EP1124542A1 - Capsules a ecorce minerale poreuse - Google Patents

Capsules a ecorce minerale poreuse

Info

Publication number
EP1124542A1
EP1124542A1 EP99950847A EP99950847A EP1124542A1 EP 1124542 A1 EP1124542 A1 EP 1124542A1 EP 99950847 A EP99950847 A EP 99950847A EP 99950847 A EP99950847 A EP 99950847A EP 1124542 A1 EP1124542 A1 EP 1124542A1
Authority
EP
European Patent Office
Prior art keywords
mineral
capsule
liquid medium
capsules
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99950847A
Other languages
German (de)
English (en)
Inventor
Dominique Dupuis
Catherine Jourdat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1124542A1 publication Critical patent/EP1124542A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres

Definitions

  • the present invention relates to new capsules with a porous mineral shell in which are immobilized, in a liquid medium, one or more biological active materials.
  • the techniques for immobilizing active materials aim to limit and more preferably to hinder their free migration into a surrounding medium.
  • the first method consists in binding the active material to be immobilized to a surface of support type either by adsorption (interactions of ionic type, Van der Waals bonds), either by covalent bond or via an intermediate compound .
  • the second method aims to physically retain the active material inside a solid or porous matrix such as a stabilized gel.
  • This second approach is widely used for the immobilization of biological active materials such as cells or enzymes for example.
  • a physical encapsulation of the biological active materials considered is carried out inside a polymer matrix.
  • the encapsulation material must in fact meet several requirements:
  • hydrocolloid gels hydrocolloid gels.
  • alginates and carrageenans natural gels
  • polyacrylamide polyacrylamide
  • This type of encapsulation is generally obtained by adding the active material to be immobilized in the form of a suspension in an aqueous solution of a precursor of the encapsulation material. The precursor solution is then transformed there into droplets generally by dispersion. Finally, these droplets are stabilized in the form of beads in which the active material is trapped, either by polymerization or any other type of crosslinking.
  • these inorganic matrices are particularly advantageous. Their mechanical resistance is considerably increased. They generally have a hydrophilic character as well as better stability to solvents and to pH. What is more, they are stable in concentrated saline medium unlike organic matrices based on alginate for example.
  • the object of the present invention is precisely to propose a new encapsulation mode, which is particularly advantageous insofar as it precisely allows biological active materials to be preserved in a liquid environment suitable for the conservation of their structure and activity and, where appropriate, their development internal while effectively protecting them against any degradation that may be caused to them by the surrounding environment.
  • the present invention therefore has for first object a mineral capsule consisting of a mineral shell and a liquid core in which is immobilized at least one biological active material.
  • biological active material any molecule, cell or organism having an industrial interest due to its biological activity.
  • cellular organisms such as microorganisms of the bacteria, yeast, fungus and algae type, cells of animal or vegetable origin, enzymes or proteins of the antibody type for example. They are more preferably living cells or organisms.
  • enzymes such as hydrolases, nucleases, oxidases, proteases, isomerases and the like.
  • oxidoreductases such as alcohol dehydrogenases, oxygenases and glucose dehydrogenases, transferases such as D-glutamyl transferase, lyases such as fumarase and aspartase, hydrolases such as lipases, nitrilehydratases, lactases and acylases as well as isomerases. It can also be proteins or protein complexes of the cytochrome C, hemoglobin, myoglobin, transferrin or superoxide dismutase type or of antibodies.
  • the biological active material is in the case of the present invention not adsorbed in a form dispersed within a matrix but concentrated in a liquid medium which is isolated from the surrounding medium with mineral bark.
  • liquid medium means a medium capable of ensuring the conservation of the activity and the structure and / or the survival and if necessary the internal development of a biological active material, this medium being under a fluid form of the liquid type. As such, it differs from alginate or carrageenan type media which are similar to media in gel form.
  • this liquid biological medium is or is derived from an aqueous medium.
  • this liquid medium can be buffered and / or supplemented with trace elements, sugars, salts and any other nutritive agent likely to be necessary for the conservation of the activity and the structure and / or the survival and if necessary internal development of the immobilized biological active material.
  • active materials depending on their water-soluble nature, are either dissolved or dispersed in the liquid medium.
  • the mineral bark obtained according to the method of the invention has the double advantage of effectively protecting the liquid medium and the active material (s) it contains, and if necessary allowing it to be exchanged with the medium. surrounding capsules. This is in particular achieved by adjusting the degree of porosity of the mineral capsules obtained according to the invention.
  • the mineral capsules obtained can be non-porous. This specificity is more particularly advantageous when it is essentially desired to ensure effective protection of the liquid medium, incorporating at least one biological active material, with respect to its surrounding medium.
  • the capsules obtained according to the invention are much more resistant mechanically, thermally and chemically due to the mineral character of their bark.
  • the aqueous medium and, where appropriate, the active material which it contains are generally released by fractionation of the capsule or by induced degradation of the latter.
  • the capsules obtained can be porous and this porosity is controllable.
  • the present invention is therefore particularly advantageous insofar as it provides a reliable packaging method, compatible with the internal development of the immobilized active ingredients and adjustable according to the nature and the amount of immobilized active ingredient (s). ).
  • the preservation within the capsule of a liquid medium which can be the natural biological medium of the immobilized active material is a guarantee of prolonged functioning of said active material, functioning which can for example result in the production of metabolites or be enzymatic.
  • the mineral nature of the bark of the claimed capsules constitutes an effective protective barrier to the biological active material vis-à-vis the surrounding environment while at the same time authorizing its exchanges with it.
  • the size of the capsules being controllable, it can be adjusted according to the constraints related to the size of the active ingredients to be encapsulated or even to the number of these biological active ingredients.
  • this capsule is prepared in the context of the present invention under operating conditions which are gentle enough not to affect the integrity of said active ingredients.
  • the active ingredient to be immobilized is in fact not exposed during its conditioning to temperature and, where appropriate, pH values likely to harm it.
  • composition of the mineral shell it consists of at least one oxide and / or hydroxide of aluminum, silicon, zirconium and / or a transition metal.
  • transition metal is meant more particularly the metals of the fourth period ranging from scandium to zinc insofar as these are of course compatible in terms of safety with the intended application. More particularly, it is an oxide or hydroxide of titanium, manganese, iron, cobalt, nickel or copper.
  • this mineral shell can comprise oxides and / or hydroxides of different natures.
  • Particularly suitable for the present invention are the oxides and / or hydroxides of silicon, aluminum, titanium and zirconium.
  • the capsules comprise a mineral shell based on at least one silicon oxide.
  • the size of the capsules according to the invention can be between 1 and several tens of micrometers.
  • the particle size of the mineral material constituting the shell of these capsules can vary for its part between 1 and 200 nm.
  • the thickness of the mineral shell it can vary between 1 and 200 nm.
  • These capsules can also be characterized by the amount of liquid medium that the mineral shell retains by introducing the retention parameter of the capsule. This corresponds to the ratio of the mass of the liquid medium contained in the capsule to that of the mineral bark. When the bark is too porous, the retention of the capsule is low. One can thus vary the retention of the capsules by fixing the size of the particles of the material constituting the mineral shell as well as the thickness of the latter.
  • the present invention also relates to a process useful for preparing mineral capsules in accordance with the present invention, said process comprising 1) the emulsification of a liquid medium containing at least one biological active material within a second immiscible phase with said liquid medium so as to disperse it therein in the form of droplets,
  • amphiphilic surfactant system proposed according to the invention has the advantage of blocking the phenomenon of natural diffusion of mineral particles towards the center of the droplets.
  • amphiphilic surfactant system is intended to denote either a single compound at the level of which two regions coexist with very different solubilities and sufficiently distant from each other to behave independently, or an association of '' at least two compounds having very different solubilities such as a first compound with hydrophilic character and a second compound with hydrophobic character.
  • these two regions or compounds respectively comprise at least one hydrophilic group and one or more long chains of hydrophobic nature.
  • the surfactant system used according to the invention can be represented by a single compound and which will then be introduced before carrying out the second stage, that is to say the hydrolysis and polycondensation stage, or further resulting from an in situ interaction of at least two compounds such as for example an organosoluble surfactant initially present in the second generally organosoluble phase and a water-soluble compound present in the generally aqueous liquid medium.
  • the two compounds meet at the interface of the droplets formed during the emulsification. Due to their interaction, they help to stabilize the system by decreasing the interfacial tension at the interface of the droplets and probably act as a steric or electrostatic barrier.
  • the embodiment using at least two distinct compounds is more particularly preferred capable of interacting to lead to a surfactant system capable of effectively opposing the diffusion of mineral particles in aqueous droplets and of stabilizing said emulsion.
  • the surfactant system proposed according to the invention preferably comprises at least one surfactant with an HLB value of less than 7.
  • HLB designates the ratio of the hydrophilicity of the polar groups of the surfactant molecule to the hydrophobicity of the lipophilic part of this same molecule.
  • the two compounds are preferably respectively present in the liquid medium, generally aqueous and the second phase generally organosoluble and interact with one another during the emulsification of the liquid medium in said second phase.
  • This option has the advantage of giving the corresponding emulsion satisfactory stability as soon as it is formed. What is more, it proves possible, if necessary, by appropriately selecting the agents constituting the amphiphilic surfactant system, to adjust the pH to a value compatible with the active ingredient.
  • the emulsification it can be carried out by applying a mechanical energy of intense agitation to the two initial phases, and / or a sonication.
  • the size of the droplets obtained at the end of the emulsification step can be between approximately 0.1 and ten ⁇ m.
  • the compound present in the liquid, generally aqueous medium preferably has a viscosifying action. More particularly, this compound can be a compound chosen from sugars and their derivatives. As such, the oses (or monosaccharides), the osides and the highly depolymerized polyholosides are suitable. Compounds are understood to have a weight mass which is more particularly less than 20,000 g / mole. Among the dares, there may be mentioned aldoses such as glucose, mannose, galactose and ketoses such as fructose.
  • Osides are compounds that result from the condensation, with elimination of water, of daring molecules with non-carbohydrate molecules.
  • the holosides which are formed by the combination of exclusively carbohydrate units are preferred, and more particularly the oligoholosides (or oligosaccharides) which contain only a limited number of these units, that is to say a number in general. less than or equal to 10.
  • oligoholosides mention may be made of sucrose, lactose, cellobiose, maltose.
  • the highly depolymerized polyholosides (or polysaccharides) suitable are described for example in the work of P.
  • polyholosides are used whose molecular mass in weight is more particularly less than 20,000 g / mole.
  • highly depolymerized polyholosides mention may be made of dextran, starch, xanthan gum and galactomannans such as guar or locust bean. These polysaccharides preferably have a melting weight greater than 100 ° C. and a solubility in water of between 10 and 500 g / l.
  • gum arabic e.g., kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolinol, sorbitol type, ether carbohydrates such as methyl-, ethyl-, carboxymethyl-, hydroxyethyl- and hydroxypropyl cellulose ethers and glycerols, pentaerythrol, propylene glycol, ethylene glycol, non-viscous diols and / or polyvinyl alcohols.
  • fatty acid sucroesters carbohydrate alcohols of the sorbitol, mannitol type
  • ether carbohydrates such as methyl-, ethyl-, carb
  • hydrocolloid It is preferably a hydrocolloid. Mention may in particular be made, for example of this type of compound, of alginates, polysaccharides of the natural gum type such as carrageenans, xanthan and guar and very particularly cellulose derivatives.
  • it is a cellulose derivative and more preferably hydroxyethylcellulose.
  • the surfactant (s) generally organosoluble (s) present (s) at the level of the second phase can be chosen from fatty alcohols, triglycerides, fatty acids, sorbitan esters, fatty amines, these compounds being or not in a polyalkoxylated form, liposoluble lecithins, polyalkylenes dipolyhydroxystearates, quaternary ammonium salts, monoglycerides, polyglycerol esters, polyglycerol polyricinoleate and lactic esters.
  • Triglycerides can be triglycerides of plant or animal origin (such as lard, tallow, peanut oil, butter oil, cottonseed oil, linseed oil, olive oil, fish oil, coconut oil, coconut oil).
  • Fatty acids are fatty acid esters (such as, for example, oleic acid, stearic acid).
  • Sorbitan esters are cyclized fatty acid sorbitol esters comprising from 10 to 20 carbon atoms such as lauric acid, stearic acid or oleic acid.
  • this surfactant is a sorbitan ester as defined above and more preferably sorbitan sesquioleate.
  • the compound present in the generally aqueous liquid medium must interact with the surfactant present in the second generally hydrophobic phase to lead to a surfactant system capable of constituting an effective diffusion barrier with respect to the particles. mineral precipitate. Consequently, their respective choices must be made taking this imperative into account.
  • the nature of the active ingredient to be encapsulated, as well as the composition of the mineral crust of the capsules prepared according to the invention are also determining factors in the choice of the surfactant system and the assessment of the respective amounts of the two corresponding compounds. These adjustments are in fact within the competence of a person skilled in the art.
  • R 2 represents an alkyl or alkenyl radical comprising 7 to 22 carbon atoms
  • Ri represents a hydrogen atom or an alkyl radical comprising 1 to 6 carbon atoms
  • A represents a group (CO) or (OCH 2 CH 2 )
  • n is 0 or 1
  • x is 2 or 3
  • y is 0 to 4
  • Q represents a radical -R 3 -COOM with R 2 representing an alkyl radical comprising 1 to 6 carbon atoms
  • M represents a hydrogen atom, an alkali metal, an alkaline earth metal or also a quaternary ammonium group in which the radicals linked to the nitrogen atom, identical or different, are chosen from hydrogen or an alkyl or hydroalkyl radical having 1 to 6 atoms carbon
  • B represents H or Q.
  • M represents a hydrogen atom, sodium, potassium and an NH 4 group.
  • amphoteric derivatives of alkyl polyamines such as Amphionic XL ®, Mirataine H2C-HA ® marketed by Rhodia Chimie, as well as Ampholac 7T / X ® sold by Berol Nobel.
  • a main nonionic surfactant the hydrophilic part of which contains one or more saccharide unit (s).
  • Said saccharide units generally contain from 5 to 6 carbon atoms. These can be derived from sugars such as fructose, glucose, mannose, galactose, talose, gulose, allose, altose, idose, arabinose, xylose, lyxose and / or ribose.
  • alkylpolyglycosides can be obtained by condensation (for example by acid catalysis) of glucose with primary fatty alcohols (US-A-3,598,865; US-A-4,565,647; EP-A-132,043; EP-A- 132 046; Tenside Surf. Det.
  • the concentration of amphiphilic surfactant system can be between approximately 1% and 10% by weight relative to the organosoluble phase.
  • the surfactant incorporated at the level of the generally organosoluble second phase is a sorbitan ester and more preferably sorbitan sesquioleate.
  • the compound incorporated in the liquid medium it is preferably a cellulose derivative and more particularly hydroxyethyl cellulose.
  • the material of the mineral shell derives from the hydrolysis and polycondensation of one or more alkoxides of formula II.
  • - M represents an element chosen from titanium, manganese, iron, cobalt, nickel, silicon, aluminum or zirconium, - R is a hydrolysable substituent,
  • - n is an integer between 1 and 6,
  • - P is a non-hydrolyzable substituent
  • - m is an integer between 0 and 6.
  • - M is chosen from silica, aluminum, titanium and zirconium
  • - R is a group chosen from aikoxy and / or aryloxy groups in Ci to Ci 8 and preferably in C 2 to Ce and n is an integer between 2 and 4 and
  • - P is a group chosen from C 1 to C 8 alkyl, aryl or C 2 to C alkenyl groups.
  • R is preferably a C1 to Ce aikoxy group and more preferably C 2 to C 4 .
  • This aikoxy group may, where appropriate, be substituted by a C 1 to C alkyl or aikoxy group.
  • R can represent identical or different aikoxy groups.
  • the capsule can be given a more or less hydrophobic character by varying the nature and for example the length of the alkyl and / or alkoxy chains constituting this mineral hydrolyzable and polycondensable compound.
  • the hydrolysis and polycondensation of this mineral precursor are carried out either spontaneously by bringing it into contact with the emulsion or are initiated by adjusting the pH and / or the temperature of the emulsion to a suitable value. at their manifestation. This adjustment may in particular arise from the presence in the emulsion of water-soluble ions such as NH OH, NaOH or HCl or organosoluble of the amino type. These adjustments fall within the competence of a person skilled in the art.
  • the mineral shell obtained according to the invention is based on silicon oxide. It is derived from the precipitation of at least one silicate.
  • silicate suitable for the present invention mention may more particularly be made of tetramethylorthosilicate, TMOS, tetraethylorthosilicate, TEOS, tetrapropylorthosilicate, TPOS, alkylalkoxysilanes and haloalkylsilanes.
  • the mineral capsule is obtained by formation of a mineral precipitate in the presence of a hydrolysis and condensation agent of said compound.
  • the hydrolysis of these silicon alkoxides can be carried out both in acid catalysis and in basic catalysis provided that the corresponding oxides and / or hydroxides are obtained in powder form.
  • a silicon alkoxide such as tetraethylorthosilicate, TEOS, is used in the presence of ammonia, as a hydrolysis and polycondensation agent.
  • the second phase is generally an oily phase immiscible with the generally aqueous liquid medium and is preferably composed of an oil chosen from vegetable, animal and mineral oils. It may for example be a parrafinic oil or a silicone oil.
  • This second phase comprises at least one generally organosoluble surfactant which is preferably chosen from sorbitan esters and more preferably is represented by sorbitan sesquioleate.
  • the generally aqueous liquid medium it comprises at least one hydrocolloid, optionally the hydrolysis and polycondensation agent of the mineral hydrolyzable and polycondensable precursor.
  • hydrocolloid it is preferably a cellulose derivative and more preferably hydroxyethylcellulose.
  • the mineral capsules according to the invention are particularly advantageous for uses in the fields of biomedical fermentation, food and in the chemical industry. It is thus possible to envisage immobilizing, within the capsules claimed, cells having an activity which is of interest for the production of pharmaceutical products, metabolites and / or reagents such as chemical or pharmaceutical synthesis intermediates or else biodegradable polymers.
  • the immobilization according to the invention of microorganisms of the yeast or bacteria type is also particularly advantageous for the food industry and very particularly for the dairy and wine industries.
  • Enzymes immobilized according to the invention can represent, for their part, reagents of choice in numerous industrial manufacturing processes for catalytic or analytical methods.
  • capsules according to the invention based on living cells or enzymes in the treatment of waste water or waste.
  • the examples and the figure which follow are presented by way of illustration and without limitation of the subject of the present invention.
  • Aqueous ammonia solution (NH 4 OH) Density at 20 ° C: 0.880
  • Methyl silicate Si (OMe) 4 Molar mass: 156 g Density at 20 ° C: 1.032
  • Escherichia Coli K12 expressing a ⁇ -galactosidase Escherichia Coli K12 expressing a ⁇ -galactosidase.
  • Aqueous phase H 2 0 43.40 g HEC 2.61 g (6% / water)
  • the HEC is homogenized in purified water in a water bath at 40 ° C for about 20 minutes. A clear yellow viscous mixture is thus obtained. The cells are then added thereto, followed by the aqueous ammonia solution.
  • the Arcacel 83 ® is dissolved in Isopar M ® .
  • the organic phase and the aqueous phase are emulsified by means of an Ultraturrax ®, thus obtaining a water / oil emulsion with a stability of several hours.
  • the size of the droplets is close to ten microns.
  • the size of the silica particles which constitute the shell is close to a few nanometers.
  • the capsules have a size of the order of ten ⁇ m
  • Example 2 Determination of the enzymatic activity of the biocapsules
  • the enzymatic activity of E. coli ⁇ -galactosidase is determined after enzymatic hydrolysis of para-nitrophenyl- ⁇ -D-galactoside (p-NPG) to p-nitrophenol.
  • p-NPG para-nitrophenyl- ⁇ -D-galactoside
  • the quantitative measurement of p-nitrophenol by spectrophotometry makes it possible to deduce therefrom the enzymatic activity of the biocapsules.
  • the enzymatic activity of the biocapsules of Example 1 is expressed in ⁇ mol / h / mg of CS (dry cells), this compared to the bioactivity of the starting cells.
  • the enzymatic activity of the starting cells is 0.2 ⁇ mol / h / mg of CS, the activity yield of the biocapsules is approximately 50%. The activity of the cells is therefore well preserved.
  • Example 3 Obtaining silica capsules, with a particle size constituting the shell of a few nanometers.
  • the HEC is homogenized in purified water in a water bath at 40 ° C for about 20 minutes. A clear yellow viscous mixture is thus obtained. The cells are then added thereto, followed by the aqueous ammonia solution.
  • the Arcacel 83 ® is dissolved in Isopar M ® .
  • the organic phase and the aqueous phase are emulsified using an ultraturrax, thus obtaining a water / oil dispersion having a stability of several hours.
  • the size of the droplets is close to ten microns.
  • the size of the capsules is between 1 and ten ⁇ m (SEM).
  • the size of the silica particles constituting the shell is a few nanometers. The observations made by MET clearly show the encapsulation of bacteria by the silica capsule.
  • Example 4 Obtaining capsules with TMOS and co-alkoxide ([NHj] 0.1 mol / l).
  • Aqueous phase H 2 0 43.40 g
  • the HEC is homogenized in purified water in a water bath at 40 ° C for about 20 minutes. A clear yellow viscous mixture is thus obtained. The cells are then added thereto and then the aqueous ammonia solution (0.37 g).
  • the organic phase 1 and the aqueous phase are emulsified using an ultraturrax, thus obtaining a water / oil dispersion having a stability of several hours.
  • the size of the droplets is close to ten microns.
  • the mixture of alkoxides (organic phase 2) is added thereto with a flow rate of 0.5 ml / min (the duration of the introduction is 1 hour) at 25 ° C.
  • the particles obtained are separated and washed with methanol and then dried at room temperature overnight. The particles thus obtained are hydrophobic.
  • the particle size is between 1 and ten ⁇ m (SEM).
  • the size of the silica particles constituting the shell is a few nanometers (TEM).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

L'invention a pour objet une capsule minérale constituée d'une écorce minérale et d'un noyau liquide dans lequel est immobilisée, au moins une matière active biologique. Elle se rapporte en outre à un procédé de préparation desdites capsules ainsi qu'à leurs utilisations.

Description

Capsules à écorce minérale poreuse
La présente invention a pour objet de nouvelles capsules à écorce minérale poreuse au sein desquelles sont immobilisées, dans un milieu liquide, une ou plusieurs matières actives biologiques.
D'une manière générale, les techniques d'immobilisation de matières actives visent à limiter et plus préferentiellement à faire obstacle à leur migration libre dans un milieu environnant.
Il existe deux méthodes générales d'immobilisation : La première méthode consiste à lier la matière active à immobiliser à une surface de type support soit par adsorption (interactions de type ionique, liaisons Van der Waals), soit par liaison covalente ou via un composé intermédiaire.
La seconde méthode vise en revanche à retenir physiquement la matière active à l'intérieur d'une matrice solide ou poreuse telle qu'un gel stabilisé. Cette seconde approche est largement utilisée pour l'immobilisation de matières actives biologiques de type cellules ou enzymes par exemple. On procède le plus couramment à une encapsulation physique des matières actives biologiques considérées à l'intérieur d'une matrice polymérique. Le matériau d'encapsulation doit en fait répondre à plusieurs exigences :
- Il doit contribuer à assurer la stabilité de la structure et l'activité de la matière active immobilisée ;
- Il doit posséder une porosité suffisante pour contrôler la diffusion de la matière active immobilisée et le cas échéant ses échanges avec le milieu environnant et
- Il doit permettre le cas échéant une réutilisation aisée de la matière active immobilisée. Les matériaux les plus fréquemment mis en œuvre pour procéder à ce type d'immobilisation sont les gels hydrocolloïdes. A titre illustratif de ces gels, on peut notamment citer les gels naturels tels que les alginates et les carraghénanes. Toutefois d'autres réseaux polymériques de nature synthétique ont également été développés comme celui à base de polyacrylamide.
Ce type d'encapsulation est généralement obtenu par addition de la matière active à immobiliser sous la forme d'une suspension dans une solution aqueuse d'un précurseur du matériau d'encapsulation. La solution de précurseur y est ensuite transformée en gouttelettes généralement par dispersion. Enfin, ces gouttelettes sont stabilisées sous forme de billes dans lesquelles la matière active est piégée, soit par polymérisation ou tout autre type de réticulation.
Il a également été proposé d'encapsuler des enzymes dans une structure poreuse de nature minérale. La technique d'encapsulation retenue est alors apparentée à la technique sol-gel. Selon ce mode d'encapsulation, on initie l'hydrolyse et la polycondensation d'un alcoxyde métallique dans l'eau ou en milieu hydroalcoolique, on y disperse l'enzyme et la composition résultante est ensuite gélifiée puis séchée.
Comparativement à des matrices organiques à base d'un gel naturel de type alginate ou carraghenane, ces matrices inorganiques sont particulièrement avantageuses. Leur résistance mécanique est considérablement accrue. Elles présentent généralement un caractère hydrophile ainsi qu'une meilleure stabilité aux solvants et aux pH. Qui plus est, elles sont stables en milieu salin concentré contrairement aux matrices organiques à base d'alginate par exemple.
Toutefois, tout comme les systèmes d'encapsulation matriciels organiques, ces matrices inorganiques sont inadaptées au conditionnement de matières actives biologiques nécessitant d'être conservées dans un milieu liquide. Par ailleurs, la faible porosité de ces systèmes, en raison de leur caractère matriciel, constitue un obstacle à la croissance de matières actives biologiques et au maintien de leur activité. La présente invention a précisément pour objet de proposer un nouveau mode d'encapsulation, particulièrement avantageux dans la mesure où il permet justement de conserver des matières actives biologiques dans un environnement liquide propice à la conservation de leur structure et activité et le cas échéant leur développement interne tout en les protégeant efficacement contre toute dégradation susceptible de leur être occasionnée par le milieu environnant.
La présente invention a donc pour premier objet une capsule minérale constituée d'une écorce minérale et d'un noyau liquide dans lequel est immobilisée au moins une matière active biologique.
Au sens de la présente invention on entend couvrir sous la dénomination matière active biologique toute molécule, cellule ou organisme possédant un intérêt industriel en raison de son activité biologique.
A titre illustratif de ces matières actives biologiques, on peut notamment citer les organismes cellulaires comme les microorganismes de type bactéries, levures, champignons et algues, les cellules d'origine animale ou végétale, les enzymes ou protéines de type anticorps par exemple. II s'agit plus préferentiellement de cellules ou organismes vivants.
Comme exemples de molécules biologiquement actives, on peut plus particulièrement mentionner les enzymes telles les hydrolases, nucléases, oxydases, protéases, isomérases et analogues.
Il peut en particulier s'agir d'oxydoréductases telles les alcools deshydrogénases, les oxygenases et les glucose deshydrogénases, de transférases comme la D-glutamyl transférase, de lyases comme les fumarase et aspartase, d'hydrolases comme les lipases, nitrilehydratases, lactases et acylases ainsi que d'isomérases. Il peut également s'agir de protéines ou de complexes protéiques de type cytochrome C, hémoglobine, myoglobine, transferrine ou superoxyde dismutase ou d'anticorps.
Comme exemple de bactéries, on peut plus particulièrement citer les bactéries lactiques et les bactéries de l'environnement. Par opposition aux systèmes d'encapsulation classiques évoqués ci-dessus, la matière active biologique est dans le cas de la présente invention non pas adsorbée sous une forme dispersée au sein d'une matrice mais concentrée dans un milieu liquide qui est isolé du milieu environnant par une écorce minérale.
Au sens de la présente invention, on entend par milieu liquide, un milieu apte à assurer la conservation de l'activité et la structure et/ou la survie et le cas échéant le développement interne d'une matière active biologique, ce milieu étant sous une forme fluide de type liquide. A ce titre, il diffère des milieux de type alginate ou carraghenane qui s'apparentent eux à des milieux sous forme gel.
Il peut notamment s'agir du milieu biologique naturel de la matière active biologique immobilisée. Généralement ce milieu biologique liquide est ou dérive d'un milieu aqueux. Bien entendu, ce milieu liquide peut être tamponné et/ou supplémenté en oligo-éléments, sucres, sels et tout autre agent nutritif susceptible d'être nécessaire à la conservation de l'activité et la structure et/ou la survie et le cas échéant au développement interne de la matière active biologique immobilisée. Ces matières actives, selon leur caractère hydrosoluble, sont soit solubilisées ou dispersées dans le milieu liquide.
L'écorce minérale obtenue selon le procédé de l'invention a pour double avantage de protéger efficacement le milieu liquide et la ou les matière(s) active(s) qu'il contient, et le cas échéant de permettre ses échanges avec le milieu environnant des capsules. Ceci est notamment réalisé en ajustant le degré de porosité des capsules minérales obtenues selon l'invention.
Selon une première variante de l'invention, les capsules minérales obtenues peuvent être non poreuses. Cette spécificité est plus particulièrement avantageuse lorsque l'on souhaite essentiellement assurer une protection efficace du milieu liquide, incorporant au moins une matière active biologique, vis à vis de son milieu environnant. Par opposition aux microcapsules obtenues par polycondensation interfaciale et qui sont constituées d'une écorce organique, les capsules obtenues selon l'invention sont beaucoup plus résistantes mécaniquement, thermiquement et chimiquement en raison du caractère minéral de leur écorce. Dans ce cas particulier, le milieu aqueux et le cas échéant la matière active qu'il contient sont libérés généralement par fractionnement de la capsule ou encore par dégradation induite de celle-ci. Selon une seconde variante de l'invention, les capsules obtenues peuvent être poreuses et cette porosité est contrôlable. Ceci présente un intérêt significatif lorsque l'on souhaite, outre protéger le milieu liquide et la matière active qu'il contient, permettre ses échanges avec le milieu environnant desdites capsules. En fait, cet ajustement de la porosité de même que celui de la taille des capsules sont accomplis à travers principalement le choix du matériau minéral constituant l'écorce minérale ou plus précisément le choix du précurseur de ce matériau. Cet aspect de l'invention est discuté de manière plus détaillée ci-après.
La présente invention est donc particulièrement avantageuse dans la mesure où elle propose un mode de conditionnement fiable, compatible avec le développement interne des matières actives immobilisées et modulable en fonction de la nature et la quantité de matière(s) active(s) immobilisée(s). La préservation au sein de la capsule d'un milieu liquide qui peut être le milieu biologique naturel de la matière active immobilisée est une garantie d'un fonctionnement prolongé de ladite matière active, fonctionnement qui peut par exemple se traduire par une production de métabolites ou être enzymatique. La nature minérale de l'écorce des capsules revendiquées constitue une barrière de protection efficace à la matière active biologique vis-à- vis du milieu environnant tout en autorisant le cas échéant ses échanges avec celui-ci.
La taille des capsules étant maîtrisable, elle peut être ajustée en fonction des contraintes liées à la dimension des matières actives à encapsuler ou encore au nombre de ces matières actives biologiques.
Enfin, cette capsule est préparée dans le cadre de la présente invention dans des conditions opératoires suffisamment douces pour ne pas affecter l'intégrité desdites matières actives. La matière active à immobiliser n'est en effet pas exposée lors de son conditionnement à des valeurs de température et le cas échéant de pH susceptibles de lui porter préjudice.
En ce qui concerne la composition de l'écorce minérale, elle est constituée d'au moins un oxyde et/ou hydroxyde d'aluminium, de silicium, de zirconium et/ou d'un métal de transition.
Par métal de transition on entend plus particulièrement les métaux de la quatrième période allant du scandium au zinc dans la mesure où ceux-ci sont bien entendu compatibles en terme d'innocuité avec l'application visée. Il s'agit plus particulièrement d'un oxyde ou hydroxyde de titane, manganèse, fer, cobalt, nickel ou de cuivre.
Bien entendu, cette écorce minérale peut comprendre des oxydes et/ou hydroxydes de natures différentes. Conviennent plus particulièrement à la présente invention les oxydes et/ou hydroxydes de silicium, aluminium, titane et de zirconium.
Selon un mode préférentiel de l'invention, les capsules comprennent une écorce minérale à base d'au moins un oxyde de silicium.
De manière générale, la taille des capsules selon l'invention peut être comprise entre 1 et plusieurs dizaines de micromètres. La taille des particules du matériau minéral constituant l'écorce de ces capsules peut varier pour sa part entre 1 et 200 nm.
En ce qui concerne plus particulièrement l'épaisseur de l'écorce minérale, elle peut varier entre 1 et 200 nm.
On peut également caractériser ces capsules par la quantité de milieu liquide que l'écorce minérale retient en introduisant le paramètre rétention de la capsule. Celui-ci correspond au rapport de la masse du milieu liquide contenue dans la capsule et celle de l'écorce minérale. Lorsque l'écorce est trop poreuse, la rétention de la capsule est faible. On peut dont faire varier la rétention des capsules en fixant la taille des particules du matériau constituant l'écorce minérale ainsi que l'épaisseur de cette dernière. La présente invention a également pour objet un procédé utile pour préparer des capsules minérales conformes à la présente invention ledit procédé comprenant 1 ) la mise en émulsion d'un milieu liquide contenant au moins une matière active biologique au sein d'une seconde phase non miscible avec ledit milieu liquide de manière à l'y disperser sous forme de gouttelettes,
2) la mise au contact, au sein de l'émulsion inverse ainsi obtenue, d'au moins un composé hydrolysable et polycondensable de zirconium, silicium, aluminium et/ou un métal de transition dans des conditions de température et de pH propices à la formation d'un précipité constitué de l'oxyde ou l'hydroxyde correspondant et
3) la récupération des capsules minérales ainsi formées et le cas échéant leur purification, ledit procédé étant caractérisé en ce que la formation du précipité minéral dans la seconde étape est conduite en présence d'un système tensioactif amphiphile, présent au niveau de l'émulsion et capable de concentrer le dépôt des particules minérales dudit précipité formé à l'interface des gouttelettes et de la seconde phase et de bloquer efficacement leur diffusion au sein desdites gouttelettes.
Le système tensioactif amphiphile proposé selon l'invention a pour avantage de bloquer le phénomène de diffusion naturel des particules minérales vers le centre des gouttelettes.
Au sens de l'invention, on entend désigner par système tensioactif amphiphile soit un composé unique au niveau duquel coexistent deux régions dotées de solubilités très différentes et suffisamment éloignées l'une de l'autre pour se comporter de manière indépendante, soit une association d'au moins deux composés possédant des solubilités très différentes tels un premier composé à caractère hydrophile et un second composé à caractère hydrophobe. Généralement ces deux régions ou composés comprennent respectivement au moins un groupement hydrophile et une ou plusieurs longues chaînes à caractère hydrophobe. En conséquence, le système tensioactif mis en œuvre selon l'invention peut être représenté par un composé unique et qui sera alors introduit préalablement à la réalisation de la seconde étape c'est-à-dire l'étape d'hydrolyse et de polycondensation ou encore résulté d'une interaction in situ d'au moins deux composés comme par exemple un tensioactif organosoluble initialement présent dans la seconde phase généralement organosoluble et un composé hydrosoluble présent dans le milieu liquide généralement aqueux. On peut également envisager un couplage ou une complexation entre un premier agent organosoluble et un second agent organosoluble à caractère ionique comme un ammonium quaternaire. Les deux composés se rencontrent à l'interface des gouttelettes formées lors de la mise en émulsion. De part leur interaction, ils contribuent d'une part à stabiliser le système en diminuant la tension interfaciale à l'interface des gouttelettes et agissent vraisemblablement comme une barrière stérique ou électrostatique.
Dans le procédé revendiqué, est plus particulièrement préféré le mode de réalisation mettant en œuvre au moins deux composés distincts capables d'interagir pour conduire à un système tensioactif apte à s'opposer efficacement à la diffusion des particules minérales dans les gouttelettes aqueuses et à stabiliser ladite émulsion.
Le système tensioactif proposé selon l'invention comprend de préférence au moins un tensioactif doté d'une valeur HLB inférieure à 7.
Le terme HLB désigne le rapport de l'hydrophilie des groupements polaires de la molécule de tensioactif sur l'hydrophobie de la partie lipophile de cette même molécule.
Dans ce cas particulier, les deux composés sont de préférence respectivement présents dans le milieu liquide, généralement aqueux et la seconde phase généralement organosoluble et interagissent l'un vis à vis de l'autre lors de la mise en émulsion du milieu liquide dans ladite seconde phase. Cette option a pour avantage de conférer à l'émulsion correspondante une stabilité satisfaisante dès sa formation. Qui plus est, il s'avère possible, si nécessaire, en sélectionnant de manière appropriée les agents constituant le système tensioactif amphiphile, d'ajuster le pH à une valeur compatible avec la matière active.
En ce qui concerne la mise en émulsion, elle peut être réalisée en appliquant une énergie mécanique d'agitation intense aux deux phases initiales, et/ou une sonication. La taille des gouttelettes obtenues à l'issue de l'étape de mise en émulsion peut être comprise entre environ 0,1 et une dizaine de μm.
Le composé présent au niveau du milieu liquide, généralement aqueux possède de préférence une action viscosifiante. Plus particulièrement, ce composé peut être un composé choisi parmi les sucres et leurs dérivés. Conviennent à ce titre les oses (ou monosaccharides), les osides et les polyholosides fortement dépolymérisés. On entend des composés dont la masse mollaire en poids est plus particulièrement inférieure à 20 000 g/mole. Parmi les oses on peut mentionner les aldoses tels que le glucose, mannose, galactose et les cétoses tels que le fructose.
Les osides sont des composés qui résultent de la condensation, avec élimination d'eau, de molécules d'osés avec des molécules non glucidiques. Parmi les osides, on préfère les holosides qui sont formés par la réunion de motifs exclusivement glucidiques et plus particulièrement les oligoholosides (ou oligosaccharides) qui ne comportent qu'un nombre restreint de ces motifs, c'est-à-dire un nombre en général inférieur ou égal à 10. A titre d'exemples d'oligoholosides on peut mentionner le saccharose, le lactose, la cellobiose, le maltose. Les polyholosides (ou polysaccharides) fortement dépolymérisés convenables sont décrits par exemple dans l'ouvrage de P. ARNAUD intitulé "Cours de chimie organique", GUTHIER-VILLARS éditeurs, 1987. Plus particulièrement, on met en œuvre des polyholosides dont la masse moléculaire en poids est plus particulièrement inférieure à 20 000 g/mole. A titre d'exemple non limitatif de polyholosides fortement dépolymérisés, on peut citer le dextran, l'amidon, la gomme xanthane et les galactomannanes tels que le guar ou la caroube. Ces polysaccharides présentent de préférence un poids de fusion supérieur à 100°C et une solubilité dans l'eau comprise entre 10 et 500 g/l.
Conviennent également à l'invention la gomme arabique, la gélatine et leurs dérivés gras comme les sucroesters d'acides gras, les carbohydrates alcools de type sorbitol, mannitol, les carbohydrates éthers comme les méthyl-, éthyl-, carboxyméthyl-, hydroxyéthyl- et hydroxypropyl- éthers de cellulose et les glycérols, pentaérythrol, propylèneglycol, éthylène glycol, les diols non visqueux et/ou alcools polyvinyliques.
Il s'agit de préférence d'un hydrocolloïde. A titre représentatif de ce type de composés on peut notamment citer les alginates, les polysaccharides de type gomme naturelle comme les carraghénanes, la xanthane et le guar et tout particulièrement les dérivés de cellulose.
De manière préférée, il s'agit d'un dérivé de cellulose et plus préferentiellement de l'hydroxyéthylcellulose.
Le ou les tensioactif(s) généralement organosoluble(s) présent(s) au niveau de la seconde phase peuvent être choisi(s) parmi les alcools gras, les triglycérides, les acides gras, les esters de sorbitan, les aminés grasses, ces composés étant ou non sous une forme polyalcoxylée, les lécithines liposolubles, les polyalkylènes dipolyhydroxystéarates, les sels d'ammonium quaternaires, les monoglycérides, les esters de polyglycérol, le polyricinoléate de polyglycérol et les esters lactiques.
Les alcools gras comprennent généralement de 6 à 22 atomes de carbone. Les triglycérides peuvent être des triglycérides d'origine végétale ou animale (tels que le saindoux, le suif, l'huile d'arachide, l'huile de beurre, l'huile de graine de coton, l'huile de lin, l'huile d'olive, l'huile de poisson, l'huile de coprah, l'huile de noix de coco).
Les acides gras sont des esters d'acide gras (tels que par exemple l'acide oléïque, l'acide stéarique). Les esters de sorbitan sont des esters du sorbitol cyclisés d'acide gras comprenant de 10 à 20 atomes de carbone comme l'acide laurique, l'acide stéarique ou l'acide oléïque. Selon un mode préféré de l'invention, ce tensioactif est un ester de sorbitan tel que défini ci-dessus et plus préferentiellement le sesquioléate de sorbitan.
Comme il ressort de l'exposé précédent, le composé présent dans le milieu liquide généralement aqueux doit interagir avec le tensioactif présent dans la seconde phase généralement hydrophobe pour conduire à un système tensioactif capable de constituer une barrière de diffusion efficace à l'égard des particules du précipité minéral. En conséquence, leurs choix respectifs doivent être effectués en tenant compte de cet impératif. Bien entendu la nature de la matière active à encapsuler de même que la composition de l'écorce minérale des capsules préparées selon l'invention sont également des éléments déterminants dans le choix du système tensioactif et l'appréciation des quantités respectives des deux composés correspondants. Ces ajustements relèvent en fait des compétences de l'homme de l'art.
Dans le cas particulier où est privilégiée selon l'invention la mise en œuvre d'un unique composé de type amphiphile conviennent tout particulièrement ceux répondant à la formule générale I :
R2— (A)n— [N"(CHR ^y-N-Q
I B B
dans laquelle :
R2 représente un radical alkyle ou alcényle comprenant 7 à 22 atomes de carbone, Ri représente un atome d'hydrogène ou un radical alkyle comprenant 1 à 6 atomes de carbone, A représente un groupement (CO) ou (OCH2CH2), n vaut 0 ou 1 , x vaut 2 ou 3, y vaut 0 à 4, Q représente un radical -R3-COOM avec R2 représentant un radical alkyle comprenant 1 à 6 atomes de carbone, M représente un atome d'hydrogène, un métal alcalin, un métal alcalino-terreux ou encore un groupement ammonium quaternaire dans lequel les radicaux liés à l'atome d'azote, identiques ou différents, sont choisis parmi l'hydrogène ou un radical alkyle ou hydroalkyle possédant 1 à 6 atomes de carbone, et B représente H ou Q. De préférence, M représente un atome d'hydrogène, le sodium, le potassium et un groupement NH4.
Parmi ces tensioactifs correspondants à la formule I, on met plus particulièrement en œuvre les dérivés amphotères des alkyl polyamines comme l'amphionic XL®, le Mirataine H2C-HA® commercialisés par Rhodia Chimie ainsi que l'Ampholac 7T/X® commercialisés par Berol Nobel.
On peut également mettre en œuvre un tensioactif principal non- ionique dont la partie hydrophile contient un ou plusieurs motif(s) saccharide(s). Lesdits motifs saccharides contiennent généralement de 5 à 6 atomes de carbone. Ceux-ci peuvent dériver de sucres comme le fructose, le glucose, le mannose, le galactose, le talose, le gulose, l'allose, l'altose, l'idose, l'arabinose, le xylose, le lyxose et/ou le ribose.
Parmi ces agents tensioactifs à structure saccharide, on peut mentionner les alkylpolyglycosides. Ceux-ci peuvent être obtenus par condensation (par exemple par catalyse acide) du glucose avec des alcools gras primaires (US-A-3 598 865 ; US-A-4 565 647 ; EP-A-132 043 ; EP-A-132 046 ; Tenside Surf. Det. 28, 419, 1991 , 3 ; Langmuir 1993, 9, 3375-3384) présentant un groupe alkyle en C4-C2u, de préférence de l'ordre de 1 ,1 à 1 ,8 par mole d'alkylpolyglycoside (APG) ; on peut mentionner notamment ceux commercialisés respectivement sous les dénominations GLUCOPON 600 EC®, GLUCOPON 650 EC®, GLUCOPON 225 CSUP®, par HENKEL.
A titre illustratif, la concentration en système tensioactif amphiphile peut être comprise entre environ 1 % et 10% en poids par rapport à la phase organosoluble. Selon un mode préférentiel de l'invention, le tensioactif incorporé au niveau de la seconde phase généralement organosoluble, est un ester de sorbitan et plus préferentiellement le sesquioléate de sorbitan. Quant au composé incorporé dans le milieu liquide, il s'agit préferentiellement d'un dérivé de cellulose et plus particulièrement de l'hydroxyéthyle de cellulose. Selon un mode de réalisation préféré de l'invention, la matière de l'écorce minérale dérive de l'hydrolyse et la polycondensation d'un ou plusieurs alcoxydes de formule II. M(R)n(P)m H dans laquelle :
- M représente un élément choisi parmi le titane, manganèse, fer, cobalt, nickel, silicium, aluminium ou zirconium, - R est un substituant hydrolysable,
- n est un entier compris entre 1 et 6,
- P est un substituant non hydrolysable et
- m est un entier compris entre 0 et 6.
Selon un mode préféré de l'invention : - M est choisi parmi la silice, l'aluminium, le titane et le zirconium,
- R est un groupement choisi parmi les groupements aikoxy et/ou aryloxy en Ci à Ci8 et de préférence en C2 à Ce et n est un entier compris entre 2 et 4 et
- P est un groupement choisi parmi les groupements alkyles en Ci à C8, aryles ou alcényle en C2 à Ce.
En ce qui concerne R, il s'agit de préférence d'un groupement aikoxy en Ci à Ce et plus préferentiellement en C2 à C4. Ce groupement aikoxy peut le cas échéant être substitué par un groupement alkyle ou aikoxy en Ci à
C ou un atome d'halogène. Dans la formule générale II, R peut représenter des groupements aikoxy identiques ou différents.
Bien entendu, on peut mettre en œuvre plusieurs composés de formule II.
Comme discuté précédemment, il s'avère possible à travers le choix de ce composé hydrolysable et polycondensable minéral d'ajuster la porosité et la taille des capsules.
De même, on peut conférer un caractère plus ou moins hydrophobe à la capsule en jouant sur la nature et par exemple la longueur des chaînes alkyles et/ou alcoxy constituant ce composé hydrolysable et polycondensable minéral. Généralement, l'hydrolyse et la polycondensation de ce précurseur minéral s'accomplissent soit spontanément par mise en présence de celui-ci avec l'émulsion soit sont initiées par ajustement du pH et/ou de la température de l'émulsion à une valeur propice à leur manifestation. Cet ajustement peut notamment relever de la présence dans l'émulsion d'ions hydrosolubles comme NH OH, NaOH ou HCI ou organosolubles de type aminés. Ces ajustements relèvent de la compétence de l'homme du métier.
Selon une variante préférée de la présente invention, l'écorce minérale obtenue selon l'invention est à base d'oxyde de silicium. Elle dérive de la précipitation d'au moins un silicate.
Comme silicate convenant à la présente invention, on peut plus particulièrement citer le tétraméthylorthosilicate, TMOS, le tétraéthylorthosilicate, TEOS , le tétrapropylorthosilicate, TPOS, les alkylalcoxysilanes et les halogénoalkylsilanes.
Selon un mode de réalisation particulier de l'invention, la capsule minérale est obtenue par formation d'un précipité minéral en présence d'un agent d'hydrolyse et de condensation dudit composé.
L'hydrolyse de ces alcoxydes de silicium peut se faire aussi bien en catalyse acide qu'en catalyse basique sous réserve que les oxydes et/ou hydroxydes correspondants soient obtenus sous une forme pulvérulente.
De préférence on met en œuvre un alcoxyde de silicium comme le tétraéthylorthosilicate, TEOS, en présence d'ammoniaque, à titre d'agent d'hydrolyse et polycondensation.
La seconde phase est généralement une phase huileuse non miscible avec le milieu liquide généralement aqueux et est de préférence composée d'une huile choisie parmi les huiles végétales, animales et minérales. Il peut par exemple s'agir d'une huile parrafinique ou d'une huile de silicone.
Toutefois, on peut également envisager de mettre en œuvre d'autres solvants organiques comme les solvants perfluorés sous réserve que ces solvants soient utilisés dans des conditions appropriées, par exemple sous forme d'un mélange pour conduire à une émulsion avec le milieu liquide.
A titre de seconde phase convenant tout particulièrement à l'invention, on peut notamment citer le solvant Isopar® qui est une isoparrafine commercialisée par la société Exxon Chemicals.
Cette seconde phase comprend au moins un tensioactif généralement organosoluble qui est de préférence choisi parmi les esters de sorbitan et plus préferentiellement est représenté par le sesquioléate de sorbitan.
En ce qui concerne le milieu liquide généralement aqueux, il comprend au moins un hydrocolloïde, éventuellement l'agent d'hydrolyse et de polycondensation du précurseur hydrolysable et polycondensable minéral.
En ce qui concerne l'hydrocolloïde, il s'agit de préférence d'un dérivé de cellulose et plus préferentiellement de l'hydroxyéthylcellulose.
Les capsules minérales selon l'invention sont particulièrement intéressantes pour des utilisations dans les domaines de fermentation biomédicaux, alimentaires et en industrie chimique. On peut ainsi envisager d'immobiliser, au sein des capsules revendiquées, des cellules possédant une activité intéressante pour la production de produits pharmaceutiques, de métabolites et/ou de réactifs comme des intermédiaires de synthèse chimiques ou pharmaceutiques ou encore des polymères biodégradables. L'immobilisation selon l'invention de microorganismes de type levures ou bactéries est également particulièrement intéressante pour l'industrie alimentaire et tout particulièrement pour les industries laitière et viticole.
Des enzymes immobilisées selon l'invention peuvent représenter pour leur part des réactifs de choix dans de nombreux procédés de fabrication industriels pour des méthodes catalytiques ou analytiques.
De même on peut envisager de mettre en œuvre des capsules selon l'invention à base de cellules vivantes ou d'enzymes dans le traitement des eaux usées ou des déchets. Les exemples et la figure qui suivent sont présentés à titre illustratif et non limitatif de l'objet de la présente invention.
Figures :
- Figure 1 : Photographie par microscopie en balayage (MEB) de capsules selon l'invention incorporant E. coli.
- Figure 2 Visualisation d'E. coli encapsulée par microscopie électronique de transmission (MET).
Matières premières :
Isopar M® (EXXON) Densité à 15°C : 0,786
Arlacel 83® (ICI) Sesquioléate de sorbitan
HEC (SIGMA ALDRICH) Hydroxyéthylcellulose
Solution aqueuse d'ammoniaque (NH4OH) Densité à 20°C : 0,880
Concentration en NH3 : 20 %
Silicate de méthyle : Si(OMe)4 Masse molaire : 156 g Densité à 20°C : 1 ,032
Tampon phosphate de sodium à pH 7.
Escherichia Coli K12 exprimant une β-galactosidase.
Exemple 1 : Encapsulation de E. Coli
Composition globale du milieu réactionnel :
Phase aqueuse : H20 43,40 g HEC 2,61 g (6 %/eau)
NH3 5,00 g (1 mol/l)
E. Coli 4 g (soit 1 g de cellules sèches) Phase organique : Arlacel 83® 17,35 g Isopar M ® 850 g
tétraméthylorthosilane® TMOS 28,5 g
Préparation de la phase aqueuse :
On homogénéise le HEC dans l'eau épurée au bain marie à 40°C pendant 20 minutes environ. On obtient ainsi un mélange visqueux jaune limpide. On y ajoute alors les cellules puis la solution aqueuse ammoniacale.
Préparation de la phase organique :
On solubilise l'Arcacel 83® dans l'Isopar M®.
Préparation de l'émulsion :
La phase organique et la phase aqueuse sont émulsifiées à l'aide d'un Ultraturrax®, on obtient ainsi une émulsion eau/huile présentant une stabilité de plusieurs heures. La taille des gouttelettes est voisine de la dizaine de microns.
Synthèse des capsules :
Dans un tricol de 2 litres muni d'un barreau aimanté, on introduit l'émulsion préparée précédemment.
On y ajoute le tétraméthylorthosilane TMOS(28,5 g) avec un débit de 0,5 ml/min. (durée de l'introduction de TMOS = 1 heure) à 25°C.
Les particules obtenues sont séparées et lavées au méthanol puis
2 fois au tampon phosphate par centrifugation puis séchées à température ambiante pendant une nuit. Caractérisations :
La taille des particules de silice qui constitue l'écorce est voisine de quelques nanomètres. Les capsules présentent une taille de l'ordre d'une dizaine de μm
(MEB). L'encapsulation des bactéries est parfaitement visualisée par MET (microscopie électronique de transmission), ainsi que la porosité de la capsule.
Les photographies présentées en figures 1 et 2 rendent compte de l'aspect de ces capsules.
Exemple 2 : détermination de l'activité enzymatique des biocapsules
L'activité enzymatique de la β-galactosidase de E. Coli est déterminée après hydrolyse enzymatique du para-nitrophényle-β-D-galactoside (p-NPG) en p-nitrophénol. La mesure quantitative du p-nitrophénol par spectrophotométrie permet d'en déduire l'activité enzymatique des biocapsules.
L'activité enzymatique des biocapsules de l'exemple 1 est exprimée en μmole/h/mg de CS (cellules sèches), ceci comparativement à la bioactivité des cellules de départ. L'activité enzymatique des cellules de départ est de 0,2 μmole/h/mg de CS, le rendement d'activité des biocapsules est d'environ 50 %. L'activité des cellules est donc bien préservée.
Exemple 3 : Obtention de capsules de silice, avec une taille des particules constituant l'écorce de quelques nanomètres.
Composition globale du milieu réactionnel : Phase aqueuse : H20 43,40 g
HEC 2,61 g (6 %/eau)
NH3 5,0 g (1 mol/l) E. Coli 4 g (soit 1 g de cellules sèches)
Phase organique : Arlacel 83® 17,35 g (2,04 %/lsopar) Isopar M ® 850 g TEOS 39 g
Préparation de la phase aqueuse :
On homogénéise le HEC dans l'eau épurée au bain marie à 40°C pendant 20 minutes environ. On obtient ainsi un mélange visqueux jaune limpide. On y ajoute alors les cellules puis la solution aqueuse ammoniacale.
Préparation de la phase organique :
On solubilise l'Arcacel 83® dans l'Isopar M®.
Préparation de l'émulsion :
La phase organique et la phase aqueuse sont émulsifiées à l'aide d'un ultraturrax, on obtient ainsi une dispersion eau/huile présentant une stabilité de plusieurs heures. La taille des gouttelettes est voisine de la dizaine de microns.
Synthèse des capsules :
Dans un tricol de 2 litres d'un barreau aimanté, on introduit l'émulsion préparée précédemment.
On y ajoute le silicate d'éthyle (39 g) avec un débit de 0,8 ml/min (durée de l'introduction de TEOS = 1 heure) à 25°C.
Les capsules obtenues sont séparées et lavées 1 fois à l'éthanol puis 2 fois au tampon phosphate puis séchées à température ambiante pendant une nuit. Caractérisations :
La taille des capsules est comprise entre 1 et une dizaine de μm (MEB). La taille des particules de silice constitutrices de l'écorce est de quelques nanomètres. Les observations faites par MET mettent clairement en évidence l'encapsulation des bactéries par la capsule de silice.
Exemple 4 : Obtention de capsules avec TMOS et co-alcoxyde ([NHj] 0.1 mol/l).
Composition globale du milieu réactionnel :
Phase aqueuse : H20 43,40 g
HEC 2,61 g (6 %/eau)
NH3 0,37 g soit [NH3] = 0,1 mol/l
E. Coli 4 g (soit 1 g de cellules sèches)
Phase organique : Arlacel 83^ D 17,35 g (2,04 %/lsopar)
Isopar M ® 850 g Phase organique 2 : TMOS 22,8 g
O-TMOS 5,7 g
Préparation de la phase aqueuse :
On homogénéise le HEC dans l'eau épurée au bain marie à 40°C pendant 20 minutes environ. On obtient ainsi un mélange visqueux jaune limpide. On y ajoute alors les cellules puis la solution aqueuse ammoniacale (0,37 g).
Préparation de la phase organique 1 :
On solubilise l'Arcacel 83® dans l'Isopar M®. Préparation de l'émulsion :
La phase organique 1 et la phase aqueuse sont émulsifiées à l'aide d'un ultraturrax, on obtient ainsi une dispersion eau/huile présentant une stabilité de plusieurs heures. La taille des gouttelettes est voisine de la dizaine de microns.
Mode opératoire
Dans un tricol de 2 litres muni d'un barreau aimanté, on introduit l'émulsion préparée précédemment.
On y ajoute le mélange d'alcoxydes (phase organique 2) avec un débit de 0,5 ml/min (la durée de l'introduction est de 1 heure) à 25°C. Les particules obtenues sont séparées et lavées au méthanol puis séchées à température ambiante pendant une nuit. Les particules ainsi obtenues sont hydrophobes.
Caractérisations :
La taille des particules est comprise entre 1 et une dizaine de μm (MEB).
La taille des particules de silice constitutrices de l'écorce est de quelques nanomètres (MET).

Claims

REVENDICATIONS
1. Capsule minérale constituée d'une écorce minérale et d'un noyau liquide dans lequel est immobilisée au moins une matière active biologique.
2. Capsule selon la revendication 1 , caractérisée en ce que l'écorce minérale est constituée d'au moins un oxyde et/ou hydroxyde d'aluminium, de silicium, de zirconium et/ou d'un métal de transition.
3. Capsule selon la revendication 1 ou 2, caractérisée en ce que l'écorce minérale est constituée d'au moins un oxyde et/ou hydroxyde de silicium, aluminium, titane et de zirconium.
4. Capsule selon la revendication 3, caractérisée en ce que l'écorce minérale comprend au moins un oxyde de silicium.
5. Capsule selon l'une des revendications précédentes, caractérisée en ce que le milieu liquide constituant le noyau de ladite capsule correspond au milieu biologique naturel de la matière active biologique immobilisée.
6. Capsule selon l'une des revendications précédentes, caractérisée en ce que le milieu liquide constituant le noyau de ladite capsule est propice à la conservation de la structure et l'activité de la matière active biologique immobilisée.
7. Capsule selon l'une des revendications 1 à 6, caractérisée en ce que le milieu liquide constituant le noyau de ladite capsule est propice au développement interne de la matière active biologique immobilisée.
8. Capsule selon l'une des revendications précédentes, caractérisée en ce que la matière active biologique est choisie parmi les organismes cellulaires comme les microorganismes de type bactéries, levures, champignons, algues, cellules d'origine animale ou végétale, les enzymes ou protéines.
9. Capsule selon la revendication 8, caractérisée en ce qu'il s'agit de cellules ou organismes vivants.
10. Capsule selon l'une des revendications précédentes, caractérisée en ce qu'elle possède une taille comprise entre 1 et plusieurs dizaine de micromètres.
11. Capsule selon l'une des revendications précédentes, caractérisée en ce que son écorce minérale possède une épaisseur variant entre 1 et 200 nm.
12. Procédé pour la préparation de capsules selon l'une des revendications 1 à 11 , ledit procédé comprenant
1) la mise en émulsion d'un milieu liquide contenant au moins une matière active biologique au sein d'une seconde phase non miscible avec ledit milieu liquide de manière à l'y disperser sous forme de gouttelettes,
2) la mise au contact, au sein de l'émulsion ainsi obtenue, d'au moins un composé hydrolysable et polycondensable de zirconium, silicium, aluminium et/ou un métal de transition dans des conditions de température et de pH propices à la formation d'un précipité constitué de l'oxyde ou l'hydroxyde correspondant et
3) la récupération des capsules minérales ainsi formées et le cas échéant leur purification, ledit procédé étant caractérisé en ce que la formation du précipité minéral dans la seconde étape est conduite en présence d'un système tensioactif amphiphile, présent au niveau de l'émulsion et capable de concentrer le dépôt des particules minérales dudit précipité formé à l'interface des gouttelettes et de la seconde phase et de bloquer efficacement leur diffusion au sein desdites gouttelettes.
13. Procédé selon la revendication 12, caractérisé en ce que le système tensioactif amphiphile résulte de l'interaction in situ entre un premier composé présent dans la seconde phase et un composé présent dans le milieu liquide.
14. Procédé selon la revendication 12 ou 13, caractérisé en ce que le système tensioactif comprend au moins un tensioactif doté d'une valeur HLB inférieure à 7.
15. Procédé selon l'une des revendications 12 à 14, caractérisé en ce que le tensioactif présent dans la seconde phase est un ester de sorbitan.
16. Procédé selon l'une des revendications 12 à 15, caractérisé en ce que le composé présent dans le milieu liquide est un dérivé de cellulose.
17. Procédé selon l'une des revendications 12 à 16, caractérisé en ce que l'émulsion est obtenue mécaniquement et/ou par sonication.
18. Procédé selon l'une des revendications 12 à 17, caractérisé en ce que le composé hydrolysable et polycondensable répond à la formule générale II :
M(R)n(P)m II dans laquelle :
- M représente un élément choisi parmi le titane, manganèse, fer, cobalt, nickel, silicium, aluminium ou zirconium, - R est un substituant hydrolysable,
- n est un entier compris entre 1 et 6,
- P est un substituant non hydrolysable et
- m est un entier compris entre 0 et 6.
19. Procédé selon la revendication 18, caractérisé en ce qu'il s'agit de préférence d'un alcoxyde de silicium.
20. Procédé selon la revendication 19 caractérisé en ce que l'alcoxyde de silicium est choisi parmi les tétraméthylorthosilicate, tétraéthylorthosilicate et tétrapropylorthosilicate.
21. Procédé selon l'une des revendications 12 à 20, caractérisé en ce que la formation du précipité est conduite en présence d'un agent d'hydrolyse et de condensation dudit composé.
22. Procédé selon la revendication 21 , caractérisé en ce que l'agent d'hydrolyse et de polycondensation est l'ammoniaque.
23. Utilisation des capsules selon l'une des revendications 1 à 11 dans les domaines de fermentation, biomédicaux, alimentaires et en industrie chimique.
EP99950847A 1998-10-30 1999-10-27 Capsules a ecorce minerale poreuse Withdrawn EP1124542A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9813695 1998-10-30
FR9813695A FR2785292B1 (fr) 1998-10-30 1998-10-30 Capsules a ecorce minerale poreuse dans lesquelles sont immobilisees dans un milieu biologique liquide, une ou plusieurs matieres biologiques, leurs procede de preparation et utilisations
PCT/FR1999/002614 WO2000025761A1 (fr) 1998-10-30 1999-10-27 Capsules a ecorce minerale poreuse

Publications (1)

Publication Number Publication Date
EP1124542A1 true EP1124542A1 (fr) 2001-08-22

Family

ID=9532225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99950847A Withdrawn EP1124542A1 (fr) 1998-10-30 1999-10-27 Capsules a ecorce minerale poreuse

Country Status (8)

Country Link
EP (1) EP1124542A1 (fr)
JP (1) JP2003515310A (fr)
AU (1) AU764016B2 (fr)
BR (1) BR9914907A (fr)
CA (1) CA2349674A1 (fr)
FR (1) FR2785292B1 (fr)
NZ (1) NZ511365A (fr)
WO (1) WO2000025761A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758888B2 (en) 2000-04-21 2010-07-20 Sol-Gel Technologies Ltd. Composition exhibiting enhanced formulation stability and delivery of topical active ingredients
CA2406008C (fr) * 2000-04-21 2011-03-15 Sol-Gel Technologies Ltd. Composition a stabilite de preparation accrue et administration d'ingredients actifs topiques
FR2840822B1 (fr) * 2002-06-18 2005-04-08 Centre Nat Rech Scient Capsules minerales mesoporeuses par emulsion
FR2842438B1 (fr) * 2002-07-22 2004-10-15 Centre Nat Rech Scient Procede de preparation de billes contenant une matrice minerale reticulee
WO2004081222A2 (fr) 2003-03-14 2004-09-23 Sol-Gel Technologies Ltd. Microparticules et nanoparticules d'encapsulation d'agents, procedes de preparation de celles-ci, et produits contenant celles-ci
FR2855074A1 (fr) * 2003-05-22 2004-11-26 Rhodia Chimie Sa Capsules de phosphate de calcium, procede de preparation et ses utilisations
US8110284B2 (en) 2003-07-31 2012-02-07 Sol-Gel Technologies Ltd. Microcapsules loaded with active ingredients and a method for their preparation
WO2006133518A1 (fr) * 2005-06-17 2006-12-21 Australian Nuclear Science And Technology Organisation Particules dans lesquelles est incorpore un materiau hydrophobe
JP5051490B2 (ja) * 2005-07-08 2012-10-17 独立行政法人産業技術総合研究所 マクロ生体材料を内包する無機マイクロカプセルおよびその製造方法
WO2007015243A2 (fr) 2005-08-02 2007-02-08 Sol-Gel Technologies Ltd. Revetement par un oxyde metallique d'ingredients hydroinsolubles
EP2120891B9 (fr) * 2006-12-28 2019-04-24 Dow Silicones Corporation Agrafe rotative et pivotante pour ceinture pouvant être utilisé comme support
MX2009008250A (es) 2007-02-01 2009-08-27 Sol Gel Technologies Ltd Composiciones para aplicacion topica que comprenden un peroxido y retinoide.
JP5344417B2 (ja) * 2007-04-17 2013-11-20 国立大学法人群馬大学 水油界面を利用した薬物−シリカ封入体の製造法
JP5245155B2 (ja) * 2008-01-31 2013-07-24 独立行政法人産業技術総合研究所 酵素を内包した無機マイクロカプセル、その製造方法及び使用
US9687465B2 (en) 2012-11-27 2017-06-27 Sol-Gel Technologies Ltd. Compositions for the treatment of rosacea

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983369A (en) * 1989-11-22 1991-01-08 Allied-Signal Inc. Process for forming highly uniform silica spheres
JPH0775728A (ja) * 1993-06-18 1995-03-20 Suzuki Yushi Kogyo Kk 無機質均一微小球体の製造方法
US5895757A (en) * 1993-06-30 1999-04-20 Pope; Edward J. A. Encapsulation of living tissue cells in inorganic microspheres prepared from an organosilicon
US5693513A (en) * 1995-01-10 1997-12-02 Pope; Edward J. A. Encapsulation of living tissue cells in an organosilicon
US6416774B1 (en) * 1996-05-09 2002-07-09 The Trustees Of The University Of Pennsyvania Hollow bone mineral-like calcium phosphate particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0025761A1 *

Also Published As

Publication number Publication date
FR2785292B1 (fr) 2002-06-28
JP2003515310A (ja) 2003-05-07
WO2000025761A1 (fr) 2000-05-11
NZ511365A (en) 2003-08-29
AU764016B2 (en) 2003-08-07
CA2349674A1 (fr) 2000-05-11
FR2785292A1 (fr) 2000-05-05
BR9914907A (pt) 2001-08-07
AU6346999A (en) 2000-05-22

Similar Documents

Publication Publication Date Title
WO2000025761A1 (fr) Capsules a ecorce minerale poreuse
CA2349672C (fr) Procede de preparation de capsules constituees d'un noyau de matiere active liquide entoure d'une ecorce minerale
EP2228127B1 (fr) Procédé de préparation de particules de silice poreuses, lesdites particules et leurs utilisations
FR2694894A1 (fr) Utilisation d'une réaction de transacylation entre un polysaccharide estérifié et une substance polyaminée ou polyhydroxylée pour la fabrication de microparticules, procédé et composition.
Soni et al. Self-assembled enzyme capsules in ionic liquid [BMIM][BF4] as templating nanoreactors for hollow silica nanocontainers
EP0873180B1 (fr) Granules redispersables dans l'eau comprenant une matiere active sous forme liquide
WO1999040902A1 (fr) Systeme d'encapsulation a coeur organique et a ecorce minerale a base d'hydroxycarbonate d'aluminium et son procede de preparation
US6180378B1 (en) Immobilization of bioactive protein in phyllosilicates
KR101411793B1 (ko) 실리카 캡슐화된 단분자 나노효소입자 제조방법 및 이를 통해 제조된 단분자 나노효소입자
CN113403298B (zh) 一种游离酶的固定化方法
US5182201A (en) Lipase immobilization without covalent bonding on an amphiphilic support containing lipophilic alkyl chains
JP4799422B2 (ja) 架橋タンパク質結晶の調製方法
JP3218794B2 (ja) 新規界面活性剤被覆酵素とその製法
US5834271A (en) Enzyme-polyelectrolyte coacervate complex and method of use
KR20230115927A (ko) 효소 매입형 공유결합성 유기 골격체 및 이의 제조방법
CA2232371C (fr) Granules redispersables dans l'eau comprenant une matiere active sous forme liquide
Noor El-Deen et al. Hybrid Nano Supports of Nano Polyaniline, Magnetic Iron Oxide Nanoparticles and Nano Clay as Matrices for The Immobilization of β-Glucosidase, Fructosyltransferase and Carboxymethyl Cellulase
WO2024153594A1 (fr) Nouveau materiau carbone poreux comprenant une proteine immobilisee, son procede de preparation et ses utilisations
CN116814602A (zh) 一种用于级联反应的界面活性胶体颗粒及其制备方法和应用
EP0930937A1 (fr) Microbilles preparees a partir d'hydrogel de polysaccharide reticule pouvant contenir des molecules d'interet biologique ou des cellules
JPS5850256B2 (ja) ビ−ズジヨウゲルノセイゾウホウ
WO2017006046A1 (fr) Fixation de molécules organiques sur une matrice de silice poreuse.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030929

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040210