EP1133064B1 - Sendeempfänger mit gestapelten Zusammenbau - Google Patents

Sendeempfänger mit gestapelten Zusammenbau Download PDF

Info

Publication number
EP1133064B1
EP1133064B1 EP00308674A EP00308674A EP1133064B1 EP 1133064 B1 EP1133064 B1 EP 1133064B1 EP 00308674 A EP00308674 A EP 00308674A EP 00308674 A EP00308674 A EP 00308674A EP 1133064 B1 EP1133064 B1 EP 1133064B1
Authority
EP
European Patent Office
Prior art keywords
layer
assembly
filter
transceiver
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00308674A
Other languages
English (en)
French (fr)
Other versions
EP1133064A1 (de
Inventor
Ron Barnett
Iiya Alexander Korisch
Zhengxiang Ma
Richard F. Schwartz
Hui Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of EP1133064A1 publication Critical patent/EP1133064A1/de
Application granted granted Critical
Publication of EP1133064B1 publication Critical patent/EP1133064B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/03Constructional details, e.g. casings, housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa

Definitions

  • This invention relates to the structure and manufacturing of wireless transmitters and/or receivers.
  • Transmitter and/or receiver (henceforth referred to generically as "transceiver”) technology has evolved over the decades from the use of wires, electro-mechanical components, and machined waveguide structures to the use of coax and thick film/thin film microstrip/stripline-based circuitry as disclosed for example in the document US 5,400,039 published on 21.03.1995. But even with this evolution, the recent proliferation of, and resulting stiff competition among, wireless communications products have led to price/performance demands on transceivers that conventional technologies find difficult to meet.
  • a transceiver conventionally comprises a protective enclosure, an antenna, "front end” filters (e.g., a duplexer), amplifiers and other transceiver circuitry, and connectors and cabling.
  • the most expensive components typically are the antenna, the filters, and the amplifiers.
  • the electrical interfaces between the components have been standardized at 50 ⁇ and are generally made via 50 ⁇ coaxial cables and connectors. These components not only add to the cost of the transceiver, but also reduce the overall performance thereof. Moreover, the impedance conversion required to achieve 50 ⁇ adds cost and degrades the performance of the active components of the transceiver.
  • High-volume manufacturing techniques have been used to reduce the costs of some conventional antennas and filters. However, these techniques do nothing to improve the performance of these components, nor do they improve the costs of low- and medium-volume components. Moreover, they do nothing to reduce the amount and the cost of cabling and connectors between the antenna and the filters. Others have sought to reduce the cost of antennas and filters at the expense of other parts of the transceiver; essentially, by shifting the cost to these other parts.
  • One example is replacing standard front-end components with ones that have a better performance to make up for the poor performance of cheap antennas and filters, such as replacing the low-noise pre-amplifier (LNA) with one that has a lower noise figure and a higher dynamic range (i.e., higher 1-dB compression or higher third-order intercept (TOI)), or replacing the output power amplifier (PA) with one that has a higher output power.
  • LNA low-noise pre-amplifier
  • TOI third-order intercept
  • PA output power amplifier
  • U.S. Patent No. 5,874,920 discloses a multi-layer stacked assembly that forms a portable radio. Its purpose is to intensify electromagnetic shielding and to facilitate size, thickness, and cost reduction of the radio.
  • transceiver stacked assembly as defined in claim 1.
  • the antenna and the "front end" filters of a transceiver are integrated into a single multi-layer structure that decreases complexity and transceiver cost and improves transceiver performance.
  • the transceiver is constructed as a stacked assembly of its constituent parts, with some parts performing "double duty" in the assembly, thereby decreasing its complexity and cost.
  • the antenna and "front end" filters of the transceiver are integrated into one metal laminate assembly such that shielding of the filter forms a ground plane of the antenna, thereby decreasing transceiver complexity and cost.
  • the assembly is simple and inexpensive to put together, and at the same time improves transceiver performance.
  • the circuit board that carries the transceiver circuitry is also integrated into the structure such that the shielding of the filter forms both a mount for the circuit board and a shield for the circuitry.
  • a transceiver stacked assembly comprises at least four layers: a first layer that forms an antenna, a third layer that forms one or more "front-end", or radiofrequency (RF) filters, a second layer interposed between the antenna and the filters that forms a ground plane of the antenna as well as a part of an electrical isolation enclosure for the filter, and a fourth layer that together with the second layer forms the electromagnetic isolation enclosure of the filter.
  • the layers are stacked next to ("on top of") each other and are preferably epoxied, soldered, or welded together.
  • Each layer preferably comprises a single metal layer.
  • the first layer including the antenna is stamped out of a single sheet of metal, as is the third layer including the filters.
  • each layer preferably has a cake-pan shape, forming walls that both space the rest of the layer from an adjacent layer and mount the layer on the adjacent layer.
  • the filters and the antenna are conductively or capacitively interconnected in a connectorless manner--illustratively by flanges that extend through orifices in the second layer and that are preferably made integrally with the filters or the antenna--thus eliminating the use of conventional connectors and cables.
  • a fifth layer that defines the electronic circuitry of the transceiver, such as a printed circuit board with electronic components mounted thereon, is mounted to and electromagnetically shielded by the fourth layer.
  • the electronics and the filters are conductively or capacitively connected together by flanges that extend through orifices in the fourth layer and that are preferably made integrally with the filters, again eliminating the use of conventional connectors and cables.
  • the invention has numerous benefits. For example, designing the antenna and filters as one common assembly (one unit) introduces design options or degrees of freedom not possible with separate, discrete, antennas and filters.
  • the filters and the antenna need not have a 50 ⁇ input and output impedance; rather, the impedance can be whatever yields the best performance, since both the antenna and filter performance are under control of the same designer.
  • the connection from the filters to the radio need not be 50 ⁇ , but can be separately optimized to a non-50 ⁇ impedance to advantageously match to a particular design.
  • functions e.g., the combiner
  • the invention yields lower losses and improved performance than conventional designs, due to the all-metal design.
  • the noise figure of the transceiver can likewise be improved. Elimination of connectors and cabling between the antenna, filter, and PC board also reduces transceiver costs and increases transceiver reliability. Also, precise control of the interconnection leads to better performance. Moreover, the integrated antenna and filter assembly can be manufactured more easily, as one unit. On balance, the invention yields a transceiver with fewer parts, a simpler mechanical structure, fewer manufacturing steps, and easier assembly.
  • FIG. 1 shows an exploded front view of a stack assembly 104-112 of a transceiver 100.
  • Transceiver 100 may be any desired device, e.g., a wireless communications system base station or user terminal. While transceiver 100 is used as an example herein, the invention may be employed in any electronic stack assembly.
  • Stack assembly 104-112 may be mounted inside an electromagnetically permeable protective enclosure 102, e.g., a plastic case, as is conventional, and comprises a plurality of units, or layers 104-112, that are oriented to all face in the same direction and are stacked one on top of another along an axis 140 and are attached together, e.g., by soldering, welding, or mechanical attachment such as riveting or adhering with adhesive (e.g., epoxying, with conductive or nonconductive epoxy).
  • an electromagnetically permeable protective enclosure 102 e.g., a plastic case, as is conventional, and comprises a plurality of units, or layers 104-112, that are oriented to all face in the same direction and are stacked one on top of another along an axis 140 and are attached together, e.g., by soldering, welding, or mechanical attachment such as riveting or adhering with adhesive (e.g., epoxying, with conductive or nonconductive epoxy).
  • the layers are: an antenna layer 104, which includes the antenna distribution network 120; an upper reflector layer 106 that acts as a ground plane for the antenna of layer 104; a filter layer 108 that comprises "front-end” filters (a duplexer); a lower reflector layer 110 that together with upper reflector layer 106 acts as an electromagnetically shielding housing for filter layer 108; and an electronics layer 112 that contains the electronics of transceiver 100 (also referred to as the radio layer) that is mounted on and shielded by lower reflector layer 110.
  • electronics layer 112 may be mounted remotely from filter/antenna stack assembly 104-110, and layer 110 may be just a flat sheet of conductive material.
  • Filter layer 108 includes flanges (or bent tabs) 122 by means of which it connects, through orifices 126 in upper reflector layer 106, to distribution network and combiner 120 of antenna layer 104, and further includes flanges 124 by means of which it connects, through orifices 128 in lower reflector layer 110, to electronics layer 112.
  • Flanges 122 and 124 may provide radiative (connectorless) interconnects to duplexer layer 108, or they may provide conductive interconnection by being directly attached, as by solder, to layers 106 and 110.
  • Each layer 104-110 is preferably stamped or otherwise cut and folded from a single unitary sheet of electrically conductive material, e.g., a plate of metal, to form a pan-shaped unit.
  • side walls 130 of each layer 104-110 may be made separately from the flat-sheet portion 132 of each layer, e.g., by stamping, molding, or extrusion.
  • Portion 132 forms a plane
  • side walls 130 form a closed wall within a plane that is parallel to the plane of portion 132.
  • Portions 132 and side walls 130 are stacked along axis 140 which is perpendicular to their planes and are attached to each other by soldering, welding, or adhering in order to form the pan-shaped unit.
  • Layer 106 that is made in this manner is shown in FIG. 6.
  • the height of side walls 130 may be varied from layer to layer as needed to provide clearance for electronic components, optimum performance, or shielding.
  • side walls 130 of each layer 104-110 may include lips 134, shown in FIG. 1, which facilitate the attaching of layers 104-110 to each other.
  • the double ("Z"-shaped) bend yields greater precision in the spacing of adjacent layers than would a single bend.
  • layer 110 may just be a flat sheet of conductive material.
  • Layer 112 is illustratively a conventional printed circuit board with electronic components mounted thereon.
  • Stack assembly 104-112 and its component layers are well suited for use with automated (robotic) manufacturing and assembly techniques.
  • FIG. 2 shows a perspective view of stack assembly 104-112 (without flanges 134) of FIG. 1, and shows details of antenna layer 104.
  • Antenna layer 104 comprises a frame 204 and a patch array inside of frame 204.
  • Patch array comprises a plurality of radiative elements 208 each connected to frame 204 by a support 212 and interconnected in parallel by a feed network 120.
  • the length of supports 212 is preferably one-quarter wavelength of the main operating frequency of transceiver 100, so as not to perturb the electrical performance of radiative element 208.
  • feed network 120 includes a "T"-shaped combiner 121, w0hich in conventional architectures forms a part of the duplexer (layer 108).
  • combiner 121--or any other element, for that matter-- may be placed at any layer where it best fits in, i.e., where there is room for it.
  • Frame 204 and the array of radiative elements 208 are preferably of unitary construction, cut, stamped, etched, or otherwise produced from a single sheet of metal.
  • Antenna layer 104 is illustratively the antenna disclosed in the application of R. Bamett et al. entitled "Sheet-Metal Antenna", Serial no. 09/521,727, filed on even date herewith and assigned to the same assignee.
  • Flanges 122 of filter layer 108 are coupled to combiner 121 of feed network 120 of the patch array.
  • the coupling may be either conductive, e.g., a solder joint, or capacitive.
  • Frame 204 spaces the patch array away from the antenna ground plane formed by upper reflector layer 106. Air between the ground plane and the patch array forms the dielectric layer of the antenna.
  • Feed network 120 and combiner 121 preferably lie closer to the antenna ground plane than radiative elements 208. This creates a vertical spacing between radiative elements 208 and network 120 and so lessens the requirement for a horizontal spacing between them while maintaining the net spacing between them.
  • Frame 204 is welded, epoxied, soldered, or otherwise attached to upper reflector layer 106.
  • Upper reflector layer 106 is similarly attached to filter layer 108.
  • Upper reflector layer 106 is preferably merely a metal "pan” with orifices 126 for flanges 122 of filter layer 108.
  • FIG. 3 shows details of filter layer 108.
  • Filter layer 108 comprises a frame 310 and a pair of resonator arrays inside of frame 310.
  • Each resonator array forms a filter and comprises a plurality of resonators 314 each connected to frame 310 by a pair of supports 316.
  • Outermost resonators 314 of each array on one end of filter layer 108 define flanges 122.
  • Outermost resonators 314 of each array on the other end of filter layer 108 define flanges 124.
  • Frame 310 and the resonator arrays including flanges 122 and 124 are preferably of unitary construction, stamped or otherwise produced from a single sheet of metal.
  • Filter layer 108 is illustratively the filter element disclosed in the application of R. Bamett et al. entitled “Sheet-Metal Filter”, Serial no. 09/521,566, filed on even date herewith and assigned to the same assignee.
  • Frame 310 spaces the resonator arrays away from lower reflector layer 110.
  • Frame 310 is welded, epoxied, soldered, or otherwise attached to lower reflector layer 110.
  • Layers 106 and 110 and frame 310 together form an electromagnetically isolating enclosure for the filters that are formed by the resonator arrays of layer 108. This enclosure may also act as a heat sink for the transceiver circuitry of layer 112. Air inside the enclosure forms dielectric layers of the filters.
  • FIG. 4 shows details of the underside of lower reflector layer 110.
  • Layer 110 is preferably merely a metal "pan” with orifices 128 for flanges 124 of filter layer 108.
  • the underside of layer 110 has standoffs (spacers) 400 mounted thereto for mounting electronics layer 112 to layer 110.
  • Flanges 124 of filter layer 108 which protrude through orifices 128 make either physical or capacitive contact with pads 138 (see FIG. 1) of electronics layer 112.
  • Layer 110 also acts as an electromagnetic shield, and optionally as a heat sink, for electronics layer 112.
  • FIG. 5 presents a cutaway side perspective view of stack assembly 104-110 that shows in greater detail the intercoupling of layers 104 and 108 that is effected by a flange 122.
  • the coupling structure can bridge fairly wide gaps, either conductively or radiatively.
  • a coupling capacitor (illustratively formed by the tips of flange 122 and combiner 121 which are positioned in proximity to, but do not touch, each other) forms a series inductive-capacitive resonant circuit (or a more-complex but still series resonance type of circuit) together with interconnecting flange 122 (bent up/down strip) and provides very low loss connection near the resonant frequency. This is described in more detail in the application of R.
  • the capacitor therefore provides not just coupling, but in fact compensates for the inductance of interconnecting flange 122.
  • the capacitor in this design can be much smaller (in some cases by an order of magnitude) than a coupling capacitor that would be used conventionally to connect two 50 ⁇ sections, and hence is much easier to implement.
  • This type of connection can be applied to coaxial, two wire, and coplanar waveguide types of interconnecting structures.
  • the capacitor itself may or may not have a dielectric, i.e., the dielectric may be air.
  • the dielectric may be anything from a ceramic to a double-sided adhesive tape, which provides mechanical robustness.
  • FIG. 5 further shows optional spacers 500 that may be employed between layers 104-110 to ensure proper spacing between the layers.
  • spacers 500 may be stamped or molded plastic standoffs, or other low-cost precision parts, such as ball bearings, or even electronic components used as spacers.
  • the layers may be aligned by use of projecting pins or tabs interlocking into adjacent layers. Proper spacing between layers may be achieved by use of a precision jig during assembly to hold distances correct during soldering or welding.
  • the principles of the stack assembly are applicable to the construction of an antenna alone or a filter alone, or to any other electronic assembly.
  • the lower reflector layer 110 could also be used to provide extra mechanical rigidity for the circuit board of the electronics layer.
  • some layers may be just flat sheets of conductive material sandwiched between adjacent pan-shaped layers that face each other across the interspaced flat layer.
  • the assembly may also include adjacent pan-shaped layers that face away from each other and are attached to each other back-to-back (pan bottom-to-pan bottom).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transceivers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (9)

  1. Sendeempfänger (100) in gestapelter Anordnung, mit:
    einer eine Antenne bildenden ersten Anordnungsschicht (104);
    einer mit der ersten Schicht verbundenen und ein Filter bildenden dritten Anordnungsschicht (108);
    einer mit der ersten und dritten Schicht verbundene und dazwischen angeordnete und eine Masseebene der Antenne bildende zweite Anordnungsschicht (106): und
    eine mit der dritten Schicht verbundene und zusammen mit der zweiten Schicht ein elektromagnetisches Isolationsgehäuse für die Filter bildende vierte Anordnungsschicht (110);
       dadurch gekennzeichnet, daß:
    jede Schicht einen einheitlichen Aufbau mit einem Rahmen aufweist, welcher von einem umgebogenen Umfangsrand (130) der Schicht gebildet wird, welcher dazu dient, die Schicht mit einer angrenzenden Schicht zu verbinden, und einen Rest der Schicht von der angrenzenden Schicht auf Abstand zu halten.
  2. Anordnung nach Anspruch 1, wobei:
    die erste Schicht nur eine die Antenne bildende Metallschicht (130, 132) aufweist;
    die zweite Schicht nur eine Metallschicht (130, 132) aufweist;
    die dritte Schicht nur eine das Filter bildende Metallschicht (130, 132) aufweist; und
    die vierte Schicht nur eine Metallschicht (130, 132) aufweist.
  3. Anordnung nach Anspruch 2, wobei das Filter der dritten Schicht ein Paar von ein Sendefilter und
    ein Empfangsfilter einschließenden Filtern aufweist; und
    die nur eine Metallschicht der ersten Schicht ferner einen Kombinierer (121) bildet, welcher zusammen mit den Filtern der dritten Schicht einen Duplexer bildet.
  4. Anordnung nach Anspruch 1, wobei:
    jede Schicht Wände (130) enthält, welche zum Verbinden der Schicht mit einer angrenzenden Schicht dienen, und um einen Rest der Schicht von der angrenzenden Schicht auf Abstand halten.
  5. Anordnung nach Anspruch 4, wobei:
    die Wände (130) von jedem Rahmen einen Flansch (134) entlang einem Umfangsrand des Rahmens mit einer Breite von etwa einer Viertel der Wellenlänge einer Betriebsfrequenz des Sendeempfängers in gestapelter Anordnung aufweisen, und knapp von der angrenzenden Schicht beabstandet sind, oder diese berühren.
  6. Anordnung nach Anspruch 2, welche ferner aufweist:
    eine fünfte Schicht (112), die mit der vierten Schicht verbunden ist und eine elektronische Schaltung des Sendeempfängers definiert, welche elektromagnetisch von der vierten Schicht abgeschirmt ist; und wobei
    das Filter von einer Ebene der dritten Schicht aus abgebogene Flansche (122, 124) enthält,
    die zweite und die vierte Metallschicht Öffnungen (126, 128) enthalten, durch welche sich mindestens einer von den Flanschen hindurch erstreckt,
    der Flansch (122), der sich durch die Öffnung (126) der zweiten Schicht hindurch erstreckt, das Filter mit der Antenne verbindet, und
    der Flansch (124), der sich durch die Öffnung (128) der vierten Schicht hindurch erstreckt, das Filter mit der elektronischen Schaltung verbindet.
  7. Anordnung nach Anspruch 6, welche ferner aufweist:
    ein elektromagnetisch durchlässiges Gehäuse (102), das die Anordnung der ersten bis vierten Schichten umgibt.
  8. Verfahren zur Herstellung der Anordnung von Anspruch 1, gekennzeichnet durch:
    Übereinanderstapeln der Anordnungsschichten (104 bis 110) aneinander angrenzend; und
    eines von Verkleben mit Epoxid, Löten, Schweißen und mechanischen Befestigen der Anordnungsschichten aneinander.
  9. Verfahren nach Anspruch 8, welches ferner aufweist;
       Stanzen, Ätzen oder mechanisches Formen jeder Anordnungsschicht aus einem metallischem Einzelblech (130, 132).
EP00308674A 2000-03-09 2000-10-03 Sendeempfänger mit gestapelten Zusammenbau Expired - Lifetime EP1133064B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US523913 2000-03-09
US09/523,913 US6329949B1 (en) 2000-03-09 2000-03-09 Transceiver stacked assembly

Publications (2)

Publication Number Publication Date
EP1133064A1 EP1133064A1 (de) 2001-09-12
EP1133064B1 true EP1133064B1 (de) 2002-08-07

Family

ID=24086947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00308674A Expired - Lifetime EP1133064B1 (de) 2000-03-09 2000-10-03 Sendeempfänger mit gestapelten Zusammenbau

Country Status (5)

Country Link
US (1) US6329949B1 (de)
EP (1) EP1133064B1 (de)
JP (1) JP3805206B2 (de)
CA (1) CA2334367C (de)
DE (1) DE60000312T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4082074A4 (de) * 2019-12-26 2023-09-13 Telefonaktiebolaget LM Ericsson (publ.) Antenneneinheit, antennenmodul und basisstation damit

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076267A (ja) * 2000-08-22 2002-03-15 Hitachi Ltd 無線送受信装置
WO2002019671A1 (en) * 2000-08-28 2002-03-07 In4Tel Ltd. Apparatus and method for enhancing low-frequency operation of mobile communication antennas
US20030017806A1 (en) * 2001-06-29 2003-01-23 Albert Sutono Multi-layer, high density integrated wireless communication architecture
US6847328B1 (en) * 2002-02-28 2005-01-25 Raytheon Company Compact antenna element and array, and a method of operating same
US6686875B1 (en) 2002-10-04 2004-02-03 Phase Iv Systems, Inc. Bi-directional amplifier module for insertion between microwave transmission channels
US7671803B2 (en) * 2003-07-25 2010-03-02 Hewlett-Packard Development Company, L.P. Wireless communication system
US7009564B2 (en) * 2003-09-19 2006-03-07 The United States Of America As Represented By The Secretary Of The Navy TM microstrip antenna
SG165149A1 (en) * 2003-10-22 2010-10-28 Zhang Yue Ping Integrating an antenna and a filter in the housing of a device package
US7372373B2 (en) * 2004-08-27 2008-05-13 Itron, Inc. Embedded antenna and filter apparatus and methodology
US7683789B2 (en) * 2005-03-04 2010-03-23 Intelleflex Corporation Compact omni-directional RF system
US20060208898A1 (en) * 2005-03-04 2006-09-21 Intelleflex Corporation Compact omnidirectional RF system
IL197906A (en) * 2009-04-05 2014-09-30 Elta Systems Ltd Antenna arrays and method for creating them
ATE554514T1 (de) * 2009-05-26 2012-05-15 Alcatel Lucent Aktives antennenelement
US20110120763A1 (en) * 2009-11-21 2011-05-26 Paragon Technologies Co., Ltd. Structure and method of forming a film that both prevents electromagnetic interference and transmits and receives signals
US9774076B2 (en) 2010-08-31 2017-09-26 Siklu Communication ltd. Compact millimeter-wave radio systems and methods
KR101801186B1 (ko) * 2011-02-25 2017-11-24 엘지전자 주식회사 이동 단말기
JP5591760B2 (ja) * 2011-06-06 2014-09-17 株式会社東芝 アンテナユニット及びパネルアレイアンテナ装置
US8922453B2 (en) * 2012-07-25 2014-12-30 Nokia Solutions And Networks Oy Variable adaption of active antenna system radio frequency filtering
US9775051B2 (en) * 2015-01-02 2017-09-26 Cellphone-Mate, Inc. Apparatus and methods for radio frequency signal boosters
US9660614B2 (en) * 2015-07-31 2017-05-23 Nuvotronics, Inc. Stacked, switched filter banks
US10050323B2 (en) 2015-11-13 2018-08-14 Commscope Italy S.R.L. Filter assemblies, tuning elements and method of tuning a filter
CN106711558B (zh) * 2015-11-13 2020-07-14 康普公司意大利有限责任公司 滤波器组件、调谐元件以及对滤波器进行调谐的方法
DE102016108867A1 (de) 2016-05-13 2017-11-16 Kathrein Werke Kg Schirmgehäuse für HF-Anwendungen
WO2017215634A1 (en) 2016-06-17 2017-12-21 Cellphone-Mate, Inc. Radio frequency signal boosters for vehicles
KR102501935B1 (ko) * 2016-08-31 2023-02-21 삼성전자 주식회사 안테나 장치 및 이를 포함하는 전자 기기
KR101855133B1 (ko) 2016-11-16 2018-05-08 주식회사 케이엠더블유 적층구조의 mimo 안테나 어셈블리
CN106653700B (zh) * 2016-11-16 2018-11-20 中国电子科技集团公司第四十一研究所 一种具有新型叠层结构的ltcc基板
DE102017200127A1 (de) * 2017-01-05 2018-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modulanordnung mit eingebetteten Komponenten und einer integrierten Antenne, Vorrichtung mit Modulanordnungen und Verfahren zur Herstellung
DE102017200126A1 (de) 2017-01-05 2018-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modulanordnung mit integrierter Antenne und eingebetteten Komponenten sowie Verfahren zur Herstellung einer Modulanordnung
CN110521056B (zh) * 2017-03-31 2021-08-03 株式会社Kmw 天线组件及包括天线组件的装置
US10320043B2 (en) * 2017-05-23 2019-06-11 Nanning Fugui Precision Industrial Co., Ltd. Power distributing device
WO2019032813A1 (en) 2017-08-11 2019-02-14 Cellphone-Mate, Inc. RADIO FREQUENCY SIGNAL AMPLIFIER FOR VEHICLES
ES2886940T3 (es) * 2017-09-25 2021-12-21 Gapwaves Ab Red de antenas en fase
KR102017159B1 (ko) 2018-03-12 2019-09-02 삼성전자주식회사 안테나 모듈
JP7122378B2 (ja) * 2018-06-26 2022-08-19 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体、および基地局
WO2020212819A1 (en) * 2019-04-15 2020-10-22 Telefonaktiebolaget Lm Ericsson (Publ) Integrated antenna and filter unit (iafu) for 5th generation advanced antenna system (aas) systems
CN209948056U (zh) * 2019-08-09 2020-01-14 瑞典爱立信有限公司 天线滤波器单元、以及无线电单元
KR102463546B1 (ko) * 2020-05-25 2022-11-09 주식회사 케이엠더블유 안테나 장치
WO2021241977A1 (ko) * 2020-05-25 2021-12-02 주식회사 케이엠더블유 안테나 장치
KR102437332B1 (ko) * 2020-05-26 2022-08-30 주식회사 케이엠더블유 안테나 장치
CN115836440A (zh) * 2020-05-26 2023-03-21 株式会社Kmw 天线装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104362A (en) 1959-08-27 1963-09-17 Thompson Ramo Wooldridge Inc Microwave filter
US4339628A (en) 1980-08-20 1982-07-13 Northern Telecom Limited RF Shielding support for stacked electrical circuit boards
US5023866A (en) * 1987-02-27 1991-06-11 Motorola, Inc. Duplexer filter having harmonic rejection to control flyback
US5231407A (en) * 1989-04-18 1993-07-27 Novatel Communications, Ltd. Duplexing antenna for portable radio transceiver
US5045824A (en) * 1990-09-04 1991-09-03 Motorola, Inc. Dielectric filter construction
FR2673496B1 (fr) 1991-02-28 1993-06-11 Monetel Coffret pour appareil d'interface ligne telephonique/liaison radio.
US5225799A (en) 1991-06-04 1993-07-06 California Amplifier Microwave filter fabrication method and filters therefrom
US5512901A (en) * 1991-09-30 1996-04-30 Trw Inc. Built-in radiation structure for a millimeter wave radar sensor
JP2840493B2 (ja) 1991-12-27 1998-12-24 株式会社日立製作所 一体型マイクロ波回路
JPH05206706A (ja) 1992-01-30 1993-08-13 Reader Denshi Kk インターデジタル型バンドパスフィルタ
FI110392B (fi) 1995-09-26 2003-01-15 Solitra Oy Koaksiaaliresonaattorisuodatin, koaksiaaliresonaattorisuodattimen valmistusmenetelmä, koaksiaaliresonaattorirakenne ja koaksiaaliresonaattorirakenteen valmistusmenetelmä
JP3664792B2 (ja) 1996-01-26 2005-06-29 富士通株式会社 携帯無線機
SE508680C2 (sv) 1996-06-19 1998-10-26 Ericsson Telefon Ab L M Integrerade filter
US5777856A (en) 1996-08-06 1998-07-07 Motorola, Inc. Integrated shielding and mechanical support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4082074A4 (de) * 2019-12-26 2023-09-13 Telefonaktiebolaget LM Ericsson (publ.) Antenneneinheit, antennenmodul und basisstation damit

Also Published As

Publication number Publication date
DE60000312T2 (de) 2003-04-03
JP2001313581A (ja) 2001-11-09
EP1133064A1 (de) 2001-09-12
US6329949B1 (en) 2001-12-11
CA2334367C (en) 2005-09-13
CA2334367A1 (en) 2001-09-09
DE60000312D1 (de) 2002-09-12
JP3805206B2 (ja) 2006-08-02

Similar Documents

Publication Publication Date Title
EP1133064B1 (de) Sendeempfänger mit gestapelten Zusammenbau
EP0508735B1 (de) Mikrowellenfilter
EP1102347B1 (de) Integrierte Antennenerdungsplatte und EMV- Abschirmstruktur
JP4988002B2 (ja) 無線通信装置
EP1289052B1 (de) Antenne mit einem integrierten HF-Schaltkreis , Antennenmodul und Kommunikationsgerät mit derartigen Elementen
EP1132997B1 (de) Metalltafel-Antenne
US6236291B1 (en) Dielectric filter, duplexer, and communication device
US6366184B1 (en) Resonator filter
CN210272672U (zh) 天线以及电子设备
US6600659B1 (en) Electronic stacked assembly
US6816028B2 (en) Multilayer substrate and satellite broadcast reception apparatus
US11777188B2 (en) Cooling in a waveguide arrangement
US6563394B1 (en) Coaxial circulator with coplanar Y-shaped conductor and ground patterns
CN110212284B (zh) 一种片上天线阵列装置
KR101971654B1 (ko) 서브보드 일체형 연성회로기판
WO2018065059A1 (en) A waveguide feed
CN221126254U (zh) 定位天线
WO2022174416A1 (en) Antenna filter unit and base station having the same
CN116365200A (zh) 环形器滤波器集成结构、射频单元和基站
WO2006080666A1 (en) Front end module
JPH10209705A (ja) 積層フィルタおよび積層モジュール
JPH0878910A (ja) 誘電体フィルタ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17P Request for examination filed

Effective date: 20001019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A1

Designated state(s): DE FI FR SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20010817

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

AKX Designation fees paid

Free format text: DE FI FR SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR SE

REF Corresponds to:

Ref document number: 60000312

Country of ref document: DE

Date of ref document: 20020912

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121018

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20121011

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20131010

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191029

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60000312

Country of ref document: DE