der Geber (140) einen Magneten umfaßt. - Wegmeßsystem nach Anspruch 11, dadurch gekennzeichnet, daß an oder in der Nähe des induktiven Elements (136) ein weichmagnetisches Material (138) angeordnet ist.
- Wegmeßsystem nach Anspruch 12, dadurch gekennzeichnet, daß das weichmagnetische Material (138) derart angeordnet ist, daß es an einem wirksamen Sensorbereich lokal in Sättigung bringbar ist.
- Wegmeßsystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß auf einer Platine (130), auf welcher das induktive Element (136) sitzt, ein weichmagnetisches Material (138) aufgebracht ist.
- Wegmeßsystem nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß eine Platine (130), auf welcher das induktive Element (136) sitzt, mit einem weichmagnetischen Material (138) umwickelt ist.
- Wegmeßsystem nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das weichmagnetische Material in einer derartigen Form angeordnet ist, daß die Formabmessungen quer zu einer Meßwegstrecke längs der Meßwegstrecke variieren.
- Wegmeßsystem nach Anspruch 16, dadurch gekennzeichnet, daß das weichmagnetische Material dreieckförmig angeordnet ist.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß das induktive Element (50; 94; 136) derart ausgebildet ist, daß seine Gestalt quer zu einer Meßwegstrecke (60) längs der Meßwegstrecke (60) variiert. - Wegmeßsystem nach Anspruch 18, dadurch gekennzeichnet, daß das induktive Element (50; 136) dreieckförmige Windungen aufweist.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß zur Messung von Drehungen das induktive Element (94) sich in einem Winkelbereich erstreckt. - Wegmeßsystem nach Anspruch 20, dadurch gekennzeichnet, daß der Winkelbereich im wesentlichen einen Vollkreis umfaßt.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß der Geber ein elektrisch oder magnetisch leitendes Element (32; 54; 90; 102) umfaßt. - Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß ein projizierter Überdeckungsbereich zwischen einem wirksamen Geberbereich und dem induktiven Element (100) längs einer Wegmeßstrecke variiert. - Wegmeßsystem nach Anspruch 23, dadurch gekennzeichnet, daß der Geber (102; 114; 122) so ausgebildet ist, daß ein wirksamen Geberbereich, welcher an das induktive Element (100) koppelt, in seiner Gestalt quer zu einer Meßwegstrecke längs der Meßwegstrecke variiert.
- Wegmeßsystem nach Anspruch 24, dadurch gekennzeichnet, daß der Geber (102; 114) mit einer dreieckförmigen Struktur (108; 112) versehen ist.
- Wegmeßsystem nach Anspruch 24 oder 25, dadurch gekennzeichnet, daß der wirksame Geberbereich durch eine Beschichtung (108; 112) auf dem Geber (102; 112) gebildet ist.
- Wegmeßsystem nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, daß der Geber (122) mit Ausnehmungen (124) versehen ist.
- Wegmeßsystem nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, daß der Sensor von einem induktiven Näherungssensor (98), der einen Schwingkreis, welcher ein induktives Element aufweist, umfaßt ist.
- Wegmeßsystem nach einem der Ansprüche 22 bis 28, dadurch gekennzeichnet, daß eine magnetische Abschirmung (34, 42, 98) für das induktive Element vorgesehen ist.
- Wegmeßsystem nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Mehrzahl von induktiven Elementen (50, 66; 100, 110).
- Wegmeßsystem nach Anspruch 30, dadurch gekennzeichnet, daß der Sensor eine Mehrzahl von durch induktive Elemente gebildete Spuren umfaßt.
- Wegmeßsystem nach Anspruch 30 oder 31, dadurch gekennzeichnet, daß eine Mehrzahl von induktiven Elementen (50, 66; 100; 110) bezüglich des Gebers (54; 102) so angeordnet und beschaltet sind, daß eine Wegmessung durchführbar ist, die im wesentlichen unabhängig von dem Abstand des Gebers (54; 102) zu dem Sensor ist.
- Wegmeßsystem nach Anspruch 32, dadurch gekennzeichnet, daß ein Geber (54; 102) zwischen zwei in einem Abstand angeordneten induktiven Elementen (50, 66; 100, 110) positioniert ist.
- Wegmeßsystem nach Anspruch 33, dadurch gekennzeichnet, aß die induktiven Elemente gegenläufig geführt sind.
- Wegmeßsystem nach Anspruch 33 oder 34, dadurch gekennzeichnet, daß eine Differenzbildung bezüglich Sensorsignalen der beiden induktiven Elemente (50, 66; 100, 110) durchgeführt wird.
- Wegmeßsystem nach einem der Ansprüche 33 bis 35, dadurch gekennzeichnet, daß eine Summenbildung bezüglich Sensorsignalen der beiden induktiven Elemente (50, 66; 100, 110) durchgeführt wird.
- Wegmeßsystem nach einem der Ansprüche 6 bis 36, dadurch gekennzeichnet, daß das induktive Element auf einem flexiblen Träger angeordnet ist.
- Wegmeßsystem nach Anspruch 37, dadurch gekennzeichnet, daß das induktive Element auf einer Flexfolie angeordnet ist.
- Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß der Sensor und/oder der Geber so ausgebildet sind, daß über die entsprechende Formgebung ein bestimmter Kennlinienverlauf des Wegmeßsystems für ein Sensorsignal in Abhängigkeit eines Meßwegs eingestellt ist. - Wegmeßsystem nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, daß von der Auswerteeinheit ein Fehlersignal abzweigbar ist, wobei durch die Auswerteeinheit überprüfbar ist, ob ein oder mehrere Parameter des induktiven Elements innerhalb eines Toleranzintervalls liegen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20040002389 EP1426728B1 (de) | 2000-05-24 | 2001-05-19 | Wegmesssystem |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10025661 | 2000-05-24 | ||
DE10025661A DE10025661A1 (de) | 2000-05-24 | 2000-05-24 | Wegmeßsystem |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20040002389 Division EP1426728B1 (de) | 2000-05-24 | 2001-05-19 | Wegmesssystem |
EP04002389.7 Division-Into | 2004-02-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1158266A1 true EP1158266A1 (de) | 2001-11-28 |
EP1158266B1 EP1158266B1 (de) | 2004-07-28 |
Family
ID=7643352
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01112304A Expired - Lifetime EP1158266B1 (de) | 2000-05-24 | 2001-05-19 | Wegmesssystem |
EP20040002389 Expired - Lifetime EP1426728B1 (de) | 2000-05-24 | 2001-05-19 | Wegmesssystem |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20040002389 Expired - Lifetime EP1426728B1 (de) | 2000-05-24 | 2001-05-19 | Wegmesssystem |
Country Status (5)
Country | Link |
---|---|
US (1) | US6714004B2 (de) |
EP (2) | EP1158266B1 (de) |
JP (1) | JP2002022402A (de) |
AT (1) | ATE272203T1 (de) |
DE (2) | DE10025661A1 (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1295089B1 (de) * | 2000-06-26 | 2005-08-10 | Ulrich Kindler | Vorrichtung zur berührungslosen wegmessung, insbesondere zur stellungs- und bewegungserfassung |
WO2008074317A2 (de) * | 2006-12-21 | 2008-06-26 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor |
DE102007062862A1 (de) | 2006-12-21 | 2008-07-10 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Verfahren und Sensoranordnung zum Bestimmen der Position und/oder Positionsänderung eines Messobjekts relativ zu einem Sensor |
WO2009010552A2 (de) * | 2007-07-19 | 2009-01-22 | Zf Friedrichshafen Ag | Anordnung eines spulenpaares in einem örtlichen messbereich |
WO2013064622A1 (de) * | 2011-11-03 | 2013-05-10 | Continental Teves Ag & Co. Ohg | Induktiver weg- und winkelsensor |
WO2013064651A1 (de) * | 2011-11-03 | 2013-05-10 | Continental Teves Ag & Co. Ohg | Induktiver wegsensor |
WO2016046193A1 (de) * | 2014-09-22 | 2016-03-31 | Continental Teves Ag & Co. Ohg | Positionssensor |
DE202016003727U1 (de) | 2016-06-14 | 2016-07-07 | Peter Haas | Induktivitätsanordnung |
EP3194821A4 (de) * | 2014-09-15 | 2018-02-28 | Flowserve Management Company | Sensoren für ventilsysteme und verwandte anordnungen, systeme und verfahren |
DE102007011952B4 (de) | 2007-03-09 | 2019-09-26 | Werner Turck Gmbh & Co. Kg | Bewegungsmessvorrichtung, insbesondere Drehwinkelgeber |
EP3804903A4 (de) * | 2018-08-02 | 2021-09-01 | Kosmek Ltd. | Klemmvorrichtung mit funktion zum erfassen des verhaltens eines festzuklemmenden gegenstandes |
WO2022023191A1 (de) * | 2020-07-29 | 2022-02-03 | Samson Aktiengesellschaft | Positionssensor zum bestimmen der position einer ventilstange eines stellventils |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10132666C2 (de) * | 2001-07-05 | 2003-07-10 | Vogt Electronic Ag | Positionssensor eines Ventils |
US6690160B2 (en) | 2002-04-22 | 2004-02-10 | Deere & Company | Position sensing apparatus |
DE10225845B4 (de) * | 2002-06-05 | 2007-02-01 | Bizerba Gmbh & Co. Kg | Aufschnitt-Schneidemaschine und Verfahren zum Betreiben einer Aufschnitt-Schneidemaschine |
DE10250846B4 (de) * | 2002-10-24 | 2006-04-20 | Balluff Gmbh | Positionssensoranordnung |
WO2004099724A2 (en) * | 2003-05-06 | 2004-11-18 | Sri International | Hydraulic cylinder with piston and a magnetic layer on the piston rod for piston position determination |
DE10338265B3 (de) * | 2003-08-18 | 2005-04-07 | Balluff Gmbh | Positionsmeßsystem |
DE10339171A1 (de) | 2003-08-22 | 2005-03-24 | Bizerba Gmbh & Co. Kg | Aufschnitt-Schneidemaschine |
FR2860070A1 (fr) * | 2003-09-22 | 2005-03-25 | Siemens Vdo Automotive | Capteur de deplacement et son application notamment a la detection des variations de la hauteur d'une suspension de vehicule automobile |
DE10354694C5 (de) * | 2003-11-22 | 2008-10-09 | Sick Ag | Induktiver Sensor |
US7135857B2 (en) * | 2003-12-12 | 2006-11-14 | Honeywell International, Inc. | Serially connected magnet and hall effect position sensor with air gaps between magnetic poles |
DE602005007580D1 (de) † | 2004-03-01 | 2008-07-31 | Sagentia Ltd | Positionssensor |
US7135855B2 (en) * | 2004-05-17 | 2006-11-14 | David Scott Nyce | Simplified inductive position sensor and circuit configuration |
JP4427665B2 (ja) * | 2004-07-28 | 2010-03-10 | 国立大学法人広島大学 | 曲げ変形センサおよび変形測定装置 |
DE602005006843D1 (de) * | 2004-10-25 | 2008-06-26 | Koninkl Philips Electronics Nv | Autonomer drahtloser würfel |
US7116097B2 (en) * | 2004-10-27 | 2006-10-03 | Deere & Company | System and method for detecting the axial position of a shaft or a member attached thereto |
US7259553B2 (en) | 2005-04-13 | 2007-08-21 | Sri International | System and method of magnetically sensing position of a moving component |
JP2007292593A (ja) * | 2006-04-25 | 2007-11-08 | Denso Corp | 衝突検出装置 |
US20090102463A1 (en) * | 2006-05-29 | 2009-04-23 | Nct Engineering Gmbh | Sensor Device and Method of Measuring a Position of an Object |
DE102006031139A1 (de) * | 2006-07-03 | 2008-01-10 | Rudolf Schubach | Vorrichtung zum berührungslosen Messen der absoluten linearen Position mit planaren Spulen |
US8104810B2 (en) * | 2006-11-01 | 2012-01-31 | Norgren Automotive Solutions, Inc. | Gripper having sensor for detecting displacement |
US7719263B2 (en) * | 2006-11-22 | 2010-05-18 | Zf Friedrichshafen Ag | Inductive position measuring device or goniometer |
DE102006061771B4 (de) | 2006-12-28 | 2014-12-31 | Sick Ag | Magnetischer Wegsensor mit linearer Kennlinie des Ausgangssignals |
DE102008014685B8 (de) * | 2008-03-18 | 2009-12-17 | Suspa Holding Gmbh | Positionsschalteinrichtung für eine Kolben Zylindereinheit |
JP5108143B2 (ja) | 2008-03-19 | 2012-12-26 | サジェンティア リミテッド | 処理回路構成 |
US8058867B2 (en) * | 2008-08-18 | 2011-11-15 | Deere & Company | System for determining the position of a movable member |
JP4842314B2 (ja) * | 2008-11-07 | 2011-12-21 | 株式会社アミテック | シリンダ位置検出装置 |
US8193781B2 (en) * | 2009-09-04 | 2012-06-05 | Apple Inc. | Harnessing power through electromagnetic induction utilizing printed coils |
US8319089B2 (en) | 2010-09-07 | 2012-11-27 | William Henry Morong | Oscillatory, magnetically activated position sensor |
EP2429077B1 (de) * | 2010-09-14 | 2013-04-10 | Optosys SA | Induktiver Näherungsschalter |
JP2012193973A (ja) * | 2011-03-15 | 2012-10-11 | Toyota Auto Body Co Ltd | 位置検出構造 |
FR2972795B1 (fr) * | 2011-03-15 | 2013-10-11 | Crouzet Automatismes | Capteur inductif de proximite et procede de montage dudit capteur |
WO2013089206A1 (ja) * | 2011-12-13 | 2013-06-20 | 株式会社アミテック | トルクセンサ |
DE102012100335B4 (de) * | 2012-01-16 | 2013-11-07 | Parker Hannifin Manufacturing Germany GmbH & Co. KG | Druckbehälter mit einem darin beweglichen Kolben und einer Vorrichtung zur Positionsbestimmung des Kolbens in dem Druckbehälter |
US8919844B1 (en) | 2012-05-18 | 2014-12-30 | Norgren Automation Solutions, Llc | Gripper with actuator mounted displacement sensor |
DE102012220022B4 (de) * | 2012-11-02 | 2014-09-25 | Festo Ag & Co. Kg | Verfahren zur Herstellung einer Spule und elektronisches Gerät |
WO2014200105A1 (ja) * | 2013-06-13 | 2014-12-18 | 株式会社アミテック | 誘導型位置検出装置 |
DE102013226201A1 (de) | 2013-12-17 | 2015-06-18 | Robert Bosch Gmbh | Linearführung mit kombinierter Last- und Positionsmessung |
US11226211B2 (en) * | 2014-09-08 | 2022-01-18 | Texas Instruments Incorporated | Inductive position detection |
JP6293036B2 (ja) * | 2014-09-11 | 2018-03-14 | メソッド・エレクトロニクス・マルタ・リミテッド | 磁気センサのための距離測定方法及びセンサ |
DE102015200620A1 (de) * | 2015-01-16 | 2016-07-21 | Zf Friedrichshafen Ag | Induktive Positionsbestimmung |
DE102016204016A1 (de) * | 2016-03-11 | 2017-09-14 | Robert Bosch Gmbh | Kipptoleranter Wegsensor |
US10030426B2 (en) * | 2016-03-28 | 2018-07-24 | Schlage Lock Company Llc | Inductive door position sensor |
EP3479060B1 (de) * | 2016-06-29 | 2020-09-02 | Kongsberg Inc. | System und verfahren zur fehlerdetektion bei kontaktloser positionserfassung |
US10612943B2 (en) * | 2016-08-24 | 2020-04-07 | Mitutoyo Corporation | Winding and scale configuration for inductive position encoder |
US10520335B2 (en) * | 2016-08-24 | 2019-12-31 | Mitutoyo Corporation | Winding configuration for inductive position encoder |
US10775199B2 (en) * | 2016-08-24 | 2020-09-15 | Mitutoyo Corporation | Winding and scale configuration for inductive position encoder |
CN108061509B (zh) * | 2016-11-08 | 2023-07-11 | 新思考电机有限公司 | 位置检测装置、透镜驱动装置、照相机装置和电子设备 |
JP6323699B1 (ja) * | 2017-03-22 | 2018-05-16 | Tdk株式会社 | 角度センサおよび角度センサシステム |
DE102018204235A1 (de) * | 2018-03-20 | 2019-09-26 | Zf Friedrichshafen Ag | Sensoranordnung |
DE102018110146A1 (de) * | 2018-04-26 | 2019-10-31 | Rheinmetall Air Defence Ag | Detektoranordnung zur Bestimmung einer Stellung eines Kolbens in einem Kolbenmotor |
DE102018007529A1 (de) * | 2018-09-20 | 2020-03-26 | Kaco Gmbh + Co. Kg | Sensoreinheit für ein Sensor-Geber-System sowie ein Sensor-Geber-System mit einer solchen Sensoreinheit |
DE102018220458A1 (de) * | 2018-11-28 | 2020-05-28 | Zf Friedrichshafen Ag | Sensoranordnung |
DE102018009534B4 (de) | 2018-12-07 | 2024-04-04 | Pepperl+Fuchs Se | Spannvorrichtung mit induktiver Abfrageeinheit |
DE102018221317A1 (de) * | 2018-12-10 | 2020-06-10 | Zf Friedrichshafen Ag | Induktive Drehwinkelerfassung |
EP3683479B1 (de) * | 2019-01-15 | 2021-02-24 | Contelec AG | Stellsystem für ein ventil |
JP7168180B2 (ja) * | 2019-11-12 | 2022-11-09 | 日本システム開発株式会社 | 変位センサ及び変位センサシステム |
US11067414B1 (en) | 2020-03-23 | 2021-07-20 | Mitutoyo Corporation | Transmitter and receiver configuration for inductive position encoder |
US11169008B2 (en) | 2020-03-23 | 2021-11-09 | Mitutoyo Corporation | Transmitter and receiver configuration for inductive position encoder |
US11181395B2 (en) | 2020-03-23 | 2021-11-23 | Mitutoyo Corporation | Transmitter and receiver configuration for inductive position encoder |
DE102020113115A1 (de) | 2020-05-14 | 2021-11-18 | Minebea Mitsumi Inc. | Vorrichtung und Verfahren zur Positionserfassung in einem Elektromotor |
DE102020134217A1 (de) * | 2020-12-18 | 2022-06-23 | Balluff Gmbh | Induktive Sensorvorrichtung zum Bestimmen einer longitudinalen Position eines bewegbaren Objekts entlang einer sensitiven Achse der Sensorvorrichtung sowie Verfahren zum Betreiben einer solchen Sensorvorrichtung |
US11713983B2 (en) | 2021-06-30 | 2023-08-01 | Mitutoyo Corporation | Sensing winding configuration for inductive position encoder |
US12072212B2 (en) | 2022-08-31 | 2024-08-27 | Mitutoyo Corporation | Inductive position encoder utilizing transmissive configuration |
US12072213B2 (en) | 2022-08-31 | 2024-08-27 | Mitutoyo Corporation | Inductive position encoder utilizing slanted scale pattern |
KR102662194B1 (ko) * | 2022-09-15 | 2024-04-29 | 현대위아 주식회사 | 차동 잠금 장치 |
DE102022133794B4 (de) | 2022-12-19 | 2024-08-08 | Schaeffler Technologies AG & Co. KG | Sensoreinrichtung sowie Aktuator mit der Sensoreinrichtung |
WO2024201899A1 (ja) * | 2023-03-30 | 2024-10-03 | エヌエスディ株式会社 | 変位検出センサ及びセンサ装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2520851A1 (de) * | 1975-05-10 | 1976-11-18 | Weitmann & Konrad | Vorrichtung zur erfassung von zustandsaenderungen mittels induktiver oder kapazitiver abgriffsysteme |
EP0351609A2 (de) * | 1988-07-22 | 1990-01-24 | ZELTRON - Istituto Zanussi per la Ricerca S.p.A. | Positionsumsetzer |
FR2682760A1 (fr) * | 1991-10-22 | 1993-04-23 | Prototype Mecanique Ind | Capteurs de deplacements lineaires ou angulaires sans contact. |
EP0557608A1 (de) * | 1992-02-27 | 1993-09-01 | VOGT electronic Aktiengesellschaft | Spulenaufbau |
DE4406417A1 (de) * | 1994-02-28 | 1995-09-07 | Bosch Gmbh Robert | Einrichtung zum Messen eines Weges oder eines Winkels |
DE19619197A1 (de) * | 1996-05-11 | 1997-11-13 | Schlafhorst & Co W | Vorrichtung zum Erfassen von Winkelpositionen und/oder von Winkelgeschwindigkeiten |
US5867022A (en) * | 1996-03-23 | 1999-02-02 | Wabco Gmbh | Inductive angle-of-rotation sensor having rotatable magnetically conductive element within single winding coil |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2511683C3 (de) * | 1975-03-18 | 1985-06-20 | Metrawatt GmbH, 8500 Nürnberg | Induktiver Stellungsgeber |
JPS57173701A (en) * | 1981-04-21 | 1982-10-26 | Japanese National Railways<Jnr> | Eddy current type device and method for measuring rail displacement |
US5055814A (en) * | 1988-05-19 | 1991-10-08 | Ohkura Electric Co., Ltd. | Displacement detector |
US5619133A (en) * | 1989-01-11 | 1997-04-08 | Nartron Corporation | Single coil position and movement sensor having enhanced dynamic range |
DE3914787A1 (de) | 1989-05-05 | 1990-11-08 | Hermann Michael Dipl Phys | Induktiv arbeitender positionssensor |
US5204621A (en) | 1990-02-08 | 1993-04-20 | Papst-Motoren Gmbh & Co. Kg | Position sensor employing a soft magnetic core |
US5068607A (en) | 1990-06-22 | 1991-11-26 | Data Instruments, Inc. | Electrical linear position transducer with silicon steel foil shield surrounding transducer coil |
DE9105145U1 (de) | 1991-04-26 | 1992-08-27 | Papst-Motoren GmbH & Co KG, 7742 St Georgen | Positionssensor für Drehbewegungen |
DE4239635C2 (de) * | 1992-11-23 | 1998-02-12 | Hartmann & Braun Ag | Einrichtung zur Wegerfassung von Ventilstangenbewegungen elektropneumatischer Stellungsregler |
DE4311973C2 (de) * | 1993-04-14 | 1997-09-11 | Pepperl & Fuchs | Magneto-induktives Sensorsystem für eine magnetische Positions- und/oder Wegbestimmung |
DE4330540C1 (de) * | 1993-09-09 | 1995-03-30 | Kostal Leopold Gmbh & Co Kg | Induktive Sensoreinrichtung |
DE4445819C2 (de) * | 1994-12-21 | 1997-07-10 | Honeywell Ag | Abstands/Positions-Meßvorrichtung |
GB9607750D0 (en) * | 1996-04-15 | 1996-06-19 | Radiodetection Ltd | Displacement sensors |
US5949293A (en) * | 1997-02-18 | 1999-09-07 | Japan System Development Co., Ltd. | Integrated circuit for measuring the distance |
DE19715360B4 (de) | 1997-04-12 | 2007-09-06 | Siemens Ag | Bedienvorrichtung |
DE19806529C2 (de) | 1998-02-17 | 2002-04-18 | Micro Epsilon Messtechnik | Weg-Winkel-Sensor |
FR2800457B1 (fr) | 1999-10-27 | 2002-01-11 | Siemens Automotive Sa | Procede de fabrication de capteur analogique de position sans contact |
FR2800460B1 (fr) | 1999-10-27 | 2002-01-11 | Siemens Automotive Sa | Capteur analogique de position sans contact |
FR2800459B1 (fr) | 1999-10-27 | 2002-01-11 | Siemens Automotive Sa | Capteur analogique de position sans contact a couplage differentiel |
FR2801969B1 (fr) | 1999-12-01 | 2002-02-08 | Siemens Automotive Sa | Capteur analogique de decalage angulaire sans contact |
FR2800458B1 (fr) | 1999-10-27 | 2002-01-11 | Siemens Automotive Sa | Capteur analogique de position sans contact a couche noyau de largeur variable |
FR2803303B1 (fr) | 2000-01-04 | 2002-05-10 | Aventis Pasteur | Glycoproteine d'enveloppe du vih modifiee chimiquement |
-
2000
- 2000-05-24 DE DE10025661A patent/DE10025661A1/de not_active Withdrawn
-
2001
- 2001-05-01 US US09/846,428 patent/US6714004B2/en not_active Expired - Lifetime
- 2001-05-19 AT AT01112304T patent/ATE272203T1/de not_active IP Right Cessation
- 2001-05-19 EP EP01112304A patent/EP1158266B1/de not_active Expired - Lifetime
- 2001-05-19 EP EP20040002389 patent/EP1426728B1/de not_active Expired - Lifetime
- 2001-05-19 DE DE50102966T patent/DE50102966D1/de not_active Expired - Lifetime
- 2001-05-23 JP JP2001153933A patent/JP2002022402A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2520851A1 (de) * | 1975-05-10 | 1976-11-18 | Weitmann & Konrad | Vorrichtung zur erfassung von zustandsaenderungen mittels induktiver oder kapazitiver abgriffsysteme |
EP0351609A2 (de) * | 1988-07-22 | 1990-01-24 | ZELTRON - Istituto Zanussi per la Ricerca S.p.A. | Positionsumsetzer |
FR2682760A1 (fr) * | 1991-10-22 | 1993-04-23 | Prototype Mecanique Ind | Capteurs de deplacements lineaires ou angulaires sans contact. |
EP0557608A1 (de) * | 1992-02-27 | 1993-09-01 | VOGT electronic Aktiengesellschaft | Spulenaufbau |
DE4406417A1 (de) * | 1994-02-28 | 1995-09-07 | Bosch Gmbh Robert | Einrichtung zum Messen eines Weges oder eines Winkels |
US5867022A (en) * | 1996-03-23 | 1999-02-02 | Wabco Gmbh | Inductive angle-of-rotation sensor having rotatable magnetically conductive element within single winding coil |
DE19619197A1 (de) * | 1996-05-11 | 1997-11-13 | Schlafhorst & Co W | Vorrichtung zum Erfassen von Winkelpositionen und/oder von Winkelgeschwindigkeiten |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1295089B1 (de) * | 2000-06-26 | 2005-08-10 | Ulrich Kindler | Vorrichtung zur berührungslosen wegmessung, insbesondere zur stellungs- und bewegungserfassung |
WO2008074317A2 (de) * | 2006-12-21 | 2008-06-26 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor |
DE102007062862A1 (de) | 2006-12-21 | 2008-07-10 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Verfahren und Sensoranordnung zum Bestimmen der Position und/oder Positionsänderung eines Messobjekts relativ zu einem Sensor |
WO2008074317A3 (de) * | 2006-12-21 | 2008-09-18 | Micro Epsilon Messtechnik | Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor |
RU2460044C2 (ru) * | 2006-12-21 | 2012-08-27 | Микро-Эпсилон Месстехник Гмбх Унд Ко. Кг | Способ и измерительное устройство для определения положения и/или изменения положения объекта измерения относительно чувствительного элемента |
CN101563585B (zh) * | 2006-12-21 | 2013-03-20 | 微-埃普西龙测量技术有限两合公司 | 被测物相对于传感器的位置和/或位置变化的测定方法及测定用的传感器装置 |
DE102007011952B4 (de) | 2007-03-09 | 2019-09-26 | Werner Turck Gmbh & Co. Kg | Bewegungsmessvorrichtung, insbesondere Drehwinkelgeber |
WO2009010552A2 (de) * | 2007-07-19 | 2009-01-22 | Zf Friedrichshafen Ag | Anordnung eines spulenpaares in einem örtlichen messbereich |
WO2009010552A3 (de) * | 2007-07-19 | 2009-08-27 | Zf Friedrichshafen Ag | Anordnung eines spulenpaares in einem örtlichen messbereich |
US8253411B2 (en) | 2007-07-19 | 2012-08-28 | Zf Friedrichshafen Ag | Arrangement of a coil pair in a local measurement area |
WO2013064651A1 (de) * | 2011-11-03 | 2013-05-10 | Continental Teves Ag & Co. Ohg | Induktiver wegsensor |
CN103906995A (zh) * | 2011-11-03 | 2014-07-02 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 感应式位移传感器 |
WO2013064622A1 (de) * | 2011-11-03 | 2013-05-10 | Continental Teves Ag & Co. Ohg | Induktiver weg- und winkelsensor |
EP3194821A4 (de) * | 2014-09-15 | 2018-02-28 | Flowserve Management Company | Sensoren für ventilsysteme und verwandte anordnungen, systeme und verfahren |
US11054057B2 (en) | 2014-09-15 | 2021-07-06 | Flowserve Management Company | Sensors for valve systems and related assemblies, systems and methods |
WO2016046193A1 (de) * | 2014-09-22 | 2016-03-31 | Continental Teves Ag & Co. Ohg | Positionssensor |
CN107076578A (zh) * | 2014-09-22 | 2017-08-18 | 大陆-特韦斯股份有限公司 | 位置传感器 |
DE202016003727U1 (de) | 2016-06-14 | 2016-07-07 | Peter Haas | Induktivitätsanordnung |
WO2017215786A1 (de) | 2016-06-14 | 2017-12-21 | Peter Haas | Induktionsanordnung |
EP3804903A4 (de) * | 2018-08-02 | 2021-09-01 | Kosmek Ltd. | Klemmvorrichtung mit funktion zum erfassen des verhaltens eines festzuklemmenden gegenstandes |
WO2022023191A1 (de) * | 2020-07-29 | 2022-02-03 | Samson Aktiengesellschaft | Positionssensor zum bestimmen der position einer ventilstange eines stellventils |
Also Published As
Publication number | Publication date |
---|---|
ATE272203T1 (de) | 2004-08-15 |
JP2002022402A (ja) | 2002-01-23 |
EP1426728B1 (de) | 2015-04-22 |
DE50102966D1 (de) | 2004-09-02 |
EP1158266B1 (de) | 2004-07-28 |
DE10025661A1 (de) | 2001-12-06 |
US6714004B2 (en) | 2004-03-30 |
EP1426728A1 (de) | 2004-06-09 |
US20010052771A1 (en) | 2001-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1158266B1 (de) | Wegmesssystem | |
EP2137499B1 (de) | Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor | |
EP0693673B1 (de) | Magnetischer Wegsensor | |
DE60130700T2 (de) | Induktiver Positionsgeber | |
EP0130940A1 (de) | Induktive Sensoranordnung und Messanordnung zur Verwendung derselben | |
DE60100915T2 (de) | Magnetfeldsensor und Positionsdetektor | |
EP2521894B1 (de) | Verfahren und vorrichtung zur erfassung von magnetfeldern | |
EP3198233B1 (de) | Positionssensor | |
DE4119903A1 (de) | Verfahren und vorrichtung zur messung duenner schichten | |
EP2359097B1 (de) | Sensoranordnung und verfahren zur bestimmung der position und/oder positionsänderung eines messobjekts | |
DE10124483B4 (de) | Wegmeßsystem | |
DE4001544A1 (de) | Messeinrichtung zur bestimmung eines drehwinkels | |
EP0554417B1 (de) | Messeinrichtung zur berührungsfreien bestimmung des wegs oder des drehwinkels eines bauteils | |
DE102004033083A1 (de) | Wirbelstromsensor zur kontinuierlichen Weg- oder Winkelmessung | |
DE9000575U1 (de) | Meßeinrichtung zur Bestimmung eines Drehwinkels | |
EP3417245B1 (de) | Sensor | |
EP0676622B2 (de) | Positionssensor | |
WO2016008872A1 (de) | Sensorvorrichtung zum bestimmen einer verschiebung einer welle | |
DE3929681A1 (de) | Messeinrichtung zur erfassung eines wegs oder eines drehwinkels | |
DE3514154A1 (de) | Beruehrungsfreies messverfahren | |
DE19800380C2 (de) | Induktive Winkelmeßvorrichtung | |
DE102020112721A1 (de) | Induktiver Positionssensor mit einer Abschirmungsschicht und Verfahren hierfür | |
DE4227734C2 (de) | Anordnung und Verfahren zum Messen der Dicke einer Schicht | |
DE102005045774A1 (de) | Messvorrichtung und Verfahren zur berührungslosen Bestimmung der Lage zweier relativ zueinander verstellbarer Bauteile | |
WO2022023191A1 (de) | Positionssensor zum bestimmen der position einer ventilstange eines stellventils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020205 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BALLUFF GMBH |
|
17Q | First examination report despatched |
Effective date: 20030221 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50102966 Country of ref document: DE Date of ref document: 20040902 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041108 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050519 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050519 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050429 |
|
BERE | Be: lapsed |
Owner name: *BALLUFF G.M.B.H. Effective date: 20050531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH) |
|
BERE | Be: lapsed |
Owner name: *BALLUFF G.M.B.H. Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50102966 Country of ref document: DE Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150526 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150527 Year of fee payment: 15 Ref country code: IT Payment date: 20150526 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160519 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170627 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50102966 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 |