EP1156189A1 - Aube de turbine, turbine et procédé d'opération d'une turbine - Google Patents

Aube de turbine, turbine et procédé d'opération d'une turbine Download PDF

Info

Publication number
EP1156189A1
EP1156189A1 EP00110368A EP00110368A EP1156189A1 EP 1156189 A1 EP1156189 A1 EP 1156189A1 EP 00110368 A EP00110368 A EP 00110368A EP 00110368 A EP00110368 A EP 00110368A EP 1156189 A1 EP1156189 A1 EP 1156189A1
Authority
EP
European Patent Office
Prior art keywords
turbine
blade
steam
turbine blade
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00110368A
Other languages
German (de)
English (en)
Inventor
Werner Heine
Jörg Eppendorfer
Klaus Polte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00110368A priority Critical patent/EP1156189A1/fr
Publication of EP1156189A1 publication Critical patent/EP1156189A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Definitions

  • the invention relates to a turbine blade, in particular on a guide vane for a steam turbine, preferably for an industrial steam turbine.
  • the invention relates furthermore a method for operating such a turbine.
  • Blades and guide vanes are used to drive the rotor intended.
  • the blades are attached to the rotor and rotate with this.
  • the guide vanes are stationary arranged on the turbine housing.
  • the guide vanes provide for a cheap and efficient flow of steam through the turbine to ensure the best possible implementation of the thermal Achieve energy in mechanical work.
  • the steam turbine is usually in different Sub-areas, namely in a high pressure part, a medium pressure part and split a low pressure part.
  • the steam is currently in the low pressure part, also referred to as a low pressure output stage, down to about 50mbar reduced.
  • droplet impact erosion leads to high wear of the blades. Because due the low pressures in the low-pressure output stage increase Danger of moisture condensed out of the steam on the fixed guide vanes and with the Steam flow is carried away. Doing so from the rear edge the guide vanes are torn away with water drops high energy on the blades, especially on their Leading edge, bounce. This effect is called droplet impact erosion denotes and leads in unfavorable circumstances to complete destruction of individual blades.
  • the object of the invention is, in the case of a steam turbine, especially in the low pressure output stage of an industrial steam turbine, effective droplet impact erosion avoid.
  • the object is achieved according to the invention by a turbine blade, in particular a guide vane for a steam turbine, which is electrically heated.
  • the electrical heatability As a result of the electrical heatability, the precipitation of moisture on the blade surface as the cause of the droplet impact erosion effectively avoided because the steam on the hot blade surface not condensed, and there one already condensed portion is evaporated again. At the same time becomes the stability and becomes the mechanical properties the turbine blade due to the electrical heatability only slightly affected.
  • the electrical Heatability is therefore particularly suitable for small turbine blades, as provided in industrial steam turbines are.
  • the electrical heating is compared to that Steam heating is structurally simpler because it is complex Flow guidance within the turbine not intervened must become.
  • a recess is preferably provided in the turbine blade Inclusion of a heating element provided.
  • the heating element will so arranged inside the turbine blade so that a heat transfer from the heating element that is as good and efficient as possible into the turbine blade. Through the recess inside the turbine blade is therefore completely heated.
  • the recess is a bore formed by a blade root of the turbine blade extends in their airfoil. This leads to heating the airfoil as evenly as possible, in particular, this also causes heating in the blade root Achieved opposite end region of the airfoil.
  • the length of the recess is advantageously measured - depending by their diameter - by mechanical and thermal Stability requirements for the airfoil. I.e. the Recess extends as far as possible, taking into account the minimum stability requirements in the airfoil inside. Because the further the recess goes into that The airfoil stretches the better on one side the warming, on the other hand, the less is also the stability of the turbine blade. With such a Execution will result in the best possible warming sufficient stability achieved.
  • the airfoil exists for a sufficiently high stability the turbine blade made of a solid material.
  • the turbine blade is in a particularly preferred embodiment with a control device for controlling the electrical Heat output connectable, so that the turbine blade can only be heated if necessary.
  • the electric heater is can be switched on and off.
  • the heating power is preferably dependent on a control variable, especially depending on that in the turbine prevailing pressure, controllable.
  • This configuration is the Consideration that the pressure in the turbine, in particular with an industrial turbine, within certain limits fluctuates, and that at the higher pressures in the critical low-pressure output stage range heating of the turbine blades is not required.
  • the heat output is dimensioned such that during operation a bucket temperature of about 70 ° K to 90 ° K above the Temperature of the medium is attainable.
  • Such an electrically heatable turbine blade is preferred in a turbine plant, especially in a low pressure output stage an industrial steam turbine plant. Further advantageous refinements of the turbine system can be found in the subclaims.
  • the object is further achieved by a Method for operating a turbine, in particular one Steam turbine, with several turbine blades, in particular Guide vanes are electrically heated.
  • a turbine blade designed as a guide blade 2 has a blade root 4 and one itself subsequent airfoil 6 with a crescent-shaped Cross-sectional area.
  • a flat end element 8 is formed at the blade root 4 facing away from the end of the airfoil 6.
  • the guide vane extends 2 essentially in the radial direction of a housing 10 of a steam turbine 12 in the direction of a rotor 14 (cf. FIG 3).
  • the guide vane 2 is fixed over the blade root 4 connected to the housing 10.
  • the inward facing finishing elements 8 each other in the circumferential direction of the steam turbine 12 adjacent guide vanes 2 abut each other and form a sealing tape.
  • the guide vane 2 has a bore 16 as a recess, which extends largely centrally into the guide vane 2.
  • the bore 16 penetrates the blade root 4 and extends into the airfoil 6.
  • the bore 16 has a diameter D, has a length L and extends up to a third of the length of the airfoil Blade 6 into it.
  • the airfoil 6 is solid Solid material is formed, and tapers to the end element 8 both in width and in thickness. For reasons of stability, the depth of penetration of the bore 16 limited in the airfoil 6.
  • the total length L (total) of the Guide vane 2 is about 400mm in industrial steam turbines.
  • the bore 16 has the main advantage that both the bore 16 and the heating element 18 are easy to manufacture. A widened one Offers recess in the area of the blade root 4 the advantage that a higher heating capacity is provided there becomes.
  • the heating element 18 is inside the solid one Guide vane 2 is arranged and is via a power line 20 powered.
  • the power supply to the heating element 18 is via a control device designed as a switch 22 can be switched on and off.
  • the heating of the guide vane 2 can therefore be switched on if necessary.
  • the guide vane 2 is firmly connected to the housing 10.
  • the guide vane 2 extends from the housing 10 in the radial direction to the central Runners 14 arranged in the steam turbine 12 is attached to a blade 24, which is in radial Direction extends outward from the rotor 14 to the housing 10.
  • the turbine system 26 shown in FIG. 3 comprises the Steam turbine 12, which has a high pressure stage 32, a medium pressure stage 33 and a low pressure output stage 34, and a control device 28.
  • the steam turbine 12 is on the high pressure side via a steam line 30 during operation Live steam supplied.
  • the steam is after flowing through the High pressure stage 32 passed through the medium pressure stage 33, passes then with reduced pressure and temperature in the low pressure output stage 34 and leaves it with a comparatively low final pressure of less than 100mbar via a steam discharge 36. Between the individual stages 32 to 34, the steam is passed through further steam lines 30.
  • the steam drives the rotor 14 via the blades 24, which via a gear 38 with a generator 40 for generation is connected by electricity.
  • the guide vanes 2 and Blades 24 are shown only in the low pressure output stage 34.
  • the fixed guide vanes 2 For guiding the flow of steam through the steam turbine 12 the fixed guide vanes 2 are provided.
  • the blades 24 serve to drive the runner 14.
  • Both at form the guide vanes 2 as well as the rotor blades 4 a number of blades one in a ring around the rotor 14 circumferential blade ring 41.
  • a number of such blade rings 41 are consecutive in the longitudinal direction of the rotor 14 arranged, guide vanes 2 and blades 24 mesh like a tooth.
  • a power line 20 leads to each of the guide vanes 2 the control device 28.
  • a Sensor 42 connected via a state variable of the steam is determined.
  • the sensor 42 is at the beginning of the Low pressure output stage 34 arranged.
  • there is Possibility of using it at the end of the low pressure output stage 34 for example to be arranged in the steam discharge line 36.
  • the Sensor 42 With the Sensor 42 becomes, for example, the steam temperature, and in particular the pressure of the steam is detected.
  • the heating capacity of the guide vanes 2 controlled by the control device 28 For this, the Power supply to the individual heating elements (not in FIG. 3 explicitly shown) throttled or switched off or increased or be switched on. And that is a heating output required when the pressure is particularly low, because then the risk of condensation is greatest is.
  • the control device 28 takes control of the heating power preferably automatically. It is particularly in one Safety concept for the turbine system 26 integrated and is, for example, from a central control room of an industrial plant supervised.
  • the described electrical heatability of the guide vanes 2 is particularly suitable for industrial steam turbines that Compared to steam turbines in a large power plant, significantly lower Vane sizes have, so that a steam heating the guide vanes 2 excluded for reasons of stability is.
  • industrial steam turbines are used operated at higher speeds than the power plant turbines the risk of droplet erosion is increased.
  • Typical Industrial steam turbine systems are also characterized by this from that the rotor 14 via the gear 38 with the Generator 40 is connected.
  • the steam is over the Steam discharge 36 often as process steam for industrial Process flows taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
EP00110368A 2000-05-15 2000-05-15 Aube de turbine, turbine et procédé d'opération d'une turbine Withdrawn EP1156189A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00110368A EP1156189A1 (fr) 2000-05-15 2000-05-15 Aube de turbine, turbine et procédé d'opération d'une turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00110368A EP1156189A1 (fr) 2000-05-15 2000-05-15 Aube de turbine, turbine et procédé d'opération d'une turbine

Publications (1)

Publication Number Publication Date
EP1156189A1 true EP1156189A1 (fr) 2001-11-21

Family

ID=8168727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00110368A Withdrawn EP1156189A1 (fr) 2000-05-15 2000-05-15 Aube de turbine, turbine et procédé d'opération d'une turbine

Country Status (1)

Country Link
EP (1) EP1156189A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1739285A1 (fr) * 2005-07-01 2007-01-03 Siemens Aktiengesellschaft Aube de turbine refroidie et méthode d'opération d'une turbine à gaz
EP2113635A1 (fr) * 2008-04-30 2009-11-04 Siemens Aktiengesellschaft Turbine à vapeur à condensation à plusieurs étages
DE102011005122A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Dampfturbine insbesondere für solarthermische Kraftwerke
DE102011005126A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Dampfturbine mit induktiver Beheizung
EP2573332A1 (fr) * 2011-09-21 2013-03-27 Siemens Aktiengesellschaft Eolienne dotée d'un chauffage électrique interne
DE102014214663A1 (de) * 2014-07-25 2016-01-28 Siemens Aktiengesellschaft Verfahren zur Vermeidung einer Stillstandskorrosion von Komponenten im Inneren einer Dampfturbine
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
EP3103571A1 (fr) * 2015-06-12 2016-12-14 Rolls-Royce Deutschland Ltd & Co KG Construction de composant, composant pour une turbine a gaz et procede de fabrication d'un composant d'une turbine a gaz par moulage par injection de poudre metallique
US9642190B2 (en) * 2015-05-29 2017-05-02 Philip Jarvinen Embedded turbofan deicer system
EP3460205A1 (fr) * 2017-09-22 2019-03-27 Siemens Aktiengesellschaft Procédé de fonctionnement d'une turbine à vapeur
CN110005483A (zh) * 2019-04-23 2019-07-12 重庆江增船舶重工有限公司 一种高效率汽轮机
US11021259B1 (en) 2021-01-07 2021-06-01 Philip Onni Jarvinen Aircraft exhaust mitigation system and process
CN113574249A (zh) * 2019-05-31 2021-10-29 三菱动力株式会社 蒸汽涡轮叶片、蒸汽涡轮及其运行方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401176A (en) * 1971-06-26 1975-07-16 Akhtar M S Steam turbine installation
US5281091A (en) * 1990-12-24 1994-01-25 Pratt & Whitney Canada Inc. Electrical anti-icer for a turbomachine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401176A (en) * 1971-06-26 1975-07-16 Akhtar M S Steam turbine installation
US5281091A (en) * 1990-12-24 1994-01-25 Pratt & Whitney Canada Inc. Electrical anti-icer for a turbomachine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465150B2 (en) 2005-07-01 2008-12-16 Siemens Aktiengesellachaft Cooled gas turbine guide blade for a gas turbine, use of a gas turbine guide blade and method for operating a gas turbine
EP1739285A1 (fr) * 2005-07-01 2007-01-03 Siemens Aktiengesellschaft Aube de turbine refroidie et méthode d'opération d'une turbine à gaz
US8740546B2 (en) 2008-04-30 2014-06-03 Siemens Aktiengesellschaft Guide vane for a condensation steam turbine and associated condensation steam turbine
EP2113635A1 (fr) * 2008-04-30 2009-11-04 Siemens Aktiengesellschaft Turbine à vapeur à condensation à plusieurs étages
WO2009133146A1 (fr) * 2008-04-30 2009-11-05 Siemens Aktiengesellschaft Aube directrice pour une turbine à vapeur à condensation et turbine à vapeur à condensation correspondante
DE102011005122A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Dampfturbine insbesondere für solarthermische Kraftwerke
WO2012119839A1 (fr) * 2011-03-04 2012-09-13 Siemens Aktiengesellschaft Turbine à vapeur, en particulier pour centrales solaires thermiques
DE102011005126A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Dampfturbine mit induktiver Beheizung
EP2495403A3 (fr) * 2011-03-04 2018-01-24 Siemens Aktiengesellschaft Turbine à vapeur dotée d'un chauffage inductif
EP2573332A1 (fr) * 2011-09-21 2013-03-27 Siemens Aktiengesellschaft Eolienne dotée d'un chauffage électrique interne
US9291062B2 (en) 2012-09-07 2016-03-22 General Electric Company Methods of forming blades and method for rendering a blade resistant to erosion
DE102014214663A1 (de) * 2014-07-25 2016-01-28 Siemens Aktiengesellschaft Verfahren zur Vermeidung einer Stillstandskorrosion von Komponenten im Inneren einer Dampfturbine
US9642190B2 (en) * 2015-05-29 2017-05-02 Philip Jarvinen Embedded turbofan deicer system
EP3103571A1 (fr) * 2015-06-12 2016-12-14 Rolls-Royce Deutschland Ltd & Co KG Construction de composant, composant pour une turbine a gaz et procede de fabrication d'un composant d'une turbine a gaz par moulage par injection de poudre metallique
US10619515B2 (en) 2015-06-12 2020-04-14 Rolls-Royce Deutschland Ltd & Co Kg Component construction, component for a gas turbine and method for manufacturing a component of gas turbine by metal injection moulding
EP3460205A1 (fr) * 2017-09-22 2019-03-27 Siemens Aktiengesellschaft Procédé de fonctionnement d'une turbine à vapeur
CN110005483A (zh) * 2019-04-23 2019-07-12 重庆江增船舶重工有限公司 一种高效率汽轮机
CN113574249A (zh) * 2019-05-31 2021-10-29 三菱动力株式会社 蒸汽涡轮叶片、蒸汽涡轮及其运行方法
US11021259B1 (en) 2021-01-07 2021-06-01 Philip Onni Jarvinen Aircraft exhaust mitigation system and process

Similar Documents

Publication Publication Date Title
EP1156189A1 (fr) Aube de turbine, turbine et procédé d'opération d'une turbine
DE2953333C1 (de) Turbinenabdampfstutzen
DE3019920A1 (de) Einrichtung zur minimierung und konstanthaltung des schaufelspitzenspiels von axialturbinen fuer gasturbinentriebwerke
DE3428892A1 (de) Schaufel- und dichtspaltoptimierungseinrichtung fuer verdichter von gasturbinentriebwerken, insbesondere gasturbinenstrahltriebwerken
WO2006015923A1 (fr) Turbine a vapeur et procede pour faire fonctionner une turbine a vapeur
DE2943464A1 (de) Dichtungsvorrichtung fuer ein gasturbinentriebwerk
EP0929736B1 (fr) Turbine a vapeur et procede pour le refroidissement d'une turbine a vapeur fonctionnant en mode ventilation
EP1948907B1 (fr) Pièce et procédé de soudage pour la fabrication d'une pièce
DE2953300C1 (de) Abdampfstutzen einer Turbine
WO2014033220A1 (fr) Procédé de refroidissement permettant de faire fonctionner une turbine à gaz
EP2322768B1 (fr) Centrale à vapeur et procédé de fonctionnement d'une centrale à vapeur
DE3047008A1 (de) "dampfstroemungsvorrichtung fuer eine dampfturbine mit zwischenueberhitzung und verfahren zum betreiben derselben"
EP1241323A1 (fr) Procédé de fonctionnement d'une centrale d'énergie à vapeur et centrale d'énergie à vapeur
DE1601563A1 (de) Gekuehlte Schaufel fuer mit hohen Temperaturen arbeitende Turbinen
EP1491723B1 (fr) Procédé de modification de la géométrie d'emboîtement des viroles d'aubes de turbine
DE102010035393B4 (de) Turbine und Verfahren zum Betrieb einer Turbine für ein CAES-System
EP2288790A1 (fr) Aube directrice pour une turbine à vapeur à condensation et turbine à vapeur à condensation correspondante
EP1445427A1 (fr) Turbine à vapeur et procédé d'opération d'une turbine à vapeur
DE69817693T2 (de) Kraftwerk mit kombiniertem Kreislauf
EP2886806B1 (fr) Turbomachine
EP3591215B1 (fr) Système de collecte d'énergie à l'aide d'une turbine à eau
DE69913688T2 (de) Konzept einer gasturbine
EP3098388A1 (fr) Aube pour une turbine à gaz
EP1785586B1 (fr) Rotor d'une turbomachine
DE3505201A1 (de) Dampfantriebsaggregat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020522