EP1149697B1 - Verfahren zum Betreiben einer Druckmaschine mit zwei Einzelantrieben - Google Patents

Verfahren zum Betreiben einer Druckmaschine mit zwei Einzelantrieben Download PDF

Info

Publication number
EP1149697B1
EP1149697B1 EP20010108659 EP01108659A EP1149697B1 EP 1149697 B1 EP1149697 B1 EP 1149697B1 EP 20010108659 EP20010108659 EP 20010108659 EP 01108659 A EP01108659 A EP 01108659A EP 1149697 B1 EP1149697 B1 EP 1149697B1
Authority
EP
European Patent Office
Prior art keywords
drive
wheel train
individual
determined
rotary angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010108659
Other languages
English (en)
French (fr)
Other versions
EP1149697A3 (de
EP1149697A2 (de
Inventor
Holger Dr. Wiese
Valentin Gensheimer
Joachim Blumör
Steffen Dr. Garrelts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
Manroland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10115546A external-priority patent/DE10115546A1/de
Application filed by Manroland AG filed Critical Manroland AG
Publication of EP1149697A2 publication Critical patent/EP1149697A2/de
Publication of EP1149697A3 publication Critical patent/EP1149697A3/de
Application granted granted Critical
Publication of EP1149697B1 publication Critical patent/EP1149697B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/004Electric or hydraulic features of drives
    • B41F13/0045Electric driving devices

Definitions

  • the invention relates to a method for operating a printing press, in particular a sheet-fed offset printing press, according to the preamble of patent claim 1.
  • the cylinders of the printing units and the cylinders and drums serving for sheet transport are driven by a continuous gear train.
  • this gear train particularly in the case of a large number of printing units, very large load moments occur, which cause a torsion of the gear train between the individual printing units.
  • a device for controlling a multi-motor drive of a printing press in which the printing press has a continuous gear train and a plurality of individual electromotive drives, which feed into the gear train.
  • the instantaneous position of the electric motor is measured in the form of a rotation angle and fed to a control device, which includes the rotational angle differences between two adjacent in the power flow of adjacent motors on their power flows.
  • the actuators of the electric motors are controlled such that the elastic rotation in the gear train of the drive of the printing press and thus the power flows are kept constant.
  • a method according to the preamble of claim 1 is known from EP-A-0904934 known. With regard to further prior art is on the DE-A-19826338 directed.
  • the invention has for its object to provide a novel method for operating a printing press. According to the invention, this object is achieved by a method according to claim 1.
  • An advantage of the invention is that the actual rotation in the gear train of the printing press is measured and used to set a bias of one of the individual drives relative to the second single drive. This ensures that all interlocking tooth flanks of the gears of the gear train just abut each other and thus always a minimum positive load is transmitted to the gear train. An unnecessarily strong distortion of the gears against each other is reliably avoided and prevented increased wear in the gear transmission.
  • the rotational angle difference of the gear train is determined before the start of the printing process as a function of a predetermined operating state of the printing press and biased at least one single drive during the printing process by this rotational angle difference.
  • the gear train is moved by at least one of the two individual drives in a predetermined direction of rotation, wherein the difference in the rotational position within the gear train is determined by the gear train is moved until a constant rotation angle difference is determined in multiple measurement ,
  • This initialization process automatically achieves a constant angular difference as a function of a specific load condition of the printing press for each operating case of the printing press.
  • the load state is characterized in particular by the machine speed of the printing press, the color in the inking units and the printing state of the printing units. For each load situation of the printing press, a bias voltage of the single drive can thus be determined.
  • the position of the at least one position-adjustable single drive is determined before the movement of the gear train and after reaching the constant angular difference of the individual drive, wherein from the two positions a rotational angle difference of the individual drive is determined, wherein the sum of the rotational angle difference of the gear train and the rotational angle difference the at least one individual drive, the tension is determined by which the individual drive is biased during the printing process.
  • the accuracy of the torsion preset of the gear train is improved when an additional rotational angle difference is determined, which is determined from a predetermined operating load and / or the Räderzugsteiftechnik.
  • two individually actuable individual drives are connected to a control unit, wherein the individual drives feed at two different points of the printing machine in a continuous gear train, which is coupled to the subunits of the printing press, with a position-adjustable single drive can be acted upon by the control unit with a setpoint, whereby the Gear train between the two individual drives can be prestressed by a predetermined angle.
  • position sensors are arranged at two different positions within the gear train, which are connected to the control unit and provide the angular position of the gear train in these positions corresponding signals to the control unit, which determines a position setpoint depending on these angular positions, with which a single drive during the printing process can be acted upon.
  • each position sensor per gear rotation outputs a signal from which the control unit calculates a rotation angle difference at predetermined operating conditions.
  • the play of the tooth flanks of the gears is then reliably prevented when the control unit acts on the at least one individual drive with a desired value, which can be determined from the rotational angle difference of the gear train and a rotational angle difference of the individual drive.
  • each drive for an electric motor has its own, independent speed control loop. These speed control loops are supplied with identical speed basic setpoints. With the exception of a master drive, each follower drive receives another setpoint, the additional speed setpoint, which is formed by a differential angle controller assigned to the follower drive.
  • each of these differential angle controllers can be the difference formed from the actual angles of the respective follower drive and an adjacent follower drive or the difference formed from the actual angles of the respective follower drive and the master drive.
  • the master drive does not necessarily have to be adjacent to the considered slave drive.
  • the difference of the actual angles can also be realized by means of a subtraction of actual speeds of two drives with subsequent integration to determine a differential angle. Again, either the actual speeds of the relevant and an adjacent follower drive or the relevant follower drive and the master drive can be used for subtraction.
  • control concept can be extended by a current or torque precontrol in each or only in individual control loops.
  • pre-control currents or torques are calculated from the manipulated variables of the differential angle controllers. These pilot control quantities are applied as additional setpoints to the current or torque controllers of the respective follower drives.
  • the basis for the acquisition of the actual variables are absolute encoders (encoders) or incremental encoders with reference signal for determining the absolute position.
  • At least two sensors may be arranged in the gear train at different positions to determine fixed values for setting the target values for the differential angle controllers, which provide angle information depending on variable operating states of the printing machine (for example, depending on speed, temperature).
  • Basic values for the differential angle adjustment of the individual drive axes relative to one another can be determined with the aid of a multiplicity of temporarily varied nominal differential angles and stored as static nominal value specification in the differential angle controllers.
  • the determination of a setpoint specification for the differential angle controller can also be based on other different fundamentals, eg. For example: by other fixed values or by any motion variables (angular velocities or accelerations) or by force variables (drive and cutting torques) or by electrical variables (drive currents, voltages) as well as combinations of these variables.
  • a dynamic change in the differential angle setpoint value can be achieved in order, for example, to be able to optimize the register differences between the individual printing units in the event of machine speed changes.
  • each follower drive receives another setpoint, the additional speed setpoint, which is formed by a differential angle controller assigned to the follower drive.
  • FIG. 1 shows a printing press 1, which consists of a feeder 2, a plurality formed as printing units subunits 3 to 6 and a boom 7.
  • a closed gear train 8 which is formed by interlocking gears 8a to 8h.
  • This mechanical gear 8 are not described in the individual printing units 3 to 6 blanket cylinder, which interact with counter-pressure cylinders and the counter-pressure cylinders downstream transfer drums coupled.
  • the way of the printing material in the in the FIG. 1 configuration shown in the direction of the arrow from right to left.
  • Each position-adjustable single drive 9 and 10 engage in two places of the gear train 8.
  • Each position-adjustable single drive 9 and 10 is designed as an electric motor, wherein the single drive 9, the sub-units 3 and 4 and the single drive 10, the sub-units 5 and 6 and the boom 7 drives.
  • a pulser 11 is opposite the shaft 17 of the gear 8d and another pulser 12 is disposed opposite to the shaft 16 of the gear 8c.
  • Each shaft 16 and 17 has a projection 18 and 19, respectively.
  • Both pulse generators 11, 12 are designed so that they each output an electrical pulse per gear revolution in each case a precisely defined angular position of the two gears 8c, 8d when passing the projection 18 and 19, respectively.
  • the upper diagram shows the pulse progression on Pulse generator 11 and the lower part of the pulse waveform on the pulse generator 12, as it is detected by a connected to the pulse generators 11 and 12 control unit 13.
  • control unit 13 is directly connected to the individual drives 9 and 10 and acts via an actuator 14 and 15 on the individual drives 9 and 10 a.
  • the control unit 13 accesses the individual drives 9 and 10 and forces a rotation angle synchronous running of the drive elements 9 and 10 at the input points. In this case, the control unit 13 determines the actual position of each individual drive 9, 10 and compares these with setpoints stored in the control unit. Based on this comparison, each individual drive 9, 10 is controlled by the control unit 13 individually via the actuator 14, 15. The single drive 9 is thereby rotated by the angle ⁇ 1 and the single drive 10 by the angle ⁇ 2.
  • the individual drives 9 and 10 are to be controlled such that in addition a predetermined constant rotation ⁇ of the gear train between the input points of the individual drives 9, 10 is ensured. Indicator of the presence of such a rotation ⁇ is that the tooth flanks of two adjacently arranged intermeshing gears on the meshing a touch under operating conditions straight and possibly still transmit a small load.
  • the time interval .DELTA.t of the pulses measured at the pulse generators 11, 12 resulting from the pulse progressions and its time changes is measured by the control unit 13 and converted into a proportional rotational angle difference at a constant engine speed.
  • the printing machine 1 is first brought to generate certain load conditions in a predetermined operating condition in which the colors provided in the printing units and the printing units are turned on.
  • a machine speed is set.
  • a lag with respect to the individual drive 10 is generated at the individual drive 9 by the control unit 13 and increased until the time difference .DELTA.t1 between the pulses generated by the pulse generators 11 and 12 remains constant.
  • the constant time difference ⁇ t1 is stored in the control unit 13.
  • control unit 13 controls the single drive 9 in the opposite direction, so that adjusts an advance on the input drive of the individual drive 9 relative to the drive of the single drive 10. This lag is also increased until the time difference between the pulses emitted by the pulse generators 11, 12 is constant.
  • the thus determined constant time difference ⁇ t2 is stored in the memory of the control unit 13.
  • the position of the electric motor is determined after setting the overfeed and used to determine the rotational angle difference ⁇ 2 analogous to the lead.
  • the control unit 13 then subtracts the time difference ⁇ t2 and calculates therefrom an angular difference ⁇ 2, to which the angular difference ⁇ 2 is added.
  • the thus determined angular difference ⁇ is used as the setpoint under production conditions of the regulation of the individual drive 9 by the control unit 13. This ensures a light contact system of the tooth flanks in a given direction of movement of the gear train 8 always.
  • a further overfeed ⁇ 3 for the input drive of the individual drive 9 is generated by the control unit 13.
  • This lead ⁇ 3 is determined by the desired operating load of Printing machine in meshing and the gear train rigidity.
  • the lead ⁇ 3 can be seen in a map stored in the control unit 13. This lead ⁇ 3 is added to the lead ⁇ and taken into account in the control of the individual drive 9 as a setpoint.
  • the inventive method is applicable to various embodiments of the printing press.
  • the number and design of subunits 3 to 6 is variable and may vary from press to press.
  • a setpoint input that is to say the rotation ⁇ between the input points of the individual drives 9, 10
  • the snapshot of the individual drives is measured by special sensors or determined indirectly via the current values of the drive motors.
  • the drive torque fed into the gear train 8a-8h via the first drive 9 is preferably increased, so that the torque to be fed in via the second drive 10 becomes smaller in order to maintain a predetermined speed.
  • the torques fed in via the first and second motors 9, 10 are compared with one another and used to determine a desired value for the position control of the two individual drives, that is to say for the rotation ⁇ of the gear train 8a-8h.
  • an angle value ⁇ can be determined which corresponds to a specific torque ratio. Further education can also be provided to perform the determination of angles of rotation ⁇ at different speeds and / or different load situations.
  • the angle of rotation ⁇ determines a desired value specification (determination of the angle of rotation ⁇ )
  • it is provided to first drive the machine via the first drive motor 9, so that guaranteed a flank system in the entire gear train is present. Then, when the motor 9 is switched off, the second drive motor 10 is actuated and the movements carried out by the gear train are detected by the position sensors (impulse or angle encoders) 11, 12.
  • the angle to be executed by the second motor 10 can be determined until the loss caused by the reversal of the flank system in the gear train 8a-8h is brought out.
  • the angle value determined in this way can then be used as the angle of rotation ⁇ of the setpoint values for the position control of the individual drives 9, 10.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Druckmaschine, insbesondere einer Bogenoffsetdruckmaschine, nach dem Oberbegriff des Patentanspruchs 1.
  • Bei Bogenoffsetdruckmaschinen werden die Zylinder der Druckwerke sowie die dem Bogentransport dienenden Zylinder und Trommeln über einen durchgehenden Räderzug angetrieben. In diesem Räderzug entstehen insbesondere bei einer hohen Anzahl von Druckwerken sehr große Lastmomente, die eine Torsion des Räderzuges zwischen den einzelnen Druckwerken bewirken.
  • Um lastabhängige Druckfehler der Druckmaschine zu verringern, ist gemäß der DE 42 10 988 A1 eine Einrichtung zum Regeln eines Mehrmotorantriebs einer Druckmaschine bekannt, bei welchem die Druckmaschine einen durchgehenden Zahnräderzug und mehrere elektromotorische Einzelantriebe aufweist, die in den Räderzug einspeisen. An jedem leistungseinspeisenden Einzelantrieb wird die augenblickliche Stellung des Elektromotors in Form eines Drehwinkels gemessen und einer Regeleinrichtung zugeführt, welche aus den Drehwinkeldifferenzen zweier jeweils im Leistungsfluss benachbarter Motoren auf deren Leistungsflüsse schließt. In Abhängigkeit von der ermittelten Drehwinkeldifferenz werden die Stellglieder der Elektromotoren derart angesteuert, dass die elastische Verdrehung im Zahnräderzug des Antriebs der Druckmaschine und somit auch die Leistungsflüsse konstant gehalten werden.
  • Trotz der Leistungsüberwachung und -bewertung der Einzelantriebe kann es auf Grund der Elastizität und Trägheit des Räderzuges immer wieder zum Abheben der Zahnflanken der Zahnräder innerhalb des Räderzuges kommen, was zu Passerfehlem und zum Doublieren des Druckbildes auf dem zu bedruckenden Stoff führt.
  • Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus der EP-A-0904934 bekannt. Hinsichtlich weiteren Standes der Technik wird auf die DE-A-19826338 verwiesen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein neuartiges Verfahren zum Betreiben einer Druckmaschine zu schaffen. Erfindungsgemäß wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1 gelöst.
  • Ein Vorteil der Erfindung besteht darin, dass die tatsächliche Verdrehung im Räderwerk der Druckmaschine gemessen und zur Einstellung einer Vorspannung eines der Einzelantriebe gegenüber dem zweiten Einzelantrieb genutzt wird. Dadurch wird sichergestellt, dass alle ineinander greifenden Zahnflanken der Zahnräder des Räderzuges gerade aneinander anliegen und somit immer eine minimale positive Last auf den Räderzug übertragen wird. Ein unnötig starkes Verspannen der Zahnräder gegeneinander wird zuverlässig vermieden und ein erhöhter Verschleiß im Zahnradgetriebe unterbunden.
  • In einer Ausgestaltung wird die Drehwinkeldifferenz des Räderzuges vor Beginn des Druckprozesses in Abhängigkeit eines vorgegebenen Betriebszustandes der Druckmaschine ermittelt und wenigstens der eine Einzelantrieb während des Druckprozesses um diese Drehwinkeldifferenz vorgespannt.
  • Vorteilhafterweise wird nach Einstellung des vorgegebenen Betriebszustandes der Druckmaschine der Räderzug durch wenigstens einen der beiden Einzelantriebe in eine vorgegebene Drehrichtung bewegt, wobei die Differenz der Drehwinkelstellung innerhalb des Räderzuges bestimmt wird, indem der Räderzug solange bewegt wird, bis bei mehrfacher Messung eine konstante Drehwinkeldifferenz ermittelt wird.
  • Durch diesen Initialisierungsvorgang wird automatisch für jeden Betriebsfall der Druckmaschine eine konstante Winkeldifferenz in Abhängigkeit von einem bestimmten Lastzustand der Druckmaschine erreicht. Der Lastzustand wird dabei insbesondere durch die Maschinendrehzahl der Druckmaschine, der Farbe in den Farbwerken und dem Druckzustand der Druckwerke charakterisiert. Für jede Belastungssituation der Druckmaschine ist somit einfach eine Vorspannung des Einzelantriebes ermittelbar.
  • In einer vorteilhaften Weiterbildung wird die Stellung des wenigstens einen lageregelbaren Einzelantriebes vor der Bewegung des Räderzuges und nach Erreichen der konstanten Drehwinkeldifferenz des Einzelantriebes ermittelt, wobei aus den beiden Stellungen eine Drehwinkeldifferenz des Einzelantriebes bestimmt wird, wobei aus der Summe der Drehwinkeldifferenz des Räderzuges und der Drehwinkeldifferenz des wenigstens einen Einzelantriebes die Verspannung ermittelt wird, um welche der Einzelantrieb während des Druckprozesses vorgespannt wird.
  • Auf Grund der Vorspannungseinstellung des wenigstens einen lageregelbaren Einzelantriebes kommt es infolge der Elastizität des Zahnradzuges sowie der vorliegenden Toleranzen zu einer definierten Verspannung des Räderzuges, bei welcher das Zahnflankenspiel des Räderzuges bei jeder Winkelstellung herausgefahren ist.
  • Die Genauigkeit der Verdrehungsvoreinstellung des Räderzuges wird verbessert, wenn eine zusätzliche Drehwinkeldifferenz eingestellt wird, welche aus einer vorgegebenen Betriebslast und /oder der Räderzugsteifigkeit ermittelt wird.
  • Erfindungsgemäß sind zwei einzeln beaufschlagbare Einzelantriebe mit einer Steuereinheit verbunden, wobei die Einzelantriebe an zwei verschiedenen Stellen der Druckmaschine in einen durchgehenden Räderzug einspeisen, welcher mit den Teileinheiten der Druckmaschine gekoppelt ist, wobei ein lageregelbarer Einzelantrieb durch die Steuereinheit mit einem Sollwert beaufschlagbar ist, wodurch der Räderzug zwischen den beiden Einzelantrieben um einen vorgegebenen Winkelbetrag vorspannbar ist. Zur Verbesserung der Zahnflankenanlage der Zahnräder des Räderzuges sind an zwei verschiedenen Positionen innerhalb des Räderzuges Lagesensoren angeordnet, die mit der Steuereinheit verbunden sind und der Winkelstellung des Räderzuges in diesen Positionen entsprechende Signale an die Steuereinheit liefern, welche in Abhängigkeit von diesen Winkelstellungen einen Lagesollwert bestimmt, mit welchem ein Einzelantrieb während des Druckprozesses beaufschlagbar ist.
  • In einer Ausgestaltung werden besonders genaue Ergebnisse über die Verdrehung des Räderwerkes erzielt, wenn die Winkelstellung zweier im Räderzug benachbart angeordneter Zahnräder detektiert wird, wobei jeder Lagesensor pro Zahnradumdrehung ein Signal abgibt, aus welchen die Steuereinheit bei vorgegebenen Betriebsbedingungen eine Drehwinkeldifferenz berechnet.
  • Der Spiel der Zahnflanken der Zahnräder wird sicher dann unterbunden, wenn die Steuereinheit den wenigstens einen Einzelantrieb mit einem Sollwert beaufschlagt, der aus der Drehwinkeldifferenz des Räderzuges und einer Drehwinkeldifferenz des Einzelantriebes ermittelbar ist.
  • Durch diese Vorgehensweise ist es möglich, dass alle Komponenten der Druckmaschine nur von zwei Einzelantrieben gespeist werden, wobei jeder Einzelantrieb über den Räderzug eine vorgegebene Anzahl der Teileinheiten der Druckmaschine antreibt.
  • Nach einer Ausführungsform der Erfindung ist vorgesehen, dass jeder Antrieb für einen Elektromotor einen eigenen, unabhängigen Drehzahlregelkreis besitzt. Diesen Drehzahlregelkreisen werden identische Drehzahl-Grundsollwerte zugeführt. Mit Ausnahme eines Leitantriebes erhält jeder Folgeantrieb einen weiteren Sollwert, den Drehzahl-Zusatzsollwert, der durch einen dem Folgeantrieb zugeordneten Differenzwinkelregler gebildet wird.
  • Als Istwert jedes dieser Differenzwinkelregler kann die aus den Istwinkeln des betreffenden Folgeantriebs und eines benachbarten Folgeantriebs gebildete Differenz oder die aus den Istwinkeln des betreffenden Folgeantriebs und des Leitantriebs gebildete Differenz herangezogen werden. Dabei muss der Leitantrieb nicht notwendigerweise dem betrachteten Folgeantrieb benachbart sein. Alternativ kann die Differenz der Istwinkel auch anhand einer Differenzbildung von Istdrehzahlen zweier Antriebe mit nachfolgender Integration zur Ermittlung eines Differenzwinkels realisiert werden. Auch hier können wahlweise die Istdrehzahlen des betreffenden und eines benachbarten Folgeantriebs oder des betreffenden Folgeantriebs und des Leitantriebs zur Differenzbildung herangezogen werden.
  • Das Regelungskonzept kann im Bedarfsfall um eine Strom- bzw. Drehmomentenvorsteuerung in jedem oder nur in einzelnen Regelkreisen erweitert werden. Dazu werden aus den Stellgrößen der Differenzwinkelregler Vorsteuerströme bzw. - drehmomente berechnet. Diese Vorsteuergrößen werden als Zusatzsollwerte den Strom- bzw. Drehmomentreglern der jeweiligen Folgeantriebe aufgeschaltet.
  • Basis für die Erfassung der Istgrößen (Istwinkel und/oder Istdrehzahlen) sind Absolutgeber (Winkelcodierer) oder inkrementell arbeitende Geber mit Referenzsignal zur Bestimmung der Absolutposition.
  • Zur Ermittlung von fest eingestellten Werten zur Sollwertvorgabe für die Differenzwinkelregler können im Räderzug an verschiedenen Positionen mindestens zwei Sensoren angeordnet sein, die in Abhängigkeit von variablen Betriebszuständen der Druckmaschine (z.B. abhängig von Drehzahl, Temperatur) Winkelinformationen liefern. Mit Hilfe einer Vielzahl von temporär variierten Soll-Differenzwinkeln können Basiswerte für die Differenzwinkeleinstellung der einzelnen Antriebsachsen relativ zueinander ermittelt und als statische Sollwertvorgabe in den Differenzwinkelreglern hinterlegt werden.
  • Die Ermittlung einer Sollwertvorgabe für die Differenzwinkelregler kann auch auf Basis von weiteren unterschiedlichen Grundlagen erfolgen, z. B.: durch weitere festeingestellte Werte oder durch beliebige Bewegungsgrößen (Winkelgeschwindigkeiten oder -beschleunigungen) oder durch Kraftgrößen (Antriebs- und Schnittmomente) oder durch elektrische Größen (Antriebsströme,- spannungen) sowie Kombinationen dieser Größen. Dadurch lässt sich eine dynamische Veränderung des Differenzwinkel-Sollwertes erreichen, um beispielsweise die Passerdifferenzen zwischen den einzelnen Druckwerken bei Maschinengeschwindigkeitsänderungen optimieren zu können.
  • Dadurch ergeben sich gegenüber dem Stand der Technik folgende Vorteile:
    • Durch den Einsatz von Längswellen im Antriebsstrang einer Druckmaschine wird lediglich eine feste, unveränderbare Versteifung durch einen fest eingestellten Differenzwinkel erreicht. Demgegenüber bietet die Differenzwinkelregelung die Möglichkeit, veränderliche, dem Druckauftrag angepasste Steifigkeiten nachzubilden. Diese Veränderungen können während des Druckbetriebs durch entsprechende Algorithmen, die in der Differenzwinkel-Sollwertvorgabe hinterlegt sind, vorgenommen werden.
    • Durch die Mehrmotoren-Antriebstechnik ist die Anzahl der Units innerhalb einer Bogen-Druckmaschine nicht begrenzt. Bei der Längswellentechnik nimmt mit zunehmender Unit-Anzahl die Grenzfrequenz stetig ab, so dass die maximal mögliche Maschinendrehzahl sinkt.
    • Mit Hilfe der Mehrmotoren-Antriebstechnik lässt sich eine automatisierte Zahnspielausstellung bei beliebigen Betriebszuständen verwirklichen.
    • Auf Grund der Weiterentwicklungen der Mehrmotoren-Antriebstechnik ergibt sich eine höhere Wirtschaftlichkeit gegenüber der momentan eingesetzten Längswellentechnik.
  • Diesen Drehzahlregelkreisen werden identische Drehzahl-Grundsollwerte zugeführt. Mit Ausnahme eines Leitantriebes erhält jeder Folgeantrieb einen weiteren Sollwert, den Drehzahl-Zusatzsollwert, der durch einen dem Folgeantrieb zugeordneten Differenzwinkelregler gebildet wird.
  • Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
  • Es zeigt:
  • Figur 1:
    erfindungsgemäße Vorrichtung
    Figur 2:
    Impulsverlauf pro Zahnradumdrehung
  • Figur 1 zeigt eine Druckmaschine 1, welche aus einem Anleger 2, mehreren als Druckwerke ausgebildeten Teileinheiten 3 bis 6 sowie einem Ausleger 7 besteht. Der Antrieb der Druckmaschine 1 vom Anleger 2 über die Druckwerke 3 bis 6 zum Ausleger 7 erfolgt über einen geschlossenen Räderzug 8, welcher durch ineinander greifende Zahnräder 8a bis 8h gebildet wird. Über diesen mechanischen Räderzug 8 sind in den einzelnen Druckwerken 3 bis 6 nicht weiter beschriebene Gummituchzylinder, die mit Gegendruckzylindern zusammenwirken und den Gegendruckzylindern nachgeordnete Transfertrommeln gekoppelt. Der Weg des Bedruckstoffes bei der in der Figur 1 dargestellten Konfiguration erfolgt in Richtung des Pfeiles von rechts nach links.
  • An zwei Stellen des Räderwerkes 8 greifen zwei lageregelbare Einzelantriebe 9 und 10 ein. Jeder lageregelbare Einzelantrieb 9 und 10 ist als Elektromotor ausgebildet, wobei der Einzelantrieb 9 die Teileinheiten 3 und 4 und der Einzelantrieb 10 die Teileinheiten 5 und 6 sowie den Ausleger 7 antreibt.
  • Ein Impulsgeber 11 ist gegenüberliegend der Welle 17 des Zahnrades 8d und ein weiterer Impulsgeber 12 ist gegenüber der Welle 16 des Zahnrades 8c angeordnet. Jede Welle 16 bzw. 17 weist einen Vorsprung 18 bzw. 19 auf.
  • Beide Impulsgeber 11, 12 sind so ausgebildet, dass sie in je einer genau definierten Winkelstellung der beiden Zahnräder 8c, 8d beim Vorbeilaufen des Vorsprungs 18 bzw. 19 je einen elektrischen Impuls pro Zahnradumdrehung ausgeben. In Figur 2 zeigt die obere Darstellung den Impulsverlauf am Impulsgeber 11 und die untere Darstellung den Impulsverlauf am Impulsgeber 12, wie er von einer mit den Impulsgebern 11 und 12 verbundenen Steuereinheit 13 detektiert wird.
  • Darüber hinaus ist die Steuereinheit 13 direkt mit den Einzelantrieben 9 und 10 verbunden und wirkt über jeweils ein Stellglied 14 bzw. 15 auf die Einzelantriebe 9 und 10 ein.
  • Im Betrieb der Druckmaschine greift die Steuereinheit 13 auf die Einzelantriebe 9 und 10 zu und erzwingt einen drehwinkelsynchronen Lauf der Antriebselemente 9 und 10 an den Eintriebsstellen. Dabei ermittelt die Steuereinheit 13 die tatsächliche Lage jedes Einzelantriebes 9, 10 und vergleicht diese mit in der Steuereinheit abgespeicherten Sollwerten. Ausgehend von diesem Vergleich wird jeder Einzelantrieb 9, 10 von der Steuereinheit 13 individuell über das Stellglied 14, 15 angesteuert. Der Einzelantrieb 9 wird dabei um den Winkel ϕ 1 und der Einzelantrieb 10 um den Winkel ϕ2 verdreht.
  • Durch eine erfindungsgemäß ermittelte Sollwertvorgabe sollen die Einzelantriebe 9 und 10 derart angesteuert werden, dass zusätzlich eine vorgegebene konstante Verdrehung Δϕ des Räderzuges zwischen den Eintriebsstellen der Einzelantriebe 9, 10 gewährleistet wird. Indikator für das Vorhandensein einer solchen Verdrehung Δϕ ist, dass sich die Zahnflanken zweier benachbart angeordneter, ineinander greifender Zahnräder am Zahneingriff a unter Betriebsbedingungen gerade berühren und eventuell noch eine geringe Last übertragen.
  • Der sich aus den Impulsverläufen ergebende zeitliche Abstand Δt der an den Impulsgebern 11, 12 gemessenen Impulse und seine zeitlichen Änderungen wird durch die Steuereinheit 13 gemessen und bei konstanter Maschinendrehzahl in eine proportionale Drehwinkeldifferenz umgerechnet.
  • Zur richtigen Bestimmung der Drehwinkeldifferenz Δϕ zwischen den Eintriebsstellen der Einzelantriebe 9, 10 werden bei abgeschalteter Regelung der Einzelantriebe 9, 10 die von den Impulsgebern 11, 12 gelieferten Impulse ausgewertet.
  • Dazu wird die Druckmaschine 1 zunächst zur Erzeugung bestimmter Lastverhältnisse in einen vorgegebenen Betriebszustand gebracht, in dem die Farben in den Druckwerken bereitgestellt sowie die Druckwerke eingeschaltet werden. Außerdem wird eine Maschinendrehzahl eingestellt. Anschließend wird am Einzelantrieb 9 durch die Steuereinheit 13 eine Nacheilung gegenüber dem Einzelantrieb 10 erzeugt und solange gesteigert, bis die Zeitdifferenz Δt1 zwischen den von den Impulsgebern 11 und 12 erzeugten Impulsen konstant bleibt. Die konstante Zeitdifferenz Δt1 wird in der Steuereinheit 13 gespeichert.
  • Danach steuert die Steuereinheit 13 den Einzelantrieb 9 in die entgegengesetzte Richtung, so das sich eine Voreilung am Eintrieb des Einzelantriebs 9 gegenüber dem Eintrieb des Einzelantriebes 10 einstellt. Auch diese Nacheilung wird solange gesteigert, bis die zeitliche Differenz zwischen den von den Impulsgebern 11, 12 abgegebenen Impulsen konstant ist. Die so ermittelte konstante Zeitdifferenz Δ t2 wird im Speicher der Steuereinheit 13 abgelegt. Außerdem wird die Lage des Elektromotors nach Einstellung der Voreilung bestimmt und zur Ermittlung der Drehwinkeldifferenz Δϕ2 analog zur Voreilung genutzt.
  • Die Steuereinheit 13 subtrahiert sodann die Zeitdifferenz Δ t2 und berechnet daraus eine Winkeldifferenz Δϕ2, zu der die Winkeldifferenz Δϕ2 addiert wird.
  • Die so bestimmte Winkeldifferenz Δϕ wird als Sollwert unter Produktionsbedingungen der Regelung des Einzelantriebs 9 durch die Steuereinheit 13 zugrunde gelegt. Damit wird immer eine leichtberührende Anlage der Zahnflanken in eine vorgegebene Bewegungsrichtung des Räderzuges 8 gewährleistet.
  • Zusätzlich zu der empirisch ermittelten Voreilung wird eine weitere Voreilung Δϕ3 für den Eintrieb des Einzelantriebes 9 durch die Steuereinheit 13 erzeugt. Diese Voreilung Δϕ 3 bestimmt sich aus der gewünschten Betriebslast der Druckmaschine im Zahneingriff und der Räderzugsteifigkeit. Vorteilhafterweise ist die Voreilung Δϕ 3 einem in der Steuereinheit 13 abgespeicherten Kennfeld zu entnehmen. Diese Voreilung Δϕ 3 wird zu der Voreilung Δϕ addiert und bei der Regelung des Einzelantriebes 9 als Sollwert mit berücksichtigt.
  • Das erfindungsgemäße Verfahren ist für verschiedene Ausgestaltungen der Druckmaschine anwendbar. So ist Anzahl und Ausbildung der Teileinheiten 3 bis 6 variabel und kann von Druckmaschine zu Druckmaschine unterschiedlich sein.
  • Zur Ermittlung einer Sollwertvorgabe, also der Verdrehung Δϕ zwischen den Eintriebsstellen der Einzelantriebe 9,10 kann auch vorgesehen sein, das Antriebsmoment des ersten und des zweiten Einzelantriebes 9, 10 zu variieren bzw. dass zur Bestimmung der Sollwerte für die Lageregelung eine bei einem bestimmten Verhältnis der von den Einzelantrieben einzuspeisenden Drehmomente sich im Räderzug ergebende Verdrehung Δϕ ermittelt wird. Bei Versuchsläufen der Maschine wird dazu die Momentaufnahme der Einzelantriebe durch spezielle Sensoren gemessen oder über die Stromwerte der Antriebsmotoren indirekt ermittelt.
  • Dazu wird vorzugsweise das über den ersten Antrieb 9 in den Räderzug 8a - 8h eingespeiste Antriebsmoment erhöht, so dass zur Aufrechterhaltung einer vorgegebenen Drehzahl das über den zweiten Antrieb 10 einzuspeisende Moment kleiner wird. Die über den ersten und den zweiten Motor 9, 10 eingespeisten Momente werden miteinander verglichen und zur Bestimmung eines Sollwertes für die Lageregelung der beiden Einzelantriebe, also für die Verdrehung Δϕ des Räderzuges 8a - 8h herangezogen. So ist ein Winkelwert Δϕ bestimmbar, der einem bestimmten Momentenverhältnis entspricht. Weiterbildend kann auch vorgesehen sein, die Bestimmung von Verdrehwinkeln Δϕ bei verschiedenen Drehzahlen und / oder verschiedenen Lastsituationen durchzuführen.
  • Bei einer anderen Ausführungsform der Erfindung zur Bestimmung einer Sollwertvorgabe (Bestimmung des Verdrehwinkels Δϕ) ist vorgesehen, zunächst über den ersten Antriebsmotor 9 die Maschine anzutreiben, so dass garantiert eine Flankenanlage im gesamten Räderzug vorliegt. Daraufhin wird bei stromfrei geschalteten Motor 9 der zweite Antriebsmotor 10 angesteuert und die vom Räderzug ausgeführten Bewegungen werden über die Lagegeber (Impuls- bzw. Winkelgeber) 11, 12 erfasst. So ist insbesondere der vom zweiten Motor 10 auszuführende Winkelbetrag ermittelbar, bis die durch die Umkehr der Flankenanlage im Räderzug 8a - 8h bewirkte Lose herausgefahren wird. Der so bestimmte Winkelbetrag kann dann als Verdrehwinkel Δϕ der Sollwerte zur Lageregelung der Einzelantriebe 9, 10 verwendet werden.
  • Bezugszeichen
  • 1
    Druckmaschine
    2
    Anleger
    3
    Druckwerk
    4
    Druckwerk
    5
    Druckwerk
    6
    Druckwerk
    7
    Ausleger
    8
    Räderzug
    8a-8h
    Zahnräder
    9
    Einzelantrieb
    10
    Einzelantrieb
    11
    Impulsgeber
    12
    Impulsgeber
    13
    Steuereinheit
    14
    Stellglied
    15
    Stellglied
    16
    Welle
    17
    Welle
    18
    Vorsprung
    19
    Vorsprung

Claims (8)

  1. Verfahren zum Betreiben einer Druckmaschine (1), insbesondere einer Bogenoffsetdruckmaschine, bei welchem zwei unabhängig voneinander betriebene, lageregelbare Einzelantriebe (9, 10) in einen durchgehenden Räderzug (8) einspeisen, wodurch mit dem Räderzug (8) gekoppelte Teileinheiten (2-7) der Druckmaschine (1) angetrieben werden und eine Verdrehung des Räderzugs (8) zwischen Eintriebsstellen der Einzelantriebe (9, 10) erzeugt wird, wobei je eine Drehwinkelstellung des Räderzuges (8) an zwei verschiedenen Positionen gemessen wird, und wobei eine Lage wenigstens eines der beiden Einzelantriebe (9; 10) in Abhängigkeit von einer sich aus diesen Drehwinkelstellungen ergebenden Differenz und in Abhängigkeit eines Differenzwinkel-Sollwerts eingestellt wird, dadurch gekennzeichnet, dass mindestens zwei an verschiedenen Positionen des Räderzuges (8) angeordnete Sensoren Winkelinformationen in Abhängigkeit von variablen Betriebszuständen der Druckmaschine liefern und mit Hilfe einer Vielzahl von temporär variierten Differenzwinkel-Sollwerten Basis-Sollwerte für eine Differenzwinkelregelung einzelner Antriebsachsen relativ zueinander ermittelt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Drehwinkeldifferenz des Räderzuges vor Beginn des Druckprozesses in Abhängigkeit eines vorgegebenen Betriebszustandes der Druckmaschine (1) ermittelt wird und wenigstens der eine Einzelantrieb (9; 10) während des Druckprozesses um diese Drehwinkeldifferenz vorgespannt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass nach Einstellung des vorgegebenen Betriebszustandes der Druckmaschine der Räderzug durch wenigstens einen der beiden Einzelantriebe (9; 10) in eine vorgegebene Drehrichtung bewegt wird, wobei die Differenz der Drehwinkelstellungen innerhalb des Räderzuges (8) bestimmt wird, indem der Räderzug (8) solange bewegt wird, bis bei mehrfacher Messung eine konstante Drehwinkeldifferenz des Räderzuges (8) ermittelt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Stellung des wenigstens einen lageregelbaren Einzelantriebes (9; 10) vor der Bewegung des Räderzuges (8) und nach Erreichen der konstanten Drehwinkeldifferenz des Räderzuges (8) ermittelt wird, wobei aus den beiden Stellungen eine Drehwinkeldifferenz des wenigstens einen Einzelantriebes (9; 10) bestimmt und aus der Summe der Drehwinkeldifferenz des Räderzuges (8) und der Drehwinkeldifferenz des wenigstens einen Einzelantriebs (9; 10) die Verspannung ermittelt wird, um welche der wenigstens eine Einzelantrieb (9; 10) während des Druckprozesses vorgespannt wird.
  5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass während des Druckprozesses an dem wenigstens einen Einzelantrieb (9; 10) eine weitere Drehwinkeldifferenz eingestellt wird, welche aus einer vorgegebenen Betriebslast und/oder der Räderzugsteifigkeit ermittelt wird.
  6. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Drehzahl-Sollwerte für die beiden Einzelantriebe (9,10) als Summe aus einem Drehzahl-Grundsollwert und Drehzahl-Zusatzsollwerten gebildet werden, wobei letztere aus den Differenzwinkelreglern generiert werden.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Differenzwinkel-Sollwerte in Abhängigkeit von Bewegungsgrößen, insbesondere Winkelgeschwindigkeiten oder Winkelbeschleunigungen, oder von Kraftgrößen, insbesondere Drehmomenten, oder von elektrischen Größen, insbesondere Antriebsströmen und Antriebsspannungen, sowie Kombinationen dieser Größen generiert werden.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bestimmung der Istwerte für die Differenzwinkelregler zwischen beliebigen, nicht notwendigerweise benachbarten Antriebsachsen mittels Differenzbildung von den zugehörigen Istwinkel-Signalen oder mittels Differenzbildung der Istdrehzahl-Signale mit anschließender Integration erfolgt.
EP20010108659 2000-04-10 2001-04-06 Verfahren zum Betreiben einer Druckmaschine mit zwei Einzelantrieben Expired - Lifetime EP1149697B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10017525 2000-04-10
DE10017525 2000-04-10
DE10115546A DE10115546A1 (de) 2000-04-10 2001-03-28 Verfahren und Vorrichtung zum Betreiben einer Druckmaschine, insbesondere eine Bogenoffset-Druckmaschine
DE10115546 2001-03-28

Publications (3)

Publication Number Publication Date
EP1149697A2 EP1149697A2 (de) 2001-10-31
EP1149697A3 EP1149697A3 (de) 2002-08-21
EP1149697B1 true EP1149697B1 (de) 2010-11-10

Family

ID=26005234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010108659 Expired - Lifetime EP1149697B1 (de) 2000-04-10 2001-04-06 Verfahren zum Betreiben einer Druckmaschine mit zwei Einzelantrieben

Country Status (1)

Country Link
EP (1) EP1149697B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042284A1 (de) 2005-09-06 2007-03-08 Man Roland Druckmaschinen Ag Verfahren zur Registerregelung bzw. Registerverstellung
DE102007039221A1 (de) 2007-08-20 2009-02-26 Koenig & Bauer Aktiengesellschaft Verfahren zum Antreiben einer Bogenrotationsdruckmaschine mit mehreren Druckwerken
DE102022110168B3 (de) * 2022-04-27 2023-05-17 Heidelberger Druckmaschinen Aktiengesellschaft Funktionsüberwachung von Transportbändern in der Druckmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4210989C2 (de) * 1992-04-02 2001-07-12 Heidelberger Druckmasch Ag Mehrfachantrieb für eine Bogenrotationsdruckmaschine
DE4210988C2 (de) * 1992-04-02 2003-03-27 Heidelberger Druckmasch Ag Verfahren zum Regeln einer mechanischen Leistung eines Mehrmotorenantriebes für eine Bogendruckmaschine
DE4234928A1 (de) * 1992-10-16 1994-04-21 Heidelberger Druckmasch Ag Vorrichtung und Verfahren zur Dämpfung von mechanischen Schwingungen von Druckmaschinen
DE19650075A1 (de) * 1996-12-03 1998-06-04 Roland Man Druckmasch Antrieb für eine Druckmaschine
DE19826338A1 (de) * 1997-09-26 1999-04-01 Heidelberger Druckmasch Ag Antrieb für eine Druckmaschine
DE19742461C2 (de) * 1997-09-26 2001-05-10 Heidelberger Druckmasch Ag Vorrichtung zum Antrieb einer Bogendruckmaschine mit Mehrmotorenantrieb

Also Published As

Publication number Publication date
EP1149697A3 (de) 2002-08-21
EP1149697A2 (de) 2001-10-31

Similar Documents

Publication Publication Date Title
EP1277575B2 (de) Offsetdruckmaschine
DE3148449C1 (de) Verfahren zur Verringerung von Registerfehlern und Druckmaschine zur Durchfuehrung des Verfahrens
EP0904934B1 (de) Vorrichtung und Verfahren zum Antrieb von Druckmaschinen mit mehreren entkoppelt angeordneten Motoren
DE19527199C2 (de) Flexodruckmaschine und deren Verwendung
EP0693374B2 (de) Elektrisches Antriebssystem insbesondere für Druckmaschinen
EP0846555B1 (de) Antrieb für eine Druckmaschine
DE4137979B4 (de) Antrieb für eine Druckmaschine mit mindestens zwei mechanisch voneinander entkoppelten Druckwerken
EP0747214B1 (de) Verfahren zum Steuern eines Mehrmotorenantriebs einer Druckmaschine sowie entsprechende Steuerung
EP0753405B1 (de) Mehrmotorenantrieb für eine Druckmaschine
DE3743646C2 (de) Vorrichtung zum Einstellen einer in einer Druckmaschine zugeführten Druckfarbmenge
EP0531675A1 (de) Verfahren und Vorrichtung zum Verstellen von Farbzonenschrauben in jeweilige Positionen
EP0709184B1 (de) Vorrichtung zur Vermeidung von Passerdifferenzen
DE10104795B4 (de) Drehzahlabhängige Sollwertkorrektur bei elektrisch geregelten Slaveantrieben
EP0518234B1 (de) Elektronisch steuerbare Farbkastenwalzenantriebseinrichtung und Verfahren
DE4210988C2 (de) Verfahren zum Regeln einer mechanischen Leistung eines Mehrmotorenantriebes für eine Bogendruckmaschine
EP1149697B1 (de) Verfahren zum Betreiben einer Druckmaschine mit zwei Einzelantrieben
DE10115546A1 (de) Verfahren und Vorrichtung zum Betreiben einer Druckmaschine, insbesondere eine Bogenoffset-Druckmaschine
DE10254118A1 (de) Verfahren zum Antreiben einer drucktechnischen Maschine
DE102006014526A1 (de) Verfahren und Vorrichtung zur Reduzierung von periodischen Drehwinkel-Lagedifferenzen
DE4344912C2 (de) Antrieb eines farbübertragenden Druckzylinders einer Rollenrotationsdruckmaschine
DE10259494A1 (de) Verfahren zum Steuern einer Druckmaschine
EP0504105A1 (de) Elektromotorisches Antriebssystem für periodisch arbeitende Maschinen mit drehwinkelabhängig variablem Drehmoment
EP0692377B1 (de) Verfahren und Vorrichtung zum synchronen Antreiben von Druckmaschinenkomponenten
EP0694387B1 (de) Verfahren und Vorrichtung zur Zustandsüberwachung einer umstellbaren Bogendruckmaschine
DE19543964C1 (de) Verfahren und Vorrichtung zum Betätigen eines Stellgliedes einer Druckmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7B 41F 13/14 A, 7B 41F 13/004 B, 7B 41F 13/012 B

17P Request for examination filed

Effective date: 20020717

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANROLAND AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR DRIVING A PRINTING PRESS WITH TWO INDIVIDUAL DRIVES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50115697

Country of ref document: DE

Date of ref document: 20101223

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110510

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 11

Ref country code: AT

Payment date: 20110414

Year of fee payment: 11

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110811

BERE Be: lapsed

Owner name: MANROLAND A.G.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115697

Country of ref document: DE

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50115697

Country of ref document: DE

Owner name: MANROLAND SHEETFED GMBH, DE

Free format text: FORMER OWNER: MANROLAND AG, 63075 OFFENBACH, DE

Effective date: 20120509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 487599

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120406

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120406

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120406

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180420

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115697

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101