EP1155420A1 - Ensemble barre omnibus - Google Patents

Ensemble barre omnibus

Info

Publication number
EP1155420A1
EP1155420A1 EP99909545A EP99909545A EP1155420A1 EP 1155420 A1 EP1155420 A1 EP 1155420A1 EP 99909545 A EP99909545 A EP 99909545A EP 99909545 A EP99909545 A EP 99909545A EP 1155420 A1 EP1155420 A1 EP 1155420A1
Authority
EP
European Patent Office
Prior art keywords
bus bar
soldering
solderable
high power
lugs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99909545A
Other languages
German (de)
English (en)
Other versions
EP1155420A4 (fr
Inventor
Stefan Van Acker
Didier Leclercq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
World Properties Inc
Original Assignee
World Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by World Properties Inc filed Critical World Properties Inc
Publication of EP1155420A1 publication Critical patent/EP1155420A1/fr
Publication of EP1155420A4 publication Critical patent/EP1155420A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3447Lead-in-hole components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/062Means for thermal insulation, e.g. for protection of parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10272Busbars, i.e. thick metal bars mounted on the PCB as high-current conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/202Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using self-supporting metal foil pattern

Definitions

  • the present invention relates to an assembly for providing an electrical connection between a high power transistor module and other electrical devices and more specifically relates to a bus bar assembly comprising a high power transistor module mounted to a multilayer laminated bus bar and to the method of connecting the two components.
  • IGBT integrated gate bipolar transistor
  • the present invention relates to a bus bar assembly comprising a high power transistor module mounted to a multi layer laminated bus bar.
  • the high power transistor module comprises a module including at least one IGBT module having soldering pins which are received within corresponding soldering islands formed in the multi layer laminated bus bar to provide an effective and solid electrical connection therebetween.
  • the multi layer laminated bus bar comprises a plurality of conducting plates and a plurality of conductive lugs, each disposed in either a first conducting plane or a second conducting plane.
  • the plurality of conducting plates are arranged so that each plate is electrically connected to a corresponding positive or negative terminal of an electrical component, such as a high power transistor module which is easily mounted to the bus bar assembly.
  • the plurality of lugs are arranged so that each lug is electrically connected to a phase terminal of the electrical component.
  • the conducting plates and lugs are held in place in each respective plane by an electrically insulating outer coating which intimately encloses all of the conducting plates and lugs with the exception that an integral lug portion of each conducting plate and one end of the lugs extend beyond a peripheral edge at one side of the coating to define prongs which are intended to electrically connect the bus bar to an electrical device and provide power to the high power transistor module mounted thereto.
  • Each conducting plate and lug is formed of a conductive material, e.g., copper with tinplating on outer surfaces thereof.
  • the conducting plates and lugs lying in the same plane are prevented from contacting one another by disposing the plates and lugs so that they are entirely separated from one another.
  • Conducting plates and lugs in opposing planes are prevented from contacting one another by placing an inner insulating material between the planes. Consequently, each conducting plate or lug is prevented from contacting another, thereby eliminating a short circuiting event between two conducting surfaces.
  • the above described bus bar is merely exemplary in nature and other suitable bus bars may be used in accordance with the present invention.
  • the bus bar is designed to be directly mounted to the high power transistor module to form the bus bar assembly.
  • the bus bar has an improved solderability characteristic and is designed so that a solid, effective soldered connection results during a conventional soldering process in which the high power transistor module is securely mounted to the bus bar to form the bus bar assembly of the present invention.
  • the soldering process involves soldering a pin which is a part of the high power transistor module to a surface of the bus bar using sufficient heat.
  • the improved solderabilty of the present bus bar results by forming a soldering island in each conducting plate and lug at a predetermined point thereof.
  • the soldering island comprises a central soldering opening, which receives the soldering pin, and a plurality of thermal barrier openings distributed around the soldering opening.
  • the soldering island itself is generally defined as the area extending between the thermal barrier openings and each soldering island serves to accelerate the heating up of the soldering surface by limiting the amount of heat dissipation in the soldering surface. Accordingly, the likelihood of a cold solder connection is eliminated or substantially alleviated by limiting heat dissipation during the soldering process, and a secure mounting connection is formed between the two components which form the bus bar assembly of the present invention.
  • the present invention permits the current higher power transistor modules to be directly mounted to the bus bar resulting in improved internal management of the high power transistor module in comparison with a more conventional PCB. Because the bus bar has an improved current carrying capacity resulting in the bus bar not heating up as much as a conventional PCB, the high power transistor module is better suited for mounting with the bus bar to provide an improved assembly.
  • FIGURE 1 is a top plan view of an exemplary bus bar assembly of the present invention
  • FIGURE 2 is a cross sectional view taken along the line 2-2 of FIGURE 1 ;
  • FIGURE 3 is a top plan view of a first conducting plate and a first lug of the bus bar of FIGURE 1;
  • FIGURE 4 is a top plan view of a second conducting plate and second and third lugs of the bus bar of FIGURE 1 ;
  • FIGURE 5 is a cross sectional end view of either a conducting plate or a conductive lug of the bus bar of FIGURE 1;
  • FIGURE 6 is a perspective view of suitable high power transistor modules for use in the bus bar assembly of the present invention. Detailed Description of the Invention
  • FIGURE 1 is a top plan view of an exemplary multilayer bus bar for use in the assembly of the present invention and generally indicated at 10.
  • Bus bar 10 comprises a multilayer laminated bus bar designed to provide an electrical connection between components of an electrical distribution system.
  • generally bus bar 10 comprises a plurality of electrical conductors which are insulated and incorporated into two planes, namely a first plane 12 and a second plane 14.
  • the plurality of conductors may be disposed in one, three, or even four planes and the two plane design of bus bar 10 is merely exemplary and illustrative in nature.
  • the plurality of electrical conductors are in the form of bus bar conducting plates and conductive lugs.
  • the bus bar conducting plates comprise a positive conducting plate 16 and a negative conducting plate 18. It being understood that positive conducting plate 16 is connected to a positive voltage supply and negative conducting plate 18 is connected to a negative voltage supply.
  • the conductive lugs comprise a first lug 20, a second lug 22, and a third lug 24 with the lugs generally comprising conductors corresponding to one of three phases of the electrical component mounted to bus bar 10.
  • first lug 20 represents one phase output of high power transistor module 28 and second and third lugs 22 and 24 represent the other two phase outputs of high power transistor module 28.
  • lugs 20, 22, and 24 comprise generally rectangular conducting plates; however, it is within the scope of the present invention that lugs 20, 22, and 24 and conducting plates 16 and 18 may take a variety of shapes.
  • Bus bar conducting plates 16 and 18 and lugs 20, 22, and 24 are disposed either in first plane 12 or second plane 14 of bus bar 10, as will be described in greater detail hereinafter.
  • high power transistor module 28 is mounted to bus bar 10 directly, whereby bus bar 10 provides an the electrical connection between high power transistor module 28 and various electrical devices, e.g., electric motor, capacitors, etc.
  • high power transistor module 28 comprises an electrical IGBT module component including soldering pins for connecting the module to another electrical component.
  • one preferred module 28 comprises a module having at least one IGBT and a plurality of solderable pins and is currently and commercially referred to as an Econo module or Econopack.
  • the Econo module product family is commercially available from Siemens HL and eupec GmbH and generally, the Econo module product family comprises a high economy converter product having different combinations of rectifier diodes and IGBTs with or without parallel or serial fast diodes for a wide power range.
  • bus bar 10 is intended to provide a power distribution system component to high power transistor module 28 and the plurality of capacitors 30.
  • first plane 12 includes positive conducting plate 16 and first and second lugs 20 and 22, wherein positive conducting plate 16 extends along a substantial portion of first plane 12.
  • Positive conducting plate 16 includes a first section 32 in which contact is made between one end of each capacitor 30 and the positive conducting plate 16 to provide an electrical connection therebetween.
  • positive conducting plate 16 includes a cut-away recess portion 36 so that first and second lugs 20 and 22 may be received and disposed within cut-away recess portion 36. It being noted that first and second lugs 20 and 22 are received in cut-away recess portion 36 but are separated and do not electrically contact any portion of plus conducting plate 16.
  • first and second lugs 20 and 22 comprise substantially rectangular conducting plates which electrically connect with corresponding phase terminals (not shown) in high power transistor module 28.
  • Integrally formed in positive conducting plate 16 is an arm section 37 which extends inward from a peripheral edge of positive conducting plate 16 toward cutaway recess portion 36.
  • a pass-through opening 38 is Intermediate first section 32 and second section 34 of plus conducting plate 16 to permit gate connections between high power transistor module 28 and another electrical device. As shown in FIGURE 2, pass-through opening 38 permits a plurality of solderable pins 62 to extend therethrough.
  • Second plane 14 includes minus conducting plate 18 and third lug 24, wherein negative conducting plate 18 extends along a substantial portion of second plane 14. At a first section 50, negative conducting plate 18 receives the other end of each of the plurality of capacitors 30 to provide an electrical connection between negative conducting plate 18 and plurality of capacitors 30.
  • negative conducting plate 18 includes a cut-away recess portion 56 so that third lug 24 may be received and disposed in cut-away recess portion 56 and electrically connected to a corresponding electrical terminal in high power transistor module 28. It being noted that while third lug 24 is received in cut- away recess portion 56, it does not electrically contact any portion of negative conducting plate 18. As shown and similar to first and second lugs 20 and 22, third lug 24 comprises a substantially rectangular conducting plate which is connected to one of the three phase terminals of high power transistor module 28. Negative conducting plate 18 also includes an arm section 58 which extends inward from a peripheral edge of negative conducting plate 18 toward cut-away recess portion 56.
  • negative conducting plate 18 includes a plurality of openings 55 which provide access to a plate disposed in the first plane 12.
  • Intermediate first section 50 and second section 54 of negative conducting plate 18 is a pass-through opening 38 which is preferably aligned with pass-through opening 38 formed in positive conducting plate 16 when both plates 16 and 18 are assembled together and positioned relative to one another by coating 26.
  • positive conducting plate 16 includes a plurality of openings 52 in first section 32 which provide access to a conducting plate disposed in second plane 14 and more specifically permit the other ends of each capacitor 30 to be electrically connected to both positive conducting plate 16 and a plate disposed in second plane 14, e.g., negative conducting plate 18.
  • inner electrically insulating material (not shown) is disposed between first plane 12 and second plane 14 and more specifically, inner electrically insulating material is disposed between positive conducting plate 16, first lug 20, second lug 22, all of first plane 12 and negative conducting plate 18 and third lug 24 of second plane 14.
  • Inner electrically insulating material comprises any suitable insulating material which may or may not be the same material as outer insulating coating 26.
  • inner electrically insulating material comprises a polyamid material known as a
  • Inner electrically insulating material may take a variety of cut shapes, so long as it serves to insulate the plate and lugs disposed in first plane 12 from the plate and lug disposed in second plane 14.
  • Electrically insulating outer coating 26 also comprises an electrically insulating material which may or may not be the same as the inner electrically insulating material. In bus bar 10, the thickness of electrical insulating coating 26 is about 0.075 mm.
  • each of conducting plates 16 and 18 and lugs 20, 22, and 24 comprises a multilayer structure having in one embodiment an outer conductive surface 42 and a conductive inner material 44.
  • Outer surface 42 and inner conductive material 44 both comprise conductive materials and in an exemplary embodiment, outer surface 42 comprises a tin plating layer having a minimum thickness of about 3 ⁇ m. Tin plated outer surface 42 facilitates the soldering of high power transistor module 28 to bus bar 10.
  • Conductive inner material 44 preferably comprises copper having a thickness between about 0.5 mm and about 1.5 mm and more preferably about 0.8 mm.
  • the outer surface 42 formed by a tin plating process provides durability to the inner copper material 44 and decreases the likelihood that the copper will corrode over time during exposure to the elements.
  • the precise thickness of the copper depends upon the required current which will pass through bus bar 10 to power high power transistor module 28 and the plurality of capacitors 30. It being understood that the above-recited dimensions are listed for purpose of illustration only and do not limit the scope of the present invention and that the conducting plates and lugs of the present invention may comprise a single conductive layer structure.
  • nickel plating layer may be used instead of the tin plating layer and in an alternative embodiment, outer surface 42 comprising a plating layer may be entirely eliminated.
  • each plate includes an integral lug portion 80 disposed between outer coating 26 and extending away from a peripheral edge of outer coating 26. Integral lug portion 80 of each plate permits the plate to be easily electrically connected to the power supply and each integral lug portion 80 includes an opening 84 for connecting bus bar 10 to a power distribution system, which may include a second bus bar component.
  • lugs 20, 22, and 24 include a connection portion 81 at one end of each lug.
  • Integral lug portion 80 and connecting portion 81 permit power to be supplied/removed to a specific, predetermined electrical terminal of high power transistor module 28 from the power distribution system by providing a network or path, defined by each individual conducting plate and lug, for the electricity to flow from a power supply (not shown) to high power transistor module 28. It being noted that integral lug portion 80 and connecting portion 81 do not include inner electrically insulating material on an outer surface 42 thereof.
  • Arm section 37 of positive conducting plate 16 Disposed across and in contact with an inner surface of arm section 37 of positive conducting plate 16 are integral lug portion 80 of negative conducting plate 18 and connecting portion 81 of third lug 24.
  • Arm section 37 provides structural rigidity to bus bar 10 and more specifically to positive conducting plate 16 and third lug 24 by having plate 16 and third lug 24 lay across arm section 37 prior to enclosing all of the plates and lugs within coating 26.
  • arm section 58 of negative conducting plate 18 provides structural support and rigidity to bus bar 10 and more specifically to integral lug portion 80 of positive conducting plate 16 and connecting portions 81 of first and second lugs 20 and 22.
  • bus bar 10 is described for purpose of illustration only and it within the scope of the present invention that other suitable bus bars may be used in combination with the high power transistor module 28 to form the bus bar assembly of the present invention.
  • bus bar 10 is designed so that high power transistor module 28 is easily and securely mounted thereto via an electrical connection which eliminates the need and use of a PCB and eliminates the need and use of screw-type connectors commonly used to mount an electrical component to a conventional bus bar.
  • the present bus bar assembly also permits the high power transistor module 28 to be used in combination with bus bar 10 instead of being used in combination with a PCB, wherein the high power transistor is mounted to the PCB using conventional methods.
  • bus bar 10 instead of a PCB, in combination with high power transistor module 28 offers several notably advantages including that bus bar 10 has a larger cross section which heats less when used in combination with high power transistor module 28.
  • the Econo module currently available offers a low cost transistor module package which over time has continually increased its current capacity so that now the module is no longer a low power device.
  • the heat generated by the increase in current flow has also increased. This has led to several problems when the Econo module is mounted to the PCB as is conventionally done.
  • a conventional PCB has a relatively thin cross section resulting in a limited current carrying capacity and when high power transistor module 28 is mounted thereto, the increased heat generated by module 28 causes operational difficulties in the PCB. Consequently, the internal management of the Econo module suffers from this deficiency.
  • bus bar 10 the mounting of high power transistor module 28 to bus bar 10 overcomes these deficiencies because of the increased cross section of bus bar 10 and more specifically, the increased thickness of the conducting plates and lugs forming bus bar 10 permit more current to be carried and can thus accommodate the increased power of the newer Econo modules. Also, the increased cross section of bus bar 10 results in bus bar 10 not heating up as much as a conventional PCB, and thus permits full operation of high power transistor module 28.
  • bus bar 10 has a plurality of soldering openings 64 and a plurality of thermal barrier openings 66 formed therein.
  • soldering openings 64 are generally circular in nature and thermal barrier openings 66 comprise a number of rectangular openings positioned at predetermined locations around each soldering openings 64 to form a soldering island, generally indicated at 70.
  • Soldering openings 64 are receptive to solderable pins 62 of high power transistor module 28.
  • Soldering islands 70 are used to facilitate the soldering of both the plurality of capacitors 30 and high power transistor module 28 to bus bar 10.
  • each capacitor 30 has a soldering pin 72 at a first and a second end thereof, wherein soldering pin 72 at the first end is received in one soldering opening 64 formed in first section 32 of positive conducting plate 16 and because first section 50 of the negative conducting plate 18 includes opening 55 located directly below soldering opening 64, soldering pin 72 freely passes through this opening 64 and access for soldering the soldering pin 72 to positive conducting plate 16 is provided.
  • Soldering pin 72 at the opposing second end of each capacitor 30 passes through openings 52 in first section 32 of positive conducting plate 16 and through soldering openings 64 provided on first section 52 of negative conducting plate 18 to provide an electrical connection therebetween.
  • solderable pins 72 After disposing solderable pins 72 within corresponding soldering openings 64 of conducting plates 16 and 18, the electrical connection between the plurality of capacitors 30 and outer surfaces 42 of positive conducting plate 16 and negative conducting plate 18, respectively, is typically done by a soldering process. Solderable pins 72 of the plurality of capacitors 30 are soldered to the positive and negative conducting plates 16 and 18, respectively.
  • the plurality of thermal barrier openings 66 are provided around each soldering opening 64 to create soldering island 70.
  • the plurality of thermal barrier openings 66 comprise a number of rectangular openings purposely positioned around each soldering opening 64 to form soldering island 70 which comprises an area extending between the spaced plurality of thermal barrier openings 66.
  • each soldering island 70 is defined by four thermal barrier openings 66 which surround a single soldering opening 64.
  • a plurality of soldering islands 70 are provided with a plurality of soldering openings 64 which receive the plurality of solderable pins 62 of high power transistor module 28.
  • the plurality of solderable pins 62 associated with an individual terminal of high power transistor module 28 are soldered to one of plates 16 and 18 and lugs 20, 22, and 24 after the plurality of solderable pins 62 pass through the corresponding plurality of soldering openings 64 on each plate and are then soldered to the plate itself using a conventional soldering process.
  • each soldering island 70 is defined by six thermal barrier openings 66 which surround three soldering openings 64 which receive three solderable pins 62.
  • soldering islands 70 By incorporating soldering islands 70 into each plate and lug of bus bar 10, the effectiveness of the soldering process is greatly improved.
  • the surface area which abuts the plurality of solderable pins 62 and 72 and which acts as a soldering surface needs to be heated to a sufficiently high temperature to permit the solder to connect the plurality of solderable pins 62 and 72 to the soldering surface of each plate and lug of bus bar 10.
  • this soldering surface needs to be heated to a temperature greater than the melting point of the solder to produce an effective soldering surface which permits the solder to melt and bond the plurality of solderable pins 62 or 72 to the respective conductive plate and lug of bus bar 10.
  • soldering surface has not attained a sufficiently high temperature, what is known in the art as a "cold solder” is likely to occur, whereby the solder does not bond sufficiently to the soldering surface and a weak bond is created between the solderable pins and the soldering surface to which they are soldered.
  • cold solder the components linked together with a cold solder will begin to separate due to the weak bond at the point of soldering. Consequently, the electrical connection formed through the soldered connection will degrade and in the worse case will fail.
  • soldering island 70 This thermally isolated area is referred to herein as soldering island 70.
  • Each soldering island 70 is defined by and is created by the placement of the plurality of thermal barrier openings 66 around the plurality of soldering openings 64 which receive either the plurality of solderable pins 62 or 72.
  • Each soldering island 70 is defined as the area extending between the plurality of thermal barrier openings 66, wherein the plurality of thermal barrier openings 66 are located around at least one soldering opening 64.
  • the plurality of thermal barrier openings 66 serve as thermal barriers which accelerate the heating up of the soldering surface by limiting the amount of heat dissipation in the soldering surface. Because the soldering surface comprises a limited area of one conducting plate of bus bar 10, the entire conducting plate with its surface area dissipates heat which is applied to only a limited area of the entire surface, namely the soldering surface. This is disadvantageous to producing a solid solder connection and increases the likelihood that a cold solder will occur because the soldering surface can not reach a sufficiently high temperature to permit a proper solder connection due to heat dissipation along the entire surface of the conducting plate.
  • the bus bar assembly of the present invention permits high power transistor module 28 to be effectively used in combination with bus bar 10 to form an electrical assembly for use in a variety of applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inverter Devices (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

L'invention concerne un ensemble barre omnibus (10) à soudabilité améliorée, qui comprend un îlot de soudage (70) ayant une ouverture de soudage centrale (64) entourée par des ouvertures de couche isolante (66).
EP99909545A 1999-02-22 1999-02-22 Ensemble barre omnibus Withdrawn EP1155420A4 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1999/003804 WO2000051141A1 (fr) 1999-02-22 1999-02-22 Ensemble barre omnibus

Publications (2)

Publication Number Publication Date
EP1155420A1 true EP1155420A1 (fr) 2001-11-21
EP1155420A4 EP1155420A4 (fr) 2004-06-30

Family

ID=22272228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99909545A Withdrawn EP1155420A4 (fr) 1999-02-22 1999-02-22 Ensemble barre omnibus

Country Status (4)

Country Link
EP (1) EP1155420A4 (fr)
JP (1) JP2002538749A (fr)
AU (1) AU2872899A (fr)
WO (1) WO2000051141A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051547A1 (de) 2000-10-18 2002-04-25 Bosch Gmbh Robert Baugruppenträger für elektrische/elektronische Bauelemente
DE102004025773B4 (de) * 2004-05-26 2008-08-21 Siemens Ag Elektronisches Bauelement mit thermisch voneinander isolierten Bereichen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372308A (en) * 1965-08-26 1968-03-05 Burndy Corp Interconnecting frame assembly with improved connector structure
WO1998033365A1 (fr) * 1997-01-28 1998-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Ensemble carte imprimee possedant des composants radio frequence montes en surface
US5832602A (en) * 1994-01-25 1998-11-10 Yazaki Corporation Method of making wire-circuit sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694123A (en) * 1982-01-13 1987-09-15 Elxsi Backplane power connector system
US5053920A (en) * 1989-06-09 1991-10-01 Digital Equipment Corporation Integrated power conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372308A (en) * 1965-08-26 1968-03-05 Burndy Corp Interconnecting frame assembly with improved connector structure
US5832602A (en) * 1994-01-25 1998-11-10 Yazaki Corporation Method of making wire-circuit sheet
WO1998033365A1 (fr) * 1997-01-28 1998-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Ensemble carte imprimee possedant des composants radio frequence montes en surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"CROSSED TWIN CIRCLE HEAT BLOCKAGE" IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, vol. 36, no. 11, 1 November 1993 (1993-11-01), pages 245-246, XP000424849 ISSN: 0018-8689 *
See also references of WO0051141A1 *

Also Published As

Publication number Publication date
JP2002538749A (ja) 2002-11-12
AU2872899A (en) 2000-09-14
EP1155420A4 (fr) 2004-06-30
WO2000051141A1 (fr) 2000-08-31

Similar Documents

Publication Publication Date Title
US6538878B1 (en) Bus bar assembly
JP7308289B2 (ja) 傾斜配置を有するリチウムイオン電池管理システム(bms)
EP3259963B1 (fr) Carte de bus multicouche
US4879630A (en) Housing for an electronic circuit
KR100578441B1 (ko) 파워 전자 장치
JPS62211941A (ja) 電力供給用間插板構造体
US9888601B2 (en) Semiconductor module arrangement and method for producing a semiconductor module arrangement
US20050105277A1 (en) Power unit comprising a heat sink, and assembly method
JP3624798B2 (ja) インバータ用コンデンサモジュール、インバータ
EP1155420A1 (fr) Ensemble barre omnibus
US5739743A (en) Asymmetric resistor terminal
US20240006280A1 (en) Intelligent power module and manufacturing method thereof
US5260602A (en) Hybrid integrated-circuit device having an asymmetrical thermal dissipator
CN212992673U (zh) 一种控制器、汽车电子水泵及汽车电子压缩机
US6469248B1 (en) Hybrid circuit with a heat dissipation system
US20230207900A1 (en) Lithium-Ion Battery Management System (BMS) Having Compact Heat Sinking Arrangement, Lithium-Ion Battery Having BMS With Compact Heat Sinking Arrangement, and Method of Making BMS With Compact Heat Sinking Arrangement
US20220209307A1 (en) Lithium-ion battery management system (bms) having diagonal arrangement
JP2562036Y2 (ja) 給配電母線の接続端子構造
JPH0737205Y2 (ja) 内部端子型積層母線
JPH1065224A (ja) サーモモジュール
JPH08140338A (ja) 電力変換装置用半導体装置
JP2001284757A (ja) 大電流プリント配線板
JPH04120263U (ja) 電子回路組立体
JPH03263859A (ja) トランジスタ実装基板構造体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 20040517

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 05K 1/02 A

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040803