EP1134715B1 - Circuit pour lampes de dispositif de signalisation de circulation - Google Patents

Circuit pour lampes de dispositif de signalisation de circulation Download PDF

Info

Publication number
EP1134715B1
EP1134715B1 EP01105595A EP01105595A EP1134715B1 EP 1134715 B1 EP1134715 B1 EP 1134715B1 EP 01105595 A EP01105595 A EP 01105595A EP 01105595 A EP01105595 A EP 01105595A EP 1134715 B1 EP1134715 B1 EP 1134715B1
Authority
EP
European Patent Office
Prior art keywords
signal
lamp circuit
signals
voltage
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01105595A
Other languages
German (de)
English (en)
Other versions
EP1134715A1 (fr
Inventor
Jim Ballantine
Eric Burdis
Geert De Zaeyer
Bernhard Dr. Hering
Keith Manston
Horst Schnippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1134715A1 publication Critical patent/EP1134715A1/fr
Application granted granted Critical
Publication of EP1134715B1 publication Critical patent/EP1134715B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the invention relates to a lamp circuit for at least one signal generator of a traffic signal system according to the preamble of claim 1.
  • the timing of the signal states of signal transmitters of a traffic signal system is controlled by a signal program, optionally a plurality of alternatively used signal programs in the form of a serial sequence of the lamp circuit of the signal generator or the signal generator supplied state signals.
  • the proper function of the lamp circuit and the connected light signals of the signal generator is, as is well known, to a considerable extent safety-relevant for thereby regulated traffic flows. It is therefore essential to continuously monitor the faultless operation of the lamp circuit and the connected light signals by a monitoring device which includes a sensor integrated into the lamp circuit.
  • Such a lamp circuit with monitoring device is known from WO98 / 48395.
  • the present invention is therefore an object of the invention for a lamp circuit of the type mentioned, to provide a further embodiment, with a high overall reliability, especially the signal fuse is achieved at an economically acceptable cost.
  • the solution according to the invention is based on the basic idea that redundancy is indispensable in the design of the monitoring device for safety reasons. However, if this redundancy is to be brought about schematically by pure duplication of the circuit design, a high degree of fail-safety is not achieved automatically, despite the expense involved.
  • the solution according to the invention is based on an implementation concept that triggers the idea of redundancy by hard-wired circuit duplication and in its place seeks functional redundancy where it appears necessary and possible.
  • One of the two microcomputers controls the circuit parts of the monitoring circuit integrated in the lamp circuit into a test mode in which, in particular, the proper functioning of the sensor system and the downstream evaluation units is checked by appropriate circuit measures.
  • the microcomputer controlling this test mode checks the "true" status signals generated as the results of these tests for compliance with the test mode specifications.
  • the second microcomputer continuously continues its monitoring function assigned to it in the test mode, so these tests run unnoticed for him. In this way you have it z.
  • this test mode in such a way that critical, particularly safety-related signal states can continue to be monitored seamlessly, on the other hand, however, at regular intervals to verify the signal protection itself.
  • this approach applies, for example, to current sensors for monitoring a properly activated signal state of a blocking or red signal of the signal generator, in which a transformer is provided whose primary winding is looped into a supply voltage supplying lead to the red signal and the secondary winding of a series connection of two Measuring resistors is connected in parallel, whose common connection point is grounded and at whose terminals to the transformer each one of two mutually complementary signal voltages can be tapped, which correspond to the current flowing through the supply line current.
  • a transformer is provided whose primary winding is looped into a supply voltage supplying lead to the red signal and the secondary winding of a series connection of two Measuring resistors is connected in parallel, whose common connection point is grounded and at whose terminals to the transformer each one of two mutually complementary signal voltages can be tapped, which correspond to the current flowing through the supply line current.
  • another embodiment of the invention is configured in such a way that the assignment of sensors to a corresponding actual signal, in contrast to a hard-wired arrangement, is designed to cyclically change the monitoring of identical state criteria on the supply lines to the light signals of the signal generator, wherein a single sensor successively over time one of at least two actual signals evaluated.
  • a functional redundancy is realized instead of a hardwired circuit duplication.
  • Purposefully changing assignments of signals to defined signal paths offer the possibility to reduce the effort for a hardwired circuit duplication and yet to check the signal paths for their perfect function or to be able to exclude the signal path as a source of error in the event of an error occurring.
  • the solution according to the invention is based on the fact that in a lamp circuit and the integrated parts of the monitoring device redundancy in part given already because a lamp circuit usually controls more than a signal generator or partly a circuit doubling indispensable for security reasons is.
  • This systematically prescribed multichannelness can be utilized selectively in order to perform functional tests for the signal generation or for the signal paths of the monitoring device itself.
  • this predetermined multichannelity is skilfully exploited in order to realize at least the degree of fail-safety of the monitored signaling to be achieved, even without the expense of a schematic circuit duplication.
  • a signal generator 1 with red, yellow and green signal 101, 102 and 103 is shown schematically. These light signals are controlled by a lamp circuit 2. Such lamp circuits are well known, which is why only schematically disruptstriacs 3 are shown in Figure 1, which are the output stages for the controlled switching on and off of the three light signals of the signal generator 1 form.
  • a signal generator control 4 generates control signals for the output triacs 3, these control signals are referred to below as predetermined state signals zsn. Since the proper function of the signal generator 1 is safety-relevant with regard to the traffic regulated by it, it is necessary and also common practice to constantly monitor the operating states of the signal generator 1.
  • a monitoring circuit 5 provided for this purpose initially has the task of determining that the respective operating states of the signal generator 1 actually coincide with those signal states which are defined by the current values of the predetermined state signals zsn. In addition, it has to detect any occurring error conditions in the signal monitoring itself, in other words, to monitor itself for proper function. As described above, the driving and also the monitoring of signal transmitters for traffic signal systems is common practice and can therefore be assumed to be known.
  • the first microcomputer 6 is supplied with the predetermined state signals zsn in parallel, which it outputs to the second microcomputer 7.
  • the second microcomputer 7 transmits the predetermined state signals zsn as control signals to the output triacs 3 arranged in the lamp circuit 2.
  • a test module 8 having a plurality of sensors with which the respective state can be determined on the basis of current and / or voltage measurement is measured at the light signals 101, 102 and 103 of the light signal transmitter 1.
  • the values determined by the sensor system of the test module 8 are first supplied to the second microcomputer 7 as true status signals zsa, which forwards them to the first microcomputer 6. Both computers is thus the information about the actual conditions on the light signal transmitter 1 before. Both computers independently check the detected actual signal states with the signal states predetermined by the predetermined state signals zsn for agreement or for any traffic-jeopardizing deviations.
  • Another special feature consists in the fact that the first microcomputer 6 parts of the sensors of the test module 8 can switch directly and thus completely independent of the second microcomputer 7 briefly in a test mode to check the trouble-free operation of the monitoring circuit itself.
  • the first microcomputer 6 transmits test control signals ts to the test module 8 of the lamp circuit 2. Details of the possible embodiment of this test mode will be explained in more detail below. In summary, it may suffice here to point out that, for example, for detecting the current for the red signal 101, it is possible to switch over to redundant detection channels. Furthermore, an "on" state of the green signal 103 can be simulated for corresponding voltage sensors of the test module 8. Finally, selected signals in the logical path of the test module 8 can be inverted.
  • this switching to the test mode takes place at a distance of a few 100 ms for each one network period.
  • the second microcomputer 7 determines errors during this test mode, which it interprets as sporadic errors and therefore tolerates.
  • the first microcomputer 6 checks whether the true state signals zsa supplied to it correspond to the signal states expected in this test mode.
  • FIGS. 2 and 3 one of the possibilities for detecting the perfect condition of the sensors of the test module 8 is shown schematically in comparison to one another. Both figures show by way of example the same sensors S1 and S2. Usually, as illustrated in FIG. 2, each of these sensors S1 and S2 would then be provided for a predetermined, individual one Actual signal A or B to evaluate and respectively generate a corresponding state signal zs1 (A) and zs2 (B). If one now wanted to check the perfect functional state of these two sensors S1 or S2 with their wiring to their perfect functional state, it would be possible to provide a further pair of sensors in a redundant circuit, in other words to double the basic circuit according to FIG ,
  • FIG. 2 illustrates a first allocation scheme
  • FIG. 3 illustrates the alternative allocation scheme thereto.
  • the first sensor S1 detects the second actual signal B and outputs a corresponding state signal zs1 (B).
  • the second sensor S2 evaluates the first actual signal A and generates a status signal zs2 (A).
  • the desired redundancy is realized with this alternately alternative assignment of the sensors S1 and S2 to the actual signals A and B, respectively, without actually having to double both sensors S1 and S2 in the circuit.
  • This is particularly advantageous in the case of a combination of signals which are usually switched complementary, which applies in particular to the red and green signals 101 and 103, as will be shown in more detail below. Generalizing this principle explained with reference to FIGS. 2 and 3, it would be conceivable Such, then cyclically changing assignment of individual sensors to provide more than two actual signals.
  • FIG. 4 shows an exemplary embodiment, in particular of the lamp circuit 2, in the form of a block diagram, in which the considerations explained above are realized.
  • a lamp circuit 2 is in practice generally designed to drive a plurality of signal transmitters 1, this is not shown in detail in FIG. 4 for reasons of clarity. It should be noted, however, that the lamp circuit then has a corresponding plurality of channels, each with similar sensor circuits, which are each assigned to one of the connected signal generator 1.
  • a signal bus 9 is provided for the transmission of the predetermined and true state signals zsn or zsa, to which the second microcomputer 7 is connected.
  • the predetermined state signals zsn transmitted by the second microcomputer 7 via the signal bus 9 are stored in an output buffer 10 whose parallel outputs are connected to the control inputs of the output triacs 3.
  • the output triacs 3 close or open a line connection from a mains voltage source 11 to the individual light signals 101, 102, 103 of the signal generator 1 via leads 1-101, 1-102 and 1-103, respectively.
  • the monitoring of the current states of the red signal 101 by means of corresponding current sensors 12 is particularly safety-relevant.
  • the redundant monitoring of the respective red signals 101 is indicated by two blocks in FIG. 4, which represent normal current channels 13 or redundant current channels 14.
  • the individual current channels 13 and 14 are connected in series through a channel switch 15 selected and queried, which in turn is controlled in the test mode by the first microcomputer 6 via selection signals tsl accordingly.
  • an analog / digital converter 16 is connected, which is the output side connected to the signal bus 9.
  • FIG. 5 shows in more detail in one exemplary embodiment how the redundant monitoring of a single red signal 101 can be realized in circuit technology.
  • a transformer 17 is looped to the secondary side, the series connection of two identical measuring resistors R1 is connected. Their common connection point is grounded.
  • a redundant pair of current sensors is implemented in a simple manner that meets all safety requirements.
  • a single measuring resistor as a burden of the transformer 17 could pretend to high current in the event of a line break, so that under certain circumstances a failure of the monitored red signal 101 would not be detected.
  • mutually inverse signal voltages can be tapped and evaluated independently of each other at both measuring resistors R1.
  • the transformer 17 is not redundantly provided, but is of subordinate importance with regard to fault tolerance. Because a line break in the area of the transformer 17 would only have the possible consequence that too little, possibly even no current is measured, although the red signal 101 is fully functional per se. However, his fake failure is safety-critical. Analogous to an actually failed red signal 101, the light signal transmitter 1 would be switched off normally.
  • FIG. 5 shows how the two signal voltages tapped from each other at the measuring resistors R1 are mutually inverse be further processed.
  • two multiplexers 18 and 18 ' are connected to the normal or redundant current channels.
  • the outputs of these two multiplexers 18, 18 ' are mutually enabled, controlled by the selection signals tsl, which are supplied to the one multiplexer 18 directly and the other multiplexer 18' via an inverter 19.
  • the input of the analog / digital converter 16 is connected.
  • the current signal states on the leads 1-101 to the red signal 101 and 1-103 to the green signal 103 are further monitored continuously by means of voltage sensors 22, because it is relevant from a safety point of view that the corresponding signal states for the red and green signals 101 and 103 are always complementary are. Because of this relevance, it must continue to be ensured that this monitoring is also fail-safe.
  • the first microcomputer 6 in the monitoring circuit 5 can initiate a test for checking in which the switched-on state of the green signal 103 is simulated.
  • the true state signals generated during this simulation by the green and red signal voltage sensors 22 and 101, respectively, are checked by the first microcomputer 6 to determine whether they properly correspond to the simulated signal states.
  • this function is shown schematically by a simulation control circuit 23, which by one of the first Microcomputer 6 emitted simulation control signal ts2 is activated.
  • a logical signal inversion is applied.
  • an inverting circuit 24 is arranged between the outputs of the voltage sensors 22 for the green and red signals 103 and 101 and the input buffer 21 for this purpose. This inverting circuit 24 is controlled by another of the control signals for the test operation output by the first microcomputer 6, which is referred to here as the inversion control signal ts3.
  • FIG. 6 shows in more detail an exemplary embodiment of the embodiment of the sensor system for monitoring the voltages on the supply lines 1-101 and 1-103 relative to the red signal 101 and the green signal 103, respectively.
  • the red signal 101 shown on the left-hand edge of FIG. 6 is connected, via the supply line 1-101 and the output triac 3 associated therewith, on the one hand to a phase N of the mains alternating voltage and, on the other hand, to its neutral conductor N.
  • This output triac is triggered by a predetermined state signal zs-101.
  • the same is shown on the right edge of FIG. 6 for the green signal 103.
  • the corresponding predetermined state signal for the control of the associated wrestlingtriacs 3 is designated zs-103.
  • the circuit arrangement shown in FIG. 6 uses two optocoupler sensors 25 or 25 ', already described with reference to FIGS. 2 and 3, in alternating assignment for detecting the instantaneous voltage on the supply lines 1-101 and 1-103 to the red signal 101 or to the green signal 103
  • This alternative alternating assignment is realized by two rectifier bridges 26 and 26 ', each coupled to one of the two supply lines 1-101, 1-103, whose second AC voltage connection - which is assumed here - is connected to the neutral conductor N, ie , lies on earth.
  • N neutral conductor
  • the lower sensor branch with the second optocoupler sensor 25 ' represents the state in this half-wave of the mains voltage on the supply line 1-101 to the red signal 101. In the positive half-wave of the mains voltage, this assignment is reversed.
  • One of the red signal 101 associated rectifier bridge 26 is connected to the supply line 1-101 via a pair of further Zener diodes D2 with high breakdown voltage. This sets an increased threshold for evaluating the "on" state of the red signal 101.
  • the optocoupler sensor 25 or 25 'evaluating this state therefore remains switched off in a defined manner until the voltage on the supply line 1-101 to the red signal 101 has exceeded the breakthrough threshold for the further diodes D2.
  • the optocoupler sensor 25 assigned to the upper sensor branch outputs an output signal V (103- / 101 +) .
  • This designation refers to the fact that this optocoupler sensor 25 during the negative half-wave of the mains voltage to the green signal 103 or during the positive half-wave the red signal 101 is assigned. Accordingly, the designation for the output signal V (101- / 103 +) is selected for the other optocoupler sensor 25 'in the lower sensor branch.
  • this terminal of the rectifier bridge 26 ' is connected to ground via the switching path of an optotriac 27, that is to say connected to the neutral conductor N of the mains alternating voltage.
  • a control input of this Optotriacs 27 is connected to the switching path of a designed as a field effect transistor control transistor 28. This, in turn, the simulation control signal ts2 is supplied.
  • the Optotriac 27 is kept permanently conductive via the corresponding state of the simulation control signal ts2.
  • the second AC voltage terminal of the second rectifier bridge 26 '- as assumed for this mode - pulled to ground potential, because the further resistor R3 is formed high impedance.
  • the Optotriac 27 is blocked.
  • the connection of the second rectifier bridge 26 'connected thereto - regardless of the instantaneous state on the supply line 1-103 to the green signal 103 - is at mains voltage potential. This simulates an "on" state of the green signal 103 regardless of the predetermined state signal zs-103 for the green signal in the monitoring circuit.
  • FIG. 7 shows schematically how this inversion circuit 24 is formed.
  • a plurality of monitoring channels each associated with a signal generator 1, are provided. Of these, two such channels are illustrated schematically in FIG.
  • the voltage sensors for monitoring the respective red and green signals 101 and 103 are designated 22 # 1 and 22 # 2, respectively, for two such channels. These blocks correspond in each case to a circuit arrangement according to FIG. 6.
  • the inversion circuit 24 is constructed from two antivalence elements XOR.
  • a first input of these two antivalence elements XOR is connected to one of the two outputs of the corresponding voltage sensor circuit 22 # 1 or 22 # 2 of the respective channel.
  • a second input of the two antivalence elements XOR is used as the control input to which the inversion control signal ts3 output by the first microcomputer 6 is supplied.
  • the antivalence condition selected signals here the output signals of voltage sensors 22 are inverted in the logical path.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Claims (12)

  1. Circuit de lampes (2) pour au moins un émetteur de signaux (1) d'une installation de feux de circulation, qui est commandé suivant un programme de signalisation au moyen de signaux d'état prescrits (zsn) qui lui sont envoyés et qui est équipé d'un dispositif de surveillance (5, 8) pour vérifier d'une part si les états de signaux réels de l'émetteur de signaux au moyen de capteurs de courant et de tension coïncident avec des états de signaux prescrits par les signaux d'état prescrits (zsn) et pour surveiller d'autre part des éléments éventuellement prévus redondants, caractérisé par une unité de commande et d'évaluation du dispositif de surveillance avec deux micro-ordinateurs (6, 7) qui sont exploités différemment et par l'intermédiaire desquels les signaux d'état prescrits (zsn) sont envoyés au circuit de lampe (2) et ces signaux sont vérifiés en continu pour voir s'ils coïncident avec de vrais signaux d'état (zsa) que produit un module de test (8) du dispositif de surveillance sur la base d'états de signaux réels, constatés momentanément, de l'émetteur de signaux, l'un des deux micro-ordinateurs (6) étant conçu pour activer dans le dispositif de surveillance un mode de test s'exécutant sans être remarqué en tant que tel par l'autre micro-ordinateur (7) et pour vérifier le fonctionnement du dispositif de surveillance dans ce mode de fonctionnement.
  2. Circuit de lampes selon la revendication 1, caractérisé par le fait que le micro-ordinateur (6) commandant le mode de test du dispositif de surveillance (5, 8) est conçu de telle sorte qu'il active ce mode de test à intervalles réguliers, mais à chaque fois seulement pour un si bref intervalle de temps que l'autre micro-ordinateur (7), pendant le mode de test, évalue et tolère de vrais signaux d'état (zsa) reçus, ne coïncidant éventuellement pas avec les signaux d'état prescrits (zsn), comme des signaux dus à des erreurs sporadiques.
  3. Circuit de lampes selon la revendication 1 ou 2, caractérisé par le fait que les deux micro-ordinateurs (6, 7) sont reliés entre eux par l'intermédiaire de lignes de données parallèles pour l'échange des signaux d'état prescrits (zsn) et des vrais signaux d'état (zsa), que le premier micro-ordinateur (6) comporte outre des bornes externes pour la réception des signaux d'état prescrits des bornes internes vers le module de test (8) pour la transmission de signaux de commande de test (ts) et que l'autre micro-ordinateur (7) comporte des bornes vers le circuit de lampes (2) par l'intermédiaire desquelles les signaux d'état prescrits (zsn) ou les vrais signaux d'état (zsa) produits par le module de test (8) sont transmis au circuit de lampes.
  4. Circuit de lampes selon l'une des revendications 1 à 3, caractérisé par le fait que, dans le dispositif de surveillance (5, 8), pour des circuits partiels (par exemple 12) pour lesquels la redondance est indispensable pour la surveillance de fonctions déterminantes pour la sécurité, seuls les composants de ceux-ci qui sont à erreur critique sont conçus redondants.
  5. Circuit de lampes selon la revendication 4, caractérisé par le fait que, pour des capteurs de courant (12) destinés à la surveillance d'un état de signal, activé sans erreur, d'un signal d'arrêt ou rouge (101) de l'émetteur de signaux (1), il est prévu un transformateur (17) dont l'enroulement primaire est inclus dans une ligne d'amenée (1-101) fournissant la tension d'alimentation au signal rouge et en parallèle avec l'enroulement secondaire duquel est branché un circuit série qui est composé de deux résistances de mesure (R1), dont le point de jonction commun se trouve à la masse et aux bornes duquel peut être prélevée au transformateur respectivement l'une de deux tensions de signal qui sont complémentaires l'une de l'autre et qui correspondent au courant passant momentanément dans la ligne d'amenée.
  6. Circuit de lampes selon l'une des revendications 1 à 5, caractérisé par le fait que, pour la surveillance de critères d'état du même type sur les lignes d'amenée (1-101, 1-102, 1-103) vers les signaux lumineux (101, 102, 103) de l'émetteur de signaux (1), l'association de capteurs (par exemple S1, S2) à un signal réel correspondant (A ou B) est conçue avec un changement cyclique, contrairement à un câblage fixe, un seul capteur évaluant successivement un signal réel parmi au moins deux signaux réels.
  7. Circuit de lampes selon la revendication 6, caractérisé par le fait que, pour la détection de courts-circuits de ligne dans le chemin logique de circuits capteurs (par exemple 22#1, 22#2), il est prévu un circuit de test (24) qui est raccordé à ses sorties et dans lequel un élément OU-EXCLUSIF (XOR) est raccordé à chaque fois par une première entrée à la sortie de signal correspondante du circuit capteur associé, est relié par une deuxième entrée au premier micro-ordinateur (6) par l'intermédiaire de l'une des lignes de commande de test et reçoit par cette dernière liaison un signal de commande d'inversion (ts3).
  8. Circuit de lampes selon la revendication 6 ou 7, caractérisé par le fait que, par l'association alternée d'états réels à évaluer sur des lignes d'amenée (par exemple 1-101, 1-103) vers l'émetteur de signaux (1) à chaque fois à un capteur évaluant, des signaux d'état complémentaires de l'émetteur de signaux sont combinés entre eux.
  9. Circuit de lampes selon la revendication 8, caractérisé par le fait que, pour la surveillance des états des signaux rouge et vert (101, 103) mis à la tension alternative de réseau suivant la commande des lignes d'amenée correspondantes (1-101 ou 1-103) d'un seul et même émetteur de signaux (1), un pont redresseur (26, 26') mis à la masse par son autre borne de tension alternative côté base est raccordé à chaque fois aux lignes d'amenée audit émetteur de signaux et que des bornes de tension continue de ces ponts redresseurs sont reliées entre elles en alternance à chaque fois par l'intermédiaire d'un circuit série composé d'une diode Zener (D1), d'une résistance série et d'un étage d'entrée, activable en fonction de la tension, d'un capteur de coupleur optoélectronique (25, 25'), les sorties des capteurs de coupleur optoélectronique délivrant à chaque fois des signaux d'état combinés (V (103-/101+) ou V (101-/103+)) qui correspondent en alternance pendant chacune des deux demi-ondes de la tension alternative de réseau à chaque fois, de manière complémentaire, aux états de signaux sur l'une ou l'autre des lignes d'amenée (1-101 ou 1-103).
  10. Circuit de lampes selon la revendication 9, caractérisé par le fait que le pont redresseur (26) associé au signal rouge (101) de l'émetteur de signaux (1) est raccordé à la ligne d'amenée de celui-ci (1-101) par l'intermédiaire d'un circuit de diode Zener (D2) ayant une tension de claquage accrue et qu'il existe ainsi un seuil de réponse accru pour l'état de signal sur cette ligne d'amenée, le vrai signal d'état associé changeant d'état de signal seulement lorsque la tension alternative de réseau atteint le seuil de réponse ainsi prescrit.
  11. Circuit de lampes selon l'une des revendications 9 ou 10, caractérisé par le fait que, pour la simulation de l'état "marche" du signal vert (103) dans le mode de test, la borne de tension alternative côté base du pont redresseur (26') associé à ce signal est reliée d'une part par l'intermédiaire d'une autre résistance de grande valeur ohmique (R3) directement à la tension alternative de réseau et d'autre part par l'intermédiaire de la section de commutation d'un interrupteur à semi-conducteur (23 ou 27, 28) à la masse, interrupteur à semi-conducteur dont l'entrée de commande reçoit un signal de commande de simulation (ts2) fourni par le premier micro-ordinateur (6) et qui est désactivé par l'intermédiaire de ce signal pour l'intervalle de temps de l'état "marche" simulé du signal vert.
  12. Circuit de lampes selon la revendication 11, caractérisé par le fait que l'interrupteur à semi-conducteur est construit à partir d'un optotriac (27) et d'un transistor de commande (28), que l'optotriac (27) est monté avec sa section de commutation entre la borne côté base du pont redresseur (26') et la masse et son étage d'entrée commandé en fonction de la tension est monté en série avec la section de commutation du transistor de commande dans la branche de ligne d'une source de tension continue et que l'entrée de commande du transistor de commande (28) reçoit le signal de commande de simulation (ts2) fourni par le premier micro-ordinateur (6).
EP01105595A 2000-03-15 2001-03-06 Circuit pour lampes de dispositif de signalisation de circulation Expired - Lifetime EP1134715B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10012608A DE10012608A1 (de) 2000-03-15 2000-03-15 Lampenschaltung eines Signalgebers einer Verkehrssignalanlage
DE10012608 2000-03-15

Publications (2)

Publication Number Publication Date
EP1134715A1 EP1134715A1 (fr) 2001-09-19
EP1134715B1 true EP1134715B1 (fr) 2006-06-14

Family

ID=7634811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01105595A Expired - Lifetime EP1134715B1 (fr) 2000-03-15 2001-03-06 Circuit pour lampes de dispositif de signalisation de circulation

Country Status (4)

Country Link
EP (1) EP1134715B1 (fr)
AT (1) ATE330299T1 (fr)
DE (2) DE10012608A1 (fr)
DK (1) DK1134715T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233879B4 (de) * 2002-07-25 2006-07-13 Siemens Ag Verfahren zum Steuern und Überwachen einer sicherheitskritischen Anlage, insbesondere Verkehrs-Signalanlage sowie Vorrichtung zur Durchführung des Verfahrens
DE102005032719A1 (de) * 2005-07-13 2007-01-25 Siemens Ag Lichtsignalanlage, insbesondere für den Straßenverkehr

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL178634C (nl) * 1978-01-02 1986-04-16 Philips Nv Inrichting voor het detecteren van ongewenste signaalcombinaties van twee signaallampen bij verkeerslichten.
US5073866A (en) * 1989-09-20 1991-12-17 Daeges Michael J Traffic signal control system
FR2653922B1 (fr) * 1989-11-02 1992-02-14 Sfim Systeme de surveillance de feu de signalisation.
DE19716576C1 (de) * 1997-04-21 1999-01-07 Stuehrenberg Gmbh Elektrobau S Verfahren zur Verkehrssignalsteuerung

Also Published As

Publication number Publication date
DE50110091D1 (de) 2006-07-27
EP1134715A1 (fr) 2001-09-19
DE10012608A1 (de) 2001-10-18
ATE330299T1 (de) 2006-07-15
DK1134715T3 (da) 2006-10-23

Similar Documents

Publication Publication Date Title
EP1389284B1 (fr) Module de commutation de securite servant a verifier la capacite d'interruption d'un element de commutation dans un module de commutation de securite
EP2149826B1 (fr) Circuit de sécurité avec contacteurs pour générer un signal de commutation
EP1695055B1 (fr) Dispositif de mesure, en particulier convertisseur de mesure de temperature
DE4441070C2 (de) Sicherheitsschalteranordnung
EP2378663B1 (fr) Circuit d'entrée sécurisé doté d'un raccordement périphérique sur un canal unique pour l'entrée d'un utilisateur de bus
EP1182762B1 (fr) Outil électrique et procédé pour son utilisation
EP0172454B1 (fr) Dispositif de contrôle pour installations de feux de signalisation
DE1537379C3 (de) Sicherheitsschaltung zum Durchführen logischer Verknüpfungen für binäre Schaltvariable und deren antivalente Schaltvariable
EP1134715B1 (fr) Circuit pour lampes de dispositif de signalisation de circulation
EP1032519B1 (fr) Cablage pour un composant de reglage, et procede de controle de ce cablage de composant de reglage
DE102008018642B4 (de) Überwachungsschaltung und Verfahren zum Prüfen der Schaltung
DE19606894C2 (de) Einrichtung zur signaltechnisch sicheren Steuerung und Überwachung elektrischer Verbraucher im Eisenbahnwesen
DE19906932B4 (de) Binäreingabegerät
EP2876509B1 (fr) Commande de sécurité
EP0815459B1 (fr) Circuits et procede de controle de generateurs non intermittents de signaux
EP3281365B1 (fr) Dispositif d'extension d'interface pour un dispositif réseau et procédé de fonctionnement d'un dispositif d'extension d'interface
DE3515962A1 (de) Anordnung zur signaltechnisch sicheren steuerung und ausfallueberwachung wechselstromgespeister doppelfadenlampen eines lichtsignals, insbesondere vorsignals in eisenbahnsignalanlagen
DE102018009924A1 (de) Dimmer
DE102020210339B4 (de) Schaltungsanordnung und Verfahren zur Fehlererkennung
DE4027331C2 (de) Verfahren und Anordnung zum Erkennen und Kompensieren von Fehlern in eigensicheren Stromkreisen mit Fernspeisung
DE68911744T2 (de) Apparat zur Überwachung des Zustands eines fernkontrollierten Gerätes.
DE3206082C2 (de) Fehlersichere Anordnung zur Verknüpfung der Betriebszustandsmeldungen von Signallampen
DE102018212763A1 (de) Messeinrichtung
EP3848633A1 (fr) Circuit avec protection contre les erreurs internes
DE10244534A1 (de) Schaltungsanordnung sowie Verfahren zur Erkennung von Fehlersituationen in gekoppelten Systemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011119

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110091

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060925

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060915

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090213

Year of fee payment: 9

Ref country code: DK

Payment date: 20090310

Year of fee payment: 9

Ref country code: IE

Payment date: 20090323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090319

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 10

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20100331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110310

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110091

Country of ref document: DE

Effective date: 20111001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306