EP1142768B1 - Méthode pour éviter le retournement d'un véhicule autour de son axe longitudinal - Google Patents

Méthode pour éviter le retournement d'un véhicule autour de son axe longitudinal Download PDF

Info

Publication number
EP1142768B1
EP1142768B1 EP01100796A EP01100796A EP1142768B1 EP 1142768 B1 EP1142768 B1 EP 1142768B1 EP 01100796 A EP01100796 A EP 01100796A EP 01100796 A EP01100796 A EP 01100796A EP 1142768 B1 EP1142768 B1 EP 1142768B1
Authority
EP
European Patent Office
Prior art keywords
tipping over
vehicle
wheel
braking
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01100796A
Other languages
German (de)
English (en)
Other versions
EP1142768A3 (fr
EP1142768A2 (fr
Inventor
Hans Holst
Klaus Lindemann
Ingo Tha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP1142768A2 publication Critical patent/EP1142768A2/fr
Publication of EP1142768A3 publication Critical patent/EP1142768A3/fr
Application granted granted Critical
Publication of EP1142768B1 publication Critical patent/EP1142768B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17554Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing stability around the vehicles longitudinal axle, i.e. roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/241Lateral vehicle inclination
    • B60T8/243Lateral vehicle inclination for roll-over protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/246Change of direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/248Trailer sway, e.g. for preventing jackknifing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/04Trailers
    • B60G2300/042Semi-trailers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • B60G2800/0124Roll-over conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9124Roll-over protection systems, e.g. for warning or control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control
    • B60G2800/922EBV - Electronic brake force distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/03Overturn, rollover

Definitions

  • the invention relates to a method for avoiding the A vehicle tipping over about its longitudinal axis according to the Preamble of claim 1.
  • a method for preventing a vehicle from tipping over about its longitudinal axis is e.g. from DE 196 02 879 C1 known.
  • the known method essentially relates to the detection of the risk of a vehicle tipping over, especially one from a tractor and trailer existing tractor-trailer.
  • the danger of tipping over there by slight actuation of the trailer brakes and by observing the reaction of one in the Trailer anti-lock braking system (ABS) detected. If the ABS during the relatively weak Brake intervention is a control intervention in the sense of a Blockage prevention, then this is used as an indicator for an impending danger of the semitrailer tipping over interpreted.
  • ABS Trailer anti-lock braking system
  • a warning signal is issued or a stronger one Brake intervention carried out to the lateral acceleration of the tractor-trailer to reduce.
  • WO 99/51475 describes a generic method for stabilizing a vehicle known, preferably to prevent the vehicle from tipping over a vehicle axis oriented in the longitudinal direction of the vehicle. If at there a method describing the lateral dynamics of the vehicle Size is greater than or equal to a characteristic value, the speed of the vehicle through brake interventions, engine interventions or Retarder interventions reduced to a specifiable speed value or kept at the speed value.
  • the invention is therefore based on the object of being simple and reliable Procedure for preventing a vehicle from tipping over Specify the longitudinal axis in which a stabilizing brake intervention to avoid overturning is stopped in good time.
  • the invention has the advantage that the point in time at which there is no risk of tipping over more exists, can be determined indirectly from the wheel load itself by evaluated the wheel behavior of the wheel with low braking force is, so that no further information such. B. about the center of gravity or the actually acting one, which can only be exactly determined by a sensor Lateral acceleration must be present. This can more sensors can be dispensed with, and the process is very inexpensive due to a simple extension the control program of an electronic control unit realizable.
  • the invention is advantageous in both conventional compressed air controlled brake systems for commercial vehicles as also in braking systems with any other actuation energy, such as B. hydraulic pressure medium or also purely electrical actuation, e.g. B. by servomotors used.
  • the stabilizing brake intervention is avoided of tipping over when the rotational speed of the at least one with a low braking force inner wheel in characteristic Way soars.
  • This has the advantage that for the detection the increase in the wheel load on the less loaded Wheel on the inside of the curve is not a separate wheel load sensor is required. Instead, it can with anti-lock braking systems anyway existing rotation speed sensor be used.
  • Another advantage is that when calculating the lateral acceleration from the signals the rotational speed sensors are not programmatic Special measures to detect the not more existing risk of tipping over is required. Instead of the increasing rotational speed of the inner wheel in the calculation of the lateral acceleration which then decreases as in following is explained in more detail.
  • the Invention is at least one wheel inside the curve a test braking with a relatively low braking force Detected the danger of tipping over.
  • the ABS slip signals at least one with the test braking Wheel locked. This has the advantage that with the Test braking applied to the wheel essentially unaffected is braked by the ABS function and not is vented by the ABS due to excessive slip and start again. Unlike a full one Locking the ABS function has the suppression the ABS slip signals have the advantage of preventing blockage due to acceleration signals is maintained as long as the wheel is still in contact with the ground has, and thus tire damage such. B. flat spots can be avoided.
  • Fig. 1 is on a street (1) in one Vehicle located on the left-hand bend (2, 3), consisting here from tractor unit (2) and trailer (3), in top view shown.
  • the trailer (3) has a pneumatic type braking system which from the tractor unit (2) as a result of brake pedal actuation by the driver or as a result of certain Control functions in the vehicle Brake pressure can be applied.
  • This is the tractor unit (2) via electrical and pneumatic lines (11) connected to the trailer (3).
  • the tractor unit (2) and the trailer (3) are on a pivot point (10) rotatably connected to each other.
  • the braking system of the trailer (3) preferably has electrically operable components such as. B. ABS brake pressure modulators or purely electrically operated brake actuators.
  • the brake modulators or brake actuators are controlled by an electronic control unit (13).
  • the control unit (13) and the brake modulators or brake actuators are supplied with electrical energy and the pressure medium or the braking energy via electrical and pneumatic lines (12).
  • the electronic control unit (13) is also supplied with rotational speeds (v 4 , v 5 , v 7 , v 8 ) of the wheels (4, 5, 7, 8) in a manner known in the case of anti-lock braking systems.
  • the wheels (4, 5, 6) are the outer wheels of the trailer, and the wheels (7, 8, 9) the wheels on the inside of the curve.
  • the electronic control unit (13) performs a number of Control and regulation tasks in the trailer (3) out.
  • One of these control and regulation tasks exists therein, the risk of the vehicle tipping over (2, 3) around its longitudinal axis and through targeted To prevent braking intervention based on this 2 by way of example using a flow chart is pictured.
  • the size S represents the track width of the vehicle.
  • the lateral acceleration signals (a q, 1, a q, 2 ) are used together in the following procedure instead of a single one, for example from the rotational speeds (v 4 , v 5 , v 7 , v 8 ) determined lateral acceleration signal.
  • the method is less susceptible to interference from signal interference, different tire diameters and the like, so that a false response of the method according to the invention can be avoided.
  • a branching block (23) is then used to check whether the braking system has already been subjected to a braking force (F 2 ) in an earlier embodiment of the sequence shown in FIGS. 2, 3 and 4 in order to prevent it from tipping over. If this is the case, bypassing the subroutine block (26), which is explained in more detail below with the aid of FIGS. 3 and 4 and which serves, among other things, to detect the risk of tipping over, the program branches directly to block (24), where it is checked whether the There is no longer any danger of tipping over.
  • the braking force (F 1 ) is determined in such a way that there is only a relatively small braking effect, which is hardly noticeable to the driver, and in particular no locking of wheels occurs on roads with a relatively high coefficient of friction, provided there is no risk of tipping over.
  • a braking pressure of approximately 1 to 2 bar is applied to apply the braking force (F 1 ).
  • ABS slip signals are in block (32) locked for the wheels (7, 8) in order to regulate the anti-lock function due to high slip avoid.
  • a regulation based on acceleration signals is still possible, so that possible damage on the tires can be avoided.
  • the former is checked by comparing the sum of the rotational speeds (v 7 , v 8 ) of the wheels on the outside of the curve with the sum of the speeds of rotation (v 4 , v 5 ) of the wheels on the inside of the curve, which factor is evaluated by a factor (K 1 ); of the wheels (4, 5), ie the first time derivative of the assigned rotational speeds (v 4 , v 5 ), checked.
  • K 1 a factor
  • Checking the wheels on the outside of the curve (4, 5) for still relatively high speeds of rotation serves to avoid false responses of the method according to the invention at relatively low coefficients of friction, e.g. B. on ice.
  • a block (34) that follows, the wheels (4, 5, 6) on the outside of the curve, which have the better adhesion between the road and the tire, are acted upon by a braking force (F 2 ) that is high in relation to the braking force (F 1 ).
  • the braking force (F 2 ) is such that the lateral acceleration and thus also the risk of tipping over are immediately reduced by reducing the vehicle speed.
  • the anti-lock braking system prevents the wheels with the braking force (F 2 ) from locking.
  • the inner wheels (7, 8, 9) are still subjected to the low braking force (F 1 ).
  • a pressure of 4 to 8 bar is preferably applied in a conventional compressed air-controlled brake system.
  • the lateral acceleration threshold (a q, crit) used to identify a risk of tipping over and trigger the test braking is set to an initial value (a q, start ). This is to be seen in connection with an embodiment of the invention that will be explained in more detail below, in which the lateral acceleration threshold (a q, crit ) can be varied.
  • the subroutine then ends with a block (38).
  • the mode of operation of the invention and in particular the use of the lateral acceleration signals (a q, 1, a q, 2 ) can be illustrated as follows.
  • the wheels on the inside of the curve (7, 8, 9) which are loaded with a low wheel load if there is a risk of tipping over tend to reduce the rotational speed as a result of the braking force (F 1 ) of the test braking.
  • This causes a relatively large difference in rotational speed between the wheels on the inside and the outside of the curve.
  • equations [1] and [2] this leads to a rapid increase in the first and second lateral acceleration signals (a q, 1, a q, 2 ).
  • the test braking which brings the wheels with low wheel load or those in the air to a standstill if there is a risk of tipping over, can be used for a reliable detection of the reinsertion of the wheels or the end of the risk of tipping over, since the wheels on the inside of the curve then start again due to the increasing wheel load despite the braking effect caused by the braking force (F 1 ), which leads to a characteristic increase in the rotational speeds (v 7 , v 8 ) of these wheels.
  • the execution of the allocation block (36) in which the lateral acceleration threshold (a q, crit ) increases by the value (K 3 ) is branched to the block (38) with which the method ends.
  • the block (36) like the block (35) and the subroutine block (37) which has not yet been mentioned, is part of an embodiment of the invention which will be explained in more detail below.
  • the subroutine block (37) begins with a block (40).
  • the braking force (F 1 ) is released again and the test braking is ended.
  • the ABS slip signals blocked in block (32) are also released again.
  • the program then continues with a branch block (42), where it is checked whether the condition for terminating the stabilizing braking intervention, which was checked in the branch block (24), is undercut by a certain amount (K 4 ), ie whether each of the lateral acceleration signals (a q, 1 , a q, 2 ) falls below the lateral acceleration threshold (a q, crit ) by the measure (K 4 ).
  • the vehicle (2, 3) is relatively far from a risk of tipping over, and the lateral acceleration threshold (a q, crit) which is gradually increased in the block (36) can be reduced without causing a false response Measures to prevent tipping over are to be expected.
  • the reduction in the lateral acceleration threshold (a q, crit ) should, however, only take place up to a certain minimum value (K 5 ), which is to be determined as a function of the vehicle data.
  • This condition is queried in the branch block (43). If the condition is met, the lateral acceleration threshold (a q, crit ) is reduced by one step (K 6 ) in the subsequent assignment block (44). The method then ends with block (45). If the result of the check in one of the blocks (42, 43) is negative, the method also ends with the block (45).
  • the initial value (a q, start ) of the lateral acceleration threshold (a q, crit ) can be determined, for example, as a function of the vehicle via a parameter stored in a non-volatile memory. In an advantageous embodiment of the invention, it is dependent on the load of the vehicle, the z. B. is determined by measuring the pressure in the air bellows of a vehicle equipped with air suspension.
  • FIG. 5 uses two typical applications of the method according to the invention, namely cornering without the risk of overturning and cornering with the risk of overturning, the signal curves of the variables explained above are shown in the time diagram, the speed values together in a speed diagram (FIG. 5a), the lateral acceleration values together in a lateral acceleration diagram (FIG. 5b) and the braking forces (F) or braking pressures (p) are shown separately to the left and right side of the vehicle in a separate diagram (FIG. 5c).
  • FIG. 5 To simplify the illustration, only the rotational speed signals (v 4 , v 7 ) of the rearmost axle of the trailer (3) and the signals derived therefrom (a q, 1, a q, crit ) are considered in FIG. 5.
  • the method according to the invention is also suitable for vehicles with only one axle or with only one axle equipped with rotational speed sensors.
  • the vehicle (2, 3) is driving straight ahead at a speed which is customary for the type of vehicle.
  • the rotational speeds (v 4 , v 7 ) have the same value, and the lateral acceleration signal (a q, 1 ) has the value 0.
  • the vehicle (2, 3) begins to make a left turn drive, as shown schematically in FIG. 1.
  • the speed of rotation (v 7 ) of the wheel (7) on the inside of the curve decreases considerably more than the speed of rotation (v 4 ) of the wheel on the outside of the curve (4), at which the wake of the trailer (3) causes a relatively weak reduction in the speed of rotation ( v 4 ) is caused.
  • This reduction in the rotational speed (v 4 ) is neglected in the illustration according to FIG. 5, so that the rotational speed (v 4 ) is shown here as a constant value.
  • the lateral acceleration signal (a q, 1 ) increases and reaches the lateral acceleration threshold (a q, crit ) at the time (t 2 ).
  • the transverse acceleration threshold (a q, crit ) is determined each time the method according to the invention is carried out according to FIGS. B. at intervals of 10 ms, increased by the value (K 3 ) in fine steps, which leads to the ramp-shaped increase shown in FIG. 5b.
  • the lateral acceleration signal (a q, 1 ) falls below the lateral acceleration threshold (a q, crit ), which leads to the end of the test braking.
  • the lateral acceleration threshold (a q, crit ) increased in the period between the times (t 2 , t 3 ) is initially maintained, since no serious risk of tipping over according to the criteria of the branching block (33) was recognized in this period and thus also the increased lateral acceleration threshold ( a q, crit ) is wearable from a safety point of view, since it can be assumed that the true value of the critical lateral acceleration occurring when there is a risk of tipping over is higher than the lateral acceleration threshold assumed at vehicle start (a q, start ).
  • the condition specified in block (42) is then fulfilled, ie the lateral acceleration signal (a q, 1 ) falls below the lateral acceleration threshold (a q, crit ) by the amount (K 4 ). Therefore, as long as the lateral acceleration threshold (a q, crit ) has a larger value than the minimum value (K 5 ) checked in block (43), the lateral acceleration threshold (a q, crit ) is reduced in fine steps. This is shown in FIG. 5b on the basis of the ramp-shaped course between the times (t 4 , t 5 ).
  • the lateral acceleration threshold (a q, crit ) then has reached the minimum value (K 5 ), so that the condition checked in block (43) is no longer fulfilled and the lateral acceleration threshold (a q, crit ) the minimum value (K 5 ) remains.
  • the lateral acceleration threshold (a q, crit ) is adapted to the real conditions in the manner of a self-learning function.
  • the vehicle (2, 3) has now completed its cornering, which leads to an adaptation of the rotational speeds (v 4 , v 7 ) to one another and to a decrease in the lateral acceleration signal (a q, 1 ) to the value 0.
  • a further cornering begins in a left-hand curve, on the basis of which the detection and avoidance of the vehicle (2, 3) tipping over is to be explained.
  • the speed of rotation (v 7 ) of the wheel ( 7 ) on the inside of the curve decreases, while the speed of rotation (v 4 ) of the wheel (4) on the outside of the curve remains essentially constant for the reasons already explained above.
  • the lateral acceleration signal (a q, 1 ) exceeds the lateral acceleration threshold (a q, crit ), whereupon the test braking is triggered again (signals 52, 53 in FIG. 5c) and the lateral acceleration threshold (a q, crit ) is ramped up again.
  • the wheel load of the wheel (7) is reduced in such a way that the braking force (F 1 ) applied by the test braking is sufficient to brake the wheel (7) in such a way that the rotational speed (v 7 ) increases rapidly reduced, as can be seen in the illustration according to FIG. 5a.
  • the rapid reduction in the rotational speed (v 7 ) also brings about a brief reduction (54) in the braking force acting on the wheel (7) shortly after the time (t 9 ) due to a response of the anti-lock function.
  • the lateral acceleration threshold (a q, crit ) is also reset to the initial value (a q, start ) (block 35 in FIG. 3).
  • the lateral acceleration signal (a q, 1 ) calculated according to equation [1] increases to a maximum value which is reached when the rotational speed (v 7 ) reaches the value 0.
  • the calculated lateral acceleration signal (a q, 1 ) also decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)

Claims (8)

  1. Procédé pour éviter le retournement d'un véhicule (2, 3) autour de son axe longitudinal, selon lequel on évalue un indicateur, qui indique le risque de retournement, est évalué et, dans le cas d'un risque imminent de retournement, un système de freinage est déclenché automatiquement par le fait qu'au moins une roue (4, 5, 6, 7, 8, 9) du véhicule (2, 3) est chargée par une force de freinage, selon lequel au moins une roue (4, 5, 6) située sur le côté extérieur de la courbe est chargée avec une force de freinage (F2) qui suffit pour éviter le retournement, tandis qu'au moins une roue (7, 8, 9) située sur le côté intérieur de la courbe est chargée par une force de freinage (F1) faible par rapport à la force de freinage (F2) appliquée à la roue (4, 5, 6) située sur le côté extérieur de la courbe, caractérisé en ce que le freinage automatique pour éviter le retournement est arrêté lorsque la vitesse de rotation (v7, v8) de la au moins une roue (7, 8) située sur le côté intérieur de la courbe, chargée par une faible force de freinage (F1) augmente de façon caractéristique.
  2. Procédé selon la revendication 1, caractérisé en ce que l'accélération transversale (aq,1, aq,2) du véhicule (2, 3) est déterminée et le dépassement d'une valeur prédéterminée (aq,krit) de l'accélération transversale (aq,1, aq,2) est utilisé en tant qu'indicateur du risque de retournement du véhicule (2, 3).
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour l'identification du risque de retournement, en tant que freinage de test on charge une roue (7, 8, 9) située sur le côté intérieur de la courbe avec une force de freinage (F1), qui est faible par rapport à la force de freinage maximale possible, et qu'une réduction caractéristique de la vitesse de rotation (v7, v8) d'au moins une roue (7, 8) située sur le côté intérieur de la courbe et chargée par le freinage de test, est utilisé en tant qu'indicateur du risque de retournement du véhicule (2, 3).
  4. Procédé selon la revendication 3, caractérisé en ce que pour l'identification du risque du retournement une vérification est faite pour savoir si les vitesses de rotation (v4, v5) des roues (4, 5) situées à l'extérieur de la courbe restent sensiblement inchangées.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce que les signaux de glissement ABS d'au moins une roue (7, 8) située sur le côté intérieur de la courbe sont bloqués.
  6. Procédé selon l'une des revendications 3 à 5, caractérisé en ce que la valeur prédéterminée de l'accélération transversale (aq,krit) est modifiée en fonction de la réaction du véhicule (2, 3) au freinage de test et/ou en fonction de l'accélération transversale actuelle (aq,1, aq,2).
  7. Procédé selon l'une des revendications 3 à 6, caractérisé en ce que le freinage de test est déclenché uniquement dans le cas du dépassement de la valeur prédéterminée (aq,krit) de l'accélération transversale (aq,1, aq,2).
  8. Procédé selon l'une des revendications 2 à 7, caractérisé en ce que pour l'évaluation de l'accélération transversale, au moins deux signaux d'accélération transversale (aq,1, aq,2) sont déterminés à partir de différents signaux (v4, v5, v7, v8) de capteurs et que les signaux d'accélération transversale (aq,1, aq,2) sont utilisés pour une assistance réciproque et/ou le contrôle de vraisemblance.
EP01100796A 2000-04-05 2001-01-15 Méthode pour éviter le retournement d'un véhicule autour de son axe longitudinal Expired - Lifetime EP1142768B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017045 2000-04-05
DE10017045A DE10017045A1 (de) 2000-04-05 2000-04-05 Verfahren zur Vermeidung des Umkippens eines Fahrzeuges um seine Längsachse

Publications (3)

Publication Number Publication Date
EP1142768A2 EP1142768A2 (fr) 2001-10-10
EP1142768A3 EP1142768A3 (fr) 2003-09-10
EP1142768B1 true EP1142768B1 (fr) 2004-12-15

Family

ID=7637750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01100796A Expired - Lifetime EP1142768B1 (fr) 2000-04-05 2001-01-15 Méthode pour éviter le retournement d'un véhicule autour de son axe longitudinal

Country Status (4)

Country Link
US (1) US6553284B2 (fr)
EP (1) EP1142768B1 (fr)
JP (1) JP2001354128A (fr)
DE (2) DE10017045A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139732B1 (fr) 2007-03-22 2016-05-11 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Système de freinage électronique de remorque
DE102019128513A1 (de) * 2019-10-22 2021-04-22 Wabco Europe Bvba Verfahren zur Vermeidung eines Umkippens eines Fahrzeugs

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834218B2 (en) * 2001-11-05 2004-12-21 Ford Global Technologies, Llc Roll over stability control for an automotive vehicle
DE10046036A1 (de) * 2000-09-18 2002-03-28 Knorr Bremse Systeme Verfahren zum Abschätzen der Umkippgefahr eines Fahrzeugs
US7132937B2 (en) * 2000-09-25 2006-11-07 Ford Global Technologies, Llc Wheel lift identification for an automotive vehicle using passive and active detection
US7302331B2 (en) * 2002-08-01 2007-11-27 Ford Global Technologies, Inc. Wheel lift identification for an automotive vehicle
US20040024505A1 (en) * 2002-08-05 2004-02-05 Salib Albert Chenouda System and method for operating a rollover control system in a transition to a rollover condition
US20040024504A1 (en) * 2002-08-05 2004-02-05 Salib Albert Chenouda System and method for operating a rollover control system during an elevated condition
DE10301096A1 (de) 2003-01-14 2004-08-05 Wabco Gmbh & Co. Ohg Verfahren zur Fahrdynamikregelung für einen Fahrzeugzug
US7239949B2 (en) * 2003-02-26 2007-07-03 Ford Global Technologies, Llc Integrated sensing system
US9162656B2 (en) * 2003-02-26 2015-10-20 Ford Global Technologies, Llc Active driven wheel lift identification for an automotive vehicle
DE10311838A1 (de) 2003-03-18 2004-10-21 Wabco Gmbh & Co. Ohg Verfahren zur Vermeidung des Umkippens eines Fahrzeugzuges
JP4391785B2 (ja) 2003-09-30 2009-12-24 三菱ふそうトラック・バス株式会社 車両のロールオーバ抑制制御装置
JP4228864B2 (ja) 2003-09-30 2009-02-25 三菱ふそうトラック・バス株式会社 車両のロールオーバ抑制制御装置
US7020551B2 (en) 2003-12-23 2006-03-28 Bendix Commercial Vehicle Systems Llc Roll stability control system
US7415341B2 (en) * 2003-12-23 2008-08-19 Bendix Commercial Vehicle Systems Llc Control module for single 3/2 solenoid controlled relay valve
DE102004010233B4 (de) * 2004-03-03 2021-09-16 Zf Cv Systems Hannover Gmbh Verfahren zur Abbremsung eines Fahrzeuges
DE102004036089A1 (de) * 2004-07-24 2006-02-16 Wabco Gmbh & Co.Ohg Verfahren zum Dämpfen von Gierschwingungen eines Anhängers
DE102004040140A1 (de) * 2004-08-19 2006-02-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Behebung einer Umkippgefahr eines Kraftfahrzeugs
US7640081B2 (en) * 2004-10-01 2009-12-29 Ford Global Technologies, Llc Roll stability control using four-wheel drive
US9878693B2 (en) 2004-10-05 2018-01-30 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9327726B2 (en) 2004-10-05 2016-05-03 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US7668645B2 (en) 2004-10-15 2010-02-23 Ford Global Technologies System and method for dynamically determining vehicle loading and vertical loading distance for use in a vehicle dynamic control system
US7715965B2 (en) 2004-10-15 2010-05-11 Ford Global Technologies System and method for qualitatively determining vehicle loading conditions
US7660654B2 (en) 2004-12-13 2010-02-09 Ford Global Technologies, Llc System for dynamically determining vehicle rear/trunk loading for use in a vehicle control system
US7394354B2 (en) * 2005-02-04 2008-07-01 Robert Bosch Gmbh Trailer presence detection system and method
US7561953B2 (en) * 2005-03-14 2009-07-14 Robert Bosch Gmbh Method and system of controlling a vehicle in the presence of a disturbance
JP2006306223A (ja) * 2005-04-27 2006-11-09 Toyota Motor Corp ロールオーバ判定装置
US7590481B2 (en) 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions
US7600826B2 (en) * 2005-11-09 2009-10-13 Ford Global Technologies, Llc System for dynamically determining axle loadings of a moving vehicle using integrated sensing system and its application in vehicle dynamics controls
US8121758B2 (en) 2005-11-09 2012-02-21 Ford Global Technologies System for determining torque and tire forces using integrated sensing system
US8359146B2 (en) * 2005-12-15 2013-01-22 Bendix Commercial Vehicle Systems Llc Single channel roll stability system
US8740317B2 (en) * 2006-08-11 2014-06-03 Robert Bosch Gmbh Closed-loop control for trailer sway mitigation
GB2450468B (en) * 2007-03-22 2011-06-01 Knorr Bremse Systeme F R Nutzfahrzeuge Gmbh Trailer electronic braking system
GB2454223B (en) 2007-11-01 2011-09-21 Haldex Brake Products Ltd Vehicle stability control method
DE102008028981B4 (de) 2008-06-18 2023-11-09 Zf Cv Systems Hannover Gmbh Verfahren zum Betreiben eines Stabilitätsregelsystems
JP5008095B2 (ja) * 2009-01-30 2012-08-22 株式会社京三製作所 案内情報放送システム
US8930114B1 (en) * 2009-02-17 2015-01-06 Brian Reid Electronic anti-lock trailer braking system
GB2470546A (en) 2009-04-01 2010-12-01 Haldex Brake Products Ltd Braking Control System
US8838353B2 (en) * 2009-07-24 2014-09-16 Robert Bosch Gmbh Trailer sway mitigation using measured distance between a trailer and a tow vehicle
US8326504B2 (en) * 2009-07-30 2012-12-04 Robert Bosch Gmbh Holistic control for stabilizing vehicle-trailer swaying
DE102011111862A1 (de) * 2011-08-31 2013-02-28 Wabco Gmbh Verfahren zur Warnung des Fahrers eines Fahrzeuges vor einem drohenden Umkippen und Steuerungseinrichtung dafür
GB2499438B (en) * 2012-02-17 2018-10-17 Haldex Brake Prod Ab Method of vehicle stability control
DE102012014408A1 (de) * 2012-07-19 2014-01-23 Wabco Gmbh Verfahren zum Abbremsen einer Kombination von mehreren miteinander gekoppelten Fahrzeugen
US9855986B2 (en) 2013-08-28 2018-01-02 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9371002B2 (en) 2013-08-28 2016-06-21 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9834184B2 (en) * 2013-09-13 2017-12-05 Vision Works Ip Corporation Trailer braking system and controller
JP2016159683A (ja) * 2015-02-27 2016-09-05 富士通テン株式会社 車両制御装置、車両制御システム、および、車両制御方法
DE102015013761A1 (de) * 2015-10-23 2017-04-27 Wabco Gmbh Verfahren zur Ansteuerung von Bremsen
CN105636859B (zh) * 2015-10-23 2020-07-28 株式会社小松制作所 连接车辆的倾覆预兆判定装置以及连接车辆
JP6266809B1 (ja) * 2016-09-26 2018-01-24 株式会社小松製作所 作業車両および作業車両の管理システム
DE102017003784A1 (de) 2017-04-20 2018-10-25 Wabco Gmbh Verfahren zum Einlernen von Schaltparametern eines Magnetsteuerventils in einem Bremssystem eines Fahrzeuges sowie Bremssystem
GB2565851B (en) 2017-08-25 2022-05-04 Haldex Brake Prod Ab Braking system
CN110281893B (zh) * 2018-03-19 2021-07-16 北京图森智途科技有限公司 一种紧急制动系统及方法、半挂车
DE102021114305A1 (de) 2021-06-02 2022-12-08 Zf Cv Systems Europe Bv Verfahren und elektronisches Steuergerät zur Steuerung einer Bremsanlage eines Kraftfahrzeugs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672305A (ja) * 1992-08-27 1994-03-15 Sumitomo Electric Ind Ltd アンチロック制御装置
DE19602879C1 (de) 1996-01-29 1997-08-07 Knorr Bremse Systeme Verfahren zum Erfassen der Gefahr des Umkippens eines Fahrzeuges
DE19751925A1 (de) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung einer Kipptendenz eines Fahrzeuges
FR2771361B1 (fr) * 1997-11-25 2000-01-14 Renault Vehicules Ind Procede et systeme de stabilisation d'un vehicule par freinage
US6554293B1 (en) * 1997-12-16 2003-04-29 Continental Teves Ag & Co., Ohg Method for improving tilt stability in a motor vehicle
WO1999030941A1 (fr) * 1997-12-16 1999-06-24 Continental Teves Ag & Co. Ohg Procede et dispositif pour limiter l'acceleration transversale d'un vehicule en marche
DE19802041A1 (de) * 1998-01-21 1999-07-22 Bosch Gmbh Robert Verfahren und Vorrichtung zur Stabilisierung eines Fahrzeuges im Sinne einer Umkippvermeidung
US6494281B1 (en) * 1998-04-07 2002-12-17 Robert Bosch Gmbh Method and device for stabilizing a vehicle
JP3695164B2 (ja) * 1998-08-03 2005-09-14 トヨタ自動車株式会社 車輌の挙動制御方法
DE19958221A1 (de) * 1999-12-02 2001-06-07 Wabco Gmbh & Co Ohg Verfahren zur Verhinderung des Umkippens eines Fahrzeugs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2139732B1 (fr) 2007-03-22 2016-05-11 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Système de freinage électronique de remorque
DE102019128513A1 (de) * 2019-10-22 2021-04-22 Wabco Europe Bvba Verfahren zur Vermeidung eines Umkippens eines Fahrzeugs

Also Published As

Publication number Publication date
US6553284B2 (en) 2003-04-22
EP1142768A3 (fr) 2003-09-10
DE50104801D1 (de) 2005-01-20
JP2001354128A (ja) 2001-12-25
DE10017045A1 (de) 2001-10-11
US20010037677A1 (en) 2001-11-08
EP1142768A2 (fr) 2001-10-10

Similar Documents

Publication Publication Date Title
EP1142768B1 (fr) Méthode pour éviter le retournement d'un véhicule autour de son axe longitudinal
DE10144299B4 (de) Verfahren zur Fahrzustandsstabilisierung eines Nutzfahrzeugverbandes
EP1047585B1 (fr) Procede et dispositif destines a stabiliser un vehicule, plus precisement a l'empecher de culbuter
EP2750942B1 (fr) Procédé destiné à avertir le conducteur d'un véhicule d'un risque de basculement, ainsi que dispositif de commande conçu à cet effet
EP0697314B1 (fr) Procédé de contrôle de la pression de freinage selon la charge d'un combinaison tracteur remorque
WO1999051475A1 (fr) Procede et dispositif pour la stabilisation d'un vehicule
EP1459949A1 (fr) Méthode pour éviter le retournement d'un véhicule
DE19859966A1 (de) Vorrichtung und Verfahren zur Stabilisierung eines Fahrzeuges
DE10137148A1 (de) Bremsanlage für Nutzfahrzeuganhänger
DE10338879A1 (de) Verfahren zur Abschätzung einer Querbeschleunigung eines Fahrzeugs
DE19648936B4 (de) Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
DE102012000784A1 (de) Stabilisierung eines Fahrzeuggespanns
DE19733379A1 (de) Verfahren und Vorrichtung zur Steuerung einer Bremsanlage
EP1131235B1 (fr) Procede et dispositif de stabilisation d'un vehicule equipe d'un systeme de freinage a controle de glissement
EP2590845B1 (fr) Procédé de détermination d'une vitesse de référence de véhicule et système de freinage
DE19633224A1 (de) Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeuges
DE19521872B4 (de) Verfahren zur Steuerung der Bremsanlage eines Fahrzeugs
DE10301096A1 (de) Verfahren zur Fahrdynamikregelung für einen Fahrzeugzug
EP0844954B1 (fr) Procede et dispositif pour la commande du systeme de freinage d'un vehicule
EP1104731B1 (fr) Procédé pour freiner un véhicule
EP0882631B1 (fr) Procédé de freinage d'un véhicule
DE10303492A1 (de) System zur Überwachung des Reifenzustands
EP2213535B1 (fr) Procédé de réglage ABS pour un véhicule et véhicule doté d'un système de freinage ABS
EP1522473B1 (fr) Procédé d'estimation de l'accélération transversale d'une semi-remorque
DE10044121A1 (de) Verfahren und Vorrichtung zur Erkennung einer Panikbremsung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040310

17Q First examination report despatched

Effective date: 20040421

AKX Designation fees paid

Designated state(s): DE FR GB IT NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50104801

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050916

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200122

Year of fee payment: 20

Ref country code: DE

Payment date: 20200131

Year of fee payment: 20

Ref country code: SE

Payment date: 20200127

Year of fee payment: 20

Ref country code: GB

Payment date: 20200127

Year of fee payment: 20

Ref country code: IT

Payment date: 20200122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50104801

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210114

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210114

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210114