EP1153266A1 - Dispositif de mesure - Google Patents

Dispositif de mesure

Info

Publication number
EP1153266A1
EP1153266A1 EP00981382A EP00981382A EP1153266A1 EP 1153266 A1 EP1153266 A1 EP 1153266A1 EP 00981382 A EP00981382 A EP 00981382A EP 00981382 A EP00981382 A EP 00981382A EP 1153266 A1 EP1153266 A1 EP 1153266A1
Authority
EP
European Patent Office
Prior art keywords
sensor unit
layer
measuring device
detector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00981382A
Other languages
German (de)
English (en)
Inventor
Jörg SOPKA
Raiko Milanovic
Dietmar Treibert
Frank Schlagenhauf
Paul Huber
Bernhard Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP1153266A1 publication Critical patent/EP1153266A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0658Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of emissivity or reradiation

Definitions

  • the invention relates to a measuring device for determining the thickness of a layer according to the preamble of patent claim 1.
  • Such measuring devices are used, for example, to determine the thickness of a layer of lacquer in a contactless and non-destructive manner. Specifications for regulating the coating process are then derived from the measurement signals.
  • the known measuring devices that are used to determine the thickness of layers are equipped with a C0 2 laser or a diode laser as the radiation source.
  • the radiation emitted by such a CO 2 laser has a wavelength of approximately 9.6 ⁇ m to 10.6 ⁇ m. This enables the thickness of layers to be determined, regardless of the varnish they are made of.
  • a disadvantage here is the structural size of these lasers and the fact that there are no optical waveguides of sufficient quality and transparency for the transmission of the radiation over a larger area.
  • diode lasers a smaller design of the measuring device can be achieved.
  • the radiation emitted by such a diode laser with a wavelength of less than 1 ⁇ m is not adequately absorbed by some lacquers, so that a measuring device with such a radiation source has only a limited area of application.
  • a device is known from PCT / EP96 / 04869 with which the thickness of a lacquer layer on a component can be determined.
  • the layer is irradiated with a halogen lamp via a mirror.
  • BESTATIGUNGSKOPIE optics the decay of the thermal radiation reflected by the lacquer layer is detected.
  • EP 0791 818 A2 describes a method and a device for the photothermal testing of workpieces.
  • electromagnetic excitation radiation is directed onto a workpiece.
  • the thermal radiation generated at the measuring point is recorded and evaluated.
  • two visible intersecting location beams are directed onto the workpiece. Then the directions of the workpiece and the measuring device are corrected so that the intersection and the measuring point coincide.
  • the invention has for its object to provide a measuring device with which the thickness of layers can be determined regardless of the material from which they are made, and which is designed so that measurements can be made even at greater distances from the radiation source used can be carried out.
  • temporally intensity-modulated infrared radiation of a laser with a wavelength of 2 ⁇ m to 4 ⁇ m is absorbed on the surface of an optically strongly absorbing layer.
  • temperature oscillations are triggered in the layer and in the base material.
  • Thermal radiation is emitted by the layer, which provides information about the inner and outer structure of the layer to be examined and its thickness.
  • the heat radiation emitted by the layer which is increased compared to the heat radiation of the surroundings, is fed to a detector which is designed as an infrared detector.
  • the measurement signal detected by the detector is converted into an electrical signal and fed via a preamplifier to an evaluation unit, where the thickness of the layer is determined using stored calibration data.
  • the measuring device is equipped with a solid-state laser. Its emitted radiation is transmitted with a suitable light guide to a sensor unit with which the layer to be examined is irradiated.
  • the detector for detecting the thermal radiation which is emitted by the layer can, for example, also be installed in the sensor unit. However, the heat radiation, the size and temporal structure of which reflects the layer thickness, can also be conducted via optical fibers to a detector that is installed outside the sensor.
  • An erbium-YAG laser, a holmium-YAG laser or an erbium-YSGG laser is preferably used as the radiation source in the measuring device according to the invention. These are solid-state lasers that are pumped by flash lamps or diodes.
  • the radiation from these solid-state lasers lies in the wavelength range between 2 ⁇ m and 4 ⁇ m.
  • the radiation source is connected via infrared-transparent optical waveguides to a sensor unit provided for emitting and receiving radiation. This makes it possible to transmit and receive measurement signals even at a greater distance from the radiation source.
  • the sensor unit comprises a detector, one or two optical systems which are designed as lens systems and / or mirror systems.
  • the optical waveguide is connected to the solid-state laser at a first end, while the second end is arranged within the sensor unit.
  • the radiation emerging at the second end of the light guide is imaged as a light spot on the surface of a layer, the thickness of which is to be determined.
  • the heat radiation emitted by the layer is fed with the aid of an optical system and / or a light guide to the detector, which is sensitive to radiometry and infrared. If necessary, this can also be arranged outside the sensor unit.
  • the optical signals After the optical signals have been converted into electrical signals, they are forwarded to an evaluation unit.
  • the layer thicknesses can be determined from the measurement signals by means of suitable calibration data.
  • the measurement result is displayed.
  • the sensor unit has such small dimensions that it can be attached to the arm of a work robot. This can be used to scan the layer whose thickness is to be determined.
  • the measuring device according to the invention can be used to determine the thickness of both dry and wet layers of lacquer, especially when the thickness of the layer is to be determined in a contactless and non-destructive manner.
  • the only figure belonging to the description shows a measuring device 1, which comprises an electromagnetic radiation source 2, a supply unit 3, an optical waveguide 4, a detector 5, a lens system 6, a mirror system 7, a signal preamplifier 9, an evaluation unit 10 and a display device 11.
  • the detector 5, the optical lens system 6 and the mirror system 7 are combined to form the sensor unit 8 forming a structural unit.
  • the radiation source 2 is designed as a solid-state laser which emits electromagnetic radiation in the infrared region with a wavelength between 2 ⁇ m and 4 ⁇ m.
  • an erbium-YAG laser, a holmium-YAG laser or an erbium-YSGG laser can be used for this.
  • YAG stands for Yttrium Aluminum Granulate and YSGG for Yttrium Scandium Gallium Granulate.
  • an erbium-YAG laser 2 is used, the emitted radiation of which has a wavelength of 2.94 ⁇ m.
  • the laser 2 is in electrical and mechanical connection with the supply unit 3. The electrical power supply and the cooling of the laser 2 take place from it.
  • the radiation emitted by the laser is emitted into the first end 4A of the light wave fed conductor 4, which is connected to the laser 2.
  • the fibers (not shown here) of the optical waveguide 4 are made of an infrared transparent material, which consists for example of sapphire, GeO, ZrF 2 . This ensures that the attenuation of the radiation within the optical waveguide 4 remains small.
  • the second end 4B of the optical waveguide 4 is installed within the sensor unit 8 at a defined distance from the first concave mirror 7A of the mirror system 7.
  • This concave mirror 7A is provided with a through hole 7D and arranged in front of the opening 8A of the sensor unit 8.
  • the optical lens system 6 is arranged between the second end 4B of the optical waveguide 4 and the through-hole 7D of the first concave mirror 7A. It comprises two biconvex lenses 6A and 6B, which are arranged at a predetermined distance from one another and from the end 4B of the optical waveguide 4 or the through-hole 7D.
  • the focal lengths of the two converging lenses 6A and 6B are selected such that the area at the second end 4B of the optical waveguide 4 is imaged on a layer 20 as a light spot 21.
  • This light spot 21 has a size of 0.5 cm 2 when the sensor unit 8 is moved over the layer 20 at a maximum distance of 15 cm.
  • Layer 20 is a coating of lacquer that is applied to a component 100.
  • the thickness of the layer 20 can be determined both when the lacquer is moist and when it is already dry.
  • the region of the layer 20 irradiated by the light spot 21 is heated by the radiation.
  • the increased thermal radiation emitted by the layer 20 compared to the surroundings is fed to the detector 5, which is designed as an infrared detector.
  • the two concave mirrors 7A and 7B of the mirror system 7 are used for this.
  • the heat radiation coming from the layer 20 is conducted through the opening 8A of the sensor unit 8 to the first concave mirror 7A.
  • the second concave mirror 7B is arranged in the beam path of the first concave mirror 7A in such a way that the heat radiation is conducted from the first concave mirror 7A to the second concave mirror 7B and is fed directly from there to the signal input 5A of the detector 5.
  • the signal input 5A of the detector 5 is installed in the beam path of the second concave mirror 7B. If the sensor unit 8 has to be made even smaller than shown here, it can the second concave mirror 7B can also be dispensed with. In this case, the signal input 5A of the detector 5 is arranged in the beam path of the first concave mirror 7A.
  • the detector 5 and the sealing system 7 can also be installed outside the sensor unit 8 (not shown here) ).
  • the heat radiation emitted by the layer 20 can be supplied to the detector 5 installed outside the sensor unit 8, for example via an optical fiber (not shown here), which likewise has optical fibers made of infrared-transparent material.
  • the heat radiation can also be supplied to the detector 5 via such a light guide (not shown here) if it is installed within the sensor unit 8. If necessary, additional optical systems are to be arranged between the layer 20 and such a light guide or the detector 5 and this light guide.
  • the signal output of the detector 5 supplies an electrical signal, which is first fed to a preamplifier 9, the signal output of which is connected to an evaluation unit 10.
  • the latter is designed, for example, as a microprocessor.
  • a display device 11 is preferably connected downstream of the evaluation unit 10.
  • the evaluation unit 10 is connected to the laser 2 via a signal line 12. At the moment when the laser 2 emits its radiation, the evaluation unit 10 is activated by a signal.
  • the measurement signal that is fed to the evaluation unit 10 provides information about the temporal oscillation of the temperature or the temporal decrease in the temperature in the layer 20. The thinner the layer 20, the faster the temperature decreases.
  • the thickness of the layer 20 is determined by a comparison of the measurement signal with comparison values that are stored in the evaluation unit 10 and is displayed on the display device 11.
  • the moisture content of layer 20 can also be determined if layer 20 has not yet dried out. This measurement is preferably carried out by means of infrared reflection spectroscopy certainly. This method has been part of the prior art for a long time and is therefore not explained in more detail here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

La présente invention concerne un dispositif de mesure (1) permettant de déterminer l'épaisseur d'une couche (20) appliquée sur un élément de construction (100). La détermination de l'épaisseur s'effectue sans contact et sans dommage, indépendamment du matériau constitutif de la couche (20). A cette fin, une source de rayonnement électromagnétique émet un rayonnement dans le domaine infrarouge. Cette source de rayonnement (2), se présentant sous forme de laser à corps solide, est connectée à une unité de détection (8), par l'intermédiaire d'une fibre optique (4). La couche (20) peut être balayée avec ledit rayonnement infrarouge, au moyen de cette unité de détection. Le rayonnement thermique émis par la couche (20) est détecté à l'aide d'un détecteur (5) qui est intégré à l'unité de détection (8). L'épaisseur de la couche (20) est déterminée à partir des signaux de mesure, dans une unité d'évaluation (11), dans laquelle des valeurs comparatives sont enregistrées.
EP00981382A 1999-12-17 2000-12-15 Dispositif de mesure Withdrawn EP1153266A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19960880 1999-12-17
DE1999160880 DE19960880A1 (de) 1999-12-17 1999-12-17 Messvorrichtung
PCT/EP2000/012831 WO2001044752A1 (fr) 1999-12-17 2000-12-15 Dispositif de mesure

Publications (1)

Publication Number Publication Date
EP1153266A1 true EP1153266A1 (fr) 2001-11-14

Family

ID=7933014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00981382A Withdrawn EP1153266A1 (fr) 1999-12-17 2000-12-15 Dispositif de mesure

Country Status (4)

Country Link
EP (1) EP1153266A1 (fr)
AU (1) AU1864401A (fr)
DE (1) DE19960880A1 (fr)
WO (1) WO2001044752A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138167A1 (de) * 2001-08-03 2003-02-27 Saremo Objektfinish Ag Vorrichtung und Verfahren für ein gezieltes Auftragen von Beschichtungsmaterial
FR2897687B1 (fr) * 2006-02-17 2008-09-26 Commissariat Energie Atomique Procede et dispositif de caracterisation, par pyrometrie active, d'un materiau en couche mince dispose sur un substrat
US9557164B2 (en) * 2015-04-15 2017-01-31 General Electric Company Data acquisition devices, systems and method for analyzing strain sensors and monitoring turbine component strain
EP3086087B1 (fr) * 2015-04-20 2021-07-07 OptiSense GmbH & Co. KG Appareil de mesure photothermique et procédé de mesure photothermique
CN107401988B (zh) * 2017-09-08 2023-09-15 成都中住光纤有限公司 一种光纤涂覆同心度监测系统
DE102019104260A1 (de) * 2019-02-20 2020-08-20 Stefan Böttger Verfahren und Vorrichtung zur Bestimmung einer Schichtdicke einer auf ein Substrat aufgebrachten Schicht

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3034944C2 (de) * 1980-09-01 1985-01-17 Gerhard Dr. 8029 Sauerlach Busse Verfahren und Einrichtung zur photothermischen Struktur-Untersuchung fester Körper
FR2593917B1 (fr) * 1986-02-06 1988-06-03 Univ Reims Champagne Ardenne Procede et dispositif d'analyse et de mesure des parametres physiques d'un materiau en couches par radiometrie thermique
DE3631652C2 (de) * 1986-09-17 1994-05-19 Siemens Ag Meßanordnung zur berührungslosen Dickenbestimmung
DE4003407A1 (de) * 1990-02-05 1991-08-08 Siemens Ag Verfahren und anordnung zum pruefen der oberflaeche von bewegten objekten
DE4343076C2 (de) * 1993-12-16 1997-04-03 Phototherm Dr Petry Gmbh Vorrichtung zum photothermischen Prüfen einer Oberfläche eines insbesondere bewegten Gegenstandes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0144752A1 *

Also Published As

Publication number Publication date
AU1864401A (en) 2001-06-25
DE19960880A1 (de) 2001-06-21
WO2001044752A1 (fr) 2001-06-21

Similar Documents

Publication Publication Date Title
EP0394932B1 (fr) Procédé d'inspection par effet photothermal, dispositif pour sa mise en oeuvre et utilisation du procédé
EP1977850B1 (fr) Dispositif de traitement de matériau
DE3739862C2 (fr)
DE60120530T2 (de) Mehrere Laser beinhaltendes Laserausrichtungssystem zum Auftreffen auf ein einziges Ziel
WO2006024566A1 (fr) Dispositif et procede de mesure de distance optique
WO2020143861A1 (fr) Procédé et dispositif pour le traitement au laser contrôlé d'une pièce au moyen d'une mesure de distance confocale
DE10130763A1 (de) Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich
DE102011079739A1 (de) Vorrichtung und Verfahren zur Durchführung und Überwachung eines Kunststoff-Laserdurchstrahl-Schweißprozesses
DE19852302A1 (de) Verfahren und Vorrichtung zum Bearbeiten von Werkstücken mit Hochenergiestrahlung
DE10319686A1 (de) Vorrichtung und Verfahren zur optischen Erfassung von Gegenständen
WO2021032387A1 (fr) Unité d'alignement, module de détection comprenant cette unité d'alignement et système d'usinage au laser comprenant ce module de détection
DE102004023330A1 (de) Ortungsgerät sowie Verfahren zur Kalibrierung eines Ortungsgeräts
EP1233515A2 (fr) Capteur à effleurement et dispositif de protection d'une partie saillante
EP3837084B1 (fr) Système de traitement au laser et procédé d'usinage d'une pièce avec un faisceau laser
DE112018005682T5 (de) Optische elemente mit fokusregion für optische hochleistungsscanner
EP1153266A1 (fr) Dispositif de mesure
DE3813258A1 (de) Verfahren zur beruehrungslosen und zerstoerungsfreien pruefung von absorptionsfaehigen materialien und vorrichtung zu seiner durchfuehrung
DE102008048266B4 (de) Verfahren zur schnellen Bestimmung der separaten Anteile von Volumen- und Oberflächenabsorption von optischen Materialien, eine Vorrichtung hierzu sowie deren Verwendung
DE3108344A1 (de) Laserinspektionssystem
DE19606453C2 (de) Verfahren und Vorrichtung zum photothermischen Prüfen von Werkstücken
DE4415582C2 (de) Optische Abstandsmeßvorrichtung zur Abstandsmessung in Hohlräumen
EP2618958B1 (fr) Utilisation de la polarité d'une émission thermique pour la détection d'une surface tri-dimensionnelle.
DE102013205456B4 (de) Ausrichtelement für einen optischen Abstandssensor, optische Sensoranordnung und Verfahren zur Ausrichtung eines optischen Abstandssensors
DE10222786A1 (de) Verfahren zur Positionierung von Werkstücken bei Laserbearbeitungsprozessen
DE3939877A1 (de) Messanordnung zur beruehrungslosen bestimmung der dicke und/oder thermischen eigenschaften von folien und duennen oberflaechenbeschichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040701