EP1127250A1 - Dispositif pour la mesure d'au moins un parametre d'un milieu en ecoulement - Google Patents

Dispositif pour la mesure d'au moins un parametre d'un milieu en ecoulement

Info

Publication number
EP1127250A1
EP1127250A1 EP00974294A EP00974294A EP1127250A1 EP 1127250 A1 EP1127250 A1 EP 1127250A1 EP 00974294 A EP00974294 A EP 00974294A EP 00974294 A EP00974294 A EP 00974294A EP 1127250 A1 EP1127250 A1 EP 1127250A1
Authority
EP
European Patent Office
Prior art keywords
measuring
tubular body
measuring element
protective screen
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00974294A
Other languages
German (de)
English (en)
Inventor
Hans Hecht
Gerhard Hueftle
Thomas Lenzing
Manfred Strohrmann
Wolfgang Mueller
Dieter Tank
Holger Krebs
Uwe Konzelmann
Markus Sippel
Horst Kubitz
Henning Marberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1127250A1 publication Critical patent/EP1127250A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow

Definitions

  • the invention is based on a device for measuring at least one parameter of a flowing medium.
  • a device is already known (DE 197 35 664 AI), in which the measuring element is arranged within a tubular body through which the medium flows. wherein the upstream end of the tubular body extends into the filter chamber and there has inlet openings on the lateral surface in order to reduce exposure to the measuring element by dirt particles or water droplets. Especially with heavily polluted air and a high proportion of water in the
  • DE 44 07 209 C2 discloses a measuring body which can be inserted into the clean duct of the intake line of an internal combustion engine for measuring the mass of the intake air and which has a flow duct which essentially extends into a measuring duct tapering in the flow direction and an adjoining S duct. shaped diversion channel.
  • the measuring element is arranged in the tapered measuring channel.
  • the measuring element can be designed as a micromechanical sensor part with a dielectric membrane.
  • the measuring element is arranged in a measuring body which protrudes into the through-flow channel and the protective sieve lies wholly or only partially upstream of the measuring body, so that liquid droplets and dirt particles are safely intercepted by the protective sieve and circumscribed in the edge region of the tubular body . be derived.
  • the measuring element is arranged in a measuring body extending along a longitudinal axis, which protrudes through an insertion opening in a first wall section of the tubular body into the flow channel in the direction of a second wall section of the tubular body and the protective screen spans a sieve surface, which also of the longitudinal axis encloses an angle of ⁇ 90 ° and is inclined towards the second wall section, so that the liquid droplets and dirt particles derived from the protective screen are conducted below or next to the measuring body.
  • the measuring element is arranged in a measuring body which extends along a longitudinal axis and which is defined by a Insertion opening in a first wall section of the tubular body protrudes into the flow channel in the direction of a second wall section of the tubular body, the protective screen spanning a screen surface which is approximately parallel to the longitudinal axis, so that liquid droplets and dirt particles derived from the protective screen are guided past the measuring body laterally.
  • a flow straightener in the line upstream and / or downstream of the tubular body.
  • At least two struts aligned in the flow direction and flat in the flow direction are advantageously provided between an inner wall of the line and the tubular body.
  • FIG. 1 shows a first embodiment of a device for measuring the mass of a flowing medium
  • Figure 2 shows a second embodiment of a device for measuring the mass of a flowing medium
  • FIG. 3 shows a partial view of a device according to FIG. 1 or 2 with a suction opening
  • FIG. 4 shows a third exemplary embodiment of a device for measuring the mass of a flowing medium
  • FIGS. 5, 6, 7 and 8 each show a partial section of a protective screen on a different scale.
  • 1 shows a first exemplary embodiment of a device designed according to the invention for measuring at least one parameter of a medium flowing into a line, in particular the intake air mass of an internal combustion engine, in a partial sectional view, which is limited to the elements essential in the context of the invention.
  • 1 designates a line that can form a direct section of the intake pipe of the internal combustion engine, or is an independent component that can be connected to the intake pipe of the internal combustion engine.
  • the line 1 is downstream of an air filter, not shown, on its so-called clean room side.
  • the air filter is used to filter the intake air of the internal combustion engine of a motor vehicle and is intended to prevent dirt particles or liquid from entering the intake pipe as completely as possible.
  • the line 1 has a line wall 2, which has an inner wall 3, with which it surrounds the flow channel 4, through the one indicated by arrows
  • a pipe body 8 is arranged in line 1, which is aligned in flow direction 5 and, for example, runs concentrically to line center line 7 of line 1.
  • the tubular body 8 has a wall 9 which, with an inner channel wall 10, delimits a flow channel 11 in the tubular body 8, through which a part of the air drawn in in the flow direction 5 flows.
  • the tubular body 8 is held, for example, by at least two struts 12 which extend between the inner wall 3 of the line 1 and the wall 9 of the tubular body 8 transversely to the flow direction 5 and have a flat, plate-like shape.
  • the struts 12 cause an increase in the struts 12
  • the air mass drawn in by the internal combustion engine can be changed arbitrarily by a throttle valve (not shown) arranged downstream of the tubular body 8 in the intake pipe of the internal combustion engine.
  • a parameter of the flowing medium to be measured can be the mass (mass flow) of the flowing medium flowing per unit of time, for example the intake air mass of an internal combustion engine.
  • a measuring body 15 is provided, which is essentially elongated and cuboid and extends along a longitudinal axis 16.
  • the longitudinal axis 16 extends essentially perpendicular to the line center line 7 and thus also to the flow direction 5.
  • the measuring body 15 is partly inserted through a holding opening 17 in the line wall 2 and an insertion opening 18 in the wall 9 of the tubular body 8 and projects with a measuring end 19 in the Flow channel 11.
  • the insertion opening 18 of the tubular body 8 is formed in a first wall section 23 opposite a second wall section 24 of the tubular body in the direction of the longitudinal axis 16.
  • a measuring element 25 is provided in a known manner, which is in contact with the air flowing through the flow channel 11 and by means of which the air mass sucked in by the internal combustion engine is determined.
  • the measuring element 25 can be designed in a known manner, for example in the form of thermally coupled, temperature-dependent resistors.
  • the measuring elements 25 can z. B. be designed as in DE 42 37 224 AI, DE 43 17 312 AI, DE 197 11 939 AI or DE 197 31 420 AI.
  • a protective sieve 28 is arranged at least partially upstream of the measuring element 25 within the flow channel 11 of the tubular body 8.
  • the protective screen 28 has, for example, a circular or elliptical oval shape and spans a screen surface 29 in the opposite direction to the intake air.
  • the protective screen 28 extends from the first wall section 23 of the tubular body 8 to the second wall section 24 and is inclined, for example, with respect to the longitudinal axis 16 and the flow direction 5 or the line center line 7 such that the screen surface 29 is inclined in the flow direction 5 runs and an angle with the longitudinal axis 16 includes that is less than 90 °.
  • the protective screen 28 is arranged so that it is completely upstream of the measuring element 25.
  • the protective screen 28 can, however, as shown in the second embodiment according to FIG. 2, be arranged so that it is only partially upstream of the measuring body 15. Due to the inclination of the protective screen 28, the protective screen 28 has a downstream end 30, which in the first exemplary embodiment is directed toward the second wall section 24 of the tubular body 8. Between the downstream end 30 and the inner channel wall 10 of the tubular body 8, an open outflow opening 31 is provided, which is formed either by the fact that the downstream end 30 ends at a distance from the inner channel wall 10 or by the fact that the downstream end 30 to the inner channel wall 10 protrudes, but the outflow opening 31 is left out of the protective screen 28 or the inner channel wall 10.
  • both a close-meshed wire mesh is possible, as well as a thin plate which has screen openings 32 arranged in screen form.
  • Plastic, metal, ceramic or glass can be used as the material for the wire mesh as well as for the plate-shaped protective screen 28.
  • the plate-shaped protective screen 28 made of plastic can be produced, for example, by injection molding or by introducing the screen openings 32 by means of a material-removing process.
  • the plate-shaped protective screen 28 made of metal can be produced, for example, from sheet metal by stamping, eroding, drilling, etc., it also being possible to bend the edge elements 33 surrounding the screen openings 32 somewhat by bending relative to the screen surface 29 (FIGS. 7, 8).
  • FIGS. 5, 6, 7 and 8 show partial sections of the protective screens 28 according to FIGS. 1 to 4 on a different scale.
  • FIG. 5 shows partial sections of the protective screens 28 according to FIGS. 1 to 4 on a different scale.
  • the protective screen 28 and the screen openings 32 are inclined with their center lines 41 with respect to the flow direction 5 and thus also with respect to the line center line 7. If liquid droplets 43 carried in the flow, shown as a small circle in FIG. 5, and dirt particles hit the edge elements 33 around the sieve openings 32, these form the liquid deposits 42 shown in dashed lines on the front surface 35 and partially migrate through the sieve openings 32 to the rear surface 36, where they slide on and reach the inner channel wall 10 or lift off in the direction of the center line 41 of the screen openings 32 from the protective screen 28 in the direction of the inner channel wall 10 (see FIG. 7, dashed line 45 of the upper liquid droplet 43).
  • Liquid droplets 43 and dirt particles which are carried directly into the sieve openings 32 by the air flow impinge on a sieve opening wall 44 and are deflected downstream of the protective screen 28 along a dashed airline line 45, for example drawn, the flight line 45 being directed downstream of the protective screen 28 toward the inner duct wall 10, ie past the measuring body 15.
  • the screen openings 32 are also inclined with their center lines 41 with respect to the flow direction 5, but the protective screen 28 is oriented perpendicularly or almost perpendicularly with respect to the flow direction 5, but the same effects with regard to the air flow and the Derivation of the liquid droplets 43 and dirt particles result, as in the exemplary embodiment according to FIG. 5.
  • the inclination of the screen openings 32 are also inclined with their center lines 41 with respect to the flow direction 5, but the protective screen 28 is oriented perpendicularly or almost perpendicularly with respect to the flow direction 5, but the same effects with regard to the air flow and the Derivation of the liquid droplets 43 and dirt particles result, as in the exemplary embodiment according to FIG. 5.
  • Screen openings 32 may be different with their center lines 41 and run in different directions.
  • the liquid passing through the protective screen 28 and deposited on the inner channel wall 10 is generally distributed. downstream of the outflow opening 31 in addition to the flow movement in the direction of flow 5 also in the circumferential direction on the inner channel wall 10 and thus flows as an extremely thin layer as an extremely thin layer past the measuring body 15.
  • the intake air passes through the sieve openings 32 almost unimpeded approximately according to the continuous flow line denoted by 46 and flows to the measuring element 25, with the risk of accumulation of dirt particles and liquid constituents 42, 43 is significantly reduced.
  • FIGS. 7 and 8 the same reference numerals are used for the same and equivalent parts as in the previous figures, the same effects with respect to the air flow 46 and the discharge of the liquid droplets 43 and dirt particles also being obtained as in the exemplary embodiments according to FIGS. 5 and 6.
  • the protective screen 28 is perpendicular to the flow direction 5 or aligned almost vertically, but by bending or interleaving the edge elements 33, the sieve openings 32 are inclined with their center lines 41 with respect to the flow direction 5.
  • FIG. 8 shows a protective sieve 28 according to FIGS. 5, 6 or 7 with honeycomb-shaped and arranged sieve openings 32 which are inclined with respect to the flow direction 5.
  • Downstream of the tubular body 8 can be a
  • Flow rectifier 38 of known design may be arranged, which extends transversely to the flow direction 5 through the flow channel 4 of the line 1 and serves to ensure the most uniform possible air flow to and around the measuring element 25, whereby a more precise measurement result can be achieved.
  • the line 1 and the tubular body 8 and the measuring body 15 are shown rotated by 90 ° in FIG. 2, so that the measuring body 15 and its longitudinal axis 16 extend perpendicular to the plane of the drawing.
  • the protective sieves 28 are arranged in the flow direction 5 from the upstream of the measuring body 15 to the measuring body 15 and inclined in the tubular body 8, but it is only partially upstream of the measuring body 15 so that the downstream end 30 of the Protective screen 28 seen in the flow direction 5 is at least at the same height as the measuring body 15. This ensures that the liquid derived from the protective screen 28 or the dirt particles at the downstream end 30 in a region of the outflow opening 31 to the
  • the protective screen 28 is arranged in the tubular body 8 in such a way that its spanned
  • Sieve surface 29 runs approximately parallel to the longitudinal axis 16 of the measuring body 15.
  • part of the dirt particles and liquid are thus guided past the measuring body 15 substantially laterally, while some of these are guided past the measuring body 15 essentially below the measuring body 15 in the first exemplary embodiment according to FIG.
  • Embodiment according to Figure 2 in which the screen surface 29 extends approximately parallel to the longitudinal axis 16, it is possible to arrange the protective screen 28 completely upstream of the measuring element 25.
  • the screen openings can have 32 different shapes, e.g. be round or square or rectangular or diamond-shaped or honeycomb-shaped or oval or some other geometric shape.
  • FIG. 3 shows a partial view of the first exemplary embodiment according to FIG. 1, the parts that remain the same being identified by the same reference numerals.
  • a suction opening 39 penetrating the wall 9 and leading to the line 1 is provided, which is only a small distance as seen in the flow direction 5 to the downstream end 30 and through which the liquid discharged via the outflow opening 31 together with dirt particles is sucked off to the flow channel 4.
  • the third exemplary embodiment according to FIG. 4 essentially also corresponds to the first exemplary embodiment according to FIG. 1, but differs from the fact that the downstream end 30 of the protective screen 28 does not end in front of the inner duct wall 10, but extends to the inner duct wall 10 and that upstream it is downstream
  • a suction opening 39 leading to the line 1 is provided, through which dirt particles and liquid derived from the protective screen 28 are sucked off to the flow channel 4 of the line 1 without reaching downstream of the protective screen 28.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

On connaît déjà des dispositifs pour la mesure, par exemple, de la masse de l'air d'aspiration d'un moteur à combustion interne par l'intermédiaire d'une conduite, dans lesquels on place un corps tubulaire à l'intérieur de cette conduite et un élément de mesure dépendant de la température à l'intérieur de ce corps tubulaire. Ces dispositifs ne garantissent toutefois pas suffisamment que des particules d'impuretés et des gouttelettes de liquide entraînées par l'air d'aspiration n'entrent pas en contact avec l'élément de mesure. Dans le nouveau dispositif selon l'invention, un tamis de protection (28), incliné dans le sens d'écoulement (5), est placé à l'intérieur du corps tubulaire (8) en amont de l'élément de mesure (25). Les particules d'impuretés et les gouttelettes de liquide s'y déposent et sont dirigées vers une extrémité inférieure (30) du tamis de protection de sorte qu'elles parviennent, par l'intermédiaire d'une ouverture d'évacuation (31), à la paroi de conduit interne (10) du corps tubulaire (8) et sont ainsi déviées de l'élément de mesure (25).
EP00974294A 1999-09-07 2000-09-05 Dispositif pour la mesure d'au moins un parametre d'un milieu en ecoulement Withdrawn EP1127250A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942511 1999-09-07
DE19942511A DE19942511B4 (de) 1999-09-07 1999-09-07 Vorrichtung zur Messung wenigstens eines Parameters eines strömenden Mediums
PCT/DE2000/003044 WO2001018497A1 (fr) 1999-09-07 2000-09-05 Dispositif pour la mesure d'au moins un parametre d'un milieu en ecoulement

Publications (1)

Publication Number Publication Date
EP1127250A1 true EP1127250A1 (fr) 2001-08-29

Family

ID=7920992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974294A Withdrawn EP1127250A1 (fr) 1999-09-07 2000-09-05 Dispositif pour la mesure d'au moins un parametre d'un milieu en ecoulement

Country Status (9)

Country Link
US (1) US6647775B1 (fr)
EP (1) EP1127250A1 (fr)
JP (1) JP2003508693A (fr)
KR (1) KR100702818B1 (fr)
CN (1) CN1165750C (fr)
BR (1) BR0007077A (fr)
DE (1) DE19942511B4 (fr)
RU (1) RU2257549C2 (fr)
WO (1) WO2001018497A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011709A1 (de) * 2000-03-10 2001-09-13 Bosch Gmbh Robert Vorrichtung zur Messung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
DE10015918A1 (de) * 2000-03-30 2001-10-04 Bosch Gmbh Robert Vorrichtung zur Bestimmung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
JP3716163B2 (ja) * 2000-06-16 2005-11-16 株式会社日立製作所 空気流量測定装置
DE10035543C2 (de) * 2000-07-21 2002-06-13 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines strömenden Mediums
DE10042400A1 (de) * 2000-08-30 2002-03-14 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines strömenden Mediums
US7467546B2 (en) 2001-07-18 2008-12-23 Hitachi, Ltd. Equipment for measuring gas flow rate
US7004022B2 (en) * 2001-07-18 2006-02-28 Hitachi, Ltd. Equipment for measuring gas flow rate
DE10139933C2 (de) * 2001-08-14 2003-10-30 Siemens Ag Massenstrommesser
BRPI0409188B1 (pt) * 2003-04-04 2017-03-21 Omron Tateisi Electronics Co dispositivo de medição de fluxo
DE102004022271A1 (de) * 2003-07-14 2005-02-03 Robert Bosch Gmbh Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
DE102004008184B4 (de) * 2004-02-19 2006-07-20 Audi Ag Luftmassenmesser
DE102007055193A1 (de) * 2007-11-19 2009-05-20 Robert Bosch Gmbh Sensoranordnung zur Bestimmung eines Parameters eines fluiden Mediums
DE102007056888A1 (de) * 2007-11-26 2009-05-28 Robert Bosch Gmbh Sensoranordnung zur Bestimmung eines Parameters eines fluiden Mediums
JP5135136B2 (ja) * 2008-09-12 2013-01-30 アズビル株式会社 流量計及び流量制御装置
US7905153B2 (en) * 2009-04-24 2011-03-15 Mann+Hummel Gmbh Flow vortex suppression apparatus for a mass air flow sensor
DE102009054622A1 (de) 2009-12-14 2015-08-06 Robert Bosch Gmbh Strömungsgitter
KR101667713B1 (ko) * 2010-01-27 2016-10-19 엘지전자 주식회사 의류건조기
DE102010029217A1 (de) 2010-05-21 2011-11-24 Robert Bosch Gmbh Vorrichtung zur Erfassung einer Eigenschaft eines strömenden fluiden Mediums
KR101221646B1 (ko) * 2010-11-29 2013-02-15 (주)백년기술 소하천용 수질 모니터링 장치
DE102010062891A1 (de) 2010-12-13 2012-06-14 Robert Bosch Gmbh Stömungsgitter zum Einsatz in einer Sensoranordnung
US9273986B2 (en) 2011-04-14 2016-03-01 Trane International Inc. Water flow measurement device
JP5408195B2 (ja) * 2011-07-19 2014-02-05 株式会社デンソー 空気流量測定装置
CN104019991B (zh) * 2014-06-16 2016-04-27 西北工业大学 液滴与固体板斜碰撞试验装置
JP6421104B2 (ja) * 2015-09-25 2018-11-07 日立オートモティブシステムズ株式会社 主空気通路構成部材
WO2017146818A1 (fr) * 2016-02-25 2017-08-31 Dwyer Instruments, Inc. Anémomètre
DE102017206234A1 (de) * 2017-04-11 2018-10-11 Robert Bosch Gmbh Sensorelement zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums
CN109550748B (zh) * 2017-09-25 2024-05-14 国家电投集团科学技术研究院有限公司 气体吹扫装置
DE102017130346A1 (de) * 2017-12-18 2019-06-19 Bürkert Werke GmbH & Co. KG Durchflussmesseinrichtung sowie Laminar-Strömungselement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128719B2 (fr) * 1973-02-22 1976-08-20
DE2749575A1 (de) * 1977-11-05 1979-05-10 Bosch Gmbh Robert Messonde mit mindestens einem temperaturabhaengigen widerstand zur messung der masse eines stroemenden mediums
DE3009382A1 (de) * 1980-03-12 1981-09-24 Degussa Ag, 6000 Frankfurt Vorrichtung zur messung der stroemungsgeschwindigkeiten von gasen und fluessigkeiten
US4433576A (en) * 1982-09-20 1984-02-28 General Motors Corporation Mass airflow sensor
US4576050A (en) * 1984-08-29 1986-03-18 General Motors Corporation Thermal diffusion fluid flow sensor
JPH01102724U (fr) * 1987-12-26 1989-07-11
DE3905746A1 (de) * 1989-02-24 1990-08-30 Bosch Gmbh Robert Luftmessvorrichtung
JP2851960B2 (ja) * 1991-12-24 1999-01-27 日本碍子株式会社 内燃機関の吸入空気量測定装置
DE4237224C2 (de) * 1992-11-04 1999-11-04 Bosch Gmbh Robert Temperaturfühler
DE4338891A1 (de) * 1993-02-25 1994-09-01 Bosch Gmbh Robert Massenflußsensor
DE4317312A1 (de) * 1993-05-25 1994-12-01 Bosch Gmbh Robert Drucksensor in einem Kunststoffgehäuse und Verfahren zur Herstellung
DE4407209C2 (de) * 1994-03-04 1996-10-17 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines in einer Leitung strömenden Mediums
JP3193837B2 (ja) * 1994-10-18 2001-07-30 株式会社日立製作所 発熱抵抗式流量測定装置
DE19711939A1 (de) * 1997-03-21 1998-09-24 Bosch Gmbh Robert Vorrichtung zur Erfassung des Drucks und der Temperatur im Saugrohr einer Brennkraftmaschine
DE19731420A1 (de) * 1997-07-22 1999-01-28 Bosch Gmbh Robert Vorrichtung zur Erfassung des Drucks und der Temperatur im Saugrohr einer Brennkraftmaschine und Verfahren zu ihrer Herstellung
DE19735664A1 (de) * 1997-08-16 1999-02-18 Bosch Gmbh Robert Filtermodul
JP3577941B2 (ja) * 1998-04-02 2004-10-20 三菱電機株式会社 流量測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0118497A1 *

Also Published As

Publication number Publication date
DE19942511B4 (de) 2005-07-14
RU2257549C2 (ru) 2005-07-27
KR100702818B1 (ko) 2007-04-06
CN1165750C (zh) 2004-09-08
KR20010089410A (ko) 2001-10-06
BR0007077A (pt) 2001-07-31
CN1321240A (zh) 2001-11-07
DE19942511A1 (de) 2001-04-12
JP2003508693A (ja) 2003-03-04
US6647775B1 (en) 2003-11-18
WO2001018497A1 (fr) 2001-03-15

Similar Documents

Publication Publication Date Title
DE19942511B4 (de) Vorrichtung zur Messung wenigstens eines Parameters eines strömenden Mediums
EP1315950B1 (fr) Dispositif permettant de determiner au moins un parametre d'un agent a l'etat d'ecoulement
EP1127249A1 (fr) Dispositif de mesure d'au moins un parametre d'un agent s'ecoulant dans une conduite
EP2142890B1 (fr) Dispositif de mesure de fluides en écoulement
WO1999053275A1 (fr) Dispositif pour mesurer la masse d'un fluide en ecoulement
DE10245965B4 (de) Vorrichtung zur Bestimmung wenigstens eines Parameters eines in einer Leitung strömenden Mediums
WO2015110205A1 (fr) Système de détection servant à déterminer au moins un paramètre d'un milieu fluide circulant dans une structure de conduit
DE10009154A1 (de) Vorrichtung zur Messung von zumindest einem Parameter eines strömenden Mediums
DE102006045657A1 (de) Steckfühler mit optimiertem Strömungsauslass
DE19942501A1 (de) Vorrichtung zur Messung von zumindest einem Parameter eines in einer Leitung strömenden Mediums
DE102008049843A1 (de) Luftmassensensor
EP1277031A1 (fr) Procede pour separer un liquide contenu dans un fluide s'ecoulant dans une conduite
DE10154253B4 (de) Vorrichtung mit einem Luftansaugrohr und einer darin eingesteckten Luftmassensensoranordnung
EP1224437B1 (fr) Grille de protection pour capteur de debit massique situe dans une conduite d'aspiration d'air
WO2001075401A1 (fr) Grille de protection pour capteur de debit massif monte dans un canal d'admission d'air
WO2002044666A1 (fr) Debitmetre comprenant un dispositif de separation de particules etrangeres
EP1210565B1 (fr) Utilisation d'un rectificateur d'ecoulement comme collecteur de liquide de condensation dans un ecoulement gazeux
DE10230430A1 (de) Ansaugluftführung einer Brennkraftmaschine
DE102013220791A1 (de) Einspritzventil für eine Verbrennungskraftmaschine
EP1301759A1 (fr) Debitmetre pourvu d'un element qui permet de reduire la formation de tourbillons dans le milieu en ecoulement
DE10139933A1 (de) Massenstrommesser
DE102009054082A1 (de) Messvorrichtung, Frischluftkanal, Frischluftanlage und Strömungsführungselement
DE102018219728A1 (de) Vorrichtung zur Bestimmung eines Massenstromes eines strömenden fluiden Mediums und Verwendung einer Messeinrichtung in Kombination mit einer Fluidleitung
DE102004045114A1 (de) Strömungswandler für einen Luftmassensensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010917

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20071123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100806