EP1157201B1 - Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile - Google Patents

Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile Download PDF

Info

Publication number
EP1157201B1
EP1157201B1 EP99973747A EP99973747A EP1157201B1 EP 1157201 B1 EP1157201 B1 EP 1157201B1 EP 99973747 A EP99973747 A EP 99973747A EP 99973747 A EP99973747 A EP 99973747A EP 1157201 B1 EP1157201 B1 EP 1157201B1
Authority
EP
European Patent Office
Prior art keywords
pressure
supply system
fuel supply
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99973747A
Other languages
German (de)
English (en)
Other versions
EP1157201A1 (fr
Inventor
Thomas Frenz
Hansjoerg Bochum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1157201A1 publication Critical patent/EP1157201A1/fr
Application granted granted Critical
Publication of EP1157201B1 publication Critical patent/EP1157201B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves

Definitions

  • the invention relates to a method and a device for operating a fuel supply system Internal combustion engine, in particular of a motor vehicle, at with the help of a pump fuel into a storage space promoted and a pressure is generated in the storage space an actual value of the pressure with the help of a pressure sensor is measured, and at which the pressure in the storage space a setpoint is controlled and regulated, an error in the fuel supply system by a Plausibility check is recognized.
  • the correction value also becomes one Fault detection device supplied in the checked whether the correction value is within one by two predetermined values formed allowable pressure range lies. If the correction value is outside this range, this is how a fault in the fuel supply system is recognized and displayed.
  • the present invention is based on the object To improve methods of the generic type in such a way that which is a fault in the fuel supply system causing component can be determined.
  • the particularly great advantage of the present invention lies in that an accurate diagnosis of the Fuel supply system without additional components is achieved.
  • FIG. 1 shows a fuel supply system 10 shown for use in an internal combustion engine is provided.
  • An electric fuel pump is in a fuel tank 11 (EKP) 12, a fuel filter 13 and a low pressure regulator 14 arranged.
  • the EKP 12 promotes the through the fuel filter 13 Fuel from the fuel tank 11.
  • the fuel filter 13 has the task of foreign particles from the fuel filter out.
  • the low pressure regulator 14 With the help of the low pressure regulator 14 the fuel pressure in the low pressure range to one predetermined value regulated.
  • a fuel line 15 leads from the fuel tank 11 a high pressure pump 16.
  • the high pressure pump 16 closes there is a storage space 17 on which injection valves 18 are arranged.
  • the injection valves 18 are with the Storage space 17 connected and are preferably directly the Combustion chambers assigned to the internal combustion engine.
  • the fuel is produced using the electric fuel pump 12 from the fuel tank 11 via the fuel line 15 to High pressure pump 16 promoted. This turns the fuel on brought to a pressure of about 4-5 bar.
  • the high pressure pump 16, which are preferably directly from the internal combustion engine is driven, compresses and delivers the fuel into a storage space 17.
  • the fuel pressure reached here values of up to 120 bar.
  • a pressure sensor 21 and a pressure control valve 19 is direct connected to storage space 17.
  • the pressure control valve 19 is connected on the input side to the storage space 17.
  • a return line 20 leads to the output side Fuel line 15. Via signal and control lines 22, 23 are the pressure sensor 21 and the pressure control valve 19 with connected to a control unit 25.
  • a pressure control valve 19 can also Quantity control valve in a fuel supply system 10 come into use. For the sake of simplicity, following text only the pressure control valve 19 further described.
  • the pressure sensor 21 With the help of the pressure sensor 21, the actual value of the Detected fuel pressure in the storage space 17. About the Signal line 22 becomes the actual value to control unit 25 fed. In the control unit 25 is based on the detected Actual value of the fuel pressure, a control signal is formed, with which the pressure control valve 19 via the control line 23 is controlled.
  • control unit 25 various functions that Control of the internal combustion engine are used to implement. In modern control units have these functions on one Computer programmed and then in a memory of the Control unit 25 filed. The ones stored in memory Functions are dependent on the requirements of the Internal combustion engine activated. Here, in particular tough demands on the real-time capability of the control unit 25 in connection with the functions. in principle is, however, a pure hardware implementation of the functions to control the internal combustion engine quite possible.
  • To control or regulate the pressure in the storage space 17 of the fuel supply system 10 serve, for example the functions of pressure control and pressure pilot control.
  • the pressure control function regulates faults that affect the Change the pressure in the storage space briefly. For this, the Output signal of the pressure sensor 21 with a setpoint compared. When a discrepancy between The output signal of the pressure sensor 21 and the target variable become on Generated signal with which the pressure control valve 19 is controlled and the deviation is corrected. Normally, i.e. if there is no fault, the output of the pressure regulator remains in zero or neutral position.
  • the pressure pre-control generates on the basis of a target size for the pressure a control signal for the pressure control valve 19.
  • the print pre-control describes this Behavior of the fuel supply system 10 so accurate that the pressure regulator only has to compensate for malfunctions and otherwise remains in neutral.
  • the pressure control and the pressure pre-control work in Principle parallel, the pressure control being dynamic and the pressure pre-control the stationary behavior of the pressure in the Affect storage space.
  • Figure 2 is the sequence of a diagnosis of the Fuel supply system 10 shown.
  • a block 201 represents the normal operation of the Internal combustion engine. Normal operation means that the Internal combustion engine runs faultlessly, no emergency functions are activated and / or the diagnostic cycle is not activated is.
  • Block 202 becomes an electrical check of the pressure sensor 21 performed.
  • block 203 general plausibility check
  • Fuel supply system 10 performed and in block 204 are the final stages of the pressure control valve 19 and High pressure injection valves 18 checked.
  • the electrical check of the pressure sensor 21 is carried out by Evaluation of the output signal of the pressure sensor 21 carried out. For this purpose, it is checked, for example, whether that Output signal values within a permissible range occupies. The output signal takes values outside the permissible range, then a short circuit or a Broken cable error detected. It can also be checked whether the timing of the output signal is a dependent typical form of the fuel supply system 10.
  • an error of the pressure sensor 21 is detected in block 202, then is the error in block 205 using a Display device displayed and simultaneously in block 206 a corresponding emergency operation of the internal combustion engine set. For example, when an error is detected the pressure sensor 21 in emergency operation, the pressure control switched off, so that the pressure in the storage space 17 only is set by the print pre-control.
  • a plausibility check of the Fuel supply system 10 wherein for pressure control in Storage space 17 in addition to the pressure regulator Print pre-control is carried out by the Output value of the pressure regulator with a predetermined Threshold is compared. If the exceeds Output value of the pressure regulator above a predetermined one Time period the threshold value, then a deviation of the Fuel supply system 10 of normal behavior or the print pre-control recognized. For this it is assumed that the print pre-control works properly and that stationary behavior of the fuel supply system 10 described sufficiently precisely.
  • FIG. 3 schematically represents the course of the diagnostic cycle represents.
  • Step 301 this step corresponds to the Step 203 in Figure 2 through the Plausibility check an error in the Fuel supply system 10 detected, so in one Step 302 of the diagnostic cycle started.
  • Diagnostic functions enabled the individual components of the fuel supply system 10 for functionality check.
  • signals are also used as output signals referred to, from an interim result of the above Functions can originate.
  • combustion misfires are detected on the basis of an air / fuel ratio that is too “rich” or “lean”. Misfires in individual cylinders cause the individual cylinders to no longer deliver the same torque, which causes the internal combustion engine to run unevenly.
  • the lambda control can only optimally control deviations regulate when the controller output is idle, i.e. it there are no control deviations, a value close to Takes neutral position. Occur permanent deviations or Malfunctions due to aging or errors in the Fuel supply system 10, so the Controller output permanent a value outside the zero position and runs outside of its optimal Workspace. Short-term deviations or malfunctions can only compensate poorly or not at all become.
  • the mixture adaptation function shown in block 304 solves this problem. It recognizes permanent deviations between the specified and the detected air / fuel ratio by evaluating the output signal of the lambda control and intervenes adaptively in the mixture formation.
  • the mass of fuel to be injected is so changed that the controller output in idle state again Takes value close to the zero position.
  • a block 303 the function of the High pressure injection valves 18 checked. Because an electrical Checking the output stages of the high-pressure injection valves 18 already during normal operation of the internal combustion engine is carried out, the diagnostic cycle checks whether a There is a quantity error. There is a quantity error if one predetermined amount of fuel not in the combustion chamber amount of fuel injected into the engine matches.
  • Lambda control becomes the output signal of block 306 shown mixture adaptation evaluated. The The output signal of the mixture adaptation is the same as for the Lambda control with a predetermined threshold compared.
  • Short-term errors i.e. short-term errors of the High pressure injectors 18 are ANDed the results of the smooth running regulation or the Misfire detection 304 with the result of the lambda control 305 recognized.
  • short-term errors i.e. short-term errors of the High pressure injectors 18 are ANDed the results of the smooth running regulation or the Misfire detection 304 with the result of the lambda control 305 recognized.
  • an error is additionally identified with the help of Lambda control is detected, then an error occurs High pressure injection valves 18 closed.
  • Permanent failures of the high pressure injectors 18, i.e. Errors that are permanent are identified by an AND operation the results of the smooth running regulation or the Misfire detection 304 with the result of the mixture adaptation 306 recognized. In other words, will be a mistake with the help of misfire detection or smooth running control recognized and an error is additionally identified with the help of If mixture adaptation 306 is detected, then an error is caused High pressure injection valves 18 closed.
  • a display device is used an error of the high pressure injection valves 18 is indicated.
  • the diagnostic cycle is ended and a corresponding one Emergency operation of the internal combustion engine is set.
  • an error of the pressure sensor 21 is displayed with the aid of a display device. If an error in the pressure sensor 21 was detected, the diagnostic cycle is ended and a corresponding emergency operation function of the internal combustion engine is activated.
  • the pressure control valve 19 can, for example, driving signal with the output from the pressure sensor 21 Signal can be compared. These signals give way to one longer periods of time, so it can an error in the pressure control valve 19 can be concluded.
  • To an error of the pressure control valve 19 with a larger To be able to recognize security are also the Output signals of the lambda control 305 and the Mixture adaptation 306 evaluated. For example, it can Pressure control valve 19 driving signal in one be changed in a predetermined manner, whereby normally the pressure in the storage space 17 and the injected fuel mass specifically changed. At the same time, the behavior of the combustion through Evaluation of the output signals of the lambda control and the Mixture adaptation detected.
  • the pressure control valve 19th driving signal is with the output signals of the Lambda control and / or the mixture adaptation compared. Becomes the signal driving the pressure control valve 19 in quickly changed in a predetermined manner, so it will Pressure control valve 19 driving signal with the Output signal of the lambda control compared.
  • a display device is used an error of the pressure sensor 21 is displayed.
  • a step 312 checks whether there is a leak in the Fuel supply system 10 is present.
  • the pressure reduction in Storage space 17 detected.
  • the pressure builds up in one shorter than a predetermined period of time, then a Leakage of the fuel supply system 10 detected.
  • a display device is used a leakage of the fuel supply system 10 is indicated.
  • the invention relates to a method and a device for operating a fuel supply system Internal combustion engine, in particular of a motor vehicle, at with the help of a pump fuel into a storage space , promoted and a pressure is generated in the storage space, at an actual value of the pressure with the help of a pressure sensor is measured, and at which the pressure in the storage space a setpoint is controlled and regulated, an error in the fuel supply system by a Plausibility check is recognized.
  • the correction value is additionally fed to an error detection device in which it is checked whether the correction value is within one of two predetermined values permissible pressure range formed. If the correction value is outside of this Range, an error in the fuel supply system is recognized and displayed.
  • step S12 a fuel injection system is known, in which upon detection of an error (in step S12) is changed to a homogeneous operating state (step S 13).
  • This Transition to the homogeneous operating state is independent of the previous one Operating condition.
  • a correction factor ⁇ step S 14 detected and depending on the value of the correction factor ⁇ (step S15) to one Fault in the fuel pressure sensor (step S16) or the high pressure regulator (step S17) closed.
  • the operation of the internal combustion engine also takes place after the Diagnostics in the homogeneous operating state.
  • the present invention has for its object a method of Generic type to improve such that the one error in Component causing fuel supply system can be determined, or that an operation of the fuel supply system despite the faulty component can continue.
  • the particularly great advantage of the present invention is that it is accurate Diagnosis of the fuel supply system is achieved without additional components.
  • FIG. 1 shows a fuel supply system 10 shown for use in an internal combustion engine is provided.
  • An electric fuel pump is in a fuel tank 11 (EKP) 12, a fuel filter 13 and a low pressure regulator 14 arranged.
  • the EKP 12 promotes the through the fuel filter 13 Fuel from the fuel tank 11.
  • the fuel filter 13 has the task of foreign particles from the fuel filter out.
  • the low pressure regulator 14 With the help of the low pressure regulator 14 the fuel pressure in the low pressure range to one predetermined value regulated.
  • a fuel line 15 leads from the fuel tank 11 a high pressure pump 16.
  • the high pressure pump 16 closes there is a storage space 17 on which injection valves 18 are arranged.
  • the injection valves 18 are with the Storage space 17 connected and are preferably directly the Combustion chambers assigned to the internal combustion engine.
  • the fuel is produced using the electric fuel pump 12 from the fuel tank 11 via the fuel line 15 to High pressure pump 16 promoted. This turns the fuel on brought to a pressure of about 4-5 bar.
  • the high pressure pump 16, which are preferably directly from the internal combustion engine is driven, compresses and delivers the fuel into a storage space 17.
  • the fuel pressure reached here values of up to 120 bar.
  • a pressure sensor 21 and a pressure control valve 19 is direct connected to storage space 17.
  • the pressure control valve 19 is connected on the input side to the storage space 17.
  • a return line 20 leads to the output side Fuel line 15. Via signal and control lines 22, 23 are the pressure sensor 21 and the pressure control valve 19 with connected to a control unit 25.
  • a pressure control valve 19 can also Quantity control valve in a fuel supply system 10 come into use. For the sake of simplicity, following text only the pressure control valve 19 further described.
  • the pressure sensor 21 With the help of the pressure sensor 21, the actual value of the Detected fuel pressure in the storage space 17. About the Signal line 22 becomes the actual value to control unit 25 fed. In the control unit 25 is based on the detected A control signal is formed, with which the pressure control valve 19 via the control line 23 is controlled.
  • control unit 25 various functions that Control of the internal combustion engine are used to implement. In modern control units have these functions on one Computer programmed and then in a memory of the Control unit 25 filed. The ones stored in memory Functions are dependent on the requirements of the Internal combustion engine activated. Here, in particular tough demands on the real-time capability of the control unit 25 in connection with the functions. in principle is, however, a pure hardware implementation of the functions to control the internal combustion engine quite possible.
  • To control or regulate the pressure in the storage space 17 of the fuel supply system 10 serve, for example the functions of pressure control and pressure pilot control.
  • the pressure control function regulates faults that affect the Change the pressure in the storage space briefly. For this, the Output signal of the pressure sensor 21 with a setpoint compared. When a discrepancy between The output signal of the pressure sensor 21 and the target variable become on Generated signal with which the pressure control valve 19 is controlled and the deviation is corrected. Normally, i.e. if there is no fault, the output of the pressure regulator remains in zero or neutral position.
  • the pressure pre-control generates on the basis of a target size for the pressure a control signal for the pressure control valve 19.
  • the print pre-control describes this Behavior of the fuel supply system 10 so accurate that the pressure regulator only has to compensate for malfunctions and otherwise remains in neutral.
  • the pressure control and the pressure pre-control work in Principle parallel, the pressure control being dynamic and the pressure pre-control the stationary behavior of the pressure in the Affect storage space.
  • Figure 2 is the sequence of a diagnosis of the Fuel supply system 10 shown.
  • a block 201 represents the normal operation of the Internal combustion engine. Normal operation means that the Internal combustion engine runs faultlessly, no emergency functions are activated and / or the diagnostic cycle is not activated is.
  • Block 202 becomes an electrical check of the pressure sensor 21 performed.
  • block 203 general plausibility check
  • Fuel supply system 10 performed and in block 204 are the final stages of the pressure control valve 19 and High pressure injection valves 18 checked.
  • the electrical check of the pressure sensor 21 is carried out by Evaluation of the output signal of the pressure sensor 21 carried out. For this purpose, it is checked, for example, whether that Output signal values within a permissible range occupies. The output signal takes values outside the permissible range, then a short circuit or a Broken cable error detected. It can also be checked whether the timing of the output signal is a dependent typical form of the fuel supply system 10.
  • an error of the pressure sensor 21 is detected in block 202, then is the error in block 205 using a Display device displayed and simultaneously in block 206 a corresponding emergency operation of the internal combustion engine set. For example, when an error is detected the pressure sensor 21 in emergency operation, the pressure control switched off, so that the pressure in the storage space 17 only is set by the print pre-control.
  • a plausibility check of the Fuel supply system 10 wherein for pressure control in Storage space 17 in addition to the pressure regulator Print pre-control is carried out by the Output value of the pressure regulator with a predetermined Threshold is compared. If the exceeds Output value of the pressure regulator above a predetermined one Time period the threshold value, then a deviation of the Fuel supply system 10 of normal behavior or the print pre-control recognized. For this it is assumed that the print pre-control works properly and that stationary behavior of the fuel supply system 10 described sufficiently precisely.
  • FIG. 3 schematically represents the course of the diagnostic cycle represents.
  • Step 301 this step corresponds to the Step 203 in Figure 2 through the Plausibility check an error in the Fuel supply system 10 detected, so in one Step 302 of the diagnostic cycle started.
  • Diagnostic functions enabled the individual components of the fuel supply system 10 for functionality check.
  • signals are also used as output signals referred to, from an interim result of the above Functions can originate.
  • combustion misfires are detected on the basis of an air / fuel ratio that is too “rich” or “lean”. Misfires in individual cylinders cause the individual cylinders to no longer deliver the same torque, which causes the internal combustion engine to run unevenly.
  • the lambda control can only optimally control deviations regulate when the controller output is idle, i.e. it there are no control deviations, a value close to Takes neutral position. Occur permanent deviations or Malfunctions due to aging or errors in the Fuel supply system 10, so the Controller output permanent a value outside the zero position and runs outside of its optimal Workspace. Short-term deviations or malfunctions can only compensate poorly or not at all become.
  • the mixture adaptation function shown in block 304 solves this problem. It recognizes permanent deviations between the specified and the detected air / fuel ratio by evaluating the output signal of the lambda control and intervenes adaptively in the mixture formation.
  • the mass of fuel to be injected is so changed that the controller output in idle state again Takes value close to the zero position.
  • a block 303 the function of the High pressure injection valves 18 checked. Because an electrical Checking the output stages of the high-pressure injection valves 18 already during normal operation of the internal combustion engine is carried out, the diagnostic cycle checks whether a There is a quantity error. There is a quantity error if one predetermined amount of fuel not in the combustion chamber amount of fuel injected into the engine matches.
  • Lambda control becomes the output signal of block 306 shown mixture adaptation evaluated. The The output signal of the mixture adaptation is the same as for the Lambda control with a predetermined threshold compared.
  • Short-term errors i.e. short-term errors of the High pressure injectors 18 are ANDed the results of the smooth running regulation or the Misfire detection 304 with the result of the lambda control 305 recognized.
  • short-term errors i.e. short-term errors of the High pressure injectors 18 are ANDed the results of the smooth running regulation or the Misfire detection 304 with the result of the lambda control 305 recognized.
  • an error is additionally identified with the help of Lambda control is detected, then an error occurs High pressure injection valves 18 closed.
  • Permanent failures of the high pressure injectors 18, i.e. Errors that are permanent are identified by an AND operation the results of the smooth running regulation or the Misfire detection 304 with the result of the mixture adaptation 306 recognized. In other words, will be a mistake with the help of misfire detection or smooth running control recognized and an error is additionally identified with the help of If mixture adaptation 306 is detected, then an error is caused High pressure injection valves 18 closed.
  • a display device is used an error of the high pressure injection valves 18 is indicated.
  • the diagnostic cycle is ended and a corresponding one Emergency operation of the internal combustion engine is set.
  • an error of the pressure sensor 21 is displayed with the aid of a display device. If an error in the pressure sensor 21 has been detected, the diagnostic cycle is ended and a corresponding emergency operation function of the internal combustion engine is activated.
  • the pressure control valve 19 can, for example, driving signal with the output from the pressure sensor 21 Signal can be compared. These signals give way to one longer periods of time, so it can an error in the pressure control valve 19 can be concluded.
  • To an error of the pressure control valve 19 with a larger To be able to recognize security are also the Output signals of the lambda control 305 and the Mixture adaptation 306 evaluated. For example, it can Pressure control valve 19 driving signal in one be changed in a predetermined manner, whereby normally the pressure in the storage space 17 and the injected fuel mass specifically changed. At the same time, the behavior of the combustion through Evaluation of the output signals of the lambda control and the Mixture adaptation detected.
  • the pressure control valve 19th driving signal is with the output signals of the Lambda control and / or the mixture adaptation compared. Becomes the signal driving the pressure control valve 19 in quickly changed in a predetermined manner, so it will Pressure control valve 19 driving signal with the Output signal of the lambda control compared.
  • a display device is used an error of the pressure sensor 21 is displayed.
  • a step 312 checks whether there is a leak in the Fuel supply system 10 is present.
  • the pressure reduction in Storage space 17 detected.
  • the pressure builds up in one shorter than a predetermined period of time, then a Leakage of the fuel supply system 10 detected.
  • a display device is used a leakage of the fuel supply system 10 is indicated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système d'alimentation en carburant d'un moteur à combustion interne équipant en particulier un véhicule automobile. Ce procédé consiste à acheminer du carburant dans une chambre d'accumulation (17) et à produire une pression dans ladite chambre d'accumulation (17) au moyen d'une pompe (12, 16), à mesurer une valeur réelle de pression au moyen d'un détecteur de pression (17), et à commander et réguler la pression dans la chambre d'accumulation (17) de façon à ce qu'elle corresponde à une valeur limite. Un contrôle de plausibilité permet de reconnaître une défaillance du système d'alimentation en carburant (10). Dans l'hypothèse d'une telle défaillance, un cycle de diagnostic du moteur à combustion interne est lancé, au cours duquel sont activées des fonctions de diagnostic qui contrôlent le fonctionnement des composants individuels (18, 19, 21) du système d'alimentation en carburant (10).

Claims (9)

  1. Procédé pour faire fonctionner un système d'alimentation en carburant (10) d'un moteur à combustion interne, en particulier d'un véhicule automobile, dans lequel
    une pompe (12, 16) transfère du carburant dans une chambre d'accumulation (17) et crée une pression dans la chambre d'accumulation (17),
    un capteur de pression (21) mesure une valeur effective de la pression dans la chambre d'accumulation ( 17) qui est commandée ou régulée selon une valeur de consigne,
    on détecte une erreur dans le système d'alimentation en carburant (10) par un contrôle de plausibilité,
    caractérisé en ce que
    lors de la détection d'une erreur dans le système d'alimentation en carburant (10), on lance un cycle de diagnostic du moteur à combustion interne,
    on active des fonctions de diagnostic vérifiant l'aptitude à fonctionner des composants individuels ( 18, 19, 21) du système d'alimentation en carburant (10), pour déterminer et afficher les composants (18, 19, 21) entraínant l'erreur.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    pour le contrôle de plausibilité du système d'alimentation en carburant (10), on compare le signal de sortie d'une fonction réalisée dans l'appareil de commande (25), engendrant des signaux pour commander la soupape de commande de pression (19) dans le but de réguler la pression dans la chambre d'accumulation (17), avec une valeur seuil, et en cas de dépassement durable de la valeur seuil, on constate une erreur dans le système d'alimentation en carburant (10).
  3. Procédé selon la revendication 1,
    caractérisé en ce que
    on active des fonctions de diagnostic vérifiant l'aptitude à fonctionner d'au moins un capteur de pression (21) et/ou d'une soupape d'injection à haute pression (18) et/ ou d'une soupape de commande de débit ou de pression (19) et/ou d'un boítier ou des joints du système d'alimentation en carburant (10).
  4. Procédé selon la revendication 1 ou 2,
    caractérisé en ce qu'
    outre le contrôle de plausibilité, on surveille le signal de sortie d'un capteur de pression (21) et les étages de puissance d'une soupape de commande de débit ou de pression ( 19), et à la détection d'une erreur, celle-ci est affichée et une fonction de secours correspondante du moteur à combustion interne est activée.
  5. Procédé selon au moins l'une des revendications précédentes,
    caractérisé en ce qu'
    à la détection d'une erreur d'un composant du système d'alimentation en carburant (10), on termine le cycle de diagnostic et on active une fonction de secours correspondante du moteur à combustion interne.
  6. Procédé selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    durant le cycle de diagnostic, on détecte et on affiche une erreur d'une soupape d'injection à haute pression (18) par l'exploitation d'un signal de sortie d'au moins un détecteur de défauts (304) et/ou d'une régulation de stabilité (304) et/ou d'une régulation lambda (305) et/ou d'une adaptation de mélange (306).
  7. Procédé selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    durant le cycle de diagnostic, on détecte et on affiche une erreur d'un capteur de pression (21) par l'exploitation d'un signal de sortie d'au moins une régulation lambda (305) et/ou une adaptation de mélange (306).
  8. Procédé selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    durant le cycle de diagnostic, on détecte et on affiche une erreur d'une soupape de commande de pression ou de débit (19) par l'exploitation d'un signal de sortie d'au moins un capteur de pression (21) et/ou d'une régulation de lambda (305) et/ou d'une adaptation de mélange (306).
  9. Support de stockage électrique destiné à être utilisé avec un procédé selon la revendication 1, en particulier mémoire à lecture seule (Read Only Memory), pour un appareil de commande d'un moteur à combustion interne, en particulier d'un véhicule automobile, dans lequel un programme est stocké qui, lorsqu'il est exécuté sur un calculateur, en particulier en microprocesseur, exécute toutes les étapes d'au moins l'une des revendications 1 à 8.
EP99973747A 1999-02-26 1999-09-10 Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile Expired - Lifetime EP1157201B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19908352A DE19908352A1 (de) 1999-02-26 1999-02-26 Kraftstoffeinspritzverfahren für eine Brennkraftmaschine
DE19908352 1999-02-26
PCT/DE1999/002958 WO2000052319A1 (fr) 1999-02-26 1999-09-10 Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile

Publications (2)

Publication Number Publication Date
EP1157201A1 EP1157201A1 (fr) 2001-11-28
EP1157201B1 true EP1157201B1 (fr) 2003-11-26

Family

ID=7898959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99973747A Expired - Lifetime EP1157201B1 (fr) 1999-02-26 1999-09-10 Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile

Country Status (7)

Country Link
US (1) US6474292B1 (fr)
EP (1) EP1157201B1 (fr)
JP (1) JP2002538368A (fr)
KR (1) KR100669293B1 (fr)
DE (2) DE19908352A1 (fr)
ES (1) ES2212682T3 (fr)
WO (1) WO2000052319A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957732B4 (de) * 1999-12-01 2004-05-13 Siemens Ag Verfahren zur Überprüfung einer betriebssicherheitsrelevanten Komponente einer Anlage
US6792929B2 (en) * 2001-03-07 2004-09-21 Toyota Jidosha Kabushiki Kaisha Method for detecting failure of injection fuel heaters of internal combustion engine
DE10147189A1 (de) * 2001-09-25 2003-04-24 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffversorgungssystems für einen Verbrennungsmotor eines Kraftfahrzeugs
US6715468B2 (en) * 2001-11-07 2004-04-06 Denso Corporation Fuel injection system
DE10155252B4 (de) * 2001-11-09 2004-01-08 Siemens Ag Verfahren zur Überprüfung der Plausibilität eines von einem Drucksensor gelieferten Kraftstoffdruckwertes in eine Einspritzanlage für Brennkraftmaschinen und entsprechende Einspritzanlage
US6755077B2 (en) * 2002-06-06 2004-06-29 General Motors Corporation Diagnostic system for identifying fuel injector failure in a fuel cell system
DE10248626A1 (de) * 2002-10-18 2004-04-29 Robert Bosch Gmbh Verfahren zum Betrieb einer Brennkraftmaschine sowie Steuergerät hierfür
DE10258426B4 (de) * 2002-12-13 2008-08-21 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Steuereinrichtung einer Brennkraftmaschine
DE10259797A1 (de) * 2002-12-19 2004-07-15 Siemens Ag Vorrichtung und Verfahren zum Erkennen von Fehlern in einem Kraftstoffeinspritzsystem
DE10348610B4 (de) * 2003-10-20 2009-07-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Überwachen eines Kraftstoffdrucksensors
DE10354471A1 (de) * 2003-11-21 2005-06-30 Siemens Ag Verfahren und Vorrichtung zur Fehlerdiagnose in Steuereinrichtungen einer Brennkraftmaschine eines Kraftfahrzeugs
DE102005008180A1 (de) * 2005-02-23 2006-08-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung einer Einspritzvorrichtung einer Brennkraftmaschine
JP4207010B2 (ja) 2005-03-15 2009-01-14 株式会社デンソー 燃料噴射装置
JP4610407B2 (ja) * 2005-04-26 2011-01-12 本田技研工業株式会社 内燃機関の燃料噴射装置
DE102006026639A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zur Überprüfung der Funktion einer Komponente eines Kraftstoffeinspritzsystems
DE102008020928B4 (de) * 2008-04-25 2014-04-17 Continental Automotive Gmbh Verfahren zum Regeln eines Luft-Kraftstoff-Verhältnisses und Verfahren zum Erkennen einer Kraftstoffqualität
DE102008041877A1 (de) 2008-09-08 2010-03-11 Robert Bosch Gmbh Vorrichtung und Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm, Computerprogrammprodukt
US7950371B2 (en) * 2009-04-15 2011-05-31 GM Global Technology Operations LLC Fuel pump control system and method
DE102009051023B4 (de) * 2009-10-28 2015-01-15 Audi Ag Verfahren zum Betreiben eines Antriebsaggregats sowie Antriebsaggregat
JP5287673B2 (ja) * 2009-11-11 2013-09-11 株式会社デンソー 異常部位診断装置
EP2386024B1 (fr) 2010-02-23 2015-12-02 Artemis Intelligent Power Limited Machine à fluide de travail et son procédé de fonctionnement
GB2477997B (en) 2010-02-23 2015-01-14 Artemis Intelligent Power Ltd Fluid working machine and method for operating fluid working machine
DE102011015396B4 (de) 2011-03-29 2013-06-13 Audi Ag Verfahren zum Überprüfen von Komponenten eines Kraftwagens und Kraftwagen mit entsprechender Überprüfungseinrichtung
FR2983530A1 (fr) * 2011-12-06 2013-06-07 Renault Sa Methode de diagnostic d'une derive d'au moins un injecteur d'un systeme d'injection de carburant a rampe commune.
DE102014206717B4 (de) 2014-04-08 2022-10-20 Vitesco Technologies GmbH Druckspeichereinrichtung für ein Kraftfahrzeug-Kraftstoff-Einspritzsystem, sowie Verfahren zum Betrieb einer derartigen Druckspeichereinrichtung
SE541174C2 (sv) * 2015-07-01 2019-04-23 Scania Cv Ab Förfarande och system för diagnostisering av ett bränslesystem
DE102016208088A1 (de) * 2016-05-11 2017-11-16 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffversorgungssystems
DE102016219375B3 (de) * 2016-10-06 2017-10-05 Continental Automotive Gmbh Betreiben eines Kraftstoffinjektors mit hydraulischem Anschlag bei reduziertem Kraftstoffdruck
DE102016220123B4 (de) * 2016-10-14 2018-05-09 Continental Automotive Gmbh Verfahren und Vorrichtung zur Plausibilierung der Funktionsfähigkeit eines Hochdrucksensors eines Kraftstoffeinspritzsystems eines Kraftfahrzeugs
DE102018203542A1 (de) * 2018-03-08 2019-09-12 Volkswagen Aktiengesellschaft Verfahren zur Diagnose einer Einspritzvorrichtung für eine Verbrennungskraftmaschine
CN108622438B (zh) * 2018-07-30 2023-08-25 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种模拟燃油系统中部件性能退化和故障的物理仿真平台
US11739719B2 (en) 2020-03-09 2023-08-29 Randal S. Nichols Fuel injector interface device and method of use
US11319910B2 (en) * 2020-03-09 2022-05-03 Randal S. Nichols Fuel injector interface device and method of use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790277A (en) * 1987-06-03 1988-12-13 Ford Motor Company Self-adjusting fuel injection system
JPH0730732B2 (ja) * 1991-02-27 1995-04-10 日本電装株式会社 蓄圧式燃料供給装置
JPH0569374U (ja) * 1992-02-28 1993-09-21 富士重工業株式会社 筒内直噴式エンジンの異常警告装置
JP3321837B2 (ja) * 1992-08-06 2002-09-09 株式会社日立製作所 車両の診断制御方法
JPH0932617A (ja) * 1995-07-13 1997-02-04 Nissan Motor Co Ltd 火花点火式内燃機関
DE19607284B4 (de) * 1996-02-27 2014-03-13 Robert Bosch Gmbh Verfahren zum Erfassen und Dokumentieren von abgasrelevanten Fehlfunktionen eines Fahrzeugs
DE19607461B4 (de) * 1996-02-28 2012-12-13 Robert Bosch Gmbh Verfahren zum Erfassen und Dokumentieren von abgasrelevanten Fehlfunktionen eines Fahrzeugs mit Brennkraftmaschine mit Hilfe bordeigener Mittel
DE19626689C1 (de) * 1996-07-03 1997-11-20 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Einspritzsystems
DE19634982C2 (de) 1996-08-29 2002-10-10 Siemens Ag Verfahren zur Überwachung eines Kraftstoffdruckes
JP3796912B2 (ja) * 1997-02-21 2006-07-12 トヨタ自動車株式会社 内燃機関の燃料噴射装置
EP0860600B1 (fr) * 1997-02-21 2003-09-17 Toyota Jidosha Kabushiki Kaisha Système d'injection de combustible pour moteur à combustion interne
JP3814916B2 (ja) * 1997-02-26 2006-08-30 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP3680515B2 (ja) * 1997-08-28 2005-08-10 日産自動車株式会社 内燃機関の燃料系診断装置
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
US6053147A (en) * 1998-03-02 2000-04-25 Cummins Engine Company, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine
US6293251B1 (en) * 1999-07-20 2001-09-25 Cummins Engine, Inc. Apparatus and method for diagnosing erratic pressure sensor operation in a fuel system of an internal combustion engine

Also Published As

Publication number Publication date
US6474292B1 (en) 2002-11-05
ES2212682T3 (es) 2004-07-16
KR100669293B1 (ko) 2007-01-17
DE59907898D1 (de) 2004-01-08
JP2002538368A (ja) 2002-11-12
DE19908352A1 (de) 2000-08-31
EP1157201A1 (fr) 2001-11-28
WO2000052319A1 (fr) 2000-09-08
KR20020005600A (ko) 2002-01-17

Similar Documents

Publication Publication Date Title
EP1157201B1 (fr) Systeme pour faire fonctionner un moteur a combustion interne, notamment d'un vehicule automobile
DE19941329B4 (de) Steueranordnung für eine Brennkraftmaschine mit einer Fehlfunktionserfassungsfunktion
EP0470960B1 (fr) Procede et dispositif de controle de la manoeuvrabilite de la soupape d'aeration d'un reservoir
EP1573188B1 (fr) Dispositif et procede pour la reconnaissance de defauts dans un systeme d'injection de carburant
DE102009011280A1 (de) Verfahren zum Überprüfen der Funktion eines Bremssystems mit Bremskraftverstärker
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE19622757A1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine mit Hochdruckeinspritzung
WO2010133424A1 (fr) Localisation d'un défaut dans un système d'injection de carburant
EP1735673B1 (fr) Procede pour surveiller un dispositif d'alimentation en carburant d'un moteur a combustion interne
EP1552128A1 (fr) Procede, appareil de commande, et programme informatique pour detecter des detecteurs de pression defectueux dans un moteur a combustion interne
DE4032451B4 (de) Verfahren zur Ladedruckregelung
DE102013102071B4 (de) Verfahren zum Überprüfen einer Funktion eines Auslassventiles
DE102010027675B4 (de) Verfahren zur Erkennung fehlerhafter Komponenten oder fehlerhafter Teilsysteme eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors durch Evaluierung des Druckverhaltens
DE102005032636A1 (de) Verfahren und Vorrichtung zur Erkennung von Fehlern in einem Kraftstoffversorgungssystem eines Kraftfahrzeugs
DE102008063924A1 (de) Verfahren zur Erkennung von Fehlern und Zuordnung zu Fehlerursachen in einem hydrostatischen System und entsprechendes Steuergerät
WO2007039391A1 (fr) Procede de diagnostic et dispositif pour commander un moteur a combustion interne
EP1278949B1 (fr) Procede d'utilisation d'un systeme d'alimentation de carburant destine a un moteur a combustion interne d'un vehicule en particulier
DE102008024545A1 (de) Verfahren und Vorrichtung zur Diagnose eines Fehlers, insbesondere in einem Niederdruckbereich eines Kraftstoff-Einspritzsystems eines Verbrennungsmotors
EP2029875B1 (fr) Procédé pour le contrôle de la fonction d'un composant d'un système d'injection de carburant
DE102006029992A1 (de) Verfahren zur Diagnose einer elektrischen Schaltung
DE19922519B4 (de) Verfahren, Steuerelement und Vorrichtung zum Betreiben eines Kraftstoffversorgungssystems
WO2018130461A1 (fr) Procédé de détection de défaillance dans un véhicule automobile
DE19930311C1 (de) Verfahren und Vorrichtung zum Bestimmen einer Betriebsstörung in einer Kraftstoffeinspritzanlage
DE102010027677B4 (de) Verfahren zur Erkennung eines Fehlverhaltens im Niederdrucksystem eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors durch Evaluierung eines stimulierten Druckverhaltens
DE10040254B4 (de) Verfahren zur Diagnose einer Komponente einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011205

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 59907898

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2212682

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090928

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091005

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141126

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907898

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401