EP1134715B1 - Lamp circuit for a signalisation device of a traffic signal system - Google Patents

Lamp circuit for a signalisation device of a traffic signal system Download PDF

Info

Publication number
EP1134715B1
EP1134715B1 EP01105595A EP01105595A EP1134715B1 EP 1134715 B1 EP1134715 B1 EP 1134715B1 EP 01105595 A EP01105595 A EP 01105595A EP 01105595 A EP01105595 A EP 01105595A EP 1134715 B1 EP1134715 B1 EP 1134715B1
Authority
EP
European Patent Office
Prior art keywords
signal
lamp circuit
signals
voltage
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01105595A
Other languages
German (de)
French (fr)
Other versions
EP1134715A1 (en
Inventor
Jim Ballantine
Eric Burdis
Geert De Zaeyer
Bernhard Dr. Hering
Keith Manston
Horst Schnippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1134715A1 publication Critical patent/EP1134715A1/en
Application granted granted Critical
Publication of EP1134715B1 publication Critical patent/EP1134715B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights

Definitions

  • the invention relates to a lamp circuit for at least one signal generator of a traffic signal system according to the preamble of claim 1.
  • the timing of the signal states of signal transmitters of a traffic signal system is controlled by a signal program, optionally a plurality of alternatively used signal programs in the form of a serial sequence of the lamp circuit of the signal generator or the signal generator supplied state signals.
  • the proper function of the lamp circuit and the connected light signals of the signal generator is, as is well known, to a considerable extent safety-relevant for thereby regulated traffic flows. It is therefore essential to continuously monitor the faultless operation of the lamp circuit and the connected light signals by a monitoring device which includes a sensor integrated into the lamp circuit.
  • Such a lamp circuit with monitoring device is known from WO98 / 48395.
  • the present invention is therefore an object of the invention for a lamp circuit of the type mentioned, to provide a further embodiment, with a high overall reliability, especially the signal fuse is achieved at an economically acceptable cost.
  • the solution according to the invention is based on the basic idea that redundancy is indispensable in the design of the monitoring device for safety reasons. However, if this redundancy is to be brought about schematically by pure duplication of the circuit design, a high degree of fail-safety is not achieved automatically, despite the expense involved.
  • the solution according to the invention is based on an implementation concept that triggers the idea of redundancy by hard-wired circuit duplication and in its place seeks functional redundancy where it appears necessary and possible.
  • One of the two microcomputers controls the circuit parts of the monitoring circuit integrated in the lamp circuit into a test mode in which, in particular, the proper functioning of the sensor system and the downstream evaluation units is checked by appropriate circuit measures.
  • the microcomputer controlling this test mode checks the "true" status signals generated as the results of these tests for compliance with the test mode specifications.
  • the second microcomputer continuously continues its monitoring function assigned to it in the test mode, so these tests run unnoticed for him. In this way you have it z.
  • this test mode in such a way that critical, particularly safety-related signal states can continue to be monitored seamlessly, on the other hand, however, at regular intervals to verify the signal protection itself.
  • this approach applies, for example, to current sensors for monitoring a properly activated signal state of a blocking or red signal of the signal generator, in which a transformer is provided whose primary winding is looped into a supply voltage supplying lead to the red signal and the secondary winding of a series connection of two Measuring resistors is connected in parallel, whose common connection point is grounded and at whose terminals to the transformer each one of two mutually complementary signal voltages can be tapped, which correspond to the current flowing through the supply line current.
  • a transformer is provided whose primary winding is looped into a supply voltage supplying lead to the red signal and the secondary winding of a series connection of two Measuring resistors is connected in parallel, whose common connection point is grounded and at whose terminals to the transformer each one of two mutually complementary signal voltages can be tapped, which correspond to the current flowing through the supply line current.
  • another embodiment of the invention is configured in such a way that the assignment of sensors to a corresponding actual signal, in contrast to a hard-wired arrangement, is designed to cyclically change the monitoring of identical state criteria on the supply lines to the light signals of the signal generator, wherein a single sensor successively over time one of at least two actual signals evaluated.
  • a functional redundancy is realized instead of a hardwired circuit duplication.
  • Purposefully changing assignments of signals to defined signal paths offer the possibility to reduce the effort for a hardwired circuit duplication and yet to check the signal paths for their perfect function or to be able to exclude the signal path as a source of error in the event of an error occurring.
  • the solution according to the invention is based on the fact that in a lamp circuit and the integrated parts of the monitoring device redundancy in part given already because a lamp circuit usually controls more than a signal generator or partly a circuit doubling indispensable for security reasons is.
  • This systematically prescribed multichannelness can be utilized selectively in order to perform functional tests for the signal generation or for the signal paths of the monitoring device itself.
  • this predetermined multichannelity is skilfully exploited in order to realize at least the degree of fail-safety of the monitored signaling to be achieved, even without the expense of a schematic circuit duplication.
  • a signal generator 1 with red, yellow and green signal 101, 102 and 103 is shown schematically. These light signals are controlled by a lamp circuit 2. Such lamp circuits are well known, which is why only schematically disruptstriacs 3 are shown in Figure 1, which are the output stages for the controlled switching on and off of the three light signals of the signal generator 1 form.
  • a signal generator control 4 generates control signals for the output triacs 3, these control signals are referred to below as predetermined state signals zsn. Since the proper function of the signal generator 1 is safety-relevant with regard to the traffic regulated by it, it is necessary and also common practice to constantly monitor the operating states of the signal generator 1.
  • a monitoring circuit 5 provided for this purpose initially has the task of determining that the respective operating states of the signal generator 1 actually coincide with those signal states which are defined by the current values of the predetermined state signals zsn. In addition, it has to detect any occurring error conditions in the signal monitoring itself, in other words, to monitor itself for proper function. As described above, the driving and also the monitoring of signal transmitters for traffic signal systems is common practice and can therefore be assumed to be known.
  • the first microcomputer 6 is supplied with the predetermined state signals zsn in parallel, which it outputs to the second microcomputer 7.
  • the second microcomputer 7 transmits the predetermined state signals zsn as control signals to the output triacs 3 arranged in the lamp circuit 2.
  • a test module 8 having a plurality of sensors with which the respective state can be determined on the basis of current and / or voltage measurement is measured at the light signals 101, 102 and 103 of the light signal transmitter 1.
  • the values determined by the sensor system of the test module 8 are first supplied to the second microcomputer 7 as true status signals zsa, which forwards them to the first microcomputer 6. Both computers is thus the information about the actual conditions on the light signal transmitter 1 before. Both computers independently check the detected actual signal states with the signal states predetermined by the predetermined state signals zsn for agreement or for any traffic-jeopardizing deviations.
  • Another special feature consists in the fact that the first microcomputer 6 parts of the sensors of the test module 8 can switch directly and thus completely independent of the second microcomputer 7 briefly in a test mode to check the trouble-free operation of the monitoring circuit itself.
  • the first microcomputer 6 transmits test control signals ts to the test module 8 of the lamp circuit 2. Details of the possible embodiment of this test mode will be explained in more detail below. In summary, it may suffice here to point out that, for example, for detecting the current for the red signal 101, it is possible to switch over to redundant detection channels. Furthermore, an "on" state of the green signal 103 can be simulated for corresponding voltage sensors of the test module 8. Finally, selected signals in the logical path of the test module 8 can be inverted.
  • this switching to the test mode takes place at a distance of a few 100 ms for each one network period.
  • the second microcomputer 7 determines errors during this test mode, which it interprets as sporadic errors and therefore tolerates.
  • the first microcomputer 6 checks whether the true state signals zsa supplied to it correspond to the signal states expected in this test mode.
  • FIGS. 2 and 3 one of the possibilities for detecting the perfect condition of the sensors of the test module 8 is shown schematically in comparison to one another. Both figures show by way of example the same sensors S1 and S2. Usually, as illustrated in FIG. 2, each of these sensors S1 and S2 would then be provided for a predetermined, individual one Actual signal A or B to evaluate and respectively generate a corresponding state signal zs1 (A) and zs2 (B). If one now wanted to check the perfect functional state of these two sensors S1 or S2 with their wiring to their perfect functional state, it would be possible to provide a further pair of sensors in a redundant circuit, in other words to double the basic circuit according to FIG ,
  • FIG. 2 illustrates a first allocation scheme
  • FIG. 3 illustrates the alternative allocation scheme thereto.
  • the first sensor S1 detects the second actual signal B and outputs a corresponding state signal zs1 (B).
  • the second sensor S2 evaluates the first actual signal A and generates a status signal zs2 (A).
  • the desired redundancy is realized with this alternately alternative assignment of the sensors S1 and S2 to the actual signals A and B, respectively, without actually having to double both sensors S1 and S2 in the circuit.
  • This is particularly advantageous in the case of a combination of signals which are usually switched complementary, which applies in particular to the red and green signals 101 and 103, as will be shown in more detail below. Generalizing this principle explained with reference to FIGS. 2 and 3, it would be conceivable Such, then cyclically changing assignment of individual sensors to provide more than two actual signals.
  • FIG. 4 shows an exemplary embodiment, in particular of the lamp circuit 2, in the form of a block diagram, in which the considerations explained above are realized.
  • a lamp circuit 2 is in practice generally designed to drive a plurality of signal transmitters 1, this is not shown in detail in FIG. 4 for reasons of clarity. It should be noted, however, that the lamp circuit then has a corresponding plurality of channels, each with similar sensor circuits, which are each assigned to one of the connected signal generator 1.
  • a signal bus 9 is provided for the transmission of the predetermined and true state signals zsn or zsa, to which the second microcomputer 7 is connected.
  • the predetermined state signals zsn transmitted by the second microcomputer 7 via the signal bus 9 are stored in an output buffer 10 whose parallel outputs are connected to the control inputs of the output triacs 3.
  • the output triacs 3 close or open a line connection from a mains voltage source 11 to the individual light signals 101, 102, 103 of the signal generator 1 via leads 1-101, 1-102 and 1-103, respectively.
  • the monitoring of the current states of the red signal 101 by means of corresponding current sensors 12 is particularly safety-relevant.
  • the redundant monitoring of the respective red signals 101 is indicated by two blocks in FIG. 4, which represent normal current channels 13 or redundant current channels 14.
  • the individual current channels 13 and 14 are connected in series through a channel switch 15 selected and queried, which in turn is controlled in the test mode by the first microcomputer 6 via selection signals tsl accordingly.
  • an analog / digital converter 16 is connected, which is the output side connected to the signal bus 9.
  • FIG. 5 shows in more detail in one exemplary embodiment how the redundant monitoring of a single red signal 101 can be realized in circuit technology.
  • a transformer 17 is looped to the secondary side, the series connection of two identical measuring resistors R1 is connected. Their common connection point is grounded.
  • a redundant pair of current sensors is implemented in a simple manner that meets all safety requirements.
  • a single measuring resistor as a burden of the transformer 17 could pretend to high current in the event of a line break, so that under certain circumstances a failure of the monitored red signal 101 would not be detected.
  • mutually inverse signal voltages can be tapped and evaluated independently of each other at both measuring resistors R1.
  • the transformer 17 is not redundantly provided, but is of subordinate importance with regard to fault tolerance. Because a line break in the area of the transformer 17 would only have the possible consequence that too little, possibly even no current is measured, although the red signal 101 is fully functional per se. However, his fake failure is safety-critical. Analogous to an actually failed red signal 101, the light signal transmitter 1 would be switched off normally.
  • FIG. 5 shows how the two signal voltages tapped from each other at the measuring resistors R1 are mutually inverse be further processed.
  • two multiplexers 18 and 18 ' are connected to the normal or redundant current channels.
  • the outputs of these two multiplexers 18, 18 ' are mutually enabled, controlled by the selection signals tsl, which are supplied to the one multiplexer 18 directly and the other multiplexer 18' via an inverter 19.
  • the input of the analog / digital converter 16 is connected.
  • the current signal states on the leads 1-101 to the red signal 101 and 1-103 to the green signal 103 are further monitored continuously by means of voltage sensors 22, because it is relevant from a safety point of view that the corresponding signal states for the red and green signals 101 and 103 are always complementary are. Because of this relevance, it must continue to be ensured that this monitoring is also fail-safe.
  • the first microcomputer 6 in the monitoring circuit 5 can initiate a test for checking in which the switched-on state of the green signal 103 is simulated.
  • the true state signals generated during this simulation by the green and red signal voltage sensors 22 and 101, respectively, are checked by the first microcomputer 6 to determine whether they properly correspond to the simulated signal states.
  • this function is shown schematically by a simulation control circuit 23, which by one of the first Microcomputer 6 emitted simulation control signal ts2 is activated.
  • a logical signal inversion is applied.
  • an inverting circuit 24 is arranged between the outputs of the voltage sensors 22 for the green and red signals 103 and 101 and the input buffer 21 for this purpose. This inverting circuit 24 is controlled by another of the control signals for the test operation output by the first microcomputer 6, which is referred to here as the inversion control signal ts3.
  • FIG. 6 shows in more detail an exemplary embodiment of the embodiment of the sensor system for monitoring the voltages on the supply lines 1-101 and 1-103 relative to the red signal 101 and the green signal 103, respectively.
  • the red signal 101 shown on the left-hand edge of FIG. 6 is connected, via the supply line 1-101 and the output triac 3 associated therewith, on the one hand to a phase N of the mains alternating voltage and, on the other hand, to its neutral conductor N.
  • This output triac is triggered by a predetermined state signal zs-101.
  • the same is shown on the right edge of FIG. 6 for the green signal 103.
  • the corresponding predetermined state signal for the control of the associated wrestlingtriacs 3 is designated zs-103.
  • the circuit arrangement shown in FIG. 6 uses two optocoupler sensors 25 or 25 ', already described with reference to FIGS. 2 and 3, in alternating assignment for detecting the instantaneous voltage on the supply lines 1-101 and 1-103 to the red signal 101 or to the green signal 103
  • This alternative alternating assignment is realized by two rectifier bridges 26 and 26 ', each coupled to one of the two supply lines 1-101, 1-103, whose second AC voltage connection - which is assumed here - is connected to the neutral conductor N, ie , lies on earth.
  • N neutral conductor
  • the lower sensor branch with the second optocoupler sensor 25 ' represents the state in this half-wave of the mains voltage on the supply line 1-101 to the red signal 101. In the positive half-wave of the mains voltage, this assignment is reversed.
  • One of the red signal 101 associated rectifier bridge 26 is connected to the supply line 1-101 via a pair of further Zener diodes D2 with high breakdown voltage. This sets an increased threshold for evaluating the "on" state of the red signal 101.
  • the optocoupler sensor 25 or 25 'evaluating this state therefore remains switched off in a defined manner until the voltage on the supply line 1-101 to the red signal 101 has exceeded the breakthrough threshold for the further diodes D2.
  • the optocoupler sensor 25 assigned to the upper sensor branch outputs an output signal V (103- / 101 +) .
  • This designation refers to the fact that this optocoupler sensor 25 during the negative half-wave of the mains voltage to the green signal 103 or during the positive half-wave the red signal 101 is assigned. Accordingly, the designation for the output signal V (101- / 103 +) is selected for the other optocoupler sensor 25 'in the lower sensor branch.
  • this terminal of the rectifier bridge 26 ' is connected to ground via the switching path of an optotriac 27, that is to say connected to the neutral conductor N of the mains alternating voltage.
  • a control input of this Optotriacs 27 is connected to the switching path of a designed as a field effect transistor control transistor 28. This, in turn, the simulation control signal ts2 is supplied.
  • the Optotriac 27 is kept permanently conductive via the corresponding state of the simulation control signal ts2.
  • the second AC voltage terminal of the second rectifier bridge 26 '- as assumed for this mode - pulled to ground potential, because the further resistor R3 is formed high impedance.
  • the Optotriac 27 is blocked.
  • the connection of the second rectifier bridge 26 'connected thereto - regardless of the instantaneous state on the supply line 1-103 to the green signal 103 - is at mains voltage potential. This simulates an "on" state of the green signal 103 regardless of the predetermined state signal zs-103 for the green signal in the monitoring circuit.
  • FIG. 7 shows schematically how this inversion circuit 24 is formed.
  • a plurality of monitoring channels each associated with a signal generator 1, are provided. Of these, two such channels are illustrated schematically in FIG.
  • the voltage sensors for monitoring the respective red and green signals 101 and 103 are designated 22 # 1 and 22 # 2, respectively, for two such channels. These blocks correspond in each case to a circuit arrangement according to FIG. 6.
  • the inversion circuit 24 is constructed from two antivalence elements XOR.
  • a first input of these two antivalence elements XOR is connected to one of the two outputs of the corresponding voltage sensor circuit 22 # 1 or 22 # 2 of the respective channel.
  • a second input of the two antivalence elements XOR is used as the control input to which the inversion control signal ts3 output by the first microcomputer 6 is supplied.
  • the antivalence condition selected signals here the output signals of voltage sensors 22 are inverted in the logical path.

Abstract

The lamp circuit (2) has a control and evaluation unit for a monitoring device with two differently operated microcomputers (6,7), via which state signals are fed to the lamp circuit and that continuously check the signals for coincidence with true state signals. One of the microcomputers activates a test mode in the monitoring device unknown to the other microcomputer and checks the functions of the monitoring device in this mode.

Description

Die Erfindung bezieht sich auf eine Lampenschaltung für mindestens einen Signalgeber einer Verkehrssignalanlage gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a lamp circuit for at least one signal generator of a traffic signal system according to the preamble of claim 1.

Der zeitliche Ablauf der Signalzustände von Signalgebern einer Verkehrssignalanlage wird durch ein Signalprogramm, gegebenenfalls mehrere alternativ eingesetzte Signalprogramme in Form einer seriellen Abfolge von der Lampenschaltung des Signalgebers beziehungsweise der Signalgeber zugeführten Zustandssignalen gesteuert. Die ordnungsgemäße Funktion der Lampenschaltung und der angeschlossenen Lichtsignale der Signalgeber ist, wie allgemein bekannt, in einem erheblichen Umfang sicherheitsrelevant für dadurch geregelte Verkehrsströme. Es ist deshalb unabdingbar, die fehlerfreie Funktion der Lampenschaltung sowie der angeschlossenen Lichtsignale durch eine Überwachungseinrichtung, die eine in die Lampenschaltung integrierte Sensorik einschließt, fortlaufend zu überwachen.The timing of the signal states of signal transmitters of a traffic signal system is controlled by a signal program, optionally a plurality of alternatively used signal programs in the form of a serial sequence of the lamp circuit of the signal generator or the signal generator supplied state signals. The proper function of the lamp circuit and the connected light signals of the signal generator is, as is well known, to a considerable extent safety-relevant for thereby regulated traffic flows. It is therefore essential to continuously monitor the faultless operation of the lamp circuit and the connected light signals by a monitoring device which includes a sensor integrated into the lamp circuit.

Eine solche Lampenschaltung mit Ãœberwachungseinrichtung ist aus der WO98/48395 bekannt.Such a lamp circuit with monitoring device is known from WO98 / 48395.

Die damit realisierte Signalsicherung ist notwendig, jedoch noch nicht hinreichend, denn auch in der Sensorik selbst oder bei einer Bewertung der über die Sensorik festgestellten Signalzustände können Fehler auftreten. Deshalb wird auch in verschiedenen national verbindlichen Richtlinien darüberhinaus gefordert, diese Signalsicherung selbst fehlersicher auszugestalten. Eine bekannte Möglichkeit, dies zu realisieren, besteht darin, die Überwachungseinrichtung zweikanalig, das heißt also redundant auszuführen. Der damit verbundene Aufwand ist beträchtlich. Dennoch schützt die bloße Verdopplung nicht in allen Fällen vor Programmierungsfehlern oder auch Schwachstellen im Aufbau der Überwachungseinrichtung, die in Extremfällen zu einem Fehlverhalten der Signalsicherung führen können.The signal fuse realized with it is necessary, but not yet sufficient, because errors can also occur in the sensor system itself or in an evaluation of the signal states detected via the sensor system. Therefore, it is also required in various nationally binding guidelines to design this signal protection itself fail-safe. A known way to realize this is to run the monitoring device two-channel, that is, redundant. The associated effort is considerable. Nevertheless, the mere duplication does not always protect against programming errors or weak points in the construction of the monitoring device, which in extreme cases can lead to signal protection malfunction.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, für eine Lampenschaltung der eingangs genannten Art, eine weitere Ausführungsform zu schaffen, mit der bei wirtschaftlich vertretbarem Aufwand eine hohe Fehlersicherheit insgesamt, insbesondere auch der Signalsicherung erreicht wird.The present invention is therefore an object of the invention for a lamp circuit of the type mentioned, to provide a further embodiment, with a high overall reliability, especially the signal fuse is achieved at an economically acceptable cost.

Bei einer Lampenschaltung der eingangs genannten Art wird diese Aufgabe durch die im Kennzeichen des Patentanspruches 1 beschriebenen Merkmale gelöst.In a lamp circuit of the type mentioned, this object is achieved by the features described in the characterizing part of claim 1.

Die erfindungsgemäße Lösung beruht auf der Grundüberlegung, dass Redundanz bei der Ausgestaltung der Überwachungseinrichtung aus Sicherheitsgründen an sich unverzichtbar ist. Wenn diese Redundanz jedoch schematisch durch pure Verdopplung des Schaltungsaufbaus herbeigeführt werden soll, ist trotz des Aufwandes dafür noch nicht automatisch eine hohe Fehlersicherheit erreicht. Der erfindungsgemäßen Lösung liegt ein Realisierungskonzept zugrunde, das sich von der Vorstellung einer Redundanz durch fest verdrahtete Schaltungsverdopplung löst und an dessen Stelle eine funktionale Redundanz dort anstrebt, wo sie nötig und möglich erscheint.The solution according to the invention is based on the basic idea that redundancy is indispensable in the design of the monitoring device for safety reasons. However, if this redundancy is to be brought about schematically by pure duplication of the circuit design, a high degree of fail-safety is not achieved automatically, despite the expense involved. The solution according to the invention is based on an implementation concept that triggers the idea of redundancy by hard-wired circuit duplication and in its place seeks functional redundancy where it appears necessary and possible.

Dieses Konzept sei im Hinblick auf die Verwendung zweier Mikrocomputer bei der erfindungsgemäßen Lösung erläutert, ohne dabei zunächst Einzelheiten bei der Ausgestaltung der Sensorik selbst einzubeziehen. Beide Mikrocomputer überwachen fortlaufend die Übereinstimmung der tatsächlichen Signalzustände in der Lampenschaltung mit durch die vorgegebenen Zustandssignale vorgegebenen Signalzuständen. Dies entspricht unmittelbar dem konventionellen Lösungsansatz der Erhöhung der Fehlersicherheit durch Verdopplung von Schaltungsteilen. Mit dieser Überwachung der ordnungsgemäßen Funktion der Lampenschaltung und der an sie angeschlossenen Lichtsignale der Signalgeber ist jedoch eine Überwachung der Signalsicherung selbst noch nicht sichergestellt. Zur Lösung dieser Teilaufgabe werden beide Mikrocomputer unterschiedlich eingesetzt.This concept is explained with regard to the use of two microcomputers in the solution according to the invention, without first including details in the design of the sensor itself. Both microcomputers continuously monitor the coincidence of the actual signal states in the lamp circuit with signal states predetermined by the predetermined state signals. This corresponds directly to the conventional approach of increasing the reliability of errors by doubling circuit parts. However, with this monitoring of the proper functioning of the lamp circuit and the light signals of the signal generator connected to it, monitoring of the signal protection itself is not yet ensured. To solve this subtask, both microcomputers are used differently.

Einer der beiden Mikrocomputer steuert die in die Lampenschaltung integrierten Schaltungsteile der Überwachungsschaltung in einen Testmodus, in dem durch entsprechende Schaltungsmaßnahmen insbesondere die ordnungsgemäße Funktion der Sensorik und der nachgeschalteten Bewertungseinheiten überprüft wird. Der diesen Testmodus steuernde Mikrocomputer überprüft die als Ergebnisse dieser Tests generierten "wahren" Zustandssignale auf ihre Übereinstimmung mit den Vorgaben für den Testmodus. Der zweite Mikrocomputer setzt auch im Testmodus seine ihm zugeordnete Überwachungsfunktion kontinuierlich fort, diese Tests laufen also für ihn unbemerkt ab. Auf diese Weise hat man es z. B. in der Hand, diesen Testmodus so auszugestalten, dass kritische, besonders sicherheitsrelevante Signalzustände weiterhin lückenlos überwacht werden können, andererseits aber in regelmäßigen Abständen die Signalsicherung selbst zu überprüfen ist.One of the two microcomputers controls the circuit parts of the monitoring circuit integrated in the lamp circuit into a test mode in which, in particular, the proper functioning of the sensor system and the downstream evaluation units is checked by appropriate circuit measures. The microcomputer controlling this test mode checks the "true" status signals generated as the results of these tests for compliance with the test mode specifications. The second microcomputer continuously continues its monitoring function assigned to it in the test mode, so these tests run unnoticed for him. In this way you have it z. As in the hand, this test mode in such a way that critical, particularly safety-related signal states can continue to be monitored seamlessly, on the other hand, however, at regular intervals to verify the signal protection itself.

Bei einer vorteilhaften Weiterbildung dieses Lösungsansatzes sind in der Überwachungseinrichtung bei Teilschaltungen, bei denen zum Überwachen sicherheitrelevanter Funktionen Redundanz unverzichtbar ist, nicht diese Teilschaltungen selbst, sondern lediglich deren funktionskritische Komponenten redundant ausgelegt. Gemäß einer speziellen Ausführungsform gilt dies beispielsweise für Stromsensoren zum Überwachen eines einwandfrei aktivierten Signalzustandes eines Sperr- bzw. Rotsignales des Signalgebers, bei denen ein Übertrager vorgesehen ist, dessen Primärwicklung in eine die Versorgungsspannung liefernde Zuleitung zum Rotsignal eingeschleift ist und zu dessen Sekundärwicklung eine Reihenschaltung zweier Messwiderstände parallel geschaltet ist, deren gemeinsamer Verbindungspunkt an Masse liegt und an deren Anschlüssen an den Übertrager jeweils eine von zwei zueinander komplementären Signalspannungen abgreifbar ist, die dem momentan über die Zuleitung fließenden Strom entsprechen. Statt einer schematischen Verdopplung der sicherheitsrelevanten Stromsensoren wird demnach lediglich die kritische Bürde des Übertragers so ausgestaltet, dass in ihr auftretende Leitungsbrüche bzw. Kurzschlüsse zuverlässig festzustellen sind.In an advantageous development of this approach, in the monitoring device in subcircuits in which redundancy is indispensable for monitoring safety-relevant functions, it is not these subcircuits themselves that are designed to be redundant, but only their functionally critical components. According to a specific embodiment, this applies, for example, to current sensors for monitoring a properly activated signal state of a blocking or red signal of the signal generator, in which a transformer is provided whose primary winding is looped into a supply voltage supplying lead to the red signal and the secondary winding of a series connection of two Measuring resistors is connected in parallel, whose common connection point is grounded and at whose terminals to the transformer each one of two mutually complementary signal voltages can be tapped, which correspond to the current flowing through the supply line current. Instead of a schematic doubling of the safety-relevant current sensors, therefore, only the critical burden of the transformer is so designed so that occurring in it line breaks or short circuits are reliable.

Eine andere Weiterbildung der Erfindung ist dagegen derart ausgestaltet, dass zum Überwachen gleichartiger Zustandskriterien auf den Zuleitungen zu den Lichtsignalen des Signalgebers die Zuordnung von Sensoren zu einem entsprechenden Istsignal im Gegensatz zu einer fest verdrahteten Anordnung zyklisch wechselnd ausgebildet ist, wobei ein einzelner Sensor im Zeitablauf nacheinander eines von mindestens zwei Istsignalen bewertet. Mit dieser Weiterbildung wird somit anstatt einer fest verdrahteten Schaltungsverdopplung wiederum eine funktionale Redundanz realisiert. Gezielt wechselnde Zuordnungen von Signalen zu definierten Signalwegen bieten die Möglichkeit, den Aufwand für eine fest verdrahtete Schaltungsverdopplung zu reduzieren und dabei doch die Signalwege auf ihre einwandfreie Funktion zu überprüfen beziehungsweise im Falle eines auftretenden Fehlers den Signalweg als Fehlerquelle ausschließen zu können.On the other hand, another embodiment of the invention is configured in such a way that the assignment of sensors to a corresponding actual signal, in contrast to a hard-wired arrangement, is designed to cyclically change the monitoring of identical state criteria on the supply lines to the light signals of the signal generator, wherein a single sensor successively over time one of at least two actual signals evaluated. With this development, in turn, a functional redundancy is realized instead of a hardwired circuit duplication. Purposefully changing assignments of signals to defined signal paths offer the possibility to reduce the effort for a hardwired circuit duplication and yet to check the signal paths for their perfect function or to be able to exclude the signal path as a source of error in the event of an error occurring.

Insgesamt gesehen, stellt die erfindungsgemäße Lösung also darauf ab, dass in einer Lampenschaltung und den in diese integrierten Teilen der Überwachungseinrichtung Redundanz zum Teil schon deshalb vorgegeben ist, weil eine Lampenschaltung in der Regel mehr als einen Signalgeber steuert beziehungsweise zum Teil eine Schaltungsverdopplung aus Sicherheitsgründen unverzichtbar ist. Diese systematisch vorgegebene Mehrkanaligkeit lässt sich gezielt ausnutzen, um Funktionstests für die Signalerzeugung beziehungsweise für die Signalwege der Überwachungseinrichtung selbst durchzuführen. Dabei wird diese vorgegebene Mehrkanaligkeit in geschickter Weise ausgenutzt, um auch ohne den Aufwand für eine schematische Schaltungsverdopplung zumindestens den damit zu erreichenden Grad der Fehlersicherheit der überwachten Signalisierung zu realisieren. Weitere Ausgestaltungen und Vorteile der Erfindung ergeben sich aus der Gesamtheit der Patentansprüche und der nachfolgenden Beschreibung von Ausführungsbeispielen.Overall, therefore, the solution according to the invention is based on the fact that in a lamp circuit and the integrated parts of the monitoring device redundancy in part given already because a lamp circuit usually controls more than a signal generator or partly a circuit doubling indispensable for security reasons is. This systematically prescribed multichannelness can be utilized selectively in order to perform functional tests for the signal generation or for the signal paths of the monitoring device itself. In this case, this predetermined multichannelity is skilfully exploited in order to realize at least the degree of fail-safety of the monitored signaling to be achieved, even without the expense of a schematic circuit duplication. Further embodiments and advantages of the invention will become apparent from the totality of the claims and the following description of exemplary embodiments.

Ausführungsbeispiele der Erfindung werden im folgenden anhand der Zeichnung näher erläutert, dabei zeigt:

  • Figur 1 ein Blockschaltbild mit einer Lampenschaltung, daran angeschlossenem Signalgeber und mit einer Ãœberwachungseinrichtung bestehend aus einem in die Lampenschaltung integrierten Testmodul mit entsprechender Sensorik sowie aus einer durch zwei Mikrocomputer realisierten Steuer- und Bewertereinheit,
  • Figur 2 und 3 schematisch eine fest verdrahtete beziehungsweise alternativ zu wechselnde Zuordnung von in dem Testmodul gemessenen Signalen zu definierten Signalwegen beziehungsweise logischen Pfaden,
  • Figur 4 ein Ausführungsbeispiel zu der in Figur 1 dargestellten Anordnung mit detaillierteren Angaben bezüglich der Zusammenarbeit der beiden Mikrocomputer mit dem Testmodul, Figur 5 ein Ausführungsbeispiel für einen Stromsensor des Testmoduls zum Ãœberwachen des Signalzustandes eines Sperr- bzw. Rotsignals des Signalgebers,
  • Figur 6 ein Ausführungsbeispiel für die kombinierte Ausgestaltung von Spannungssensoren zum Ãœberwachen des Rot- sowie des Grünsignals des Signalgebers unter anderem in einem Testmodus sowie unter Ausnutzung der wechselnden Polarität der Netzwechselspannung und
  • Figur 7 ein Blockschaltbild für eine Invertierungsschaltung zum Invertieren von beispielsweise mit einer Schaltungsanordnung gemäß Figur 6 erzeugten, momentanen Zuständen von Rot- bzw. Grünsignalen entsprechenden Zustandssignalen, mit der elektrische Fehlerzustände im logischen Pfad der entsprechenden Zustandssignale zu erkennen sind.
Embodiments of the invention are explained in more detail below with reference to the drawing, in which:
  • 1 shows a block diagram with a lamp circuit, connected thereto signal generator and with a monitoring device consisting of an integrated into the lamp circuit test module with corresponding sensors and a realized by two microcomputer control and evaluator unit,
  • FIGS. 2 and 3 schematically show a permanently wired or alternatively to be changed assignment of signals measured in the test module to defined signal paths or logical paths;
  • 4 shows an exemplary embodiment of the arrangement shown in FIG. 1 with more detailed information regarding the cooperation of the two microcomputers with the test module, FIG. 5 shows an exemplary embodiment of a current sensor of the test module for monitoring the signal state of a blocking or red signal of the signal generator,
  • Figure 6 shows an embodiment of the combined design of voltage sensors for monitoring the red and the green signal of the signal generator, inter alia, in a test mode and taking advantage of the alternating polarity of the mains AC voltage and
  • Figure 7 is a block diagram of an inversion circuit for inverting, for example, with a circuit arrangement according to Figure 6 generated, current states of red or green signals corresponding state signals with the electrical error states in the logical path of the corresponding state signals can be seen.

In dem in Figur 1 dargestellten Blockschaltbild ist schematisch ein Signalgeber 1 mit Rot-, Gelb- und Grünsignal 101, 102 bzw. 103 dargestellt. Diese Lichtsignale werden über eine Lampenschaltung 2 angesteuert. Derartige Lampenschaltungen sind allgemein bekannt, weshalb in Figur 1 lediglich schematisch Ausgangstriacs 3 dargestellt sind, die die Endstufen für das gesteuerte Ein- bzw. Ausschalten der drei Lichtsignale des Signalgebers 1 bilden. In üblicher Weise generiert eine Signalgebersteuerung 4 Steuersignale für die Ausgangstriacs 3, diese Steuersignale werden im folgenden als vorgegebene Zustandssignale zsn bezeichnet. Da die ordnungsgemäße Funktion des Signalgebers 1 im Hinblick auf den durch ihn geregelten Straßenverkehr sicherheitsrelevant ist, ist es erforderlich und auch allgemein üblich, die Betriebszustände des Signalgebers 1 laufend zu überwachen. Eine dafür vorgesehene Überwachungsschaltung 5 hat zunächst die Aufgabe festzustellen, dass die jeweiligen Betriebszustände des Signalgebers 1 tatsächlich mit denjenigen Signalzuständen übereinstimmen, die durch die aktuellen Werte der vorgegebenen Zustandssignale zsn definiert sind. Darüber hinaus hat sie etwa auftretende Fehlerzustände bei der Signalüberwachung selbst festzustellen, mit anderen Worten, sich selbst auf einwandfreie Funktion zu überwachen. Soweit vorstehend beschrieben, ist die Ansteuerung und auch die Überwachung von Signalgebern für Verkehrssignalanlagen allgemein üblich und kann deshalb als bekannt vorausgesetzt werden.In the block diagram shown in Figure 1, a signal generator 1 with red, yellow and green signal 101, 102 and 103 is shown schematically. These light signals are controlled by a lamp circuit 2. Such lamp circuits are well known, which is why only schematically Ausgangsstriacs 3 are shown in Figure 1, which are the output stages for the controlled switching on and off of the three light signals of the signal generator 1 form. In the usual way, a signal generator control 4 generates control signals for the output triacs 3, these control signals are referred to below as predetermined state signals zsn. Since the proper function of the signal generator 1 is safety-relevant with regard to the traffic regulated by it, it is necessary and also common practice to constantly monitor the operating states of the signal generator 1. A monitoring circuit 5 provided for this purpose initially has the task of determining that the respective operating states of the signal generator 1 actually coincide with those signal states which are defined by the current values of the predetermined state signals zsn. In addition, it has to detect any occurring error conditions in the signal monitoring itself, in other words, to monitor itself for proper function. As described above, the driving and also the monitoring of signal transmitters for traffic signal systems is common practice and can therefore be assumed to be known.

Eine der Besonderheiten der in Figur 1 dargestellten Überwachungsschaltung 5 besteht in der Verwendung zweier unterschiedlich betriebener Mikrocomputer 6 bzw. 7. Dem ersten Mikrocomputer 6 werden parallel die vorgegebenen Zustandssignale zsn zugeführt, die er an den zweiten Mikrocomputer 7 abgibt. Der zweite Mikrocomputer 7 überträgt die vorgegebenen Zustandssignale zsn als Steuersignale an die in der Lampenschaltung 2 angeordneten Ausgangstriacs 3. In der Lampenschaltung 2 ist ferner ein Testmodul 8 mit einer Mehrzahl von Sensoren vorgesehen, mit denen aufgrund von Strom- und/oder Spannungsmessung der jeweilige Zustand an den Lichtsignalen 101, 102 bzw. 103 des Lichtsignalgebers 1 gemessen wird. Die von der Sensorik des Testmoduls 8 ermittelten Werte werden als wahre Zustandssignale zsa zunächst dem zweiten Mikrocomputer 7 zugeführt, der sie an den ersten Mikrocomputer 6 weitergibt. Beiden Rechnern liegt damit die Information über die tatsächlichen Zustände am Lichtsignalgeber 1 vor. Beide Rechner überprüfen unabhängig voneinander die festgestellten tatsächlichen Signalzustände mit den durch die vorgegebenen Zustandssignale zsn vorgegebenen Signalzuständen auf Übereinstimmung beziehungsweise auf etwaige verkehrsgefährdende Abweichungen.One of the peculiarities of the monitoring circuit 5 shown in FIG. 1 is the use of two differently operated microcomputers 6 and 7, respectively. The first microcomputer 6 is supplied with the predetermined state signals zsn in parallel, which it outputs to the second microcomputer 7. The second microcomputer 7 transmits the predetermined state signals zsn as control signals to the output triacs 3 arranged in the lamp circuit 2. In the lamp circuit 2 there is further provided a test module 8 having a plurality of sensors with which the respective state can be determined on the basis of current and / or voltage measurement is measured at the light signals 101, 102 and 103 of the light signal transmitter 1. The values determined by the sensor system of the test module 8 are first supplied to the second microcomputer 7 as true status signals zsa, which forwards them to the first microcomputer 6. Both computers is thus the information about the actual conditions on the light signal transmitter 1 before. Both computers independently check the detected actual signal states with the signal states predetermined by the predetermined state signals zsn for agreement or for any traffic-jeopardizing deviations.

Eine weitere Besonderheit besteht nun darin, daß der erste Mikrocomputer 6 Teile der Sensorik des Testmoduls 8 direkt und damit völlig unabhängig von dem zweiten Mikrocomputer 7 kurzzeitig in einen Testbetriebszustand schalten kann, um die störungsfreie Funktion der Überwachungsschaltung selbst zu überprüfen. Dazu überträgt der erste Mikrocomputer 6 Teststeuersignale ts an den Testmodul 8 der Lampenschaltung 2. Einzelheiten für die mögliche Ausgestaltung dieser Testbetriebsart werden im folgenden noch näher erläutert. Hier mag es im Überblick zunächst genügen, darauf hinzuweisen, daß dabei beispielsweise zum Erfassen des Stromes für das Rotsignal 101 auf redundante Erfassungskanäle umgeschaltet werden kann. Ferner läßt sich ein "Ein"-Zustand des Grünsignales 103 für entsprechende Spannungssensoren des Testmoduls 8 simulieren. Schließlich können ausgewählte Signale im logischen Pfad des Testmoduls 8 invertiert werden. Vorzugsweise findet diese Umschaltung in die Testbetriebsart im Abstand von einigen 100 ms für jeweils eine Netzperiode statt. Der zweite Mikrocomputer 7 ermittelt zwar während dieser Testbetriebsart unter Umständen Fehler, die er aber als sporadische Fehler interpretiert und deshalb toleriert. Der erste Mikrocomputer 6 jedoch prüft, ob die ihm zugeführten wahren Zustandssignale zsa den in dieser Testbetriebsart erwarteten Signalzuständen entsprechen.Another special feature consists in the fact that the first microcomputer 6 parts of the sensors of the test module 8 can switch directly and thus completely independent of the second microcomputer 7 briefly in a test mode to check the trouble-free operation of the monitoring circuit itself. For this purpose, the first microcomputer 6 transmits test control signals ts to the test module 8 of the lamp circuit 2. Details of the possible embodiment of this test mode will be explained in more detail below. In summary, it may suffice here to point out that, for example, for detecting the current for the red signal 101, it is possible to switch over to redundant detection channels. Furthermore, an "on" state of the green signal 103 can be simulated for corresponding voltage sensors of the test module 8. Finally, selected signals in the logical path of the test module 8 can be inverted. Preferably, this switching to the test mode takes place at a distance of a few 100 ms for each one network period. Although the second microcomputer 7 determines errors during this test mode, which it interprets as sporadic errors and therefore tolerates. However, the first microcomputer 6 checks whether the true state signals zsa supplied to it correspond to the signal states expected in this test mode.

In den Figuren 2 und 3 ist im Vergleich zueinander schematisch eine der Möglichkeiten zum Erfassen des einwandfreien Zustandes der Sensorik des Testmoduls 8 dargestellt. Beide Figuren zeigen beispielhaft die gleichen Sensoren S1 und S2. Üblicherweise wäre nun, wie Figur 2 illustriert, jeder dieser Sensoren S1 bzw. S2 dafür vorgesehen, ein vorbestimmtes, einzelnes Istsignal A oder B zu bewerten und jeweils ein entsprechendes Zustandssignal zs1(A) bzw. zs2(B) zu generieren. Wollte man nun den einwandfreien Funktionszustand dieser beiden Sensoren S1 bzw. S2 bei fester Verdrahtung auf ihren einwandfreien Funktionszustand selbst überprüfen, so bestünde die Möglichkeit, in einer redundanten Schaltung ein weiteres Paar von Sensoren vorzusehen, mit anderen Worten, die Prinzipschaltung gemäß Figur 2 zu verdoppeln.In FIGS. 2 and 3, one of the possibilities for detecting the perfect condition of the sensors of the test module 8 is shown schematically in comparison to one another. Both figures show by way of example the same sensors S1 and S2. Usually, as illustrated in FIG. 2, each of these sensors S1 and S2 would then be provided for a predetermined, individual one Actual signal A or B to evaluate and respectively generate a corresponding state signal zs1 (A) and zs2 (B). If one now wanted to check the perfect functional state of these two sensors S1 or S2 with their wiring to their perfect functional state, it would be possible to provide a further pair of sensors in a redundant circuit, in other words to double the basic circuit according to FIG ,

Ein vollständig redundanter Aufbau ist jedoch nur dann erforderlich, wenn sicherheitsrelevante Funktionen zu überwachen sind. So ist es zum Beispiel unbedingt notwendig, jeden Ausfall des Rotsignales 101 unmittelbar und sicher zu erfassen. Um einen derartigen Fehlerzustand zu detektieren, werden daher Stromsensoren im Leitungskreis des Rotsignales 101 üblicherweise redundant vorgesehen. Zur Überwachung anderer, weniger kritischer Funktionszustände sind aber bei dennoch ausreichender Fehlersicherheit redundante Schaltungen dann nicht erforderlich, wenn man die Zuordnung des Istsignales A zu dem Sensor 1 bzw. des Istsignales B zu Sensor 2 nicht fest verdrahtet ausführt, sondern diese Zuordnung alternativ vertauscht. Für diesen Fall illustriert Figur 2 ein erstes Zuordnungsschema und Figur 3 das dazu alternative Zuordnungsschema. Im letzteren Falle erfaßt der erste Sensor S1 das zweite Istsignal B und gibt ein entsprechendes Zustandssignal zs1(B) ab. Ferner bewertet der zweite Sensor S2 das erste Istsignal A und generiert ein Zustandssignal zs2(A). Funktional wird mit dieser wechselweise alternativen Zuordnung der Sensoren S1 und S2 zu den Istsignalen A bzw. B die gewünschte Redundanz realisiert, ohne in der Schaltung tatsächlich beide Sensoren S1 und S2 verdoppeln zu müssen. Besonders vorteilhaft ist dies bei einer Kombination von Signalen, die üblicherweise komplementär geschaltet werden, was insbesondere für das Rot- und das Grünsignal 101 bzw. 103 gilt, wie noch im einzelnen zu zeigen sein wird. Dieses anhand der Figuren 2 und 3 erläuterte Prinzip verallgemeinernd, wäre es denkbar, eine derartige, dann zyklisch wechselnde Zuordnung einzelner Sensoren auch zu mehr als nur zwei Istsignalen vorzusehen.However, completely redundant design is only required if safety-related functions are to be monitored. For example, it is absolutely necessary to detect each failure of the red signal 101 directly and safely. In order to detect such an error condition, therefore, current sensors in the line circuit of the red signal 101 are usually provided redundantly. For monitoring other, less critical functional states but redundant circuits are still not required if sufficient error safety, if the assignment of the actual signal A to the sensor 1 and the actual signal B to sensor 2 is not hard wired executes, but this assignment alternatively reversed. For this case, FIG. 2 illustrates a first allocation scheme and FIG. 3 illustrates the alternative allocation scheme thereto. In the latter case, the first sensor S1 detects the second actual signal B and outputs a corresponding state signal zs1 (B). Furthermore, the second sensor S2 evaluates the first actual signal A and generates a status signal zs2 (A). Functionally, the desired redundancy is realized with this alternately alternative assignment of the sensors S1 and S2 to the actual signals A and B, respectively, without actually having to double both sensors S1 and S2 in the circuit. This is particularly advantageous in the case of a combination of signals which are usually switched complementary, which applies in particular to the red and green signals 101 and 103, as will be shown in more detail below. Generalizing this principle explained with reference to FIGS. 2 and 3, it would be conceivable Such, then cyclically changing assignment of individual sensors to provide more than two actual signals.

In Figur 4 ist nun ein Ausführungsbeispiel insbesondere der Lampenschaltung 2 in Form eines Blockschaltbildes dargestellt, in dem die vorstehend erläuterten Überlegungen realisiert sind. Obwohl eine Lampenschaltung 2 in der Praxis im allgemeinen dafür ausgelegt ist, eine Mehrzahl von Signalgebern 1 anzusteuern, ist dies aus Gründen der Übersichtlichkeit in Figur 4 nicht im einzelnen dargestellt. Hingewiesen sei jedoch darauf, dass die Lampenschaltung dann eine entsprechende Mehrzahl von Kanälen mit jeweils gleichartigen Sensorschaltungen besitzt, die jeweils einem der angeschlossenen Signalgeber 1 zugeordnet sind.FIG. 4 shows an exemplary embodiment, in particular of the lamp circuit 2, in the form of a block diagram, in which the considerations explained above are realized. Although a lamp circuit 2 is in practice generally designed to drive a plurality of signal transmitters 1, this is not shown in detail in FIG. 4 for reasons of clarity. It should be noted, however, that the lamp circuit then has a corresponding plurality of channels, each with similar sensor circuits, which are each assigned to one of the connected signal generator 1.

In Figur 4 ist für die Übertragung der vorgegebenen und wahren Zustandssignale zsn bzw. zsa ein Signalbus 9 vorgesehen, an den der zweite Mikrocomputer 7 angeschlossen ist. Die vom zweiten Mikrocomputer 7 über den Signalbus 9 übertragenen vorgegebenen Zustandssignale zsn werden in einem Ausgabepuffer 10 abgelegt, dessen parallele Ausgänge an die Steuereingänge der Ausgangstriacs 3 angeschlossen sind. Entsprechend angesteuert, schließen bzw. öffnen die Ausgangstriacs 3 eine Leitungsverbindung von einer Netzspannungsquelle 11 zu den einzelnen Lichtsignalen 101, 102, 103 des Signalgebers 1 über Zuleitungen 1-101, 1-102 bzw. 1-103. Mittels der Sensorik des einen Teil der Lampenschaltung 2 bildenden Testmoduls 8 werden die Signalzustände auf diesen Zuleitungen fortlaufend überwacht.In Figure 4, a signal bus 9 is provided for the transmission of the predetermined and true state signals zsn or zsa, to which the second microcomputer 7 is connected. The predetermined state signals zsn transmitted by the second microcomputer 7 via the signal bus 9 are stored in an output buffer 10 whose parallel outputs are connected to the control inputs of the output triacs 3. Appropriately driven, the output triacs 3 close or open a line connection from a mains voltage source 11 to the individual light signals 101, 102, 103 of the signal generator 1 via leads 1-101, 1-102 and 1-103, respectively. By means of the sensor technology of the test module 8 forming part of the lamp circuit 2, the signal states on these supply lines are continuously monitored.

Besonders sicherheitsrelevant ist in diesem Zusammenhang die Überwachung der aktuellen Zustände des Rotsignals 101 mittels entsprechender Stromsensoren 12. Hierzu ist in Figur 4 die redundante Überwachung der jeweiligen Rotsignale 101 durch zwei Blöcke angedeutet, die normale Stromkanäle 13 bzw. redundante Stromkanäle 14 repräsentieren. Die einzelnen Stromkanäle 13 bzw. 14 werden seriell durch einen Kanalschalter 15 ausgewählt und abgefragt, der im Testbetrieb seinerseits vom ersten Mikrocomputer 6 über Auswahlsignale tsl entsprechend angesteuert wird. An analoge Ausgänge des Kanalschalters 15 ist ein Analog-/Digital-Wandler 16 angeschlossen, der ausgangsseitig mit dem Signalbus 9 verbunden ist.In this connection, the monitoring of the current states of the red signal 101 by means of corresponding current sensors 12 is particularly safety-relevant. For this purpose, the redundant monitoring of the respective red signals 101 is indicated by two blocks in FIG. 4, which represent normal current channels 13 or redundant current channels 14. The individual current channels 13 and 14 are connected in series through a channel switch 15 selected and queried, which in turn is controlled in the test mode by the first microcomputer 6 via selection signals tsl accordingly. To analog outputs of the channel switch 15, an analog / digital converter 16 is connected, which is the output side connected to the signal bus 9.

In Figur 5 ist in einem Ausführungsbeispiel detaillierter dargestellt, wie die redundante Überwachung eines einzelnen Rotsignales 101 schaltungstechnisch zu realisieren ist. In die Zuleitung 1-101 vom jeweiligen Ausgangstriac 3 zum entsprechenden Rotsignal 101 ist ein Übertrager 17 eingeschleift, an den sekundärseitig die Reihenschaltung zweier identischer Meßwiderstände R1 angeschlossen ist. Deren gemeinsamer Verbindungspunkt ist auf Masse gelegt. Mit dieser Schaltung ist auf einfache Weise ein redundantes Paar von Stromsensoren implementiert, das allen sicherheitstechnischen Anforderungen genügt. Ein einzelner Meßwiderstand als Bürde des Übertragers 17 könnte im Falle eines Leitungsbruches zu hohen Strom vortäuschen, so daß unter Umständen ein Ausfall des überwachten Rotsignales 101 nicht erkannt würde. Im vorliegenden Fall können dagegen an beiden Meßwiderständen R1 zueinander inverse Signalspannungen unabhängig voneinander abgegriffen und ausgewertet werden.FIG. 5 shows in more detail in one exemplary embodiment how the redundant monitoring of a single red signal 101 can be realized in circuit technology. In the supply line 1-101 from the respective Ausgangsstriac 3 to the corresponding red signal 101, a transformer 17 is looped to the secondary side, the series connection of two identical measuring resistors R1 is connected. Their common connection point is grounded. With this circuit, a redundant pair of current sensors is implemented in a simple manner that meets all safety requirements. A single measuring resistor as a burden of the transformer 17 could pretend to high current in the event of a line break, so that under certain circumstances a failure of the monitored red signal 101 would not be detected. On the other hand, in the present case, mutually inverse signal voltages can be tapped and evaluated independently of each other at both measuring resistors R1.

Dass dagegen bei dem in Figur 5 dargestellten Ausführungsbeispiel nicht auch der Übertrager 17 redundant vorgesehen ist, ist im Hinblick auf die Fehlersicherheit von untergeordneterer Bedeutung. Denn ein Leitungsbruch im Bereich des Übertragers 17 hätte nur die mögliche Folge, daß ein zu geringer, gegebenenfalls sogar kein Strom gemessen wird, obwohl das Rotsignal 101 an sich voll funktionsfähig ist. Sein so vorgetäuschter Ausfall ist jedoch sicherheitstechnisch unkritisch. Analog wie bei einem tatsächlich ausgefallenen Rotsignal 101 würde der Lichtsignalgeber 1 normal abgeschaltet.In contrast, in the exemplary embodiment shown in FIG. 5, the transformer 17 is not redundantly provided, but is of subordinate importance with regard to fault tolerance. Because a line break in the area of the transformer 17 would only have the possible consequence that too little, possibly even no current is measured, although the red signal 101 is fully functional per se. However, his fake failure is safety-critical. Analogous to an actually failed red signal 101, the light signal transmitter 1 would be switched off normally.

Der Vollständigkeit halber zeigt Figur 5, wie die beiden an den Meßwiderständen R1 abgegriffenen, zueinander inversen Signalspannungen weiterverarbeitet werden. Im Kanalschalter 15 sind zwei Multiplexer 18 bzw. 18' an die normalen bzw. redundanten Stromkanäle angeschlossen. Die Ausgänge dieser beiden Multiplexer 18, 18' werden wechselseitig, gesteuert durch die Auswahlsignale tsl freigegeben, die dem einen Multiplexer 18 unmittelbar und dem anderen Multiplexer 18' über einen Inverter 19 zugeführt werden. An Analogausgänge dieser beiden Multiplexer 18 bzw. 18' ist der Eingang des Analog-/DigitalWandlers 16 angeschlossen.For the sake of completeness, FIG. 5 shows how the two signal voltages tapped from each other at the measuring resistors R1 are mutually inverse be further processed. In the channel switch 15, two multiplexers 18 and 18 'are connected to the normal or redundant current channels. The outputs of these two multiplexers 18, 18 'are mutually enabled, controlled by the selection signals tsl, which are supplied to the one multiplexer 18 directly and the other multiplexer 18' via an inverter 19. At analog outputs of these two multiplexers 18 and 18 ', the input of the analog / digital converter 16 is connected.

Nunmehr zurückkehrend zu Figur 4 ist dort bezüglich der Überwachung der Gelbsignale 102 schematisch angedeutet, daß diese - wie in konventioneller Weise üblich - mittels Spannungssensoren 20 vorgenommen wird, die an die entsprechende Zuleitung 1-102 zum Gelbsignal 102 angeschlossen sind. Die entsprechenden digitalen wahren Zustandssignale werden in einen Eingabepuffer 21 eingegeben und von dort aus über den Signalbus 9 in den zweiten Mikrocomputer 7 übertragen.Returning now to FIG. 4, there is schematically indicated, with respect to the monitoring of the yellow signals 102, that these are effected by means of voltage sensors 20, which are connected to the corresponding supply line 1-102 to the yellow signal 102, as is usual in the conventional manner. The corresponding digital true state signals are input to an input buffer 21 and transmitted from there to the second microcomputer 7 via the signal bus 9.

Die aktuellen Signalzustände auf den Zuleitungen 1-101 zum Rotsignal 101 sowie 1-103 zum Grünsignal 103 werden ferner mittels Spannungssensoren 22 kontinuierlich überwacht, denn es ist sicherheitstechnisch relevant, daß die entsprechenden Signalzustände für das Rot- und das Grünsignal 101 bzw. 103 immer komplementär sind. Wegen dieser Relevanz ist weiterhin sicherzustellen, dass diese Überwachung auch fehlersicher ist. Dazu ist unter anderem vorgesehen, daß der erste Mikrocomputer 6 in der Überwachungsschaltung 5 zur Überprüfung einen Test veranlassen kann, bei dem der eingeschaltete Zustand des Grünsignales 103 simuliert wird. Die während dieser Simulation von den Spannungssensoren 22 für Grün- und Rotsignal 103 bzw. 101 generierten wahren Zustandssignale werden vom ersten Mikrocomputer 6 daraufhin überprüft, ob sie den simulierten Signalzuständen ordnungsgemäß entsprechen.The current signal states on the leads 1-101 to the red signal 101 and 1-103 to the green signal 103 are further monitored continuously by means of voltage sensors 22, because it is relevant from a safety point of view that the corresponding signal states for the red and green signals 101 and 103 are always complementary are. Because of this relevance, it must continue to be ensured that this monitoring is also fail-safe. For this purpose, inter alia, it is provided that the first microcomputer 6 in the monitoring circuit 5 can initiate a test for checking in which the switched-on state of the green signal 103 is simulated. The true state signals generated during this simulation by the green and red signal voltage sensors 22 and 101, respectively, are checked by the first microcomputer 6 to determine whether they properly correspond to the simulated signal states.

In Figur 4 ist diese Funktion schematisch durch eine Simulationssteuerschaltung 23 wiedergegeben, die durch ein vom ersten Mikrocomputer 6 abgegebenes Simulationssteuersignal ts2 aktiviert wird. Um die einwandfreie Funktion der Sensorschaltungen 22 im Hinblick auf Leitungsbrüche testen zu können, wird eine logische Signalinversion angewendet. Wie noch zu erläutern sein wird, ist zu diesem Zweck eine Invertierungsschaltung 24 zwischen den Ausgängen der Spannungssensoren 22 für das Grün- und das Rotsignal 103 bzw. 101 und dem Eingabepuffer 21 angeordnet. Gesteuert wird diese Invertierungsschaltung 24 über ein weiteres der vom ersten Mikrocomputer 6 abgegebenen Steuersignale für den Testbetrieb, das hier als Invertierungssteuersignal ts3 bezeichnet wird.In Figure 4, this function is shown schematically by a simulation control circuit 23, which by one of the first Microcomputer 6 emitted simulation control signal ts2 is activated. In order to test the proper functioning of the sensor circuits 22 with regard to line breaks, a logical signal inversion is applied. As will be explained later, an inverting circuit 24 is arranged between the outputs of the voltage sensors 22 for the green and red signals 103 and 101 and the input buffer 21 for this purpose. This inverting circuit 24 is controlled by another of the control signals for the test operation output by the first microcomputer 6, which is referred to here as the inversion control signal ts3.

In Figur 6 ist nun ein Ausführungsbeispiel für die Ausgestaltung der Sensorik zum Überwachen der Spannungen auf den Zuleitungen 1-101 und 1-103 zum Rotsignal 101 bzw. zum Grünsignal 103 näher dargestellt. Das am linken Rand von Figur 6 dargestellte Rotsignal 101 ist über die Zuleitung 1-101 sowie den ihm zugeordneten Ausgangstriac 3 einerseits an eine Phase N der Netzwechselspannung und andererseits mit deren Nullleiter N verbunden. Angesteuert wird dieser Ausgangstriac durch ein vorgegebenes Zustandssignal zs-101. Analoges ist am rechten Rand von Figur 6 für das Grünsignal 103 dargestellt. Das entsprechende vorgegebene Zustandssignal für die Ansteuerung des zugeordneten Ausgangstriacs 3 ist mit zs-103 bezeichnet.FIG. 6 shows in more detail an exemplary embodiment of the embodiment of the sensor system for monitoring the voltages on the supply lines 1-101 and 1-103 relative to the red signal 101 and the green signal 103, respectively. The red signal 101 shown on the left-hand edge of FIG. 6 is connected, via the supply line 1-101 and the output triac 3 associated therewith, on the one hand to a phase N of the mains alternating voltage and, on the other hand, to its neutral conductor N. This output triac is triggered by a predetermined state signal zs-101. The same is shown on the right edge of FIG. 6 for the green signal 103. The corresponding predetermined state signal for the control of the associated Ausgangstriacs 3 is designated zs-103.

Die in Figur 6 dargestellte Schaltungsanordnung verwendet dem bereits anhand der Figuren 2 und 3 erläuterten Prinzip zwei Optokopplersensoren 25 bzw. 25' in wechselnder Zuordnung zum Erfassen der momentanen Spannung auf den Zuleitungen 1-101 und 1-103 zum Rotsignal 101 bzw. zum Grünsignal 103. Realisiert wird diese alternativ wechselnde Zuordnung durch zwei, jeweils an eine der beiden Zuleitungen 1-101, 1-103 angekoppelte Gleichrichterbrücken 26 bzw. 26', deren zweiter Wechselspannungsanschluss - das sei hier zunächst vorausgesetzt - mit dem Nullleiter N verbunden ist, d h. auf Masse liegt. Auf der Gleichspannungsseite ist jeweils der auf hohem Potential liegende Ausgang einer der Gleichrichterbrücken z. B. 26 über die Reihenschaltung einer Zenerdiode D1, eines weiteren Widerstandes R2 sowie der Eingangsstufe des entsprechenden Optokopplersensors 25 bzw. 25' mit dem auf niedrigem Potential liegenden Gleichspannungsanschluß der anderen Gleichrichterbrücke z. B. 26' verbunden. Wenn - wie vorausgesetzt - beide Gleichrichterbrücken 26 bzw. 26' fußpunktseitig an Masse liegen, so ergibt sich die folgende Funktion: Die Zuordnung jedes der beiden Optokopplersensoren 25 bzw. 25' zum Erfassen des jeweiligen Signalzustandes des Rotsignales 101 bzw. des Grünsignales 103 wechselt mit jeder Halbwelle der Netzspannung. Während der negativen Halbwelle der Netzspannung repräsentiert der obere Leitungszweig, in dem der eine Optokopplersensor 25 angeordnet ist, den Zustand auf der Zuleitung 1-103 zum Grünsignal 103. Der untere Sensorzweig mit dem zweiten Optokopplersensor 25' dagegen repräsentiert in dieser Halbwelle der Netzspannung den Zustand auf der Zuleitung 1-101 zum Rotsignal 101. In der positiven Halbwelle der Netzspannung kehrt sich diese Zuordnung um.The circuit arrangement shown in FIG. 6 uses two optocoupler sensors 25 or 25 ', already described with reference to FIGS. 2 and 3, in alternating assignment for detecting the instantaneous voltage on the supply lines 1-101 and 1-103 to the red signal 101 or to the green signal 103 This alternative alternating assignment is realized by two rectifier bridges 26 and 26 ', each coupled to one of the two supply lines 1-101, 1-103, whose second AC voltage connection - which is assumed here - is connected to the neutral conductor N, ie , lies on earth. On the DC side of each of the high potential output of one of the rectifier bridges z. B. 26 over the series connection of a zener diode D1, another resistor R2 and the input stage of the corresponding optocoupler sensor 25 or 25 'with the lying at low potential DC voltage terminal of the other rectifier bridge z. B. 26 'connected. If, as assumed, both rectifier bridges 26 and 26 'are grounded at the base of the ground, the following function results: The assignment of each of the two optocoupler sensors 25 or 25' for detecting the respective signal state of the red signal 101 or the green signal 103 changes every half-wave of the mains voltage. During the negative half-wave of the mains voltage, the upper leg, in which the one optocoupler sensor 25 is arranged, represents the state on the supply line 1-103 to the green signal 103. The lower sensor branch with the second optocoupler sensor 25 ', on the other hand, represents the state in this half-wave of the mains voltage on the supply line 1-101 to the red signal 101. In the positive half-wave of the mains voltage, this assignment is reversed.

Weiter ist auf eine Besonderheit hinzuweisen. Die eine dem Rotsignal 101 zugeordnete Gleichrichterbrücke 26 ist mit der Zuleitung 1-101 über ein Paar von weiteren Zenerdioden D2 mit hoher Durchbruchspannung verbunden. Damit ist ein erhöhter Schwellenwert zur Bewertung des "Ein"-Zustandes des Rotsignales 101 festgelegt. Der diesen Zustand bewertende Optokopplersensor 25 bzw. 25' bleibt daher so lange definiert ausgeschaltet, bis die Spannung auf der Zuleitung 1-101 zum Rotsignal 101 die Durchbruchschwelle für die weiteren Dioden D2 überschritten hat.Next is to point out a special feature. One of the red signal 101 associated rectifier bridge 26 is connected to the supply line 1-101 via a pair of further Zener diodes D2 with high breakdown voltage. This sets an increased threshold for evaluating the "on" state of the red signal 101. The optocoupler sensor 25 or 25 'evaluating this state therefore remains switched off in a defined manner until the voltage on the supply line 1-101 to the red signal 101 has exceeded the breakthrough threshold for the further diodes D2.

Die vorstehende Beschreibung bezieht sich auf den Normalfall der kontinuierlichen Spannungsüberwachung auf den Zuleitungen 1-101, 1-103 zum Rotsignal 101 bzw. zum Grünsignal 103. Dabei gibt der dem oberen Sensorzweig zugeordnete Optokopplersensor 25 ein Ausgangssignal V(103-/101+) ab. Diese Bezeichnungsweise bezieht sich darauf, daß dieser Optokopplersensor 25 während der negativen Halbwelle der Netzspannung dem Grünsignal 103 bzw. während der positiven Halbwelle dem Rotsignal 101 zugeordnet ist. Entsprechend ist die Bezeichnung für das Ausgangssignal V(101-/103+) für den anderen Optokopplersensor 25' im unteren Sensorzweig gewählt.The above description refers to the normal case of the continuous voltage monitoring on the leads 1-101, 1-103 to the red signal 101 and to the green signal 103. In this case, the optocoupler sensor 25 assigned to the upper sensor branch outputs an output signal V (103- / 101 +) , This designation refers to the fact that this optocoupler sensor 25 during the negative half-wave of the mains voltage to the green signal 103 or during the positive half-wave the red signal 101 is assigned. Accordingly, the designation for the output signal V (101- / 103 +) is selected for the other optocoupler sensor 25 'in the lower sensor branch.

Die vorstehende Beschreibung des Ausführungsbeispieles gemäß Figur 6 bezog sich auf die kontinuierliche Überwachung der Signalzustände der Rot- und Grünsignale 101 bzw. 103. Dabei wurde entgegen der Darstellung in Figur 6 vereinfachend vorausgesetzt, daß beide Gleichrichterbrücken 26 und 26' fußpunktseitig an Masse liegen, das heisst mit dem Nullleiter N der Netzwechselspannung verbunden sind. Tatsächlich gilt dies unmittelbar nur für die an die Zuleitung 1-101 angekoppelte Gleichrichterbrücke 26. Die an die Zuleitung 1-103 angeschlossene Gleichrichterbrücke 26' dagegen ist gemäß der dargestellten Schaltung mit ihrem anderen Wechselspannungsanschluss einerseits über einen hochohmigen weiteren Widerstand R3 an die Phase L der Netzwechselspannung angeschlossen. Ferner ist dieser Anschluß der Gleichrichterbrücke 26' über die Schaltstrecke eines Optotriacs 27 an Masse gelegt, das heisst mit dem Nullleiter N der Netzwechselspannung verbunden. Ein Steuereingang dieses Optotriacs 27 ist an die Schaltstrecke eines als Feldeffekttransistor ausgebildeten Steuertransistors 28 angeschlossen. Diesem wiederum wird das Simulationssteuersignal ts2 zugeführt.The above description of the exemplary embodiment according to FIG. 6 referred to the continuous monitoring of the signal states of the red and green signals 101 and 103. For the sake of simplification, contrary to the representation in FIG. 6, it was assumed that both rectifier bridges 26 and 26 'are grounded on the ground side means connected to the neutral conductor N of the AC mains voltage. In fact, this applies directly only for the coupled to the supply line 1-101 rectifier bridge 26. The connected to the supply line 1-103 rectifier bridge 26 ', however, is according to the illustrated circuit with its other AC terminal on the one hand via a high-resistance resistor R3 to the L phase Mains AC voltage connected. Furthermore, this terminal of the rectifier bridge 26 'is connected to ground via the switching path of an optotriac 27, that is to say connected to the neutral conductor N of the mains alternating voltage. A control input of this Optotriacs 27 is connected to the switching path of a designed as a field effect transistor control transistor 28. This, in turn, the simulation control signal ts2 is supplied.

Dieses vorstehend beschriebene Schaltungsdetail bildet die Simulationssteuerschaltung 23 gemäß Figur 4. In dem vorstehend erläuterten normalen Betriebszustand der Überwachungsschaltung für das Rot- und das Grünsignal 101 bzw. 103 wird der Optotriac 27 über den entsprechenden Zustand des Simulationssteuersignales ts2 dauerhaft leitend gehalten. Damit ist der zweite Wechselspannungsanschluss der zweiten Gleichrichterbrücke 26' - wie für diese Betriebsart vorausgesetzt - auf Massepotential gezogen, weil der weitere Widerstand R3 hochohmig ausgebildet ist. Im Testbetrieb, der durch einen Zustandswechsel des Simulationssteuersignales ts2 eingeleitet wird, wird dagegen der Optotriac 27 gesperrt. Somit liegt der damit verbundene Anschluß der zweiten Gleichrichterbrücke 26' - unabhängig vom momentanen Zustand auf der Zuleitung 1-103 zum Grünsignal 103 - auf Netzspannungspotential. Dies simuliert unabhängig von dem vorgegebenen Zustandssignal zs-103 für das Grünsignal in der Überwachungsschaltung einen "Ein"-Zustand des Grünsignales 103.In the above-described normal operating state of the monitoring circuit for the red and green signals 101 and 103, the Optotriac 27 is kept permanently conductive via the corresponding state of the simulation control signal ts2. Thus, the second AC voltage terminal of the second rectifier bridge 26 '- as assumed for this mode - pulled to ground potential, because the further resistor R3 is formed high impedance. In test mode, initiated by a state change of the simulation control signal ts2 On the other hand, the Optotriac 27 is blocked. Thus, the connection of the second rectifier bridge 26 'connected thereto - regardless of the instantaneous state on the supply line 1-103 to the green signal 103 - is at mains voltage potential. This simulates an "on" state of the green signal 103 regardless of the predetermined state signal zs-103 for the green signal in the monitoring circuit.

Anhand von Figur 4 wurde bereits darauf hingewiesen, dass die vorstehend beschriebenen, den Zuleitungen 1-101 und 1-103 zum Rot- und Grünsignal 101 bzw. 103 zugeordneten Spannungssensoren 22 mit ihren Ausgängen über die Invertierungsschaltung 24 an den Eingabepuffer 21 zum Signalbus 9 angeschlossen sind. Figur 7 zeigt schematisch, wie diese Invertierungsschaltung 24 ausgebildet ist. Wie erwähnt, sind in der tatsächlichen praktischen Ausführung einer Lampenschaltung 2 mehrere, jeweils einem Signalgeber 1 zugeordnete Überwachungskanäle vorgesehen. Davon sind in Figur 7 zwei derartiger Kanäle schematisch illustriert. Die Spannungssensoren zum Überwachen des jeweiligen Rot- und Grünsignales 101 bzw. 103 sind für zwei derartiger Kanäle mit 22#1 bzw. 22#2 bezeichnet. Diese Blöcke entsprechen jeweils einer Schaltungsanordnung gemäß Figur 6. Die Invertierungsschaltung 24 ist aus zwei Antivalenzgliedern XOR aufgebaut. Ein erster Eingang dieser beiden Antivalenzglieder XOR ist mit einem der beiden Ausgänge der entsprechenden Spannungssensorschaltung 22#1 bzw. 22#2 des jeweiligen Kanales verbunden. Ein zweiter Eingang der beiden Antivalenzglieder XOR wird als Steuereingang verwendet, dem das vom ersten Mikrocomputer 6 abgegebene Invertierungssteuersignal ts3 zugeführt ist. Durch die Antivalenzbedingung werden ausgewählte Signale, hier die Ausgangssignale von Spannungssensoren 22 im logischen Pfad invertiert. Mit dieser Maßnahme lassen sich Leitungskurzschlüsse auf Signalleitungen mit 0 Volt bzw. einer Gleichstromversorgungsspannung in den anhand von Figur 6 beschriebenen Überwachungsschaltungen auffinden.It has already been pointed out with reference to FIG. 4 that the voltage sensors 22 described above, which are assigned to the leads 1-101 and 1-103 to the red and green signals 101 and 103, are connected with their outputs via the inversion circuit 24 to the input buffer 21 to the signal bus 9 are. Figure 7 shows schematically how this inversion circuit 24 is formed. As mentioned, in the actual practical embodiment of a lamp circuit 2, a plurality of monitoring channels, each associated with a signal generator 1, are provided. Of these, two such channels are illustrated schematically in FIG. The voltage sensors for monitoring the respective red and green signals 101 and 103 are designated 22 # 1 and 22 # 2, respectively, for two such channels. These blocks correspond in each case to a circuit arrangement according to FIG. 6. The inversion circuit 24 is constructed from two antivalence elements XOR. A first input of these two antivalence elements XOR is connected to one of the two outputs of the corresponding voltage sensor circuit 22 # 1 or 22 # 2 of the respective channel. A second input of the two antivalence elements XOR is used as the control input to which the inversion control signal ts3 output by the first microcomputer 6 is supplied. By the antivalence condition selected signals, here the output signals of voltage sensors 22 are inverted in the logical path. With this measure, line short circuits on signal lines with 0 volts or a DC power supply voltage can be found in the monitoring circuits described with reference to FIG.

Claims (12)

  1. Lamp circuit (2) for at least one signal transmitter (1) in a traffic signal system, which is controlled in accordance with a signal program by means of predetermined state signals (zsn) fed to it and is equipped with a monitoring device (5, 8) in order, on the one hand, to check actual signal states of the signal transmitter by means of current and voltage sensors to ascertain whether they correspond to signal states predetermined by the predetermined state signals and, on the other hand, in order to monitor elements themselves which may be provided in redundant fashion in it, characterized by a control and evaluation unit of the monitoring device having two differently operated microcomputers (6, 7), by means of which the predetermined state signals (zsn) are fed to the lamp circuit (2) and which both continuously check these signals to ascertain whether they correspond to true state signals (zsa) which are generated by a test module (8) of the monitoring device on the basis of actual signal states of the signal transmitter which are established at that time, one of the two microcomputers (6) being designed to activate a test mode, which runs unnoticed as such by the other microcomputer (7), in the monitoring device and to check the functioning of the monitoring device in this operating mode.
  2. Lamp circuit according to Claim 1, characterized in that the microcomputer (6) controlling the test mode of the monitoring device (5, 8) is designed such that it activates this test mode at regular intervals, but in each case only for such a short period of time that the other microcomputer (7) evaluates true state signals (zsa), which are received during the test mode and possibly do not correspond to the predetermined state signals (zsn), as being based on sporadic faults and tolerates them.
  3. Lamp circuit according to Claim 1 or 2, characterized in that both microcomputers (6, 7) are connected to one another via parallel data lines for the purpose of exchanging the predetermined and the true state signals (zsn and zsa, respectively), one microcomputer (6) has internal connections to the test module (8) for the purpose of transmitting test control signals (ts), in addition to external connections for the purpose of receiving the predetermined state signals, and the other microcomputer (7) has connections to the lamp circuit (2), via which the predetermined state signals (zsn) or the true state signals (zsa) produced by the test module (8) are transmitted to the lamp circuit.
  4. Lamp circuit according to one of Claims 1 to 3, characterized in that, in the case of circuit elements (for example 12) in which redundancy is indispensable for the purpose of monitoring safety-relevant functions, only the fault-critical components of these circuit elements are of redundant design in the monitoring device (5, 8).
  5. Lamp circuit according to Claim 4, characterized in that a transformer (17) is provided for current sensors (12) for the purpose of monitoring a correctly activated signal state of a blocking signal or red signal (101) of the signal transmitter (1), the primary winding of said transformer (17) being looped into a feed line (1-101), which produces the supply voltage, to the red signal, and a series circuit comprising two measuring resistors (R1) being connected in parallel with the secondary winding of said transformer (17), the common connection point between said measuring resistors (R1) being connected to earth, and it being possible for in each case one of two signal voltages, which are complementary to one another and correspond to the current flowing via the feed line at that time, to be tapped off at the connections between said measuring resistors and the transformer.
  6. Lamp circuit according to one of Claims 1 to 5, characterized in that, for the purpose of monitoring identical state criteria on the feed lines (1-101, 1-102, 1-103) to the light signals (101, 102 and 103, respectively) of the signal transmitter (1), the assignment of sensors (for example S1, S2) to a corresponding actual signal (A and B, respectively) is designed to be cyclically alternate, in contrast to a permanently wired arrangement, an individual sensor evaluating one of at least two actual signals in temporal succession.
  7. Lamp circuit according to Claim 6, characterized in that, for the purpose of detecting line short circuits in the logic path of sensor circuits (for example 22#1, 22#2), a test circuit (24) is provided which is connected to the outputs of said sensor circuits and in which in each case one exclusive OR element (XOR) is connected with a first input to the corresponding signal output of the associated sensor circuit and is connected at a second input to one microcomputer (6) via one of the test control lines and thereby receives an inverting control signal (ts3).
  8. Lamp circuit according to Claim 6 or 7, characterized in that, owing to the alternate assignment of actual states to be evaluated on feed lines (for example 1-101, 1-103) to the signal transmitter (1) to in each case one evaluating sensor, signal states of the signal transmitter which are complementary to one another are linked to one another.
  9. Lamp circuit according to Claim 8, characterized in that, for the purpose of monitoring the signal states of the red and green signals (101 and 103, respectively), which are connected to the AC system voltage in a controlled manner via corresponding feed lines (1-101 and 1-103, respectively), of one and the same signal transmitter (1), in each case one rectifier bridge (26, 26'), which is connected to earth with its other AC voltage connection on the base-point side is connected to these feed lines, and in that DC voltage connections of these rectifier bridges are connected to one another reciprocally via in each case one series circuit comprising a zener diode (D1), a series resistor and an input stage of an optocoupler sensor (25 and 25', respectively), which input stage can be activated depending on the voltage, the outputs of the optocoupler sensors each outputting combined state signals (V(103-/101+) and V(101-/103+)) which reciprocally correspond to the signal states on one or the other feed line (1-101 and 1-103, respectively) during each of the two half-cycles of the AC system voltage in a manner which is respectively complementary to one another.
  10. Lamp circuit according to Claim 9, characterized in that the rectifier bridge (26) which is assigned to the red signal (101) of the signal transmitter (1) is connected to its feed line (1-101) via a zener diode circuit (D2) having an increased breakdown voltage and thus an increased response threshold is provided for the signal state on this feed line, the assigned true state signal changing its signal state only when the thus predetermined response threshold is reached by the AC system voltage.
  11. Lamp circuit according to either of Claims 9 and 10, characterized in that, for the purpose of simulating the "on" state of the green signal (103) in the test mode, the AC voltage connection, on the base-point side, of the rectifier bridge (26') assigned to this signal is connected on one side directly to the AC system voltage via a high-value further resistor (R3) and on the other side to earth via the switching path of a semiconductor switch (23 or 27, 28), whose control input is fed a simulation control signal (ts2) output by one microcomputer (6), and which is deactivated thereby for the period of time of the simulated "on" state of the green signal.
  12. Lamp circuit according to Claim 11, characterized in that the semiconductor switch comprises an optotriac (27) and a control transistor (28), in that the optotriac (27) is arranged with its switching path between the connection, on the base-point side, of the rectifier bridge (26') and earth and its input stage, which is controlled depending on the voltage, is arranged, in series with the switching path of the control transistor, in the line path of a DC voltage source and in that the simulation control signal (ts2) output by one microcomputer (6) is fed to the control input of the control transistor (28).
EP01105595A 2000-03-15 2001-03-06 Lamp circuit for a signalisation device of a traffic signal system Expired - Lifetime EP1134715B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10012608A DE10012608A1 (en) 2000-03-15 2000-03-15 Lamp circuit of a signal generator of a traffic signal system
DE10012608 2000-03-15

Publications (2)

Publication Number Publication Date
EP1134715A1 EP1134715A1 (en) 2001-09-19
EP1134715B1 true EP1134715B1 (en) 2006-06-14

Family

ID=7634811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01105595A Expired - Lifetime EP1134715B1 (en) 2000-03-15 2001-03-06 Lamp circuit for a signalisation device of a traffic signal system

Country Status (4)

Country Link
EP (1) EP1134715B1 (en)
AT (1) ATE330299T1 (en)
DE (2) DE10012608A1 (en)
DK (1) DK1134715T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233879B4 (en) * 2002-07-25 2006-07-13 Siemens Ag Method for controlling and monitoring a safety-critical system, in particular a traffic signal system, and device for carrying out the method
DE102005032719A1 (en) * 2005-07-13 2007-01-25 Siemens Ag Traffic signal system, in particular for road traffic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL178634C (en) * 1978-01-02 1986-04-16 Philips Nv DEVICE FOR DETECTING UNWANTED SIGNAL COMBINATIONS OF TWO SIGNAL LIGHTS IN TRAFFIC LIGHTS.
US5073866A (en) * 1989-09-20 1991-12-17 Daeges Michael J Traffic signal control system
FR2653922B1 (en) * 1989-11-02 1992-02-14 Sfim SIGNALING LIGHT MONITORING SYSTEM.
DE19716576C1 (en) * 1997-04-21 1999-01-07 Stuehrenberg Gmbh Elektrobau S Traffic signal control method

Also Published As

Publication number Publication date
EP1134715A1 (en) 2001-09-19
DK1134715T3 (en) 2006-10-23
ATE330299T1 (en) 2006-07-15
DE10012608A1 (en) 2001-10-18
DE50110091D1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
EP1389284B1 (en) Safety switching module for testing the switching-off ability of a switching element in a safety switching module
EP2149826B1 (en) Safety switching arrangement for outputting a switching signal
EP1695055B1 (en) Measuring device, in particular a temperature measuring transducer
DE4441070C2 (en) Safety switch arrangement
EP2378663B1 (en) Secure input circuit with single channel peripheral connection for the input of a bus participant
EP1182762B1 (en) Electrical tool and method of its use
EP0172454B1 (en) Monitoring device for traffic light arrangements
DE1537379C3 (en) Safety circuit for performing logical links for binary switching variables and their complementary switching variables
EP1134715B1 (en) Lamp circuit for a signalisation device of a traffic signal system
EP1603282A1 (en) Method for addressing subscribers of a bus system
EP1032519B1 (en) Protective circuit for a controlling element and method for testing the control circuit of a controlling element
DE102008018642B4 (en) Monitoring circuit and method for testing the circuit
DE19606894C2 (en) Device for the signal-safe control and monitoring of electrical consumers in the railway system
DE19906932B4 (en) Binary
EP2876509B1 (en) Safety control
EP0815459B1 (en) Circuitry and process for testing non-intermittent signal generators
EP3281365B1 (en) Interface extension device for a network device and method for operating an interface extension device
DE3515962A1 (en) Arrangement for controlling and monitoring for failure, in a fashion which is reliable in terms of signalling technology, alternating current-fed double element lamps of a light signal, in particular a warning signal in railway signalling systems
DE102018009924A1 (en) dimmer
DE102020210339B4 (en) Circuit arrangement and method for error detection
DE4027331C2 (en) Method and arrangement for detecting and compensating for errors in intrinsically safe circuits with remote supply
DE3206082C2 (en) Fail-safe arrangement for linking the operating status messages from signal lamps
DE102018212763A1 (en) measuring device
EP3848633A1 (en) Circuit with protection against internal faults
DE10244534A1 (en) Circuit arrangement and method for detecting error situations in coupled systems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011119

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50110091

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060925

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060915

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090213

Year of fee payment: 9

Ref country code: DK

Payment date: 20090310

Year of fee payment: 9

Ref country code: IE

Payment date: 20090323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090319

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100521

Year of fee payment: 10

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20100331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110310

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110091

Country of ref document: DE

Effective date: 20111001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120306