EP1153042B1 - Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation - Google Patents

Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation Download PDF

Info

Publication number
EP1153042B1
EP1153042B1 EP00916827A EP00916827A EP1153042B1 EP 1153042 B1 EP1153042 B1 EP 1153042B1 EP 00916827 A EP00916827 A EP 00916827A EP 00916827 A EP00916827 A EP 00916827A EP 1153042 B1 EP1153042 B1 EP 1153042B1
Authority
EP
European Patent Office
Prior art keywords
reactor
heat
internal temperature
reaction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00916827A
Other languages
English (en)
French (fr)
Other versions
EP1153042A1 (de
Inventor
Hubertus KRÖNER
Rainer Klostermann
Joachim Birk
Thomas Hauff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1153042A1 publication Critical patent/EP1153042A1/de
Application granted granted Critical
Publication of EP1153042B1 publication Critical patent/EP1153042B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/0006Temperature measurement of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00065Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00072Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • B01J2219/00216Parameter value calculated by equations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00225Control algorithm taking actions stopping the system or generating an alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00261Predicting runaway of the chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/0027Pressure relief
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00272Addition of reaction inhibitor

Definitions

  • the present invention relates to a process for on-line monitoring and control of monomer conversion in emulsion polymerization in a reactor, especially in semi-continuous and continuous emulsion polymerization processes on an industrial scale.
  • a reactor for exothermic chemical reactions in addition to cooling devices for efficient heat dissipation also special safety devices for pressure relief, such as safety valves or special catch facilities (so-called "catch tank” systems), which allow rapid emptying of the reactor contents in a safety boiler.
  • safety valves or special catch facilities so-called "catch tank” systems
  • the process control is always interpreted as meaning that the safety devices do not respond even under the most unfavorable conditions, ie in the case of a spontaneous, adiabatic runaway of the reaction mixture present in the reactor.
  • process control technology reaction monitoring whose essential task is to ensure at any time of the reaction in the current process, the safety of the process and to limit the process risk.
  • Previous reaction monitoring was mostly based on fixed apparatus-related and recipe-independent limits for feed rates and / or speeds of the starting materials and on the monitoring of temperature differences.
  • the starting materials essentially monomers, emulsifiers, water, initiators and stabilizers
  • the emulsified monomer droplets are converted into polymer particles with heat release.
  • the "worst case” amount is the amount of monomer that is allowed to run into the reactor at most without the occurrence of a polymerization reaction and still leads to conditions within the safety margins when passing through the reaction.
  • the "worst case” amount can be determined model-based based on measured flows. The calculation is then carried out by a simplified heat balance, which takes into account only the heat flows supplied. Again, however, the pressures that might occur during a runaway are not explicitly taken into account. By monitoring a rigid limit for the temperature difference between the reactor internal temperature and the reactor bath, the effects of reactor fouling and viscosity are not taken into account. In addition, this method is only conditionally applicable to reactors with extended cooling capabilities such as external heat exchangers or reflux condensers.
  • the object of the present invention is therefore to specify an improved process for on-line monitoring and control of the monomer conversion in the emulsion polymerization, which is unchanged high plant safety enables more economical process control and is particularly applicable to reactors with extended cooling capabilities and in processes with complex control strategies.
  • the invention it is therefore proposed to improve the monitoring of the monomer accumulation by introducing an extended heat balance, taking into account the amounts of heat removed.
  • the amount of heat Q AD representing the current hazard potential can be determined more accurately and certain parameters relevant for reactor safety, such as the maximum adiabatic internal temperature T AD of the reactor, can be calculated more precisely.
  • the safety margins to be complied with prior to a response of safety valves or the receiving means for the reactor contents can therefore be better utilized.
  • feed rates can be adapted and the space-time yield can be optimized.
  • the inventively proposed heat balance can also be performed in reactors with external heat exchangers or reflux condensers, as these can be technically easily included in the accounting.
  • the amount of heat supplied, the enthalpy of reaction and the amount of heat removed from the reactor are advantageously determined by means of temperature and flow rate measurements in the feeds and outflows of the reactor and in the coolant circuits.
  • reliable and inexpensive measuring systems are commercially available. Knowing the specific heat capacities of the starting materials, the heat flows can be easily calculated. With the method according to the invention so no major investments are connected. The method can also be easily implemented in existing systems.
  • the maximum internal pressure p AD prevailing in the reactor at the maximum internal temperature T AD is particularly preferably calculated.
  • the maximum internal reactor pressure occurring in the case of an adiabatic runaway of the reactor mixture is also used as an additional safety criterion, so that there is an increased plant safety compared with conventional monitoring methods. It is therefore advantageous to introduce measures which prevent a further increase in the amount of heat Q AD not dissipated if either the calculated maximum internal temperature T AD or the calculated maximum internal pressure p AD exceed the corresponding measured instantaneous values to a certain extent.
  • This variant according to the invention is particularly preferred because, in the case of a disturbance in the course of the reaction, it is usually more likely to exceed p AD than T AD .
  • a further supply of monomers into the reactor is completely prevented if the calculated maximum internal temperature T AD and / or the calculated maximum internal pressure p AD exceed predetermined, reactor-specific limit values.
  • the design temperature of the reactor or the design pressure of the reactor or of an optionally existing safety valve can be used taking into account the error tolerances of the calculation.
  • This initialization can be performed manually by the operator. However, in order to avoid operating errors, the initialization will preferably be carried out automatically, for example, after opening the drain valve for a certain minimum period of time, it can be assumed that the reactor is completely emptied, so that initialization can take place automatically during this period. However, the emptying of the reactor can also be registered via level sensors arranged in the reactor. The initialization criterion of a completely emptied reactor can also be registered by measuring the amount of the reaction medium discharged from the reactor and balancing it with the amount previously metered into the reactor.
  • pressures and flow rates are at least partially measured redundantly and carried out by mutual comparison of the redundant variables, a continuous validation of the input variables.
  • the monitoring method according to the invention can be used particularly advantageously in a semi-continuous emulsion polymerization process.
  • the amount of heat dissipated with the effluent polymer must also be taken into account in the heat balance.
  • the reactor is mixed as well as possible during the current reaction and evenly react the monomers.
  • the operation of the Reaktorrlochers is continuously monitored. A uniform reaction of the monomers can be ensured in the emulsion polymerization by the feed procedure.
  • the drawing shows a reactor vessel 10 which has feeds 11 for feedstocks such as monomers, emulsifiers, water, initiators, stabilizers and other auxiliaries.
  • the boiler can be emptied via a line 12.
  • In the boiler can be supplied via a line 13 heat in the form of steam.
  • the reactor vessel 10 is surrounded by a tempering jacket 14, which is tempered in a water circuit operated via a first circulating water pump 15.
  • a first steam line 16 and a first cooling water line 17 in turn allow the regulation of the temperature of the cooling water circuit.
  • a stirrer 18 is arranged, whose shaft is led up out of the boiler and is driven by a motor 19.
  • a product circulation circuit 20 through which the reaction medium in the boiler is guided by means of a product circulation pump 21 through an external heat exchanger 22.
  • heat exchange medium in the outer heat exchanger 22 water is used, which is guided by means of a second circular water pump 23 in a circuit and tempered via a second steam line 24 and a second cooling water line 25.
  • the tempering jacket 14 of the reactor or the external heat exchanger 22 may instead of the illustrated cooling circuit also directly by cooling water from the lines 17th or 25 are cooled.
  • other cooling media are of course conceivable, such as a cooling brine or the like. This is especially true if the supplied via the lines 17 and 25 cooling medium comes from a secondary circuit.
  • the located at a particular time in the reactor is not dissipated heat amount Q AD from the accumulated quantities of heat supplied and extracted exactly as possible.
  • Q AD dissipated heat amount
  • two partial balance spaces are used, which are shown schematically in the figure by the dashed rectangles labeled "A" or "B".
  • the first part balancing chamber A comprises the polykettle and its bath
  • the second part balancing chamber B comprises the external heat exchanger and its cooling circuit. If, for example, a reflux condenser is used instead of the external heat exchanger in another reactor configuration, then its heat flows can be detected in a separate partial balance chamber.
  • the balance area limits are selected so that the inflows and outflows of the respective baths pierce the balance space and the associated circular water pumps and the feeds of steam or cooling water are outside the balance area.
  • the temperature and flow rate of the inlets and outlets are measured at the balance area limits. In this way, indirectly, the low heat input of the circulating pumps 15, 21 and 23 lying outside the balance space limits can also be taken into account.
  • these mixing sections are preferably also outside the balance space.
  • the amount of heat required or released for heating or cooling the reactor vessel itself is not considered, the amount of heat introduced by the agitator and the amount of heat given off to the environment by blasting and convection.
  • the amounts of heat are determined in each case on the basis of measured values of temperatures or temperature differences and flow rates in a specific time interval .DELTA.t, and the specific heat capacities of the substances involved.
  • a typical time interval is preferably in the range of 1 to 10 seconds for a reaction time of more than one hour.
  • the adiabatic temperature deviation ⁇ T AD or the pressure stroke ⁇ p AD which is possible at the time t is calculated from Q AD .
  • a numeric summation takes place.
  • the non-dissipated heat calculated from the heat balance accordingly corresponds to the unreacted monomers.
  • this accumulated heat in the boiler would lead to a temperature increase ⁇ T AD and as a result to an increase in the internal pressure of the reactor to p AD .
  • the safety criterion is that both changes must not lead to exceeding the permissible limit values for the reactor.
  • the design data for the boiler or the safety valve is used as limit values. Typical values are approximately at a maximum permissible temperature of 200 ° C and a maximum permissible internal pressure of 15 bar.
  • T AD T RI + .DELTA.T AD
  • the ideal gas law can be used to calculate the vapor pressure that occurs during adiabatic runaway.
  • the adiabatic pressure is then obtained from the vapor pressures p i of the monomer feed components i T AD, the water vapor pressure p W T AD and the compression pressure p K of before the start of polymerization to a pressure p 0 passed into the evacuated vessel inert gas (e.g. nitrogen ).
  • p AD ⁇ i ( p i ( T AD ) ⁇ n i ⁇ i n i ) + p w ( T AD ) + p k ( T AD )
  • N i is the molar proportion of the monomeric feed component i .
  • This calculation method is normally sufficient. For components with high vapor pressure and / or at low levels, which corresponds to a large free volume, however, more refined calculation methods are preferably used in order to avoid an early response of the reaction monitoring. Large free volumes are especially at the beginning of the feed mode before (for example, in the polymerization). In order to describe the vapor pressure more accurately in this phase, the free volume can be taken into account. The vapor pressure is then calculated according to the ideal gas law, assuming that the organic and aqueous phases are immiscible or ideally mixed. Likewise, the solubility of the monomers in the polymer can be taken into account.
  • the complex behavior of the reaction mixture in real adiabatic polymerization reactions can be described even better:
  • the adiabatic passage of the reaction is based on the measured instantaneous values for internal temperature and pressure stepwise numerically simmuliert.
  • the solubility of the starting materials in the reaction medium, in particular in the polymer formed can be taken into account.
  • the reaction of a fraction of the monomers present in the reactor which is determined by the total number of steps, is simmulated into polymer and the effects of the release of the corresponding reaction enthalpy on the system are calculated. Due to their complexity, however, such computation methods require very powerful computing systems. However, they show, for example, that the highest occurring during adiabatic passage of the reaction pressure p AD can be reached before the end of the adiabatic reaction, ie before reaching the maximum temperature T AD , and that then even a reduction in pressure can occur.
  • the heat balance is preferably started and stopped fully automatically and the reaction monitoring is automatically activated and deactivated. Normally there is therefore no possibility from the outside to intervene in the system. For special cases, for example, after the reaction monitoring has responded, taking into account additional organizational measures and key switches, the feeds can be restarted, provided that all the monitored parameters are back within the normal range. In the continuous process of reaction monitoring itself, however, can not intervene under these circumstances.
  • the cyclical process of heat balancing is divided into four phases, which are activated by reaching certain boundary conditions.
  • the heat balance is initialized when the reactor is completely emptied, ie the original heat content Q 0 is set equal to zero and all counters are reset.
  • the reaction monitoring is activated. After completion of the reaction, the reaction monitoring is terminated.
  • the reactor is emptied and after complete emptying, the monitoring cycle automatically restarts upon initialization of the system.
  • the method is not only always occurring in the case of a runaway maximum pressure p AD, but also the current reactor pressure p calc calculated.
  • This calculation is analogous to the calculation model of the adiabatic pressure p AD , except that instead of the maximum adiabatic temperature T AD, the currently measured reactor temperature occurs as the calculation variable.
  • the calculated reactor pressure should always be above the measured internal reactor pressure p (t) , ie the relation p (t) ⁇ p calc (t) must be satisfied . If this criterion is not met, it can typically be assumed that a faulty measurement or deviations of the processed measured values from the real measured values are present.
  • the constant calculation of the momentary internal reactor pressure thus serves as validation of the model of the calculation of the maximum adiabatic pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur on-line-Überwachung und Steuerung des Monomerenumsatzes bei der Emulsionspolymerisation in einem Reaktor, insbesondere bei semi-kontinuierlichen und kontinuierlichen Emulsionspolymerisationsprozessen im industriellen Maßstab.
  • Sicherheitsaspekte spielen im Produktionsprozeß in der chemischen Industrie eine herausragende Rolle. Üblicherweise werden daher chemische Produktionsprozesse ständig überwacht, um mögliche Gefahrenzustände, die etwa zu Explosionen oder zur Freisetzung von Chemikalien führen können, zu vermeiden.
  • Viele chemischen Reaktionen, wie beispielsweise die Emulsionspolymerisation, verlaufen exotherm und sind daher mit der Freisetzung von Wärme verbunden. Wenn aus einem solchen Reaktionssystem weniger Wärme abgeführt wird als durch die Umsetzung der Ausgangsmaterialien entsteht, kann es durch einen resultierenden Temperaturanstieg im System zu einer sich selbst beschleunigenden Reaktion kommen. Man spricht hier auch von einem "Durchgehen" der Reaktion. In einem geschlossenen Reaktorsystem ist mit einer Temperaturerhöhung auch ein Anstieg des Reaktorinnendrucks verbunden.
  • Ein Reaktor für exotherme chemische Reaktionen besitzt daher neben Kühleinrichtungen zur effizienten Wärmeabfuhr auch spezielle Sicherheitseinrichtungen zur Druckentlastung, wie beispielsweise Sicherheitsventile oder spezielle Auffangeinrichtungen (sogenannte "catch tank"-Systeme), die eine Schnellentleerung des Reaktorinhalts in einen Sicherheitskessel ermöglichen. Als sicherheitstechnisches Grunderfordernis ist die Prozeßführung stets so auszulegen, daß die Sicherheitseinrichtungen selbst unter ungünstigsten Bedingungen, d.h. bei einem spontanen, adiabaten Durchgehen des sich im Reaktor befindlichen Reaktionsgemisches, nicht ansprechen. Zu Verwirklichung dieses Grundsatzes ist üblicherweise eine durch die Prozeßleittechnik gestützte Reaktionsüberwachung vorgesehen, deren wesentliche Aufgabe es ist, zu jedem Zeitpunkt der Reaktion im laufenden Prozeß die Sicherheit des Prozesses zu gewährleisten und das Prozeßrisiko zu begrenzen.
  • Bisherige Reaktionsüberwachungen basierten zumeist auf festen apparatebedingten und rezepturunabhängigen Grenzwerten für Zulaufmengen und/oder -geschwindigkeiten der Ausgangsstoffe und auf der Überwachung von Temperaturdifferenzen.
  • Diese festen Grenzwerte bedingen sehr große einzuhaltende Sicherheitsmargen; eine Optimierung der Prozeßführung unter wirtschaftlichen Aspekten ist bei derartigen Konzepten nur in engen Grenzen möglich.
  • Zur Optimierung der Raum-Zeit-Ausbeute unter Beibehaltung der Anlagensicherheit ist es jedoch notwendig, diese starren Grenzwerte durch flexiblere, auf aktuellen Messungen während der laufenden Reaktion beruhenden Grenzwerten zu ersetzen.
  • Bei der Emulsionspolymerisation werden die Einsatzstoffe (im wesentlichen Monomere, Emulgatoren, Wasser, Initiatoren und Stabilisatoren) in einer vorgegebenen Dosierstrategie in den Reaktor eingeleitet, wo die emulgierten Monomertröpfchen unter Wärmefreisetzung zu Polymerteilchen umgesetzt werden.
  • Eine kontinuierliche Reaktionsüberwachung besteht bei der Emulsionspolymerisation daher im wesentlichen aus zwei Elementen:
    • Überwachung des Durchgehens der Reaktion durch Alarmierung bei Überschreiten eines bestimmten Maximalwerts der Reaktorinnentemperatur; und
    • Überwachung/Alarmierung bei Monomerenakkumulation.
  • Mit einer Monomerenakkumulation im Reaktor ist zunächst die Gefahr eines Einschlafens der Reaktion verbunden. Gleichzeitig stellt eine Monomerenakkumulation jedoch auch ein unkalkulierbares Sicherheitsrisiko dar, falls es zu einem adiabaten Durchgehen des Reaktionsgemisches kommt. Für eine zuverlässige Reaktionsüberwachung ist es daher erforderlich, die durch akkumulierte Monomere im Reaktor vorhandene, noch nicht freigesetzte Reaktionsenthalpie zu jedem Zeitpunkt genau zu kennen.
  • Es sind bereits verschiedene Verfahren zur Kontrolle der Monomerenakkumulation bekannt.
  • Bei der sogenannten "de Haas'schen"-Reaktionsüberwachung wird die Stellung der Regelventile für die Dampf- bzw. Kühlwasserversorgung des Temperierbades des Reaktors überwacht. Diese Variante hat den Vorteil, daß sie relativ einfach zu realisieren ist. Sie benützt bereits für die Steuerung der Reaktion vorhandene Meß- und Regelinstrumente. Allerdings kann diese Methode aus diesem Grund nicht als Schutzeinrichtung der Anforderungklasse 5 (DIN 19250 bzw. SIL III nach IEC 61508) verwendet werden. Darüber hinaus können bestimmte Effekte wie Reaktorfouling oder eine Verschlechterung der Temperaturabfuhr bei ansteigender Viskosität des Reaktionsgemisches nicht berücksichtigt werden. Auch die bei Durchgehen des Reaktionsgemisches auftretende Erhöhung des Reaktorinnendrucks wird nicht berücksichtigt. Diese Art der Reaktionsüberwachung stößt außerdem bei Reaktionen, die mit einer komplexeren Regelstrategie ausgestattet sind, an ihre Grenzen.
  • Als weiteres verfahren zur Kontrolle der Monomerenakkumulation ist bekannt, die Mindestvorlagemenge an Inertem (etwa an vollentsalztem Wasser) und die maximale Durchflußmenge für den Monomerenzulauf zu kontrollieren. Dieses Überwachungsverfahren erlaubt jedoch nur eine relativ eingeschränkte Flexibilität bezüglich der Rezepturen und der Fahrweise des Reaktors. Sie ist für sich allein nicht ausreichend, um das Anspringen der Reaktion oder ein Einschlafen der Reaktion zu kontrollieren und muß daher mit organisatorischen Maßnahmen und gegebenenfalls der "de Haas'schen"-Reaktionsüberwachung kombiniert werden. Auch bei diesem Verfahren werden möglicherweise auftretende Drücke nicht explizit berücksichtigt. Unter wirtschaftlichen Aspekten ist dieses Verfahren ungünstig, da aufgrund der starren Mengengrenzwerte relativ große Sicherheitsmargen berücksichtigt werden müssen.
  • Ein weiteres bekanntes Verfahren besteht darin, die Temperaturdifferenz zwischen Reaktorinnentemperatur und Reaktorbadtemperatur nach Erreichen einer "worst case"-Menge zu überwachen. Die "worst case"-Menge ist die Monomerenmenge, die maximal ohne Auftreten einer Polymerisationsreaktion in den Reaktor laufen darf und beim Durchgehen der Reaktion immer noch zu innerhalb der Sicherheitsmargen liegenden Bedingungen führt. Die "worst case"-Menge kann modellgestützt auf Basis gemessener Durchflüsse bestimmt werden. Die Berechnung erfolgt dann durch eine vereinfachte Wärmebilanz, die nur die zugeführten Wärmeströme berücksichtigt. Auch hier werden jedoch die bei einem Durchgehen möglicherweise auftretenden Drücke nicht explizit berücksichtigt.
    Durch die Überwachung eines starren Grenzwertes für die Temperaturdifferenz zwischen Reaktorinnentemperatur und Reaktorbad werden die Einflüsse des Reaktorfoulings und der Viskosität nicht berücksichtigt. Außerdem ist dieses Verfahren für Reaktoren mit erweiterten Kühlmöglichkeiten wie außenliegenden Wärmetauschern oder Rückflußkühlern nur bedingt anwendbar.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein verbessertes Verfahren zur on-line-Überwachung und Steuerung des Monomerenumsatzes bei der Emulsionspolymerisation anzugeben, welches bei unverändert hoher Anlagensicherheit eine wirtschaftlichere Prozeßführung ermöglicht und insbesondere auch für Reaktoren mit erweiterten Kühlmöglichkeiten und bei Prozessen mit komplexen Regelstrategien anwendbar ist.
  • Gelöst wird diese Aufgabe durch das Verfahren gemäß vorliegendem Anspruch 1. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man
    • a) einen Initialisierungszeitpunkt t 0 = 0 wählt und dem Reaktor für diesen Zeitpunkt einen bestimmten ursprünglichen Wärmeinhalt Q 0 zuordnet,
    • b) ab dem Initialisierungszeitpunkt kontinuierlich die dem Reaktor zugeführte Wärmemenge Q IN , die zugeführte Reaktionsenthalpie Q RE und die aus dem Reaktor abgeführte Wärmemenge Q OUT bestimmt,
    • c) die nicht abgeführte Wärmemenge Q AD gemäß folgender Bilanz berechnet Q AD ( t ) = Q O + Q IN ( t ) + Q RE ( t ) - Q OUT ( t ) ,
      Figure imgb0001
    • d) aus der nicht abgeführten Wärmemenge Q AD (t) und der momentanen Innentemperatur T(t) des Reaktors die im Fall einer spontanen adiabaten Reaktion maximal auftretende Innentemperatur T AD berechnet, und,
    • e) wenn die berechnete maximale Innentemperatur T AD die momentane Innentemperatur T(t) des Reaktors um einen bestimmten Wert übersteigt; Maßnahmen einleitet, die ein weiteres Ansteigen der nicht abgeführten Wärmemenge Q AD verhindern.
  • Erfindungsgemäß wird also vorgeschlagen, die Überwachung der Monomerenakkumulation durch Einführung einer erweiterten wärmebilanz unter Berücksichtigung der abgeführten Wärmemengen zu verbessern. Die das aktuelle Gefahrenpotential darstellende nicht abgeführte Wärmemenge Q AD kann genauer bestimmt und gewisse, für die Reaktorsicherheit relevante Größen, wie die maximale adiabate Innentemperatur T AD des Reaktors, können präziser berechnet werden. Die vor einem Ansprechen von Sicherheitsventilen oder der Auffangeinrichtungen für den Reaktorinhalt einzuhaltenden Sicherheitsmargen können daher besser ausgenutzt werden. Durch die laufende Bestimmung des momentanen Umsatzes und des aktuellen Gefahrenpotentials können Zulaufgeschwindigkeiten angepaßt und die Raum-Zeit-Ausbeute optimiert werden. Die erfindungsgemäß vorgeschlagene Wärmebilanzierung kann auch bei Reaktoren mit außenliegenden Wärmetauschern oder Rückflußkühlern durchgeführt werden, da diese technisch einfach in die Bilanzierung einbezogen werden können. Es müssen auch keine starren Grenzwerte für die maximale Zulaufgeschwindigkeit oder maximale Mengen von Ausgangskomponenten eingehalten werden. Ebenso sind keine starren Grenzwerte für Temperaturdifferenzen zwischen Reaktorinnenraum und Bad mehr notwendig. Durch die kontinuierliche Messung der tatsächlich abgeführten Wärmemenge erhält man außerdem Hinweise auf Reaktorfouling oder Viskositätsveränderungen.
  • Es sind unterschiedlichste Maßnahmen denkbar, mit denen man ein Ansteigen der nicht-abgeführten Wärmemenge verhindern kann. Bevorzugt kommen eine oder mehrere der folgenden Maßnahmen in Frage:
    • Drosseln der Monomerenzufuhr,
    • Verstärken der Reaktorkühlung, beispielsweise über das Reaktorbad oder über einen Rückflußkühler,
    • Erhöhung der Initiatorzugabe zur besseren Umsetzung der akkumulierten Monomere.
  • Da sich diese Maßnahmen teilweise auch auf die Produktqualität auswirken können, wird man je nach Fall bestimmte, durch die einzuhaltenden Vorgaben beeinflußte Eingriffsstrategien wählen.
  • Vorteilhaft werden die zugeführte Wärmemenge, die Reaktionsenthalpie und die aus dem Reaktor abgeführte Wärmemenge mittels Temperatur- und Durchflußmengenmessungen in den Zu- und Abläufen des Reaktors sowie in den Kühlmittelkreisläufen bestimmt. Für Temperatur- und Durchflußmengenmessungen sind zuverlässige und preiswerte Meßsysteme, kommerziell erhältlich. Bei Kenntnis der spezifischen wärmekapazitäten der Einsatzstoffe lassen sich die Wärmeströme leicht berechnen. Mit dem erfindungsgemäßen Verfahren sind also keine größeren Investitionen verbunden. Das Verfahren kann auch leicht in bereits existierenden Anlagen implementiert werden.
  • Besonders bevorzugt wird außerdem der bei der maximalen Innentemperatur T AD in dem Reaktor herrschende maximale Innendruck p AD berechnet. Gemäß dieser bevorzugten Variante des erfindungsgemäßen Verfahrens wird auch der im Fall eines adiabaten Durchgehens des Reaktorgemisches auftretende maximale Reaktorinnendruck als zusätzliches Sicherheitskriterium herangezogen, so daß sich eine gegenüber herkömmlichen Überwachungsverfahren erhöhte Anlagensicherheit ergibt. Man leitet daher vorteilhaft Maßnahmen ein, die ein weiteres Ansteigen der nicht abgeführten Wärmemenge Q AD verhindern, wenn entweder die berechnete maximale Innentemperatur T AD oder der berechnete maximale Innendruck p AD die entsprechenden gemessenen Momentanwerte in einem bestimmten Ausmaß übersteigen. Diese erfindungsgemäße Variante ist besonders bevorzugt, weil es bei einer Störung im Reaktionsablauf meist eher zu einer Überschreitung von p AD als von T AD kommt. Vorteilhaft wird eine weitere Zufuhr von Monomeren in den Reaktor vollständig verhindert, wenn die berechnete maximale Innentemperatur T AD und/oder der berechnete maximale Innendruck p AD vorgegebene, reaktorspezifische Grenzwerte überschreiten. Als Grenzwerte für die Reaktionsüberwachung können die Auslegungstemperatur des Reaktors oder der Auslegungsdruck des Reaktors oder eines gegebenenfalls vorhandenen Sicherheitsventils unter Berücksichtigung der Fehlertoleranzen der Berechnung herangezogen werden. Mit dem Unterbrechen des Monomerenzulaufs wird auch keine Reaktionsenthalpie mehr in den Reaktor geführt, so daß die im Reaktor herrschenden Bedingungen stets innerhalb der vorgegebenen Toleranzen liegen. Bei fortgesetzter Kühlung des Reaktors wird dann Wärme effektiv abgeführt und nach einer gewissen Kühlzeit kann gegebenenfalls der Zulauf wieder geöffnet werden.
  • Als Initialisierungszeitpunkt für das erfindungsgemäße verfahren wählt man bevorzugt einen Zeitpunkt, bei dem der Reaktor vollständig entleert ist und ordnet diesen Zeitpunkt dem ursprünglichem Wärmeinhalt Q 0 = 0 zu.
  • Diese Initialisierung kann manuell durch das Bedienungspersonal durchgeführt werden. Zur Vermeidung von Bedienungsfehlern wird man jedoch die Initialisierung bevorzugt automatisch durchführen, beispielsweise kann nach Öffnen des Ablaßventils für einen bestimmten Mindestzeitraum davon ausgegangen werden, daß der Reaktor vollständig entleert ist, so daß man diesem Zeitraum eine Initialisierung automatisch erfolgen kann. Das Entleeren des Reaktors kann jedoch auch über im Reaktor angeordnete Füllstand-Meßfühler registriert werden. Das Initialisierungskriterium eines vollständig entleerten Reaktors kann auch durch Messung der Menge des aus dem Reaktor herausgelaufenen Reaktionsmediums und Bilanzierung mit der vorher in den Reaktor zudosierten Menge registriert werden.
  • Mit dem erfindungsgemäßen Verfahren der Wärmebilanzierung ist außerdem eine Überwachung des momentanen Umsatzes der Reaktionsmischung und eine Validierung der zugeführten Reaktanten durch Berechnung des Reaktordrucks und Vergleich mit dem tatsächlich vorliegenden Reaktordruck möglich. Vorzugsweise wird man daher zur Validierung des Überwachungsverfahrens den tatsächlichen Reaktorinnendruck p(t) messen und die Einhaltung der Relation
    Figure imgb0002
    kontinuierlich überprüft, wobei p calc der aus der momentanen Reaktorinnentemperatur berechnete Druck ist.
  • Bei Installation der Reaktionsüberwachung als Schutzeinrichtung werden vorzugsweise Temperaturen, Drücke und Durchflußmengen wenigstens teilweise redundant gemessen und durch gegenseitigen Vergleich der redundanten Größen eine kontinuierliche Validierung der Eingangsgrößen durchgeführt.
  • Besonders vorteilhaft ist das erfindungsgemäße Überwachungsverfahren bei einem semi-kontinuierlichen Emulsionspolymerisationsverfahren einsetzbar. Im Fall eines kontinuierlichen Polymerisationsverfahrens ist in die Wärmebilanzierung auch die mit dem abfließenden Polymerisat abgeführte Wärmemenge zu berücksichtigen.
  • Für eine zuverlässige Reaktionsüberwachung durch die erfindungsgemäß vorgeschlagene Wärmebilanzierung ist von besonderer Bedeutung, daß der Reaktor während der laufenden Reaktion möglichst gut durchmischt ist und die Monomere gleichmäßig abreagieren. Vorzugsweise wird daher auch der Betrieb des Reaktorrührers kontinuierlich überwacht. Ein gleichmäßiges Abreagieren der Monomere kann bei der Emulsionspolymerisation durch die Zulauffahrweise sichergestellt werden.
  • Das erfindungsgemäße Verfahren wird im folgenden unter Bezugnahme auf einen in der beigefügten Zeichnung schematisch dargestellten Polymerisationsreaktor ausführlicher erläutert.
  • In der Zeichnung erkennt man einen Reaktorkessel 10, der Zuläufe 11 für Einsatzstoffe wie Monomere, Emulgatoren, Wasser, Initiatoren, Stabilisatoren und weitere Hilfsstoffe aufweist. Der Kessel kann über eine Leitung 12 entleert werden. In den Kessel kann über eine Leitung 13 Wärme in Form von Dampf zugeführt werden. Der Reaktorkessel 10 ist von einem Temperiermantel 14 umgeben, der in einem über eine erste Kreiswasserpumpe 15 betriebenen Wasserkreislauf temperiert wird. Eine erste Dampfleitung 16 und eine erste Kühlwasserleitung 17 erlauben wiederum die Regelung der Temperatur des Kühlwasserkreislaufs. Im Kessel 10 ist ein Rührer 18 angeordnet, dessen Welle nach oben aus dem Kessel herausgeführt ist und von einem Motor 19 angetrieben wird. Im dargestellten Beispiel erkennt man außerdem einen Produktumlaufkreislauf 20, durch den das im Kessel befindliche Reaktionsmedium mit Hilfe einer Produktsumwälzpumpe 21 durch einen außenliegenden Wärmetauscher 22 geführt wird. Als wärmeaustauschmedium im außenliegenden Wärmetauscher 22 wird Wasser verwendet, das mit Hilfe einer zweiten Kreiswasserpumpe 23 in einem Kreislauf geführt und über eine zweite Dampfleitung 24 und eine zweite Kühlwasserleitung 25 temperiert wird. Der Temperiermantel 14 des Reaktors oder der außenliegende wärmetauscher 22 können statt durch den dargestellten Kühlkreislauf auch direkt durch Kühlwasser aus den Leitungen 17 bzw. 25 gekühlt werden. Neben Wasser als bevorzugtem Kühlmedium für den Reaktorkessel und den außenliegenden Wärmetauscher sind selbstverständlich auch andere Kühlmedien denkbar, wie etwa eine Kühlsole oder ähnliches. Dies gilt besonders dann, wenn das über die Leitungen 17 bzw. 25 zugeführte Kühlmedium aus einem Sekundärkreislauf stammt.
  • Idealerweise versucht man, die zu einem bestimmten Zeitpunkt im Reaktor befindliche nicht abgeführte Wärmemenge QAD aus den kumulierten zu- und abgeführten Wärmemengen möglichst exakt zu berechnen. In der Praxis zeigt sich jedoch, daß es ausreichend ist, lediglich die wichtigsten Wärmeströme zu berücksichtigen und kleinere Wärmebeiträge, die darüberhinaus nur aufwendig gemessen werden können, unberücksichtigt zu lassen. Im dargestellten Beispiel wird bei der praktischen Realisierung des erfindungsgemäßen Verfahrens mit zwei Teilbilanzräumen gearbeitet, die in der Figur durch die gestrichelten und mit "A" bzw. "B" bezeichneten Rechtecke schematisch dargestellt sind. Danach umfaßt der erste Teilbilanzraum A den Polykessel und sein Bad, während der zweite Teilbilanzraum B den außenliegenden Wärmetauscher sowie dessen Kühlkreislauf umfaßt. Wird beispielsweise in einer anderen Reaktorkonfiguration ein Rückflußkühler anstelle des außenliegenden Wärmetauschers verwendet, so kann man dessen Wärmeströme in einem eigenen Teilbilanzraum erfaßen.
  • Die Bilanzraumgrenzen sind so gewählt, daß die Zu- und Abläufe der jeweiligen Bäder den Bilanzraum durchstoßen und die zugehörigen Kreiswasserpumpen und die Zuführungen von Dampf bzw. Kühlwasser außerhalb des Bilanzraums liegen. An den Bilanzraumgrenzen werden Temperatur und Durchflußmenge der Zu- und Abläufe gemessen. Damit kann indirekt auch der geringe Wärmeeintrag der außerhalb der Bilanzraumgrenzen liegenden Umwälzpumpen 15, 21 und 23 berücksichtigt werden.
  • Sofern einzelne Zulaufströme vor dem Einbringen in den Polymerisationskessel gemischt werden, liegen diese Mischstrecken bevorzugt ebenfalls außerhalb des Bilanzraums.
  • Zur Berechnung der nicht-abgeführten Wärmemenge QAD wird zunächst der Wärmeinhalt Q0 bei völlig entleertem Kessel gleich Null gesetzt. Sodann wird die Bilanzierung initialisiert und die nicht abgeführte Wärmemenge QAD, die bei einem spontanen adiabaten Durchgehen des Reaktionsgemisches zum Ansteigen der Reaktortemperatur und des Reaktorinnendrucks führen würde, wie folgt berechnet: Q AD ( t ) = Q IN ( t ) + Q RE ( t ) - Q OUT ( t )
    Figure imgb0003
  • Zu einem gegebenen Zeitpunkt t ergibt sich die nicht abgeführte Wärmemenge wird also als Differenz der bis zu diesem Zeitpunkt dem Reaktor zugeführten Wärmemenge Q IN und der aus dem Reaktor abgeführten Wärmemenge Q OUT zuzüglich der durch den Monomerenzufluß eingetragenen Reaktionsenthalpie Q RE .
  • Für den in der Figur dargestellten Prozeß werden vorteilhaft folgende Wärmeströme berücksichtigt. Q AD ( t ) = 0 1 Q ˙ RE dt + 0 1 Q ˙ D dt - ( 0 1 Q ˙ B dt + 0 1 Q ˙ AWT dt + 0 1 Q ˙ ZU dt + 0 1 Q ˙ H dt )
    Figure imgb0004
  • Dabei ist
    0 1 Q ˙ RE dt
    Figure imgb0005
      die durch die Monomere zugeführte Reaktionsenthalpie;
    0 1 Q ˙ D dt
    Figure imgb0006
    Q D dt  die Wärmemenge, die durch Direktdampf eingebracht wird;
    0 1 Q ˙ B dt
    Figure imgb0007
    Q B dt  die über das Bad des Reaktors abgeführte Wärmemenge;
    0 1 Q ˙ AWT dt
    Figure imgb0008
    Q AWT dt  die über den außenliegenden Wärmetauscher abgeführte Wärmemenge;
    0 1 Q ˙ ZU dt
    Figure imgb0009
    Q ZU dt  die Kühlkapazität zuflaufenden Einsatzstoffe;
    0 1 Q ˙ H dt
    Figure imgb0010
    Q H dt  die Wärmemenge, die zum Heizen/Kühlen des Reaktorinhalts verwendet wird.
  • Nicht berücksichtigt wird hier beispielsweise die Wärmemenge, die zum Aufheizen oder Kühlen des Reaktorbehälters selbst benötigt bzw. frei wird, die Wärmemenge, die vom Rührer eingetragen wird und die Wärmemenge, die an die Umgebung durch Abstrahlen und Konvektion abgegeben wird.
  • Die Wärmemengen werden jeweils auf Basis von Meßwerten von Temperaturen bzw. Temperaturdifferenzen und Durchflußmengen in einem bestimmten Zeitintervall Δt, sowie der spezifischen Wärmekapazitäten der beteiligten Stoffe ermittelt. Ein typisches Zeitintervall liegt bei einer Reaktionsdauer von mehr als einer Stunde vorzugsweise im Bereich von 1 bis 10 Sekunden.
  • Der zum Zeitpunkt t mögliche adiabate Temperaturhub ΔTAD bzw. Druckhub ΔpAD wird aus QAD berechnet. Anstelle der Integration erfolgt eine numerische Summierung. Dazu wird der Zeitraum vom Beginn der Messung (t=0) bis zum Zeitpunkt t in insgesamt z Zeitintervalle zerlegt und die im jeweiligen Zeitintervall gemessenen Wärmeströme aufsummiert, d.h. 0 1 Q ˙ dt i = 0 i = z ΔQ i ( Δt i )
    Figure imgb0011
  • Zur Realisierung des erfindungsgemäßen Verfahrens werden demnach folgende Meßstellen für die Wärmebilanzierung benötigt:
    • Menge oder Volumen aller Zuläufe zum Polykessel, einschließlich des eingeleiteten Direktdampfes;
    • Temperaturen aller gemischten Zuläufe vor dem Eintritt in den Polykessel;
    • Innentemperatur des Polykessels;
    • Differenztemperatur zwischen Einlauf und Auslauf des Bades des Polykessels;
    • Differenztemperatur zwischen Einlauf und Auslauf des Bades des außenliegenden Wärmetauschers;
    • Durchfluß des Kühlmediums des Bades des Polykessels;
    • Durchfluß des Kühlmediums des Bades des außenliegenden Wärmetauschers;
    • absoluter Innendruck des Polykessels.
  • Die aus der Wärmebilanz errechnete nicht abgeführte Wärme entspricht demnach den nicht umgesetzten Monomeren. Im Fall einer spontanen adiabaten Reaktion würde diese im Kessel akkumulierte Wärme zu einer Temperaturerhöhung ΔT AD und daraus resultierend zu einer Erhöhung des Reaktorinnendrucks auf p AD führen. Sicherungskriterium ist dabei, daß beide Änderungen nicht zu einer Überschreitung der zulässigen Grenzwerte für den Reaktor führen dürfen. Als Grenzwerte zieht man üblicherweise die Auslegungsdaten für den Kessel bzw. das Sicherheitsventil heran. Typische Werte liegen etwa bei einer maximal zulässigen Temperatur von 200 °C und einem maximal zulässigen Innendruck von 15 bar.
  • Der adiabate Temperaturhub ΔT AD wird dabei aus der nicht abgeführten Wärmemenge Q AD unter Berücksichtigung der Masse m i und der spezifischen Wärmekapazität cp i jeder Komponente i im Kessel wie folgt berechnet werden: ΔT AD = Q AD i m i cp i
    Figure imgb0012
  • Die maximale, in einem bestimmten Augenblick beim adiabaten Durchgehen erreichbare Temperatur T AD ergibt sich dann als Summe aus der momentanen Reaktorinnentemperatur T RI und dem adiabaten Temperaturhub ΔT AD zu: T AD = T RI + ΔT AD
    Figure imgb0013
  • Zur Berechnung des beim adiabaten Durchgehen auftretenden Dampfdrucks kann das ideale Gasgesetz herangezogen werden. Der adiabate Druck ergibt sich dann aus den Dampfdrücken p i der monomeren Zulaufkomponenten i bei T AD , dem Wasserdampfdruck p W bei T AD und dem Kompressionsdruck p K des vor Beginn der Polymerisation mit einem Druck p 0 in den evakuierten Kessel geleiteten Inertgases (beispielsweise Stickstoff). p AD = i ( p i ( T AD ) n i i n i ) + p w ( T AD ) + p k ( T AD )
    Figure imgb0014
  • Dabei ist n i der Molanteil der momomeren Zulaufkomponente i.
  • Diese Berechnungsmethode ist im Normalfall ausreichend. Bei Komponenten mit hohem Dampfdruck und/oder bei niedrigen Füllständen, was einem großen freien Volumen entspricht, werden jedoch bevorzugt verfeinerte Berechnungsmethoden angewandt, um ein zu frühes Ansprechen der Reaktionsüberwachung zu vermeiden. Große freie Volumina liegen vor allem zu Beginn der Zulauffahrweise vor (beispielsweise bei der Anpolymerisation). Um in dieser Phase den Dampfdruck exakter zu beschreiben, kann das freie Volumen berücksichtigt werden. Die Berechnung des Dampfdrucks erfolgt dann gemäß dem idealen Gasgesetz unter den Annahmen, daß die organische und die wässrigen Phasen nicht mischbar bzw. ideal gemischt sind. Ebenso kann die Löslichkeit der Monomere im Polymer mitberücksichtigt werden.
  • Mit zunehmendem Füllstand des Reaktors und abnehmendem freien Volumen führt die Berücksichtigung des freien Volumens zu höheren Drücken als real im Reaktor existieren. Bevorzugt wird daher der Gesamtdruck sowohl mit als auch ohne Berücksichtigung des freien Volumens berechnet. Der jeweils kleinere Wert wird dann zur Überprüfung des Abschaltkriteriums herangezogen.
  • Durch weitergehende, verfeinerte Berechnungsmethoden kann das komplexe Verhalten des Reaktionsgemisches bei realen adiabatischen Polymerisationsreaktionen noch besser beschrieben werden: Dabei wird das adiabate Durchgehen der Reaktion ausgehend von den gemessenen Momentanwerten für Innentemperatur und -druck schrittweise numerisch simmuliert. Dabei kann beispielsweise auch die Löslichkeit der Einsatzstoffe in dem Reaktionsmedium, insbesondere in dem gebildeten Polymer berücksichtigt werden. In jedem Schritt wird die Umsetzung eines durch die Gesamtzahl der Schritte bestimmten Bruchteils der im Reaktor vorhandenen Monomere zu Polymer simmuliert und die Auswirkungen der Freisetzung der entsprechenden Reaktionsenthalpie auf das System berechnet. Derartige Berechnungsmethoden erfordern aber aufgrund ihrer Komplexität sehr leistungsfähige Rechensysteme. Sie zeigen aber beispielsweise, daß der höchste beim adiabaten Durchgehen der Reaktion auftretende Druck p AD bereits vor dem Ende der adiabaten Reaktion, d.h. vor Erreichen der maximalen Temperatur T AD , erreicht werden kann und daß anschließend sogar eine Verringerung des Drucks auftreten kann.
  • Zur Vermeidung von Bedienungsfehlern wird die Wärmebilanzierung bevorzugt voll automatisch gestartet und beendet und die Reaktionsüberwachung automatisch aktiviert und desaktiviert. Im Normalfall besteht daher keine Möglichkeit von außen, in das System einzugreifen. Für besondere Fälle können etwa nach dem Ansprechen der Reaktionsüberwachung unter Beachtung zusätzlicher organisatorischer Maßnahmen und durch Schlüsselschalter die Zuläufe wieder gestartet werden, sofern sämtliche überwachten Parameter wieder im Normalbereich liegen. In den kontinuierlichen Ablauf der Reaktionsüberwachung selbst kann aber auch unter diesen Umständen nicht eingegriffen werden.
  • Der zyklische Ablauf der Wärmebilanzierung gliedert sich in vier Phasen, die durch Erreichen bestimmter Randbedingungen aktiviert werden. Bei einer permanenten Überwachung des Reaktors wird bei vollständig entleertem Reaktor die Wärmebilanzierung initialisiert, d.h. der ursprüngliche Wärmeinhalt Q 0 wird gleich Null gesetzt und sämtliche Zähler werden zurückgestellt. Vor Einleitung der Einsatzstoffe beginnt die Messung der Temperaturen und Durchflußmengen und spätestens mit dem Zulauf der Monomere wird die Reaktionsüberwachung aktiviert. Nach Beendigung der Reaktion wird auch die Reaktionsüberwachung beendet. Der Reaktor wird entleert und nach vollständiger Entleerung beginnt der Überwachungszyklus mit der Initialisierung des Systems automatisch von neuem.
  • Gemäß einer bevorzugten Variante des erfindungsgemäßen Verfahrens wird nicht nur stets der im Fall eines Durchgehens auftretende Maximaldruck p AD , sondern auch der momentane Reaktordruck p calc berechnet. Diese Berechnung erfolgt analog dem Berechnungsmodell des adiabaten Drucks p AD , nur daß anstelle der maximalen adiabaten Temperatur T AD die aktuell gemessene Reaktortemperatur als Berechnungsgröße tritt. Aufgrund der dem Modell zugrundeliegenden "worst case"-Annahmen sollte der berechnete Reaktordruck stets über dem gemessenen Reaktorinnendruck p(t) liegen, also die Relation p(t) ≦ p calc (t) erfüllt sein. Falls dieses Kriterium nicht erfüllt ist, kann typischerweise davon ausgegangen werden, daß eine Fehlmessung bzw. Abweichungen der verarbeiteten Meßwerte von den realen Meßwerten vorliegen.
  • Die ständige Berechnung des momentanen Reaktorinnendrucks dient also als Validierung des Modells der Berechnung des maximalen adiabaten Drucks.
  • Neben der on-line-Validierung des Modells kann durch entsprechende Einbindung in eine Gesamtüberwachung und -prozeßführung sichergestellt werden, daß zu jedem Zeitpunkt auch eine Validierung der eingehenden Daten und Signale erfolgt.

Claims (10)

  1. Verfahren zur on-line Überwachung und Steuerung des Monomerenumsatzes bei der Emulsionspolymerisation in einem Reaktor, wobei man
    a) einen Initialisierungszeitpunkt t 0 = 0 wählt und dem Reaktor für diesen Zeitpunkt einen bestimmten ursprünglichen Wärmeinhalt Q 0 zuordnet,
    b) ab dem Initialisierungszeitpunkt kontinuierlich die dem Reaktor zugeführte Wärmemenge QIN, die zugeführte Reaktionsenthalpie Q RE und die aus dem Reaktor abgeführte Wärmemenge Q OUT bestimmt,
    c) die nicht abgeführte Wärmemenge Q AD gemäß folgender Bilanz berechnet Q AD ( t ) = Q 0 + Q IN ( t ) + Q RE ( t ) - Q OUT ( t ) ,
    Figure imgb0015
    d) aus der nicht abgeführten Wärmemenge Q AD (t) und der momentanen Innentemperatur T(t) des Reaktors die im Fall einer spontanen adiabaten Reaktion maximal auftretende Innentemperatur T AD berechnet, und
    e) wenn die berechnete maximale Innentemperatur T AD die momentane Innentemperatur T(t) des Reaktors um einen bestimmten Wert übersteigt, Maßnahmen einleitet, die ein weiteres Ansteigen der nicht abgeführten Wärmemenge QAD verhindern.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein weiteres Ansteigen der nicht abgeführten Wärmemenge Q AD durch eine oder mehrere der folgenden Maßnahmen verhindert:
    - Drosseln der Monomerenzufuhr,
    - Verstärken der Reaktorkühlung,
    - Erhöhen der Inititiatorzugabe.
  3. Verfahren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man die Wärmemengen Q IN , Q RE und Q OUT mittels Temperatur- und Durchflußmengenmessungen in den Zu- und Abläufen des Reaktor, sowie in den Kühlmittelkreisläufen bestimmt.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man außerdem den bei der maximalen Innentemperatur T AD in dem Reaktor herrschenden maximalen Innendruck p AD berechnet.
  5. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man eine weitere Zufuhr von Monomeren in den Reaktor verhindert, wenn die berechnete maximale Innentemperatur T AD und/oder der berechnete maximale Innendruck p AD vorgegebene reaktorspezifische Grenzwerte überschreiten.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man den Initialisierungszeitpunkt t 0 dann wählt, wenn der Reaktor vollständig entleert ist, und daß man dem ursprünglichen Wärmeinhalt Q 0 den Wert Null zuordnet.
  7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß die Initialisierung des Verfahrens automatisch durchgeführt wird.
  8. Verfahren gemäß einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß man zur Validierung des Überwachungsverfahrens den tatsächlichen Reaktorinnendruck p(t) mißt und die Einhaltung der Relation p ( T ) p calc ( t )
    Figure imgb0016
    kontinuierlich überprüft, wobei p calc der aus der momentanen Reaktorinnentemperatur berechnete Druck ist.
  9. Verfahren gemäß einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß man Temperaturen, Drücke und Durchflußmengen wenigstens teilweise redundant mißt und durch gegenseitigen Vergleich der redundanten Größen eine kontinuierliche Validierung der Eingangsgrößen durchführt.
  10. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man das Emulsionspolymerisationsverfahren semi-kontinuierlich oder kontinuierlich durchführt.
EP00916827A 1999-02-11 2000-02-10 Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation Expired - Lifetime EP1153042B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19905712A DE19905712A1 (de) 1999-02-11 1999-02-11 Verfahren zur kontinuierlichen Überwachung und Steuerung des Monomerenumsatzes bei der Emulsionspolymerisation
DE19905712 1999-02-11
PCT/EP2000/001091 WO2000047632A1 (de) 1999-02-11 2000-02-10 Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation

Publications (2)

Publication Number Publication Date
EP1153042A1 EP1153042A1 (de) 2001-11-14
EP1153042B1 true EP1153042B1 (de) 2006-01-25

Family

ID=7897184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00916827A Expired - Lifetime EP1153042B1 (de) 1999-02-11 2000-02-10 Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation

Country Status (16)

Country Link
US (1) US6498219B1 (de)
EP (1) EP1153042B1 (de)
JP (1) JP4705245B2 (de)
KR (1) KR100651091B1 (de)
CN (1) CN1142942C (de)
AR (1) AR022562A1 (de)
AT (1) ATE316536T1 (de)
AU (1) AU772839B2 (de)
BR (1) BR0008115B1 (de)
CA (1) CA2362511C (de)
DE (2) DE19905712A1 (de)
ES (1) ES2257290T3 (de)
ID (1) ID30021A (de)
TR (1) TR200102319T2 (de)
WO (1) WO2000047632A1 (de)
ZA (1) ZA200107439B (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991763B2 (en) * 2000-04-26 2006-01-31 Rohm And Haas Company Polymer process
DE10225383A1 (de) 2002-06-07 2003-12-18 Basf Ag Verfahren zur Überwachung und Sicherung von exothermen Reaktionen
US20040143053A1 (en) * 2003-01-21 2004-07-22 Wu Richard Shu-Hua Process for preparing emulsion polymers
EP1705193B1 (de) * 2005-03-24 2008-05-14 Rohm and Haas Company Polymerisationsverfahren
CN101234322B (zh) * 2006-01-31 2012-04-04 住友化学株式会社 反应控制方法
CN106940331B (zh) * 2017-03-21 2019-09-06 山东京博石油化工有限公司 间歇液相本体法制备聚丙烯的聚合转化率的测量方法
EP3621726B1 (de) * 2017-05-12 2022-01-26 Mitec S.r.l. Società Di Ingegneria Verfahren und system zur überwachung der betriebszustände eines semibatch-reaktors
EP3922348A1 (de) 2020-06-09 2021-12-15 Basf Se Verfahren zur überwachung eines reaktors für eine mehrphasenreaktion
DE102022209657A1 (de) 2022-09-14 2024-03-14 Siemens Aktiengesellschaft Überwachung exothermer Reaktionen in einem Reaktor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803623A (en) * 1951-10-29 1957-08-20 Phillips Petroleum Co Temperature control of low temperature emulsion polymerization
DE1283197B (de) * 1963-09-20 1968-11-21 Huels Chemische Werke Ag Verfahren zur automatischen Regelung der Umsatzverteilung in kontinuierlich durchflossenen Reaktorreihen
US3563946A (en) * 1968-01-08 1971-02-16 Dow Chemical Co Process for latex manufacture
US3991258A (en) * 1970-03-10 1976-11-09 Imperial Chemical Industries Limited Control of exothermic and endothermic chemical reactions
JPS60248702A (ja) * 1984-05-24 1985-12-09 Mitsubishi Rayon Co Ltd 重合反応制御方法および装置
JPS6274449A (ja) * 1985-09-28 1987-04-06 Toshiba Corp 加熱反応釜の温度制御装置
JPH04106104A (ja) * 1990-08-27 1992-04-08 Nippon Zeon Co Ltd 重合工程における反応制御方法及び反応制御装置

Also Published As

Publication number Publication date
DE19905712A1 (de) 2000-08-17
CN1142942C (zh) 2004-03-24
JP2002536509A (ja) 2002-10-29
US6498219B1 (en) 2002-12-24
ZA200107439B (en) 2002-09-10
ID30021A (id) 2001-11-01
TR200102319T2 (tr) 2001-11-21
BR0008115B1 (pt) 2010-01-26
AU3803700A (en) 2000-08-29
AR022562A1 (es) 2002-09-04
ES2257290T3 (es) 2006-08-01
KR100651091B1 (ko) 2006-11-29
EP1153042A1 (de) 2001-11-14
ATE316536T1 (de) 2006-02-15
JP4705245B2 (ja) 2011-06-22
BR0008115A (pt) 2001-11-06
CA2362511A1 (en) 2000-08-17
KR20010102026A (ko) 2001-11-15
CN1340062A (zh) 2002-03-13
DE50012127D1 (de) 2006-04-13
AU772839B2 (en) 2004-05-06
WO2000047632A1 (de) 2000-08-17
CA2362511C (en) 2008-05-06

Similar Documents

Publication Publication Date Title
EP1153042B1 (de) Verfahren zur kontinuierlichen überwachung und steuerung des monomerenumsatzes bei der emulsionspolymerisation
Kourti et al. Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS
CN109407652B (zh) 基于主辅pca模型的多变量工业过程故障检测方法
WO2011032918A1 (de) Zwei-freiheitsgrade-regelung mit expliziter umschaltung zur regelung verfahrenstechnischer prozesse
EP1513611B1 (de) Verfahren zur überwachung und sicherung von exothermen reaktionen
DE3643136C2 (de)
CN109563188B (zh) 控制用于连续生产聚合物的设备的方法和系统
EP0628182B1 (de) Verfahren zur kontrolle und steuerung von chargenprozessen
Sharmin et al. A PCA based fault detection scheme for an industrial high pressure polyethylene reactor
DE2221081A1 (de) System zur Temperatursteuerung durch Druckmessung in einem Fluessigkeit-Dampf-Prozess
EP0104411B1 (de) Strukturierter Aufbau und dezentrale Führung von Produktionsanlagen
US20050136547A1 (en) Polymer reaction and quality optimizer
EP3922348A1 (de) Verfahren zur überwachung eines reaktors für eine mehrphasenreaktion
Wolff et al. A procedure for operability analysis
Ampelli et al. Investigation of thermal runaway in semibatch chemical reactors by an early warning detection device
CN118313214A (zh) 一种基于过程安全时间的平推流反应器的本质安全设计方法
EP4323101A1 (de) Verfahren zur regelung der temperatur in einem verfahrenstechnischen apparat
WO2024165623A1 (de) Verfahren zum modellbasierten betreiben eines kühlmittelsystems, steuereinheit und brennstoffzellensystem
DE10227270A1 (de) Modellierung einer Polymerisation über ein kinetisches Modell zur Ermittlung der Molmassenverteilung
EP3396475A1 (de) Verfahren zur optimierung von rezeptparametern und nach dem verfahren arbeitende steuerungseinrichtung
Alvarez et al. Batch Polymerization Monitoring Using Mewa and Mpca

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060125

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060210

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060325

REF Corresponds to:

Ref document number: 50012127

Country of ref document: DE

Date of ref document: 20060413

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060626

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2257290

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100215

Year of fee payment: 11

Ref country code: GB

Payment date: 20100202

Year of fee payment: 11

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20110228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160229

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180223

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180322

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190426

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50012127

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190211