EP1131549A1 - PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR - Google Patents

PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR

Info

Publication number
EP1131549A1
EP1131549A1 EP99962044A EP99962044A EP1131549A1 EP 1131549 A1 EP1131549 A1 EP 1131549A1 EP 99962044 A EP99962044 A EP 99962044A EP 99962044 A EP99962044 A EP 99962044A EP 1131549 A1 EP1131549 A1 EP 1131549A1
Authority
EP
European Patent Office
Prior art keywords
nox
nox concentration
raw
concentration
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99962044A
Other languages
German (de)
English (en)
Other versions
EP1131549B1 (fr
Inventor
Hong Zhang
Corinna Pfleger
Wolfgang Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1131549A1 publication Critical patent/EP1131549A1/fr
Application granted granted Critical
Publication of EP1131549B1 publication Critical patent/EP1131549B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus

Definitions

  • the invention relates to a method for adapting the raw NOx concentration of an internal combustion engine working with excess air according to the preamble of patent claim 1.
  • NOx storage reduction catalysts hereinafter simply referred to as NOX storage catalysts. Due to their coating, these NOx storage catalytic converters are able to adsorb NOx compounds from the exhaust gas during a storage phase, also referred to as the loading phase, which arise during lean combustion. During a regeneration phase, the adsorbed or stored NOx compounds are converted into harmless compounds with the addition of a reducing agent. CO, H 2 and HC (hydrocarbons) can be used as reducing agents for lean-burn gasoline internal combustion engines. These are generated by briefly operating the internal combustion engine with a rich mixture and made available to the NOx storage catalytic converter as exhaust gas components, as a result of which the stored NOx compounds in the catalytic converter are broken down.
  • the adsorption efficiency of such a NOx storage catalyst drops with a higher NOx loading level.
  • the degree of loading is the quotient of the current, absolute NOx loading and the maximum NOx storage capacity.
  • the calculated degree of loading can be used to control the lean and rich cycles of the internal combustion engine. It can be seen that in order to determine the degree of loading it is necessary to have as precise a knowledge as possible of both the current loading and the maximum storage capacity.
  • the maximum storage capacity can be determined on the engine test bench by measuring the amount of NOx stored per unit of time until a saturation state is reached, while saturation of the NOx storage catalytic converter in the motor vehicle is not possible for emission reasons.
  • this storage capability is subject to an aging process, so that it is necessary to adapt it over the vehicle running route. For this you need either the value for the current loading and / or a very precise value for the raw NOx emission of the internal combustion engine.
  • One way of determining the raw NOx concentration is to measure a reference internal combustion engine on a test bench and to store the data in suitable maps. However, reading these maps only provides meaningful results if the raw NOx concentration of various internal combustion engines in a series does not fluctuate too much. If the fluctuations in the raw NOx concentrations exceed a certain level, an adaptation of the raw NOx concentration of the internal combustion engine in the motor vehicle is necessary.
  • the invention is based on the object of specifying a method with which the raw NOx concentration of an internal combustion engine of the type mentioned at the outset can be adapted in a simple manner.
  • the operating point-dependent values for the raw NOx concentration of the internal combustion engine are read from a map and the concentration fluctuations are adapted on the basis of the output signal of a NOx sensor arranged downstream of the NOx storage catalytic converter either by modifying a reduction factor which is used to calculate the corrected raw NOx concentration from the raw NOx concentration, or by directly correcting the values read from the map for the raw NOx concentration with a raw concentration correction factor.
  • FIG. 1 shows a schematic illustration of a lean-burn internal combustion engine with a NOx storage catalytic converter
  • FIG. 2 shows a diagram which shows the amount of NOx and NOx emitted during a lean phase of the internal combustion engine.
  • FIG. 3 shows a block diagram for adapting the raw NOx concentration by means of a correction factor for the reduction factor
  • FIG. 4 shows a block diagram for adapting the raw NOx concentration by means of a correction factor for the raw NOx concentration
  • Figure 5 is a diagram showing the integrals of the NOx concentrations.
  • FIG. 1 shows a lean-burn internal combustion engine with a NOx exhaust gas aftertreatment system in the form of a block diagram, in which the method according to the invention is applied becomes. Only the components that are necessary to understand the invention are shown.
  • the lean-burn internal combustion engine 10 is supplied with an air / fuel mixture via an intake duct 11.
  • a load sensor in the form of an air mass meter 12 a throttle valve block 13 with a throttle valve 14 and a throttle valve sensor (not shown) for detecting the opening angle of the throttle valve 14 and a number of cylinders corresponding to the number of cylinders are provided, one after the other, a set of injection valves 15, of which only one is shown.
  • the method according to the invention can also be used in a system in which the fuel is injected directly into the respective cylinder (direct injection).
  • an exhaust gas aftertreatment system for lean exhaust gas is provided in this exhaust gas duct 16. It consists of a pre-catalytic converter 17 (3-way catalytic converter) arranged near the internal combustion engine 10 and a NOx storage catalytic converter 18 arranged downstream of the pre-catalytic converter 17 in the flow direction of the exhaust gas.
  • a pre-catalytic converter 17 (3-way catalytic converter) arranged near the internal combustion engine 10
  • a NOx storage catalytic converter 18 arranged downstream of the pre-catalytic converter 17 in the flow direction of the exhaust gas.
  • the sensor system for the exhaust gas aftertreatment system includes an oxygen sensor 19 upstream of the pre-catalytic converter 17, a temperature sensor 20 in the connecting pipe between the pre-catalytic converter 17 and the NOx storage catalytic converter 18 close to the inlet area thereof, and a further exhaust gas sensor 21 downstream of the NOx storage catalytic converter 18.
  • temperature sensor 20 which detects the exhaust gas temperature and from whose signal the temperature of the NOx storage catalytic converter 18 can be calculated using a temperature model
  • temperature sensor 201 is shown in FIG. records that directly measures the monolith temperature of the NOx storage catalyst 18.
  • a further possibility is to calculate the monolith temperature of the NOx storage catalytic converter 18 using an exhaust gas temperature model, some or all of the following parameters, such as speed, load, ignition angle, air ratio, exhaust gas recirculation rate, intake air temperature, coolant temperature, being used as input variables for this model .
  • the use of a temperature sensor 20 can be dispensed with.
  • the calculation or measurement of the temperature of the NOx storage catalytic converter 18 is necessary for controlling the system in terms of consumption and emissions. Based on this measured, calculated or modeled temperature signal, catalyst heating or catalyst protection measures are also initiated.
  • a broadband lambda probe is preferably used as the oxygen sensor 19, which, depending on the oxygen content in the exhaust gas, has a constant, e.g. outputs linear output signal.
  • the signal from this broadband lambda probe is used to regulate the air ratio during lean operation and during the regeneration phase with a rich mixture in accordance with the setpoint values.
  • This function is performed by a lambda control device 22 known per se, which is preferably integrated in a control device 23 which controls the operation of the internal combustion engine 10.
  • Electronic control devices of this type which generally contain a microprocessor and which, in addition to fuel injection and ignition, also perform a large number of other control and regulating tasks, including the control of the exhaust gas aftertreatment system, are known per se, so that in the following only the in connection with the invention relevant structure and its functioning becomes.
  • the control device 23 is connected to a memory device 24, in which various characteristic curves or maps KF1, KF2, and correction factors RFKF and RKKF, among other things, are stored, the respective meaning of which is explained in more detail with reference to the description of the following figures.
  • a temperature sensor 29 detects a signal corresponding to the temperature of the internal combustion engine, for example by measuring the coolant temperature.
  • the speed of the internal combustion engine is detected with the help of a markings on the crankshaft or a sensor 30 which is connected to the sensor wheel.
  • the output signal of the air mass meter 12 and the signals of the throttle valve sensor, the oxygen sensor 19, the exhaust gas probe 21, the temperature sensors 20, 29 and the speed sensor 30 are supplied to the control device 23 via corresponding connecting lines.
  • control device 23 is connected, in addition to an ignition device 27 for the air-fuel mixture, to further sensors and actuators (not explicitly shown) via a data and control line 28, which is only shown schematically.
  • an exhaust gas sensor in the form of a NOx sensor 21 Downstream of the NOx storage catalytic converter 18, an exhaust gas sensor in the form of a NOx sensor 21 is arranged in the exhaust gas duct, the output signal thereof for controlling the storage regeneration and for adapting model variables such as the oxygen or NOx storage capacity, the NOx storage catalytic converter 18 and Detection of the aging state of the NOx storage catalytic converter is used.
  • the raw NOx emission of the internal combustion engine is adapted with the output signal of the NOx sensor 21 if necessary.
  • a bout the already mentioned parameter is detected in the controller 21 filed by executing control routines, inter alia, the load state of the internal combustion engine, determines the NO x raw emission of the internal combustion engine and adapted, and determines the degree of loading of the NOx storage catalyst.
  • the total amount of NOx emitted by the internal combustion engine during a lean phase can be broken down into the following parts:
  • the above-mentioned NOx quantities SU, SM and DB can be formed from the respective concentrations by integration over time.
  • Corrected raw NOx concentration KK is understood below to mean the raw NOx concentration minus the stationary turnover concentration SK.
  • the stationary turnover concentration SK is recorded via a reduction factor RF.
  • the most accurate knowledge of the corrected raw NOx concentration KK is necessary for catalyst control by calculating the degree of loading and for adapting the storage capacity to aging.
  • FIG. 2 shows a diagram in which the above-mentioned proportions of the raw NOx emission emitted by the internal combustion engine during the lean phase are entered.
  • the lean phase has ended and a regeneration phase for the NOx storage catalytic converter 18 is requested.
  • the hatched areas indicate the individual NOx quantities of stationary sales quantity SU, storage quantity SM and breakthrough quantity DB.
  • KK (nl) is the corrected raw NOx concentration before the current adaptation process, with KK (n) the corrected raw NOx concentration after the current one A daption called.
  • the associated values for the stationary turnover concentration SK (nl) with an uncorrected reduction factor and with a corrected reduction factor SK (n) are also shown.
  • FIG. 3 shows in the form of a block diagram a first exemplary embodiment for adapting the NOx concentration fluctuations by modifying the reduction factor RF, which is used to calculate the corrected raw NOx concentration from the raw NOx concentration.
  • the corrected raw NOx concentration KK is determined with the aid of the signal from the NOx sensor 21 arranged downstream of the NOx storage catalytic converter and adapted if necessary.
  • the adaptation is carried out as follows during a cycle consisting of a lean and fat phase.
  • breakthrough amount DB and the amount of memory SM are determined.
  • the breakthrough quantity DB is detected in the lean phase by measuring the post-cat NOx concentration with the NOx sensor 21 and integrating it over the lean phase duration.
  • the storage quantity SM in the lean phase can be calculated in the fat phase following the lean phase. For this it is assumed that the additional fuel mass flow, which is not required for stoichiometric combustion, is used to reduce the stored NOx mass and to use up the stored oxygen.
  • the stored amount of oxygen the length of time from the beginning of the rich phase until a complete NOx regeneration of the NOx storage catalytic converter is recognized, the additional fuel mass flow and the molar ratio of the fuel + NOx reaction, it is possible to draw conclusions about the stored NOx amount.
  • the integral of the corrected NOx concentration over the lean phase IKK is calculated.
  • the raw NOx concentration RK is, for example, dependent on ger or all of the following parameters determined: speed, load, ignition angle, air ratio, exhaust gas recirculation rate, intake air temperature, coolant temperature.
  • the correction factor RFKF for the reduction factor RF is reduced or increased in a suitable manner. It is reduced if IKK ⁇ DB + SM and it is increased if IKK> DB + SM applies.
  • the reduction factor RF read out from the map KF2 for example as a function of the temperature of the NOx storage catalytic converter 18, is multiplied by the correction factor RFKF which has remained unchanged or has been adapted in the manner described above.
  • the value obtained in this way is subtracted from 1 and this value is multiplied by the raw NOx concentration RK, which is read out from the map KF1 for this purpose.
  • FIG. 4 Another possibility of adaptation is the adaptation of a correction factor RKKF for the raw NOx concentration RK.
  • RKKF correction factor
  • the reduction factor RF is not modified in the method presented here, but the raw NOx concentration RK is multiplied by a correction factor RKKF that can be calculated according to the above-described adaptation method (ratio or difference formation of IKK and (DB + SM)).
  • This pre-corrected raw NOx concentration RKK is then multiplied by the value 1-RF, RF again denoting the reduction factor that is read from the map KF2.
  • FIG. 5 shows the integrals of the corrected NOx concentration IKK over the lean phase, the storage amount SM and the breakthrough amount DB.
  • the corrected raw NOx concentration KK and the sum of storage concentration SPK and post-catalyst concentration NK are shown.
  • the integral values IKK and SM + DB are the same and no adaptation needs to be carried out, otherwise an adaptation is carried out according to the method explained with reference to FIGS. 3 or 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Selon l'invention, les valeurs mémorisées en fonction du point de fonctionnement dynamique, pour la concentration brute en NOx (RK) d'un moteur à combustion interne sont sélectionnées dans un champ caractéristique et l'adaptation des variations de la concentration s'effectue sur la base du signal de sortie d'un détecteur de NOx situé en aval du pot catalytique à accumulation de NOx, soit par modification d'un facteur de réduction (RF) servant à calculer la concentration brute en NOx (KK) à partir de la concentration brute en NOx (RK), soit par correction directe des valeurs sélectionnées dans le champ caractéristique pour la concentration brute en NOx (RK) avec un facteur de correction de concentration brute.
EP99962044A 1998-11-09 1999-11-03 PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR Expired - Lifetime EP1131549B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19851477 1998-11-09
DE19851477 1998-11-09
PCT/DE1999/003519 WO2000028201A1 (fr) 1998-11-09 1999-11-03 PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR

Publications (2)

Publication Number Publication Date
EP1131549A1 true EP1131549A1 (fr) 2001-09-12
EP1131549B1 EP1131549B1 (fr) 2004-07-21

Family

ID=7887090

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99962044A Expired - Lifetime EP1131549B1 (fr) 1998-11-09 1999-11-03 PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR

Country Status (5)

Country Link
US (1) US6438947B2 (fr)
EP (1) EP1131549B1 (fr)
JP (1) JP3531867B2 (fr)
DE (1) DE59910023D1 (fr)
WO (1) WO2000028201A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358309B2 (ja) * 1997-04-09 2009-11-04 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング NOx蓄積体の監視方法及び装置
JP4517463B2 (ja) * 2000-06-22 2010-08-04 マツダ株式会社 エンジンの排気浄化装置
DE10034874B4 (de) * 2000-07-18 2004-01-22 Siemens Ag Verfahren zum Adaptieren einer NOx-Rohkonzentration
DE10036453A1 (de) * 2000-07-26 2002-02-14 Bosch Gmbh Robert Verfahren und Steuergerät zum Betreiben eines Stickoxid (NOx)-Speicherkatalysators
DE10305635B4 (de) * 2003-02-11 2011-01-13 Continental Automotive Gmbh Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE10312440B4 (de) * 2003-03-20 2006-04-06 Siemens Ag Abgasreinigungsverfahren für Magerbrennkraftmaschinen
JP2004293338A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵量の推定方法
JP4182878B2 (ja) * 2003-10-09 2008-11-19 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
DE102005001961A1 (de) * 2005-01-15 2006-07-27 Audi Ag Verfahren und Vorrichtung zum Schutz temperaturempfindlicher Bauteile im Ansaugbereich eines Verbrennungsmotors mit Abgasrückführung
DE102005042488A1 (de) * 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102005042489A1 (de) * 2005-09-07 2007-03-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
WO2008131788A1 (fr) * 2007-04-26 2008-11-06 Fev Motorentechnik Gmbh Régulation d'un moteur à combustion interne de véhicule automobile
JP4333803B1 (ja) * 2008-04-22 2009-09-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
FR2934637B1 (fr) * 2008-07-30 2010-08-13 Renault Sas Procede de gestion du fonctionnement d'un piege a nox equipant une ligne d'echappement d'un moteur a combustion interne
US9303575B2 (en) * 2011-09-28 2016-04-05 Continental Controls Corporation Automatic set point adjustment system and method for engine air-fuel ratio control system
FR2982824B1 (fr) * 2011-11-17 2013-11-22 IFP Energies Nouvelles Procede de commande en regime transitoire d'un systeme de propulsion hybride d'un vehicule
JP6025606B2 (ja) * 2013-02-22 2016-11-16 三菱重工業株式会社 燃料セタン価推定方法及び装置
FR3006372B1 (fr) * 2013-05-31 2017-02-24 Renault Sa Procede d'estimation des emissions polluantes d'un moteur a combustion interne et procede associe de pilotage du moteur
FR3016924B1 (fr) * 2014-01-30 2018-10-26 Psa Automobiles Sa. Procede de correction d'un modele d'estimation d'une quantite d'oxydes d'azotes en amont d'un systeme de reduction catalytique selective
SE540265C2 (sv) 2014-01-31 2018-05-15 Scania Cv Ab Förfarande och system vid tillförsel av tillsatsmedel till en avgasström
JP6477088B2 (ja) * 2015-03-20 2019-03-06 いすゞ自動車株式会社 NOx吸蔵量推定装置
KR101734710B1 (ko) * 2015-12-07 2017-05-11 현대자동차주식회사 차량의 주행패턴 분석방법을 이용한 연비향상방법
US20200291877A1 (en) * 2019-03-12 2020-09-17 GM Global Technology Operations LLC Aggressive thermal heating target strategy based on nox estimated feedback
CN114810296B (zh) * 2022-05-09 2023-07-18 潍柴动力股份有限公司 闭环控制器的稳定性控制方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021871A1 (fr) * 1991-06-03 1992-12-10 Isuzu Motors Limited DISPOSITIF POUR LA REDUCTION DU NO¿x?
JP3440654B2 (ja) * 1994-11-25 2003-08-25 トヨタ自動車株式会社 排気浄化装置
JP2836522B2 (ja) * 1995-03-24 1998-12-14 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE19511548A1 (de) * 1995-03-29 1996-06-13 Daimler Benz Ag Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
DE19543219C1 (de) * 1995-11-20 1996-12-05 Daimler Benz Ag Verfahren zum Betreiben eines Dieselmotors
DE19607151C1 (de) * 1996-02-26 1997-07-10 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators
US5704339A (en) * 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
CA2257949C (fr) * 1996-06-10 2003-02-11 Hitachi, Ltd. Dispositif de purification des gaz d'echappement d'un moteur a combustion interne et catalyseur pour purifier lesdits gaz
DE19653756C2 (de) * 1996-12-20 1999-01-14 Porsche Ag Neue Regelstrategie für einen NOx-Speicher
DE19716275C1 (de) * 1997-04-18 1998-09-24 Volkswagen Ag Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
US5983627A (en) * 1997-09-02 1999-11-16 Ford Global Technologies, Inc. Closed loop control for desulfating a NOx trap
US6244047B1 (en) * 1998-10-02 2001-06-12 Ford Global Technologies, Inc. Method of purging lean NOx trap

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0028201A1 *

Also Published As

Publication number Publication date
US20010032457A1 (en) 2001-10-25
US6438947B2 (en) 2002-08-27
EP1131549B1 (fr) 2004-07-21
DE59910023D1 (de) 2004-08-26
JP3531867B2 (ja) 2004-05-31
JP2002529652A (ja) 2002-09-10
WO2000028201A1 (fr) 2000-05-18

Similar Documents

Publication Publication Date Title
EP1131549B1 (fr) PROCEDE POUR ADAPTER LA CONCENTRATION BRUTE EN NOx D'UN MOTEUR A COMBUSTION INTERNE FONCTIONNANT AVEC UN EXCEDENT D'AIR
DE19953601C2 (de) Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE19844082C1 (de) Verfahren zum Regenerieren eines NOx-Speicherkatalysators
EP1090220B1 (fr) PROCEDE DE REGENERATION D'UN CATALYSEUR ACCUMULATEUR DE NOx D'UN MOTEUR A COMBUSTION INTERNE
DE102007005684B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10319983B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
WO2008095904A1 (fr) Procédé et dispositif de diagnostic permettant de faire fonctionner un moteur à combustion interne
DE10001133B4 (de) Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine
DE102018251720A1 (de) Verfahren zur Ermittlung einer maximalen Speicherfähigkeit eines Abgaskomponentenspeichers eines Katalysators
DE102018216980A1 (de) Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente in Abhängigkeit von einer Alterung des Katalysators
DE19851843A1 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
WO2000028200A1 (fr) PROCEDE POUR DETERMINER L'EMISSION BRUTE DE NOx D'UN MOTEUR A COMBUSTION INTERNE POUVANT FONCTIONNER AVEC UN EXCEDENT D'AIR
DE19926139A1 (de) Kalibrierung eines NOx-Sensors
EP1730391B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
DE102018251725A1 (de) Verfahren zur Regelung einer Füllung eines Abgaskomponentenspeichers eines Katalysators
EP1204815A1 (fr) Procede de reglage de la temperature des gaz d'echappement d'un moteur a combustion interne a melange pauvre pendant une desulfuration d'un catalyseur
DE102006002257B4 (de) Verfahren und Vorrichtung zum Betreiben eines Abgaskatalysators einer Brennkraftmaschine
DE19926305C2 (de) Verfahren zur Steuerung des Betriebs eines NOx-Speicherkatalysators
DE19859176C2 (de) Verfahren zum Überprüfen der Funktionsfähigkeit einer Lambdasonde
DE10010005B4 (de) Brennkraftmaschine und Verfahren zur Steuerung einer Brennkraftmaschine
EP2786001B1 (fr) Procédé et appareil pour contrôler un contrôleur de carburant
EP1434049B1 (fr) Procédé et dispositif pour surveiller le signal NOx d'un capteur de NOx
EP1241336A2 (fr) Procédé et dispositif pour régler le débit du gaz d'échappement recirculé et/ou le rapport air-carburant
DE10305635B4 (de) Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE102021132412B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040721

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59910023

Country of ref document: DE

Date of ref document: 20040826

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59910023

Country of ref document: DE