EP1129258B1 - Offshore-struktur - Google Patents

Offshore-struktur Download PDF

Info

Publication number
EP1129258B1
EP1129258B1 EP99950974A EP99950974A EP1129258B1 EP 1129258 B1 EP1129258 B1 EP 1129258B1 EP 99950974 A EP99950974 A EP 99950974A EP 99950974 A EP99950974 A EP 99950974A EP 1129258 B1 EP1129258 B1 EP 1129258B1
Authority
EP
European Patent Office
Prior art keywords
deck
leg
offshore structure
plate
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99950974A
Other languages
English (en)
French (fr)
Other versions
EP1129258A1 (de
Inventor
David Collier
Gordon Jackson
John Roberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ove Arup Partnership Ltd
Original Assignee
Ove Arup Partnership Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ove Arup Partnership Ltd filed Critical Ove Arup Partnership Ltd
Publication of EP1129258A1 publication Critical patent/EP1129258A1/de
Application granted granted Critical
Publication of EP1129258B1 publication Critical patent/EP1129258B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/04Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction
    • E02B17/08Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction for raising or lowering
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/021Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/04Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction
    • E02B17/06Equipment specially adapted for raising, lowering, or immobilising the working platform relative to the supporting construction for immobilising, e.g. using wedges or clamping rings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0039Methods for placing the offshore structure
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/006Platforms with supporting legs with lattice style supporting legs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0073Details of sea bottom engaging footing
    • E02B2017/0086Large footings connecting several legs or serving as a reservoir for the storage of oil or gas

Definitions

  • the present invention relates to offshore structures such as for example, relocatable oil production platforms.
  • the present invention therefore seeks to provide an improved offshore structure in which a jacking system is not used to hold up the deck.
  • US-A-3,974,657 discloses an offshore structure comprising a base, a deck having two substantially parallel side edges and a plurality of legs extending between the base and the deck, wherein the legs are arranged outboard of the parallel side edges and a permanent connection is provided between each said leg and the deck.
  • each said leg is a lattice leg comprising a vertically extending chord at each corner thereof, and in that the permanent connection comprises a shear plate attached substantially vertically between the deck and each said leg chord and is provided between an inwardly facing face of each said leg and the deck.
  • the deck may be raised to the required height relatively easily. Also, the formation of the connection between the legs and the deck allows the jacking system easily to be removed after installation. Thus, a standard jacking system can be hired for the duration of the installation of the structure, avoiding the manufacturing and maintenance costs involved with the permanent jacking systems of the prior art.
  • the deck is formed so that it does not include recesses for the legs.
  • the deck is generally rectangular.
  • the jacking system provided to raise the deck is also arranged entirely outside the line of the deck.
  • each chord of each lattice leg is circular in cross-section.
  • the lattice leg may be of any shape which satisfies the design requirements for a particular structure. However, preferably the lattice leg is triangular.
  • connection further comprises a stiffening plate extending through a diameter of the tubular member, wherein a first end of the shear plate is welded to the stiffening plate and the shear plate and the stiffening plate are substantially aligned.
  • This provides a relatively simple means of connecting the shear plate to the tubular member and also provides extra strength in the structure.
  • the deck could be raised to the same height on each of the legs of the structure.
  • the stiffening plate preferably extends over a greater length of the chord than the length of shear plate.
  • the shear plate need not be accurately aligned in the vertical direction before being welded to the stiffening plate.
  • the inboard end of the shear plate is welded between two plates extending outwardly from the deck edge.
  • connection preferably further comprises at least one further coupling plate attached horizontally between the deck and the leg chords.
  • This plate may carry tensile and compressive forces and bending moment loading applied between the deck and the legs.
  • the coupling plate could be attached to the tubular chord and the deck in any suitable manner.
  • the coupling plate has a cut-out in its end facing the leg chord, such that a part of the periphery of the leg chord is received within the cut-out. More preferably still, the cut-out is elliptical in shape. Therefore, a degree of tolerance in angular misalignment of the platform relative to the tubular leg is provided.
  • the coupling plate may be attached to the deck in any suitable manner, it is desirable that the plate be relatively simple to connect to the deck onsite. Preferably therefore, a horizontal web is attached to the deck and the coupling plate is butt welded thereto.
  • the coupling plate could be designed so as to be of sufficient strength itself to carry the necessary loading.
  • plate stiffeners extending from the inboard end to the outboard end and most preferably across the deck web are provided in the coupling plate.
  • a coupling plate is provided both at the top and the bottom of the shear plate.
  • each coupling plate is preferably welded to the shear plate at the join between the plates.
  • connection is formed between the deck and two leg chords located at either end of the inwardly facing face of the lattice legs. Such an arrangement allows a stable connection to be formed between each leg and the deck.
  • the present invention provides a method of installing an offshore structure comprising a base, a deck having two substantially parallel side edges, and a plurality of lattice legs located outboard of the parallel side edges, each said lattice leg comprising a vertically extending chord at each corner thereof, the method comprising the steps of: installing the base on the seabed; jacking the deck to the required height; forming a permanent connection between the deck and an inwardly facing face of each of the legs by attaching a substantially vertically extending shear plate between a chord of each lattice leg and the deck edge; and removing the jacking system from the structure.
  • the deck may be jacked up the leg relatively easily without a high risk of it becoming obstructed.
  • the removal of the jacking system allows the installation of the structure to be carried out at a significantly reduced cost.
  • the jacking mechanism is also preferably entirely located outside the line of the deck.
  • guides are preferably provided on the deck so as to guide the deck as it is jacked up the leg.
  • the deck is hindered from moving excessively relative to the legs.
  • guides may not be necessary depending on the size of the platform, water depth and other factors.
  • the method of installing the offshore structure further comprises the steps of: attaching four legs to the base; attaching two guides to the deck; floating the deck over the base so that it passes between the legs until the guides engage two of said legs; and attaching two guides to the deck.
  • the guides comprise beams attached to and projecting from the deck and being shaped for engaging a chord of a said leg.
  • the deck is located relative to the legs prior to formation of the permanent connection. This allows some elements of the permanent connection to be prefabricated as their approximate dimensions will be known. In addition, as the deck cannot move relative to the legs once it has been located, the permanent connection is easier to make.
  • the deck is located by pulling the leg towards the deck so as to hold a leg chord against the guide.
  • a hydraulic tugger is provided between an outer edge of the leg and the deck so as to pull the leg towards the deck.
  • the legs might skew slightly when the hydraulic tugger is tightened. This is because, the leg chord adjacent the guide would be held in position so that the other leg chord adjacent the deck would continue to be pulled towards the deck, effectively pivoting the leg about the guide. Therefore, hydraulic screw jacks are preferably provided at the base of the platform so as to push the inboard leg chords away from the lower deck edge, thus locating the leg squarely adjacent the deck edge.
  • Each of the legs could be located relative to the deck one by one and the permanent connection formed after each leg was located. However, preferably, the deck is pulled towards each of the legs simultaneously. This allows the location of the deck relative to the legs to be adjusted so as to provide a relatively even gap between each of the legs and the deck.
  • the permanent connection is formed by welding the substantially vertically extending shear plate between a chord of the lattice leg and the deck edge.
  • a stiffening plate is provided through a diameter of the leg chord, and a first side edge of said shear plate is welded to said stiffening plate, and said shear plate and said stiffening plate are substantially aligned.
  • the stiffening plate preferably extends over a greater length of the leg chord than the length of the shear plate.
  • two plates are preferably welded to the deck edge on respective sides of the shear plate and extending outwardly from the deck edge, and the inboard end of the said shear plate is preferably welded between the two plates.
  • the shear plate carries shear forces only such that the web plate does not have to line up precisely with the bulkhead of the deck. Therefore, the connection further preferably comprises a further coupling plate attached horizontally between the deck and the leg chord, the second plate having a cut-out in an edge facing the leg chord, such that a part of the periphery of the leg chord is received within the cut-out. Still more preferably, the cut-out is elliptical in shape.
  • a coupling plate is provided at the top and the bottom of the shear plate. Still more preferably, the shear plate and the coupling plate are welded together.
  • an offshore production platform 2 having a concrete gravity base 4 of conventional construction, four triangular section lattice legs 6, and a deck 8.
  • the gravity base 4 lies on the seabed and a permanent connection is provided between the deck 8 and the legs 6 which are arranged outboard of the deck 8, which carries conventional topsides equipment.
  • lifting beams 10 are provided at the top of each of the lattice legs 6. During installation a jacking system, which will be discussed later will be attached between the lifting beams 10, the deck 8 and the base 4 so that the base and deck may be raised and lowered relative to one another.
  • the deck 8 of the structure is constructed at an onshore site.
  • the deck 8 is of a generally standard rectangular construction and is designed to float, which avoids the need to use separate barges when transporting the structure to the installation site as will be shown below.
  • the deck will provide buoyancy to transport the platform from its place of fabrication to the offshore site, will assist in installing the platform at that site, refloat the platform at the end of its useful life at that site, transport it to another site, and eventually remove the platform to shore to be scrapped.
  • the deck 8 is then launched onto a semi-submersible barge 12 which is submerged so that the deck 8 floats off onto the water ( Figures 3.2 and 3.3).
  • the deck 8 is then towed to a fitting out quay where the topsides are installed on the deck (see Figure 3.4).
  • Figures 3.5 to 3.8 show the construction and installation of the gravity base 4 and legs 6 of the structure.
  • the legs 6 and the base 4 are constructed on shore, one of the legs 6 then being attached to each of the four corners of the base 4 in a conventional manner.
  • a jacking system (not shown) is then assembled between the base 4 and the legs 6.
  • a plurality of strand jacks are connected between the lifting beams 10 at the tops of the legs 4 and the gravity base.
  • the jacking system is arranged outboard of the line of the deck 8.
  • the base 4 is launched onto a semi-submersible barge 12, the barge is submerged and the base and legs are floated off the barge.
  • the base 4 is then sunk in the shallow water close to the shore in preparation for mating with the deck 8.
  • each guide member 14 is made up of a steel beam having an L-shaped recess 16 in one end thereof.
  • the recess 16 has a hardwood facing 17 to minimise contact damage.
  • Two of the guide members 14 at one end of the deck 8 are attached to the upper surface of the deck 8, one on either side thereof, prior to engagement of the base 4 and deck 8, so that as the deck is towed between the legs 6, it will come to rest against two legs 6 of the structure when the respective guide members 14 abut these legs 6.
  • the guide members are used loosely to locate the deck relative to the legs 6.
  • the jacking system 21 includes eight jacks located adjacent each of the four legs 6 of the structure.
  • a set of four jacks 20 for lowering the base 4 relative to the deck 8 on to the seabed is provided adjacent the inner inboard corner 22 of each of the triangular lattice legs 6.
  • Two jacks 24 for raising the deck 8 are provided between each set of base lowering jacks 22 and each leg 6, and a further two deck raising jacks 26 are provided on the other side of each of the legs 6 adjacent the deck 8.
  • Each guide member 14 extends from the deck 8 for location, to engage the outer inboard corner 28 of each leg 6, adjacent the two further deck raising jacks 26.
  • Figure 4 shows the eight jacks 20,24,26 adjacent one of the legs 6 in vertical perspective view.
  • the jacks 20,24,26 are attached to the top of the legs 6 via the lifting beam 10. They extend parallel to the leg 6 to the base 4 where they are held in a jack anchorage 30.
  • the deck 8 located between the lifting beam 10 and base 4 is attached to each of the jacks 20,24,26 via anchor plates 23 attached to the deck 8 after the deck has been floated into position on the base 4.
  • the deck 8 and base 4 may be raised and lowered relative to one another and to the legs 6.
  • the deck 8 is first more accurately located relative to the legs 6.
  • each lattice leg 6 is triangular in shape and has a vertically extending chord 34 at each of its three corners. Two of the three corners of each triangular leg are arranged adjacent the deck edge 32. Thus, the third corner of the leg (referred to as the outboard chord) is positioned further outboard with respect to the deck 8.
  • a strop 36 is attached around the outboard chord 34.
  • a hydraulic tugger 38 is then attached between the strop and a padeye 40 provided at the bottom 42 of the deck edge 32.
  • a pair of inwardly inclided hydraulic screw jacks 44 are positioned between fixed deck brackets 41 extending from the bottom 42 of the deck edge 32 and each of the inboard tubular members 34. The hydraulic tugger 38 is then tensioned so as to pull the respective leg 6 towards the deck 6 and, more specifically, the relevant chord 34 of the leg 6 against the guide member 14.
  • the screw jacks 44 are activated to seat between the deck brackets 41 and the tubular members 34 and the hydraulic tugger 38 is tensioned further so as to hold the connection in position.
  • the temporary connection formed to locate the deck relative to the legs 6, provides a relatively accurate means of location in both the horizontal and vertical planes.
  • FIG. 9 A schematic perspective view of the connection between an inboard chord 34 of a leg 6 and the deck edge 32 is shown in Figure 9.
  • the connection is made up of a vertically extending steel shear plate 46 and upper 48 and lower 50 horizontally extending metal coupling plates.
  • the connection is shown in greater detail in Figures 10 to 13.
  • respective connections are made between each of the two inboard chords 34 of the leg and the deck edge 32.
  • One end of the shear plate 46 is butt welded to one end of a stiffening plate 52 which extends through the diameter of each of the inboard chords 34 to which a connection is to be made (see Figure 12).
  • the shear plate 46 is firstly swung into position between a chord 34 and the deck edge 32. This plate 46 is then butt welded to the stiffening plate 52 along one of its outboard vertical edges.
  • the stiffening plate 52 extends over a greater length L 1 of the chord 34 than the length L 2 of the shear plate 46 to which it is welded. Indeed the stiffening plate extends upwardly as far as the lifting beam 10 in each leg 6.
  • the shear plate 46 is then attached to the platform edge as follows.
  • a first metal plate 54 is fillet welded to the deck edge 32 so that it extends out from the deck adjacent one side of the shear plate 46.
  • a second metal plate 56 is then fillet welded to the deck edge 32 so that it extends adjacent the other side of the shear plate 46.
  • the shear plate 46 is then fillet welded to both of the metal plates 54 and 56. This method of attachment means that the width of the shear plate 46 need not be exactly the same as the distance between the stiffening plate 52 and the deck edge, thereby providing a tolerance in the horizontal positioning of the deck 8 relative to the legs 6.
  • the coupling plates 48,50 are formed with an elliptical cut-out 58 in their outboard edges, as shown in Figures 10 and 13, and each chord is received in a cut-out 58. As the cut-out 58 is elliptical rather than circular, in shape, some degree of angular tolerance is provided in the positioning of the coupling plate 48,50 relative to the chord 34. As can be seen from Figure 13, web 60 extends outwardly from the upper surface 62 of the deck edge 32. Location brackets 63 are pre-welded to the deck 8 and the web 60 so as to assist in alignment of the upper coupling plate 48,50 with the web 60.
  • the coupling plate is then cut to size so as to fit between the web 60 and the chord.
  • One end of the coupling plate 48,50 is positioned against the end of the web 60 and butt welded to the web, while the other end of the coupling 48,50 is butt welded to the chord 34 around the circumference of the cut-out 58.
  • the coupling plates 48,50 are also fillet welded to the shear plate 46. Thus, again, tolerance is allowed in the horizontal distance between the leg and platform.
  • Plate stiffeners 64 are also welded across the coupling plates 48 and 50 and their respective webs 60.
  • connection between the deck 8 and each leg chord 34 thus comprises a shear plate 46, and two coupling plates 48,50, and this provides a strong connection capable of withstanding both shear and bending loads.
  • the jacking system may then be removed.
  • the platform may have any number of legs and those legs could be of any shape, for example, they could be square.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)
  • Bridges Or Land Bridges (AREA)

Claims (31)

  1. Offshore-Struktur mit einer Basis (4), einem Deck (8) mit zwei im Wesentlichen parallelen Seitenrändern und mehreren Beinen (6), die sich zwischen der Basis und dem Deck erstrecken, wobei die Beine außerhalb der parallelen Seitenränder angeordnet sind und zwischen jedem Bein und dem Deck eine dauerhafte Verbindung vorgesehen ist, dadurch gekennzeichnet, dass jedes Bein ein Gitterbein mit einer sich vertikal erstreckenden Strebe (34) an jeder Ecke davon umfasst und dass die dauerhafte Verbindung zwischen einer nach innen weisenden Fläche jedes Beins und dem Deck vorgesehen ist und eine im Wesentlichen vertikal zwischen dem Deck und jeder Beinstrebe befestigte Abscherplatte (46) umfasst.
  2. Offshore-Struktur nach Anspruch 1, bei der jede Beinstrebe (34) einen kreisförmigen Querschnitt aufweist.
  3. Offshore-Struktur nach Anspruch 1 oder 2, bei der jedes Gitterbein (6) dreieckig ist.
  4. Offshore-Struktur nach einem der vorhergehenden Ansprüche, bei der die Verbindung weiterhin eine sich durch einen Durchmesser der Beinstrebe (34) erstreckende Versteifungsplatte (52) umfasst, wobei ein erster Seitenrand der Abscherplatte (46) mit der Versteifungsplatte verschweißt ist und die Abscherplatte und die Versteifungsplatte im Wesentlichen aufeinander ausgerichtet sind.
  5. Offshore-Struktur nach Anspruch 4, bei der sich die Versteifungsplatte (52) über eine größere Länge der Beinstrebe (34) als die Abscherplatte (46) erstreckt.
  6. Offshore-Struktur nach einem der vorhergehenden Ansprüche, bei der das innen liegende Ende der Abscherplatte (46) zwischen zwei sich von dem Deckrand nach außen erstreckenden Platten (54, 56) verschweißt ist.
  7. Offshore-Struktur nach einem der vorhergehenden Ansprüche, bei der die Verbindung weiterhin eine weitere Metallverbindungsplatte (48, 50) umfasst, die horizontal zwischen dem Deck und der Beinstrebe befestigt ist.
  8. Offshore-Struktur nach Anspruch 7, bei der die Verbindungsplatte in einem zur Beinstrebe (34) weisenden Rand einen Ausschnitt (58) aufweist, so dass ein Teil des Umfangs der Beinstrebe in dem Ausschnitt festgehalten wird.
  9. Offshore-Struktur nach Anspruch 8, bei der der Ausschnitt eine elliptische Form aufweist.
  10. Offshore-Struktur nach einem der Ansprüche 7 bis 9, bei der ein horizontaler Steg (60) am Deck (8) befestigt ist und die Verbindungsplatte (48, 50) durch Stumpfschweißen damit verbunden ist.
  11. Offshore-Struktur nach einem der Ansprüche 7 bis 10, bei der sich vom innen liegenden Ende zum außen liegenden Ende erstreckende Plarrenaussteifungen (64) in der Verbindungsplatte (48, 50) vorgesehen sind.
  12. Offshore-Struktur nach einem der Ansprüche 7 bis 11, bei der am oberen und unteren Ende der Abscherplatte (46) eine Verbindungsplatte (48, 50) vorgesehen ist.
  13. Offshore-Struktur nach Anspruch 12, bei der jede Verbindungsplatte (48, 50) an der Verbindungsstelle zwischen den Platten mit der Abscherplatte (46) verschweißt ist.
  14. Offshore-Struktur nach einem der vorhergehenden Ansprüche, bei der die Verbindung zwischen dem Deck (8) und den beiden an beiden Enden der nach innen weisenden Fläche der Gitterbeine (6) angeordneten Beinstreben (34) gebildet ist.
  15. Verfahren zur Installation einer Offshore-Struktur mit einer Basis (4), einem Deck (8) mit zwei im Wesentlichen parallelen Seitenrändern und mehreren Gitterbeinen (6), die außerhalb der parallelen Seitenränder angeordnet sind, wobei jedes Gitterbein an jeder seiner Ecken eine sich vertikal erstreckende Strebe (34) umfasst, wobei das Verfahren die folgenden Schritte umfasst: Installieren der Basis auf dem Meeresboden; Hochwinden des Decks auf die erforderliche Höhe; Bilden einer dauerhaften Verbindung zwischen dem Deck und einer nach innen weisenden Fläche jedes der Beine durch Befestigen einer sich im Wesentlichen vertikal erstreckenden Abscherplatte (46) zwischen einer Strebe jedes Gitterbeins und dem Deckrand; und Entfernen des Hochwindesystems von der Struktur.
  16. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 15, bei dem am Deck (8) Führungen (14) vorgesehen sind, um das Deck bei seinem Hochwinden an den Beinen (6) zu führen.
  17. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 16, das weiterhin die folgenden Schritte umfasst: Befestigen von vier Beinen (6) an der Basis (4); Befestigen von zwei Führungen (14) am Deck (8); Treiben des Decks über die Basis, so dass es zwischen den Beinen passiert, bis die Führungen gegen die beiden Beine stoßen; und Befestigen von zwei anderen Führungen (14) am Deck.
  18. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 16 oder 17, bei dem die Führungen (14) Träger umfassen, die an der Oberseite des Decks (8) befestigt sind und davon wegragen und zur Eingriffnahme einer Strebe (34) des Beins (6) geformt sind.
  19. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 15 bis 18, bei dem das Deck (8) vor Bildung der dauerhaften Verbindung bezüglich der Beine (6) positioniert wird.
  20. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 19, bei dem das Deck (8) durch ziehen des Beins (6) zum Deck, um die Beinstrebe (34) gegen die Führung (14) zu halten, positioniert wird.
  21. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 20, bei dem zwischen einem äußeren Rand des Beins (6) und dem Deck (8) eine hydraulische Ziehvorrichtung (38) vorgesehen wird, um das Bein zum Deck zu ziehen.
  22. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 19 bis 21, bei dem an der Basis des Decks (8) hydraulische Schraubwinden (44) vorgesehen werden, um die innen liegenden Beinstreben (34) von dem unteren Deckrand weg zu schieben.
  23. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 20 bis 22, bei dem das Deck (8) zu jedem der Beine (6) gezogen wird.
  24. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 15 bis 23, bei dem die sich im Wesentlichen vertikal erstreckende Abscherplatte (46) durch Schweißen zwischen einer Strebe (34) des Gitterbeins (6) und dem Deckrand befestigt wird.
  25. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 24, bei dem eine Versteifungsplatte (52) durch einen Durchmesser des Beins (6) vorgesehen und ein erster Seitenrand der Abscherplatte (46) mit der Versteifungsplatte verschweißt wird und die Abscherplatte und die Versteifungsplatte im Wesentlichen aufeinander ausgerichtet werden.
  26. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 25, bei dem sich die Versteifungsplatte (52) über eine größere Länge der Beinstrebe (34) erstreckt als die Abscherplatte (46).
  27. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 25 oder 26, bei dem beide Platten (54, 56) auf jeweiligen Seiten der Abscherplatte (46) mit dem Deckrand verschweißt sind und sich von dem Deckrand nach außen erstrecken und das innen liegende Ende der Abscherplatte zwischen den beiden Platten verschweißt ist.
  28. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 24 bis 27, bei dem die Verbindung weiterhin eine weitere Metallverbindungsplatte (48, 50) umfasst, die horizontal zwischen dem Deck (8) und der Beinstrebe (34) befestigt ist, wobei die zweite Metallplatte in einem zur Beinstrebe weisenden Rand einen Ausschnitt (58) aufweist, so dass ein Teil des Umfangs der Beinstrebe in dem Ausschnitt festgehalten wird.
  29. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 28, bei dem der Ausschnitt (58) eine elliptische Form aufweist.
  30. Verfahren zur Installation einer Offshore-Struktur nach Anspruch 28 oder 29, bei dem am oberen und unteren Ende der Abscherplatte (46) eine Verbindungsplatte (48, 50) vorgesehen ist.
  31. Verfahren zur Installation einer Offshore-Struktur nach einem der Ansprüche 28 bis 30, bei dem die Abscherplatte (46) und die Verbindungsplatte (48, 50) miteinander verschweißt sind.
EP99950974A 1998-10-26 1999-10-25 Offshore-struktur Expired - Lifetime EP1129258B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9823427 1998-10-26
GB9823427A GB2343150B (en) 1998-10-26 1998-10-26 Offshore structure
PCT/GB1999/003521 WO2000024972A1 (en) 1998-10-26 1999-10-25 Offshore structure

Publications (2)

Publication Number Publication Date
EP1129258A1 EP1129258A1 (de) 2001-09-05
EP1129258B1 true EP1129258B1 (de) 2007-01-10

Family

ID=10841317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99950974A Expired - Lifetime EP1129258B1 (de) 1998-10-26 1999-10-25 Offshore-struktur

Country Status (4)

Country Link
EP (1) EP1129258B1 (de)
AU (1) AU6356099A (de)
GB (1) GB2343150B (de)
WO (1) WO2000024972A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027870A1 (ko) * 2011-08-22 2013-02-28 에스티엑스(대련)해양중공유한회사 크레인을 이용하지 않는 잭업리그의 건조방법
CN102400454B (zh) * 2011-11-11 2013-09-04 武汉船用机械有限责任公司 一种海洋平台的升降自动控制方法与自动控制装置
CN103572744B (zh) * 2013-10-11 2015-12-02 武汉船用机械有限责任公司 一种升降平台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343371A (en) * 1965-01-25 1967-09-26 Mcdermott & Co Inc J Ray Locking device for establishing a loadbearing joint between two structures
US3385069A (en) * 1966-10-07 1968-05-28 Bethlchem Steel Corp Mobile marine platform apparatus
US3974657A (en) * 1972-04-13 1976-08-17 Sumner Maurice N Modular offshore structure system
US4040265A (en) * 1976-02-06 1977-08-09 Marine Engineering Systems, Inc. Mobile offshore platform
US4266887A (en) * 1977-06-10 1981-05-12 Brown & Root, Inc. Self-elevating fixed platform
US4722640A (en) * 1978-05-30 1988-02-02 Letourneau Richard L Slant leg offshore platform and method of operating same
DE2930203A1 (de) * 1979-07-25 1981-02-19 Thiele Heinrich Unterkonstruktion fuer ein unterwasserbauwerk
GB9726277D0 (en) * 1997-12-11 1998-02-11 Kvaerner Oil & Gas Ltd Method of forming a substructure for an offshore platform

Also Published As

Publication number Publication date
GB2343150B (en) 2002-05-15
AU6356099A (en) 2000-05-15
WO2000024972A1 (en) 2000-05-04
GB9823427D0 (en) 1998-12-23
GB2343150A (en) 2000-05-03
EP1129258A1 (de) 2001-09-05

Similar Documents

Publication Publication Date Title
KR101755045B1 (ko) 리그 데크의 운반, 설치 및 분해용 구조물과 이러한 데크의 운반, 설치 및 분해방법
US5139366A (en) Offshore jackup rig locking apparatus and method
CA1259806A (en) Method and apparatus for erecting offshore platforms
EP3875359B1 (de) Transportvorrichtung für offshore-plattformen und verfahren zur installation derselben
GB2075096A (en) Mooring and supporting apparatus and methods for a guyed marine structure
EP1248885B1 (de) Abbau von decks von offshore strukturen
US4784526A (en) Arctic offshore structure and installation method therefor
EP1129258B1 (de) Offshore-struktur
CN113605255A (zh) 一种海上限高限航区域钢桁钢箱组合梁桥快速施工方法
USRE32119E (en) Mooring and supporting apparatus and methods for a guyed marine structure
US5237949A (en) Floating platform shallow draft hull/deck mating
EP0908382A2 (de) Verfahren zum Zusammenbau schwimmender Meeresbauwerke
EP3532678B1 (de) Hafenanlage und verfahren zum verankern eines schwimmenden körpers in einer hafenanlage
US4547095A (en) Method for the construction, transportation and site installation of a deep-sea lattice structure
CN100515858C (zh) 一种运用干船坞配对连接建造半潜式运载工具的方法
US7316192B2 (en) Method for mounting a heavy equipment on a ship's hull
US20040159276A1 (en) Method for installing a self-floating deck structure onto a buoyant substructure
JP3100546B2 (ja) 海上作業台船の組立て方法
CN115652792B (zh) 钢栈桥板凳法施工方法
KR101852991B1 (ko) 부유식 수상구조물용 현장조립식 기초 플랫폼 시공 방법 및 현장조립식 기초 플랫폼
US4695194A (en) Mobile marine operations structure
AU689950B2 (en) Method for constructing and installing an offshore gravity plaftorm structure and platform structure designed for the implementation of this method
KR200305676Y1 (ko) 조수간만의 차이를 이용한 노후된 교량의 슬래브 해체장비
GB2311319A (en) Assembly method for offshore platform
NO20210670A1 (en) A floating fabrication arrangement and a method of building floating structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010521

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040224

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RBV Designated contracting states (corrected)

Designated state(s): DK GB NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070110

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091028

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181023

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191024