EP1124105A2 - Flüssigkeitskühlersystem - Google Patents

Flüssigkeitskühlersystem Download PDF

Info

Publication number
EP1124105A2
EP1124105A2 EP01102782A EP01102782A EP1124105A2 EP 1124105 A2 EP1124105 A2 EP 1124105A2 EP 01102782 A EP01102782 A EP 01102782A EP 01102782 A EP01102782 A EP 01102782A EP 1124105 A2 EP1124105 A2 EP 1124105A2
Authority
EP
European Patent Office
Prior art keywords
liquid
housing
cooler
coolant
liquid cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01102782A
Other languages
English (en)
French (fr)
Other versions
EP1124105B1 (de
EP1124105A3 (de
Inventor
Herbert Jainek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mann and Hummel GmbH
Original Assignee
Filterwerk Mann and Hummel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Filterwerk Mann and Hummel GmbH filed Critical Filterwerk Mann and Hummel GmbH
Publication of EP1124105A2 publication Critical patent/EP1124105A2/de
Publication of EP1124105A3 publication Critical patent/EP1124105A3/de
Application granted granted Critical
Publication of EP1124105B1 publication Critical patent/EP1124105B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/03Mounting or connecting of lubricant purifying means relative to the machine or engine; Details of lubricant purifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/03Mounting or connecting of lubricant purifying means relative to the machine or engine; Details of lubricant purifying means
    • F01M2011/031Mounting or connecting of lubricant purifying means relative to the machine or engine; Details of lubricant purifying means characterised by mounting means
    • F01M2011/033Mounting or connecting of lubricant purifying means relative to the machine or engine; Details of lubricant purifying means characterised by mounting means comprising coolers or heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/916Oil cooler

Definitions

  • the invention relates to a liquid cooler system according to the preamble of Claim 1.
  • the heat exchanger plates face each other passage openings assigned in pairs for the heat-exchanging media on.
  • the arrangement of the passage openings is such that this are in the area of the approaches. Because the openings are smaller than that Approaches will be a sealing separation of the heat exchanging media from each other reached.
  • the passage openings for the medium to be cooled and the cooling medium in the cooler plates becomes the effective heat exchanger surface of the plate heat exchanger reduced.
  • the plate heat exchanger dimensioned larger which also requires a larger installation volume becomes. Since the passage openings have a minimum diameter from fluidic Reasons must not be less, is due to the arrangement of the openings in the cooler plates a minimum size of Plate heat exchanger set.
  • cooler elements are installed in a housing, the connections for the coolant from the connections of the medium to be cooled must be separated in order not to mix the two media with each other to cause.
  • the connections of the two media are spatially separated and offset, mostly housed in different components.
  • Execution of connections the connections are made through the housing inserted and fixed with nuts.
  • the object of the invention is therefore to create a liquid cooler system, that requires a small installation space, can be installed quickly and easily can. This object is solved by the features of claim 1.
  • the liquid cooler system according to the invention is advantageously suitable Liquids such as Cool water, oil or gasoline while doing so to need a small installation space. Furthermore, the invention Liquid cooler system easy and quick to assemble.
  • the Liquid cooler system on a housing, which comprises a housing volume.
  • the housing has at least one liquid inlet, one liquid outlet , a coolant inlet and a coolant outlet.
  • These inputs and Outlets can have any shape, such as round, oval, kidney-shaped, square, rectangular or polygonal. They can also change their shape change between entry and exit, e.g. round in oval or square in round. They are connected to the respective lines of the corresponding circuits.
  • Liquids such as e.g. Oil or water which can be used with additives.
  • the housing can be a be an independent component, in which only components of the liquid cooler system are integrated, but it can also be formed by other components.
  • the housing by a component of an internal combustion engine is formed.
  • Another variant is to form the housing in designing a liquid tank, especially an oil pan, that the housing functions are fulfilled.
  • the liquid cooler system has a housing cover and one Liquid cooler.
  • the housing cover is designed such that it is sealing can be connected to the housing.
  • the housing cover e.g. with screws, clips or a bayonet lock with the housing be connected.
  • the housing cover can also contain a thread, which is screwed into the housing. If the case as above is formed by other components, so the housing cover sealingly connected to this component.
  • the liquid cooler is a cooling module is built up and is inserted by individual cooler plates and are sealed together.
  • the cooler plates can e.g. soldered to one another, or glued together. Through the interconnected Radiator plates seal a liquid space from a coolant space Cut.
  • cooler plates Since several cooler plates are stacked on top of each other, they are created alternately a coolant space and a liquid space. These spaces are tightly separated so that no mixing of the coolant from the Coolant space with which liquid can take place from the liquid space. Furthermore, the liquid space has openings through which the liquid Allow to flow in and out of the liquid space. These openings communicate with the liquid inlet and the liquid outlet, with no separate component for connecting the openings to the inlets and outlets is provided.
  • the liquid cooler system only has one connection path from the liquid inlet to the openings and from the openings to the liquid outlet. This route is already from existing components, e.g. the housing with the liquid cooler.
  • the coolant chamber has openings in a base plate which correspond to the Coolant inlet and the coolant outlet through a space in communication stand.
  • the space between the housing and the base plate is divided into an inner and an outer area.
  • the outer area completely surrounds the inner area.
  • a return channel is provided in the liquid cooler, through which the cooled Liquid is directed into the liquid outlet.
  • the return channel penetrates each cooler plate, whereby it is designed so that no liquid can enter or exit in the area of the cooler plates.
  • the return channel can be used for this be designed as a separate component, which in the liquid cooler is inserted or by appropriate shapes of the cooler plates form a continuous, dense channel in which neither the uncooled Liquid, the coolant can still enter. This return channel opens into an inner area, which is followed by the liquid outlet.
  • An advantageous embodiment of the invention provides the use of sealing rings, such as. O-rings to seal the inner area from the outer area Area before.
  • sealing rings can be used to seal the outer area of the housing volume can be used.
  • the sealing rings can made of plastic, especially elastomers. But it can also Sealing rings made of soft metals can be used. These sealing rings are in Recordings inserted in the housing or the base plate and seal after the liquid cooler is inserted into the housing, the different Areas from each other. There are 2 seals to separate 3 Pages.
  • a particular embodiment of the invention consists in the use a socket for fastening the liquid cooler in the housing. For this engages the socket in the liquid outlet and can e.g. with a Snap connection must be fixed.
  • the socket can be used with the liquid cooler firmly connected, especially soldered.
  • the connection of the socket with the liquid cooler can be done on the base plate. Alternatively, you can the socket can also be inserted centrally through the liquid cooler and are supported on a cover plate, the liquid cooler between the Socket and the housing is clamped.
  • a firm connection of those in the Liquid cooler plugged socket can also be provided.
  • An expedient embodiment of the invention provides a thread on the Socket in front, through which the socket is screwed into the liquid outlet can be and thus creates a connection with the housing.
  • the counter thread in the housing especially in the liquid outlet to provide.
  • the thread of the socket can also be self-tapping Thread be performed, which means no thread in the liquid outlet must be provided.
  • ribs in the housing which flow channels for the media passed through the liquid cooler. These ribs are distributed around the circumference and create a flow resistance, through which the media flows through the liquid cooler to take. A certain amount of by-pass liquid leakage between the housing and the liquid cooler, which correspond to the tolerances of the liquid cooler and the fins can be defined affects the cooling function Not.
  • a particularly advantageous embodiment of the liquid cooler system is Combination of the liquid cooler with a filter element.
  • Connection lines can be built up which carry the liquid from the liquid cooler lead into a filter and filter housing and filter cover saved become.
  • the filter element separates a raw liquid side from a pure liquid side.
  • the filter element is e.g. arranged the cover plate, wherein a filter element receptacle is provided which receives the filter element and seals the raw liquid side from the clean liquid side.
  • the housing cover closes in this version of the liquid cooler system not on the liquid cooler, but on the filter element.
  • the cooled and filtered liquid is fed into the return channel and fed back to the liquid circuit through the liquid outlet.
  • the filter element as a replaceable cartridge, whereby the liquid cooler system can remain at the installation location and only through Removing the housing cover, the filter element can be replaced.
  • liquid cooler system is in a cylindrical To see construction. With this configuration, one achieves a good one Ratio of cooling or filter area to the installation volume.
  • one is cylindrical assembled liquid cooler system a center tube for supporting the filter element intended.
  • This center tube can have holes or slots, so that the liquid can drain off.
  • the center tube can also be attached to the housing cover be formed and by placing the housing cover on the Housing in an interior formed by the filter element on the clean liquid side to be brought.
  • This center tube also has a sealing point on which the filter element is supported and thus the clean liquid side seals from the raw liquid side.
  • the middle tube can also be applied to the cover plate, whereby the housing cover at Assembly does not have to be threaded into the filter element, only that Filter element plugged onto the center tube and the housing cover with the Housing is screwed.
  • a piston rod which the filter element and the liquid cooler reach into the liquid outlet, to provide.
  • This piston rod closes a liquid drain, through which the liquid after lifting off the piston rod can be depressurized.
  • the housing cover When the housing cover is closed, that should Liquid cooler system be ready for operation, therefore in this state the Seal the liquid drain through the piston rod.
  • the liquid cooler system After the case cover is lifted from the housing is the liquid cooler system no longer operational and that, in the filter element and the return channel Any liquid present should drain off so that e.g. the filter element replaced can be. So that you don't get the piston rod out of the liquid outlet, must remove the liquid cooler and the filter element an axial stop for the piston rod is provided in the liquid outlet, where it stops when the lid is removed.
  • the Piston rod releasably locked to the housing cover.
  • the piston rod When assembling the Liquid cooler system, the piston rod is inserted into the liquid outlet, then screwed the liquid cooler into the socket, causing the Piston rod can no longer be removed from the liquid outlet.
  • the housing cover After installing the filter element, the housing cover is placed on the housing applied, whereby the piston rod in a designated receptacle intervenes.
  • the piston rod is sealed by the housing cover depressed the liquid drain.
  • the housing cover When the housing cover is removed, it works a pulling force on the piston rod which pushes the piston rod away from the liquid drain lifts off and the non-pressurized drainage of the liquid into the liquid drain enables.
  • the recording can e.g. be designed as a releasable snap-in connection, which a multiple connection and disconnection of the receptacle with the piston rod enables.
  • fastening units for fixing the Liquid cooler system are provided on an adjacent component.
  • these mounting units are only required if the housing is an independent component and not by e.g. in a motor vehicle existing component is formed.
  • the mounting units can be designed as holes through which screws are inserted and into one Carrier component can be screwed.
  • Other fastening units like Snap locks or tensioning elements can also be provided.
  • a rectangular liquid cooler system 10 is shown in section. It comprises a housing 11 made of metal or plastic, a housing cover 12 also made of metal or plastic and a liquid cooler 13.
  • the housing 11 encloses a housing volume 14 and has a liquid inlet 15 for the liquid to be cooled and a liquid outlet 16 for the chilled liquid.
  • These inlets and outlets 15, 16, 17, 18 are all arranged in one plane.
  • the liquid cooler 13 is off individual, interconnected cooler plates 19, which are made of Metal are made to create favorable heat exchange conditions.
  • the Radiator plates 19 are sealed together by e.g. Soldering connected, being a liquid space 20 and a coolant space 21 are always formed alternately becomes.
  • Return channel 22 introduced into the liquid cooler 13.
  • This return channel 22 penetrates all cooler plates 19, but there is no leakage between the liquid space 20 and the return channel 22 or the coolant space 21 and the return channel 22 occurs.
  • the return channel 22 is in this Embodiment executed as a separate component, which in the Liquid cooler 13 inserted and sealingly connected to the cooler plates 19 is.
  • Every second cooler plate 19 has openings 23 through which the liquid can enter or exit the liquid cooler 13.
  • the liquid cooler 13 has a base plate 24, which represents the bottom radiator plate 19.
  • This base plate 24 is sealingly connected to the housing 11.
  • This base plate 24 is sealingly connected to the housing 11.
  • the sealing lugs 25 which are supported in a sealing manner on the housing 11. Through these sealing lugs 25, an intermediate space 28 between the base plate 24 and the housing 11 generated.
  • the sealing lugs 25 separate the Gap 28 from the housing volume 14 into an inner region 30 and an outer region 29, the outer region 29 the interior Area 30 completely surrounds.
  • the liquid inlet 15 opens into the housing volume 14 and is therefore outside the outer region 29. In the outer region 29 opens the coolant inlet and outlet 17, 18, whereby the liquid to be cooled is tightly separated from the coolant.
  • the return duct 22 opens into the inner region 30.
  • the liquid to be cooled flows through the liquid inlet 15 into the housing volume 14 and occurs through the openings 23 into the liquid space 20.
  • flow resistance (not shown) introduced, which depending on the position of the liquid space 20th can be interpreted.
  • the housing 11 be tolerated such that the liquid cooler 13 in the housing volume 14 in an uncooled side 31 and a cooled side 32 separate. On the rest The liquid cooler lies on both sides of the rectangular liquid cooler system 10 13 on the housing 11.
  • the liquid flows on the cooled Side 32 via a gap 33, which is formed by a groove 34 and a cover plate 35 is formed in the return channel 22.
  • the groove 34 is in the housing cover 12th by e.g. Milling introduced.
  • the cover plate 35 is on the top radiator plate 19 applied sealingly, causing the coolant in the liquid cooler 13 is sealed.
  • the housing cover 12 is in this Version with the housing 11 pressed. This pressing of the housing parts 11, 12 is designed so that it is sufficient for the maximum permissible internal pressure Offers resistance.
  • FIG. 2 shows a section X from FIG. 1.
  • the cooler plates 19 have Openings 26 through which the coolant can flow.
  • the Breakthroughs 26 are in paragraphs 27, paragraph 27 of the first Radiator plate 19 faces upwards and the shoulder 27 of the second radiator plate 19 points down. These two paragraphs 27 are sealed together and have the opening 26 within these areas.
  • the paragraphs 27 are frustoconical.
  • FIG. 3 shows a cylindrical liquid cooler system 10 in section, the left and right half of the picture are different designs demonstrate. It has a cylindrical housing 11, a housing cover 12 and a liquid cooler 13, the housing cover 12 with the housing 11 is screwed tight. In this embodiment, there is a filter element 36 integrated for filtration of the cooled liquid.
  • the housing 11 has a liquid inlet 15, a liquid outlet 16, a coolant inlet 17 and a coolant outlet 18. These inlets and outlets 15, 16, 17, 18 are arranged in one plane and run at least partially in parallel to each other. A liquid outlet closes the liquid outlet 16 37 on. The liquid can flow off without pressure into this liquid drain 37.
  • a piston rod 39 which on the one hand has a cylindrical piston 40 with a radial seal 41 and on the other hand has a snap hook 42.
  • the piston 40 lies with an end face 43 on a liquid outlet base 44 on and the radial seal 41 is all around sealing Liquid outlet wall 45 on.
  • the piston 40 has an outer diameter 46, which is larger than an inner diameter 47, into the liquid outlet 16 screwed socket 48. This allows the piston 40 when screwed in Socket 48 cannot be removed from the liquid outlet 16.
  • the snap hook 42 of the piston rod 39 can be released with the housing cover 12 snapped.
  • the piston 40 As soon as the housing cover 12 is unscrewed from the housing 11 the piston 40 is pulled up until it strikes the bush 48. Since the piston 40 can no longer be pulled out, it releases the snap hook 42 from the housing cover 12. This allows the piston 40 remain in the liquid outlet 16 and the housing cover 12 be removed. So that the liquid through the piston 40 is not in the liquid outlet 16 is stowed, there is at least one groove 49 on one, the end face 43 opposite side introduced into the piston 40. Thus, the liquid can flow around the piston 40 via this groove 49 and into get the liquid drain 37. To ensure the drainage of the liquid However, the piston 40 can also have other shapes such as e.g. Waves, cones or have spacers.
  • the liquid cooler 13 is formed by stacked cooler plates 19.
  • the cooler plates 19 are sealingly connected to one another and delimit thus alternately a liquid space 20 and a coolant space 21.
  • the coolant spaces 21 are provided with openings 26 which are in paragraphs 27 are sealingly connected. About the breakthroughs 26 around there is sufficient material available that the tightness of the Paragraphs 27 are guaranteed to each other, which means no coolant in the liquid space can reach.
  • the coolant passes through the openings 26 in paragraphs 27 from a coolant chamber 21 to the next higher Coolant space 21.
  • the paragraphs 27 can in a deformation process the cooler plates 19 are molded, provided that they are made of a deformable Made of material, especially sheet metal.
  • the liquid to be cooled is fed through the liquid inlet 15 into the liquid cooler system 10 headed.
  • the liquid inlet 15 is in this embodiment kidney-shaped. In other versions it can be round, oval or be square.
  • the liquid is distributed in a housing volume 14, which is formed by the housing 11 and the liquid cooler 13 becomes.
  • the housing volume 14 is divided into an uncooled side 31 and one cooled side 32. So that these two sides 31, 32 are not directly with each other communicate, at least two ribs 51 are mounted in the housing 11, which is a direct flow from the uncooled side 31 to the cooled one Prevent page 32.
  • the cooler plates 19 have openings 23 which are in communication with the liquid space 20. Any fluid room 20 has at least two openings 23.
  • the liquid cooler 13 is a filter element 36 subordinate. So that the liquid does not get out of control to the filter element 36 can reach, a cover plate 35 is provided, which seals with the Housing 11 is connected and the liquid only through a e.g. angular or can flow cylindrical bore 52 to the filter element 36.
  • the filter element 36 has two end disks 53, which seal against the filter element 36 connect. These end disks 53 are supported on a sealing bead 54, which is arranged on the cover plate 35 and on a central tube 55, which is molded onto the housing cover.
  • the center tube 55 can, as on the shown on the left half of the picture, slots 56 or, as shown on the right half of the picture, Have holes 57 through which the liquid in the return channel 22 arrives.
  • the liquid cooler 13 On the left half of the picture is the liquid cooler 13 with a socket 48 in the Liquid outlet 16 screwed in, the bushing 48 through the liquid cooler 13 is inserted through and thus forms the return channel 22.
  • the Bushing 48 bears against an inner sealing ring 58, as a result of which the coolant is sealed from the chilled liquid.
  • the socket 48 continues to meet the function of fixing the liquid cooler 13 in the housing 11, the cover plate 35 can also be fixed with the bush 48.
  • the socket 48 ' can e.g. with the bottom plate 24 be soldered, screwed or welded in a sealing manner.
  • the socket 48 ' also corresponds to an inner sealing ring 58 by one To ensure separation of the cooled liquid from the coolant.
  • the inner sealing ring 58 can on the sealing lug 25, which on the housing 11 is formed.
  • an outer sealing ring 59 is provided, which attaches itself an outer sealing projection 25 supports.
  • an intermediate piece 60 can be provided, which the outer Sealing ring 59 presses against the outer sealing shoulder 25 and the flow the liquid and the coolant.
  • FIG. 4 shows the liquid cooler system 10 in section A-A according to FIG. 3 shown.
  • the section A-A runs partly through the coolant chamber 21 and partly through the liquid space 20.
  • the cylindrical housing 11 has Ribs 51 distributed around the circumference, which support the liquid cooler 13. The leakage that occurs between the fins 51 and the liquid cooler 13 occurrence is negligible as it is in relation to the total throughput the chilled liquid is very low.
  • the liquid inlet 15 is arranged kidney-shaped in the housing 11, wherein the liquid inlet 15 partially the contour of the liquid cooler 13th follows.
  • the resistance plates 50 are arranged. These can be interrupted or be consistent.
  • the interrupted resistance plates 50 can be perforated or be slotted and can cover the entire liquid or coolant space Measure 20.21.
  • the consistent designs are shorter than the liquid or coolant space 20, 21 thereby they are to be arranged so that the Liquid or the coolant can not escape directly, but a detour must flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

Die Erfindung betrifft ein Flüssigkeitskühlersystem 10 zur Kühlung von Flüssigkeiten. Das Flüssigkeitskühlersystem 10 weist ein Gehäuse 11 einen Gehäusedeckel 12 und einen Flüssigkeitskühler 13 auf. Das Gehäuse 11 ist mit dem Gehäusedeckel 12 dichtend verbunden. Der Flüssigkeitskühler 13 ist aus ineinandergesteckten Kühlerplatten 19 aufgebaut. Die Kühlerplatten 19 trennen einen Flüssigkeitsraum 20 dichtend von einem Kühlmittelraum 21. Die Kühlmittelräume 21 sind durch Durchbrüche 26, welche auf Absätzen 27 angeordnet sind verbunden. In dem Gehäuse 11 ist ein Flüssigkeitseinlaß 15, ein Flüssigkeitsauslaß 16, ein Kühlmitteleinlaß 17 und ein Kühlmittelauslaß 18 angeordnet. Der Flüssigkeitseinlaß 15 mündet in ein Gehäusevolumen 14 auf einer ungekühlten Seite 31, welches durch das Gehäuse 11 und den Flüssigkeitskühler 13 gebildet wird. Der ungekühlten Seite 31 liegt eine gekühlte Seite 32 gegenüber, welche mit einem, den Flüssigkeitskühler 13 durchdringenden Rücklaufkanal 22 korrespondiert. Der Flüssigkeitseinlaß 15 ist durch Dichtansätze 25 von dem Kühlmittelein- und aulsaß 17,18 dichtend getrennt. <IMAGE>

Description

Die Erfindung betrifft ein Flüssigkeitskühlersystem nach dem Oberbegriff des Patentanspruches 1.
Es ist aus der DE 296 22 191 ein Plattenwärmetauscher bekannt, der aus mehreren Wärmetauscherplatten besteht. Die Wärmetauscherplatten werden durch ineinander gesteckte, tiefgezogene Strömungswannen gebildet, die jeweils einen umlaufenden Randsteg besitzen. Die Strömungswannen weisen Ansätze auf, an denen sich die jeweils benachbarten Strömungswannen flächig und dichtend abstützen. Im Bereich von fluchtenden Ansätzen, welche die Strömungswannen abwechselnd miteinander verbinden, entstehen Durchtrittsöffnungen für die wärmetauschenden Medien. In die Strömungswannen werden Turbulenzbleche eingelegt, die mit in gegeneinander versetzten Reihen angeordneten, zwischen parallelen Schlitzen gebildeten und aus der Blechebene wellenartig ausgebogenen Laschen beidseitig an den ineinandergesteckten Wärmetauscherplatten anliegen. Die Wärmetauscherplatten weisen einander paarweise zugeordnete Durchtrittsöffnungen für die wärmetauschenden Medien auf. Die Anordnung der Durchtrittsöffnungen ist dabei so getroffen, daß diese im Bereich der Ansätze liegen. Da die Durchtrittsöffnungen kleiner sind, als die Ansätze, wird eine dichtende Trennung der wärmetauschenden Medien voneinander erreicht.
Durch eine Anordnung der Durchtrittsöffnungen für das zu kühlende Medium und das kühlende Medium in den Kühlerplatten, wird die effektive Wärmetauscherfläche des Plattenwärmetauschers reduziert. Um jedoch einen guten Wirkungsgrad des Plattenwärmetauschers zu erzielen, wird der Plattenwärmetauscher größer dimensioniert, wodurch auch ein größeres Einbauvolumen erforderlich wird. Da die Durchtrittsöffnungen einen Mindestdurchmesser aus strömungstechnischen Gründen nicht unterschreiten dürfen, wird durch die Anordnung der Durchtrittsöffnungen in den Kühlerplatten eine Mindestgröße des Plattenwärmetauschers festgelegt.
Bekanntlich werden Kühlerelemente in ein Gehäuse eingebaut, wobei die Anschlüsse für das Kühlmittel von den Anschlüssen des zu kühlenden Mediums getrennt sein müssen, um keine Vermischung der beiden Medien miteinander zu verursachen. Hierzu sind die Anschlüsse der beiden Medien räumlich getrennt und versetzt, meist in unterschiedlichen Bauteilen untergebracht. Bei anderen Ausführungen von Anschlüssen, werden die Anschlüsse durch das Gehäuse gesteckt und mit Muttern fixiert.
Diese Ausführungen sind jedoch aufwendig in der Montage, da die Anschlüsse speziell befestigt und angeschlossen werden müssen. Weiterhin sind zusätzliche Leitungen notwendig, die Bauraum benötigen und einen erheblichen Montageaufwand verursachen.
Aufgabe der Erfindung ist es daher, ein Flüssigkeitskühlersystem zu schaffen, das einen kleinen Einbauraum benötigt, einfach und schnell montiert werden kann. Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst.
Das erfindungsgemäße Flüssigkeitskühlersystem ist in vorteilhafter Weise geeignet, Flüssigkeiten wie z.B. Wasser, Öl oder Benzin zu kühlen und dabei nur einen kleinen Einbauraum zu benötigen. Weiterhin ist das erfindungsgemäße Flüssigkeitskühlersystem einfach und schnell zu montieren. Hierzu weist das Flüssigkeitskühlersystem ein Gehäuse auf, das ein Gehäusevolumen umfaßt. Das Gehäuse weist mindestens einen Flüssigkeitseinlaß, einen Flüssigkeitsauslaß , einen Kühlmitteleinlaß und einen Kühlmittelauslaß auf. Diese Ein- und Auslässe können beliebige Formen aufweisen, wie z.B. rund, oval, nierenförmig, quadratisch rechteckig oder vieleckig. Außerdem können sie ihre Form zwischen Eintritt und Austritt verändern, wie z.B. rund in oval oder eckig in rund. Sie werden mit den jeweiligen Leitungen der entsprechenden Kreisläufe verbunden. Als Kühlmittel können Flüssigkeiten wie z.B. Öl oder Wasser, welche mit Zusätzen versehen sein können verwendet werden. Das Gehäuse kann ein eigenständiges Bauteil sein, in das nur Bauteile des Flüssigkeitskühlersystems integriert sind, es kann aber auch durch andere Bauteile gebildet werden. Hierbei besteht die Möglichkeit, daß das Gehäuse durch ein Bauteil einer Brennkraftmaschine gebildet wird. Eine weitere Variante das Gehäuse zu bilden besteht darin, einen Flüssigkeitstank, insbesondere eine Ölwanne derart zu gestalten, daß die Gehäusefunktionen erfüllt werden.
Weiterhin besitzt das Flüssigkeitskühlersystem einen Gehäusedeckel und einen Flüssigkeitskühler. Der Gehäusedeckel ist derart ausgeführt, daß er dichtend mit dem Gehäuse verbunden werden kann. Hierzu kann der Gehäusedeckel z.B. mit Schrauben, Klipsen oder einem Bajonettverschluß mit dem Gehäuse verbunden sein. Der Gehäusedeckel kann aber auch ein Gewinde enthalten, welches in das Gehäuse eingeschraubt wird. Wenn das Gehäuse , wie oben beschrieben durch andere Bauteile gebildet wird, so wird der Gehäusedeckel mit diesem Bauteil dichtend verbunden. Der Flüssigkeitskühler ist als Kühlmodul aufgebaut und wird durch einzelne Kühlerplatten, welche ineinandergesteckt und dichtend miteinander verbunden sind gebildet. Die Kühlerplatten können z.B. miteinander verlötet, oder verklebt sein. Durch die miteinander verbundenen Kühlerplatten wird ein Flüssigkeitsraum von einem Kühlmittelraum dichtend getrennt. Da mehrere Kühlerplatten übereinander gestapelt sind, entsteht abwechselnd ein Kühlmittelraum und ein Flüssigkeitsraum. Diese Räume sind dicht voneinander getrennt, so daß keine Vermischung des Kühlmittels aus dem Kühlmittelraum mit der Flüssigkeit aus dem Flüssigkeitsraum stattfinden kann. Weiterhin verfügt der Flüssigkeitsraum über Öffnungen, welche die Flüssigkeit in den Flüssigkeitsraum ein- und ausströmen lassen. Diese Öffnungen kommunizieren mit dem Flüssigkeitseinlaß und dem Flüssigkeitsauslaß, wobei kein separates Bauteil zur Verbindung der Öffnungen mit den Ein- bzw. Auslässen vorgesehen ist. Das Flüssigkeitskühlersystem weist lediglich einen Verbindungsweg von dem Flüssigkeitseinlaß zu den Öffnungen und von den Öffnungen zu dem Flüssigkeitsauslaß auf. Dieser Verbindungsweg wird von bereits vorhandenen Bauteilen, wie z.B. dem Gehäuse mit dem Flüssigkeitskühler definiert.
Der Kühlmittelraum weist in einer Bodenplatte Durchbrüche auf, die mit dem Kühlmitteleinlaß und dem Kühlmittelauslaß über einen Zwischenraum in Verbindung stehen. Der Zwischenraum, der von dem Gehäuse und der Bodenplatte gebildet wird, ist in einen inneren und einen äußeren Bereich unterteilt. Der äußere Bereich umgibt den inneren Bereich vollständig. Diese Bereiche sind gegeneinander und gegen das Gehäusevolumen abgedichtet, so daß das Kühlmittel ausschließlich von der Bodenplatte in den Kühlmitteleinlaß bzw. - auslaß treten kann und sich nicht mit der zu kühlenden Flüssigkeit vermischt. Hierbei ist der Einsatz von Dichtungen denkbar. Damit das Kühlmittel nicht direkt von dem Kühlmitteleinlaß in den Kühlmittelauslaß treten kann sind geeignete Mittel vorzusehen. Dies kann durch eine konstruktive Ausgestaltung des Gehäuses oder der Bodenplatte erfolgen.
In dem Flüssigkeitskühler ist ein Rücklaufkanal vorgesehen, durch den die gekühlte Flüssigkeit in den Flüssigkeitsauslaß geleitet wird. Der Rücklaufkanal durchdringt jede Kühlerplatte, wobei er so ausgeführt ist, daß keine Flüssigkeit im Bereich der Kühlerplatten ein oder austreten kann. Hierzu kann der Rücklaufkanal als separates Bauteil ausgeführt sein, welches in den Flüssigkeitskühler gesteckt wird oder durch entsprechende Ausformungen der Kühlerplatten einen durchgehenden, dichten Kanal bilden, in welchen weder die ungekühlte Flüssigkeit, noch das Kühlmedium eintreten kann. Dieser Rücklaufkanal mündet in einen inneren Bereich, an welchen sich der Flüssigkeitsauslaß anschließt.
Eine vorteilhafte Ausgestaltung der Erfindung sieht die Verwendung von Dichtringen, wie z.B. O-Ringe zur Abdichtung des inneren Bereiches von dem äußeren Bereich vor. Außerdem können Dichtringe zur Abdichtung des äußeren Bereiches von dem Gehäusevolumen verwendet werden. Die Dichtringe können aus Kunststoff, insbesondere Elastomeren bestehen. Es können aber auch Dichtringe aus weichen Metallen verwendet werden. Diese Dichtringe werden in Aufnahmen in dem Gehäuse oder der Bodenplatte eingelegt und dichten, nachdem der Flüssigkeitskühler in das Gehäuse eingebracht ist, die unterschiedlichen Bereiche voneinander ab. Hierzu sind 2 Dichtungen zur Trennung von 3 Seiten vorzusehen.
Eine besondere Ausführungsform der Erfindung besteht in der Verwendung einer Buchse zur Befestigung des Flüssigkeitskühlers in dem Gehäuse. Hierzu greift die Buchse in den Flüssigkeitsauslaß ein und kann z.B. mit einer Schnappverbindung fixiert sein. Die Buchse kann mit dem Flüssigkeitskühler fest verbunden, insbesondere verlötet sein. Die Verbindung der Buchse mit dem Flüssigkeitskühler kann an der Bodenplatte erfolgen. Alternativ hierzu kann die Buchse aber auch zentral durch den Flüssigkeitskühler gesteckt sein und sich an einer Deckplatte abstützen, wobei der Flüssigkeitskühler zwischen der Buchse und dem Gehäuse eingeklemmt ist. Eine feste Verbindung der, in den Flüssigkeitskühler eingesteckten Buchse kann ebenfalls vorgesehen sein.
Eine zweckmäßige Ausgestaltung der Erfindung sieht ein Gewinde an der Buchse vor, durch welches die Buchse in den Flüssigkeitsauslaß eingeschraubt werden kann und somit eine Verbindung mit dem Gehäuse erzeugt wird. Hierzu ist das Gegengewinde in dem Gehäuse, insbesondere in dem Flüssigkeitsauslaß vorzusehen. Das Gewinde der Buchse kann aber auch als selbstschneidendes Gewinde ausgeführt sein, wodurch in dem Flüssigkeitsauslaß kein Gewinde vorgesehen sein muß. Durch diese Art der Befestigung des Flüssigkeitskühlers in dem Gehäuse wird eine optimale Dichtheit des Rücklaufkanals mit dem Flüssigkeitsauslaß erzielt und durch die zentrale Kraftübertragung der eingeschraubten Buchse ist ebenfalls eine optimale Dichtheit der inneren und äußeren Bereiche gewährleistet.
Es ist vorteilhaft, Rippen in dem Gehäuse vorzusehen, welche Strömungskanäle für die, durch den Flüssigkeitskühler geleiteten Medien bilden. Diese Rippen sind am Umfang verteilt angeordnet und bewirken einen Strömungswiderstand, durch welchen die Medien ihren Fließweg durch den Flüssigkeitskühler nehmen. Eine gewisse By-Pass-Leckage der Flüssigkeit zwischen dem Gehäuse und dem Flüssigkeitskühler, die entsprechend den Toleranzen des Flüssigkeitskühlers und der Rippen definiert werden kann, beeinträchtigt die Kühlfunktion nicht.
Eine besonders vorteilhafte Ausführung der Flüssigkeitskühlersystems ist die Kombination des Flüssigkeitskühlers mit einem Filterelement. Durch diesen Aufbau können Verbindungsleitungen, welche die Flüssigkeit von dem Flüssigkeitskühler in ein Filter leiten und Filtergehäuse und Filterdeckel eingespart werden. Das Filterelement trennt eine Rohflüssigkeitsseite von einer Reinflüssigkeitsseite. Das Filterelement ist auf z.B. der Deckplatte angeordnet, wobei eine Filterelementaufnahme vorgesehen ist, welche das Filterelement aufnimmt und eine Abdichtung der Rohflüssigkeitsseite von der Reinflüssigkeitsseite bewirkt. Der Gehäusedeckel schließt bei dieser Ausführung des Flüssigkeitskühlersystems nicht an den Flüssigkeitskühler an, sondern an das Filterelement. Die gekühlte und gefilterte Flüssigkeit wird in den Rücklaufkanal geleitet und durch den Flüssigkeitsauslaß dem Flüssigkeitskreislauf wieder zugeführt.
Es ist vorteilhaft, das Filterelement als Wechselpatrone auszuführen, wodurch das Flüssigkeitskühlersystem an dem Einbauort verbleiben kann und nur durch Entfernen des Gehäusedeckels das Filterelement ausgetauscht werden kann.
Eine vorteilhafte Ausgestaltung des Flüssigkeitskühlersystems ist in einem zylindrischen Aufbau zu sehen. Bei dieser Ausgestaltung erreicht man ein gutes Verhältnis von Kühl- bzw. Filterfläche zu dem Einbauvolumen.
Gemäß einer weiteren Ausgestaltung der Erfindung ist bei einem zylindrisch aufgebauten Flüssigkeitskühlersystem ein Mittelrohr zur Abstützung des Filterelementes vorgesehen. Dieses Mittelrohr kann Löcher oder Schlitze aufweisen, damit die Flüssigkeit abfließen kann. Weiterhin kann das Mittelrohr an den Gehäusedeckel angeformt sein und durch Aufsetzen des Gehäusedeckels auf das Gehäuse in einen, durch das Filterelement gebildeten Innenraum auf der Reinflüssigkeitsseite gebracht werden. Diese Mittelrohr weist weiterhin eine Dichtstelle auf, an welcher sich das Filterelement abstützt und somit die Reinflüssigkeitsseite von der Rohflüssigkeitsseite dichtend trennt. Das Mittelrohr kann aber auch auf der Deckplatte aufgebracht sein, wodurch der Gehäusedeckel bei der Montage nicht in das Filterelement eingefädelt werden muss, sondern nur das Filterelement auf das Mittelrohr aufgesteckt und der Gehäusedeckel mit dem Gehäuse verschraubt wird.
Bei dieser Ausgestaltung ist es von Vorteil, eine Kolbenstange, welche durch das Filterelement und den Flüssigkeitskühler bis in den Flüssigkeitsauslaß hindurchreicht, vorzusehen. Diese Kolbenstange verschließt einen Flüssigkeitsablaß, durch welchen die Flüssigkeit nach Abheben der Kolbenstange drucklos abgelassen werden kann. Bei geschlossenem Gehäusedeckel soll das Flüssigkeitskühlersystem betriebsbereit sein, daher ist in diesem Zustand der Flüssigkeitsablaß durch die Kolbenstange zu verschließen. Nachdem der Gehäusedeckel von dem Gehäuse abgehoben wird, ist das Flüssigkeitskühlersystem nicht mehr betriebsbereit und die, in dem Filterelement und dem Rücklaufkanal befindliche Flüssigkeit soll ablaufen, damit z.B. das Filterelement ausgetauscht werden kann. Damit man nicht die Kolbenstange aus dem Flüssigkeitsauslaß, dem Flüssigkeitskühler und dem Filterelement entfernen muß, ist ein Axialanschlag für die Kolbenstange in dem Flüssigkeitsauslaß vorgesehen, an dem sie anschlägt wenn der Deckel abgenommen wird. Weiterhin ist die Kolbenstange lösbar mit dem Gehäusedeckel verrastet. Bei der Montage des Flüssigkeitskühlersystems wird die Kolbenstange in den Flüssigkeitsauslaß eingesetzt, dann der Flüssigkeitskühler mit der Buchse eingeschraubt, wodurch die Kolbenstange nicht mehr aus dem Flüssigkeitsauslaß entfernt werden kann. Nach der Montage des Filterelementes wird der Gehäusedeckel auf das Gehäuse aufgebracht, wodurch die Kolbenstange in eine dafür vorgesehene Aufnahme eingreift. Die Kolbenstange wird durch den Gehäusedeckel dichtend auf den Flüssigkeitsablaß gedrückt. Beim Abnehmen des Gehäusedeckels wirkt eine Zugkraft auf die Kolbenstange, welche die Kolbenstange von dem Flüssigkeitsablaß abhebt und das drucklose Abfließen der Flüssigkeit in den Flüssigkeitsablaß ermöglicht. Um den Gehäusedeckel vollständig abzunehmen, um z.B. das Filterelement zu wechseln, löst sich die Kolbenstange aus der Aufnahme. Die Aufnahme kann z.B. als lösbare Rastverbindung ausgeführt sein, die ein mehrmaliges Verbinden und Lösen der Aufnahme mit der Kolbenstange ermöglicht.
Es ist vorteilhaft, daß an dem Gehäuse Befestigungseinheiten zur Fixierung des Flüssigkeitskühlersystems an einem angrenzenden Bauteil vorgesehen sind. Diese Befestigungseinheiten sind jedoch nur dann erforderlich, wenn das Gehäuse ein eigenständiges Bauteil ist und nicht durch ein, z.B. in einem Kraftfahrzeug vorhandenen Bauteil gebildet wird. Die Befestigungseinheiten können als Bohrungen ausgeführt sein, durch welche Schrauben gesteckt und in ein Trägerbauteil eingeschraubt werden können. Andere Befestigungseinheiten wie Schnappverschlüsse oder Spannelemente können ebenfalls vorgesehen sein.
Diese und weitere Merkmale von bevorzugten Weiterbildungen der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei der Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird.
Zeichnungen
Weitere Einzelheiten der Erfindung werden nachfolgend anhand von Zeichnungen erläutert.
Hierbei zeigt
Figur 1
ein Flüssigkeitskühlersystem im Schnitt,
Figur 2
einen Ausschnitt X aus Figur 1,
Figur 3
ein Flüssigkeitskühlersystem im Schnitt
Figur 4
ein Flüssigkeitskühlersystem im Schnitt A-A
In Figur 1 ist ein rechteckiges Flüssigkeitskühlersystem 10 im Schnitt dargestellt. Es umfaßt ein Gehäuse 11 aus Metall oder Kunststoff, einen Gehäusedeckel 12 ebenfalls aus Metall oder Kunststoff und einen Flüssigkeitskühler 13. Das Gehäuse 11 umschließt ein Gehäusevolumen 14 und weist einen Flüssigkeitseinlaß 15 für die zu kühlende Flüssigkeit und einen Flüssigkeitsauslaß 16 für die gekühlte Flüssigkeit auf. Weiterhin befindet sich ein Kühlmitteleinlaß 17 und ein Kühlmittelauslaß 18 in dem Gehäuse 11. Diese Ein- und Auslässe 15, 16, 17, 18 sind alle in einer Ebene angeordnet. Der Flüssigkeitskühler 13 ist aus einzelnen, mit einander verbundenen Kühlerplatten 19 aufgebaut, welche aus Metall gefertigt sind, um günstige Wärmetauschbedingungen zu schaffen. Die Kühlerplatten 19 sind dichtend miteinander durch z.B. Löten verbunden, wobei immer im Wechsel ein Flüssigkeitsraum 20 und ein Kühlmittelraum 21 gebildet wird. Damit die gekühlte Flüssigkeit in den Flüssigkeitsauslaß 16 gelangt, ist ein Rücklaufkanal 22 in den Flüssigkeitskühler 13 eingebracht. Dieser Rücklaufkanal 22 durchdringt alle Kühlerplatten 19, wobei jedoch keine Leckage zwischen den Flüssigkeitsraum 20 und dem Rücklaufkanal 22 oder dem Kühlmittelraum 21 und dem Rücklaufkanal 22 auftritt. Hierzu ist der Rücklaufkanal 22 bei diesem Ausführungsbeispiel als separates Bauteil ausgeführt, welches in den Flüssigkeitskühler 13 eingesteckt und dichtend mit den Kühlerplatten 19 verbunden ist.
Jede zweite Kühlerplatte 19 weist Öffnungen 23 auf, durch welche die Flüssigkeit in den Flüssigkeitskühler 13 ein- bzw. austreten kann. Der Flüssigkeitskühler 13 besitzt eine Bodenplatte 24, welche die unterste Kühlerplatte 19 darstellt. Diese Bodenplatte 24 ist dichtend mit dem Gehäuse 11 verbunden. Hierzu weist sie Dichtansätze 25 auf, die sich dichtend auf dem Gehäuse 11 abstützen. Durch diese Dichtansätze 25 wird ein Zwischenraum 28 zwischen der Bodenplatte 24 und dem Gehäuse 11 erzeugt. Die Dichtansätze 25 trennen den Zwischenraum 28 von dem Gehäusevolumen 14 in einen inneren Bereich 30 und einen äußeren Bereich 29 ab, wobei der äußere Bereich 29 den Inneren Bereich 30 vollständig umgibt. Der Flüssigkeitseinlass 15 mündet in das Gehäusevolumen 14 und liegt somit außerhalb des äußeren Bereiches 29. In den äußeren Bereich 29 mündet der Kühlmitteleinlass und -auslass 17, 18, wodurch die zu kühlende Flüssigkeit von dem Kühlmittel dicht abgetrennt ist. In den Inneren Bereich 30 mündet der Rücklaufkanal 22. Die zu kühlende Flüssigkeit strömt durch den Flüssigkeitseinlaß 15 in das Gehäusevolumen 14 und tritt durch die Öffnungen 23 in den Flüssigkeitsraum 20 ein. Damit nicht nur der unterste Flüssigkeitsraum 20 durchströmt wird, sind Strömungswiderstände (nicht dargestellt) eingebracht, welche je nach Lage des Flüssigkeitsraumes 20 ausgelegt werden können. Nachdem die Flüssigkeit den Flüssigkeitsraum 20 durchströmt hat, tritt sie durch die gegenüber angeordneten Öffnungen 23 wieder in das Gehäusevolumen 14 aus. Wobei jedoch keine Vermischung der gekühlten mit der ungekühlten Flüssigkeit erfolgt. Hierzu kann das Gehäuse 11 derart toleriert sein, daß der Flüssigkeitskühler 13 das Gehäusevolumen 14 in eine ungekühlte Seite 31 und eine gekühlte Seite 32 trennt. An den übrigen beiden Seiten des rechteckigen Flüssigkeitskühlersystems 10 liegt der Flüssigkeitskühler 13 an dem Gehäuse 11 an. Die Flüssigkeit strömt auf der gekühlten Seite 32 über einen Spalt 33, welcher durch eine Nut 34 und eine Deckplatte 35 gebildet wird, in den Rücklaufkanal 22. Die Nut 34 ist in den Gehäusedeckel 12 durch z.B. Fräsen eingebracht. Die Deckplatte 35 ist auf die oberste Kühlerplatte 19 dichtend aufgebracht, wodurch die Kühlflüssigkeit in dem Flüssigkeitskühler 13 dichtend eingeschlossen ist. Der Gehäusedeckel 12 ist bei dieser Ausführung mit dem Gehäuse 11 verpresst. Diese Pressung der Gehäuseteile 11,12 ist so ausgelegt, daß sie dem maximal zulässigen Innendruck ausreichend Widerstand bietet.
In Figur 2 ist ein Ausschnitt X aus Figur 1 dargestellt. Die Kühlerplatten 19 weisen Durchbrüche 26 auf, durch welche das Kühlmittel strömen kann. Die Durchbrüche 26 befinden sich in Absätzen 27, wobei der Absatz 27 der ersten Kühlerplatte 19 nach oben weist und der Absatz 27 der zweiten Kühlerplatte 19 nach unten weist. Diese beiden Absätze 27 sind dichtend miteinander verbunden und weisen innerhalb dieser Bereiche den Durchbruch 26 auf. Die Absätze 27 sind kegelstumpfartig ausgeführt.
In Figur 3 ist ein zylindrisches Flüssigkeitskühlersystem 10 im Schnitt dargestellt, wobei die linke und die rechte Bildhälfte unterschiedliche Ausführungen zeigen. Es weist ein zylindrisches Gehäuse 11, einen Gehäusedeckel 12 und einen Flüssigkeitskühler 13 auf, wobei der Gehäusedeckel 12 mit dem Gehäuse 11 dichtend verschraubt ist. Bei diesem Ausführungsbeispiel ist ein Filterelement 36 zur Filtration der gekühlten Flüssigkeit integriert. Das Gehäuse 11 weist einen Flüssigkeitseinlaß 15, einen Flüssigkeitsauslaß 16, einen Kühlmitteleinlaß 17 und einen Kühlmittelauslaß 18 auf. Diese Ein- und Auslässe 15, 16, 17, 18 sind in einer Ebene angeordnet und verlaufen zumindest teilweise parallel zueinander. An den Flüssigkeitsauslaß 16 schließt ein Flüssigkeitsablaß 37 an. In diesen Flüssigkeitsablaß 37 kann die Flüssigkeit drucklos abfließen. Damit die Flüssigkeit nicht in den Flüssigkeitsablaß 37, sondern in eine, ebenfalls an den Flüssigkeitsauslaß 16 anschließende Flüssigkeitsleitung 38 fließt, ist eine Kolbenstange 39 vorgesehen, die einerseits einen zylindrischen Kolben 40 mit einer radial Dichtung 41 und andererseits einen Schnapphaken 42 aufweist. Der Kolben 40 liegt mit einer Stirnfläche 43 an einem Flüssigkeitsauslaßboden 44 an und die radial Dichtung 41 liegt ringsherum dichtend an einer Flüssigkeitsauslaßwand 45 an. Der Kolben 40 weist einen Außendurchmesser 46 auf, der größer ist, als ein Innendurchmesser 47 einer, in den Flüssigkeitsauslaß 16 eingeschraubten Buchse 48. Dadurch kann der Kolben 40 bei eingeschraubter Buchse 48 nicht aus dem Flüssigkeitsauslaß 16 entfernt werden. Der Schnapphaken 42 der Kolbenstange 39 ist mit dem Gehäusedeckel 12 lösbar verschnappt. Sobald der Gehäusedeckel 12 von dem Gehäuse 11 abgeschraubt wird, wird der Kolben 40 heraufgezogen, bis er an der Buchse 48 anschlägt. Da der Kolben 40 nicht mehr weiter herausgezogen werden kann, löst sich der Schnapphaken 42 von dem Gehäusedeckel 12. Dadurch kann der Kolben 40 in dem Flüssigkeitsauslaß 16 verbleiben und der Gehäusedeckel 12 entfernt werden. Damit die Flüssigkeit durch den Kolben 40 nicht in dem Flüssigkeitsauslaß 16 gestaut wird, ist mindestens eine einzige Rille 49 auf einer, der Stirnfläche 43 gegenüberliegenden Seite in den Kolben 40 eingebracht. Somit kann über diese Rille 49 die Flüssigkeit den Kolben 40 umfließen und in den Flüssigkeitsablaß 37 gelangen. Um den Abfluß der Flüssigkeit zu gewährleisten kann der Kolben 40 jedoch auch andere Formen wie z.B. Wellen, Kegel oder Abstandshalter aufweisen.
Der Flüssigkeitskühler 13 ist durch aufeinander gestapelte Kühlerplatten 19 gebildet. Die Kühlerplatten 19 sind dichtend miteinander verbunden und begrenzen somit wechselweise einen Flüssigkeitsraum 20 und einen Kühlmittelraum 21. Die Kühlmittelräume 21 sind mit Durchbrüchen 26 versehen, welche sich in dichtend miteinander verbundenen Absätzen 27 befinden. Um die Durchbrüche 26 ist ringsherum ausreichend Material vorhanden, welches die Dichtheit der Absätze 27 aufeinander gewährleistet, wodurch kein Kühlmittel in den Flüssigkeitsraum gelangen kann. Das Kühlmittel gelangt durch die Durchbrüche 26 in den Absätzen 27 von einem Kühlmittelraum 21 in den nächsthöher gelegenen Kühlmittelraum 21. Die Absätze 27 können in einem Verformungsvorgang an die Kühlerplatten 19 angeformt werden, sofern diese aus einem verformbaren Werkstoff bestehen, insbesondere Metallblech. Damit das Kühlmittel nicht nur durch den untersten Kühlmittelraum 21 fließt, sind Widerstandsbleche 50 eingebracht, welche die Strömung des Kühlmittels stören und dadurch das Kühlmittel in die höher gelegenen Kühlmittelräume 21 gelangt. Dadurch werden alle Kühlmittelräume 21 gleichmäßig gekühlt. Das Kühlmittel tritt durch den Kühlmittelauslaß 18 wieder aus dem Flüssigkeitskühlersystem 10 aus.
Die zu kühlende Flüssigkeit wird durch den Flüssigkeitseinlaß 15 in das Flüssigkeitskühlersystem 10 geleitet. Der Flüssigkeitseinlaß 15 ist bei dieser Ausführung nierenförmig ausgebildet. Bei anderen Ausführungen kann er rund, oval oder eckig ausgeführt sein. Die Flüssigkeit verteilt sich in einem Gehäusevolumen 14, welches durch das Gehäuse 11 und den Flüssigkeitskühler 13 gebildet wird. Das Gehäusevolumen 14 teilt sich in eine ungekühlte Seite 31 und eine gekühlte Seite 32 auf. Damit diese beiden Seiten 31, 32 nicht direkt miteinander kommunizieren, sind mindestens zwei Rippen 51 in dem Gehäuse 11 angebracht, welche eine direkte Strömung von der ungekühlten Seite 31 auf die gekühlte Seite 32 verhindern. Die Kühlerplatten 19 weisen Öffnungen 23 auf, welche mit dem Flüssigkeitsraum 20 in Verbindung stehen. Jeder Flüssigkeitsraum 20 besitzt mindestens zwei Öffnungen 23. Durch eine erste Öffnung 23 strömt die Flüssigkeit aus dem Gehäusevolumen 14 der ungekühlten Seite 31 in den Flüssigkeitsraum 20 ein und durch die zweite Öffnung 23 strömt die Flüssigkeit in das Gehäusevolumen 14 auf der gekühlten Seite 32 aus. Da der Flüssigkeitskühler 13 in das Gehäuse 11 eingesetzt ist tritt ein Leckagestrom zwischen den Rippen 51 und dem Flüssigkeitskühler 13 auf. Dieser Leckagestrom beeinträchtigt jedoch die Kühlfunktion in keiner Weise, da das Volumen des Leckagestromes im Verhältnis zu dem gekühlten Flüssigkeitsvolumen sehr gering ist.
Bei diesem Ausführungsbeispiel ist dem Flüssigkeitskühler 13 ein Filterelement 36 nachgeordnet. Damit die Flüssigkeit nicht unkontrolliert zu dem Filterelement 36 gelangen kann, ist eine Deckplatte 35 vorgesehen, welche dichtend mit dem Gehäuse 11 verbunden ist und die Flüssigkeit nur durch eine z.B. eckige oder zylindrische Bohrung 52 zu dem Filterelement 36 strömen läßt. Das Filterelement 36 verfügt über zwei Endscheiben 53, welche dichtend an das Filterelement 36 anschließen. Diese Endscheiben 53 stützen sich an einem Dichtwulst 54, der auf der Deckplatte 35 angeordnet und an einem Mittelrohr 55, welches an den Gehäusedeckel angeformt ist ab. Das Mittelrohr 55 kann, wie auf der linken Bildhälfte dargestellt, Schlitze 56 oder, wie auf der rechten Bildhälfte dargestellt, Löcher 57 aufweisen, durch welche die Flüssigkeit in den Rücklaufkanal 22 gelangt.
Auf der linken Bildhälfte ist der Flüssigkeitskühler 13 mit einer Buchse 48 in den Flüssigkeitsauslaß 16 eingeschraubt, wobei die Buchse 48 durch den Flüssigkeitskühler 13 hindurchgesteckt ist und somit den Rücklaufkanal 22 bildet. Die Buchse 48 liegt an einem inneren Dichtring 58 an, wodurch das Kühlmittel dichtend von der gekühlten Flüssigkeit getrennt ist. Die Buchse 48 erfüllt weiterhin die Funktion, den Flüssigkeitskühler 13 in dem Gehäuse 11 zu fixieren, wobei ebenfalls die Deckplatte 35 mit der Buchse 48 fixiert sein kann.
Auf der rechten Bildhälfte ist die Buchse 48' an der Bodenplatte 24 des Flüssigkeitskühlers 13 angeordnet. Die Buchse 48' kann z.B. mit der Bodenplatte 24 dichtend verlötet, verschraubt oder verschweißt sein. Bei dieser Ausführung korrespondiert die Buchse 48' ebenfalls mit einem inneren Dichtring 58 um eine Trennung der gekühlten Flüssigkeit von dem Kühlmittel zu gewährleisten.
Der innere Dichtring 58 kann an dem Dichtansatz 25, welcher an das Gehäuse 11 angeformt ist angelegt werden. Zur Abdichtung des Kühlmittels gegen die ungekühlte Flüssigkeit ist ein äußerer Dichtring 59 vorgesehen, welcher sich an einem äußeren Dichtansatz 25 abstützt. Zur Kammerung des äußeren Dichtringes 59 kann ein Zwischenstück 60 vorgesehen sein, welches den äußeren Dichtring 59 gegen den äußeren Dichtansatz 25 drückt und das Durchströmen der Flüssigkeit und des Kühlmittels ermöglicht.
in Figur 4 ist das Flüssigkeitskühlersystem 10 im Schnitt A-A gemäß Figur 3 dargestellt. Der Schnitt A-A verläuft teilweise durch den Kühlmittelraum 21 und teilweise durch den Flüssigkeitsraum 20. Das zylindrische Gehäuse 11 weist am Umfang verteilte Rippen 51 auf, welche den Flüssigkeitskühler 13 stützen. Die Leckage, welche zwischen den Rippen 51 und dem Flüssigkeitskühler 13 auftritt ist zu vernachlässigen, da diese im Verhältnis zu dem gesamten Durchsatz der gekühlten Flüssigkeit sehr gering ist.
Der Flüssigkeitseinlaß 15 ist nierenförmig in dem Gehäuse 11 angeordnet, wobei der Flüssigkeitseinlaß 15 teilweise der Kontur des Flüssigkeitskühlers 13 folgt. Zur Erhöhung des Durchflusswiderstandes in dem Flüssigkeitsraum 20 sind die Widerstandsbleche 50 angeordnet. Diese können unterbrochen oder durchgängig sein. Die unterbrochenen Widerstandsbleche 50 können gelocht oder geschlitzt sein und können den ganzen Flüssigkeits- oder Kühlmittelraum 20,21 durchmessen. Die durchgängigen Ausführungen sind kürzer als der Flüssigkeits- oder Kühlmittelraum 20, 21 dadurch sind sie so anzuordnen, daß die Flüssigkeit bzw. das Kühlmittel nicht direkt austreten kann, sondern einen Umweg fließen muß.

Claims (10)

  1. Flüssigkeitskühlersystem (10), insbesondere zur Kühlung des Schmieröls einer Brennkraftmaschine, aufweisend zumindest ein Gehäuse (11) mit einem Gehäusevolumen (14), einen Gehäusedeckel (12) und einen Flüssigkeitskühler (13),
    wobei das Gehäuse (11) zumindest einen Flüssigkeitseinlaß (15), einen Flüssigkeitsauslaß (16), einen Kühlmitteleinlaß (17) und einen Kühlmittelauslaß (18) besitzt,
    wobei der Flüssigkeitskühler (13) aus ineinandergesteckten Kühlerplatten (19) aufgebaut ist, welche je einen dichtend voneinander getrennten Flüssigkeitsraum (20) und Kühlmittelraum (21) bilden,
    wobei ein Rücklaufkanal (22) für die gekühlte Flüssigkeit derart in dem Flüssigkeitskühler (13) angeordnet ist, daß er alle Kühlerplatten (19) durchdringt,
    wobei der Flüssigkeitsraum (20) über Öffnungen (23) verfügt, die einerseits mit dem Flüssigkeitseinlaß (15) und andererseits mit dem Flüssigkeitsauslaß (18) kommunizieren, und
    wobei der Kühlmittelraum (21) in einer Bodenplatte des Flüssigkeitskühlers (13) Durchbrüche (26) aufweist, die mit dem Kühlmitteleinlaß (17) und den Kühlmittelauslaß (18) kommunizieren,
    dadurch gekennzeichnet, daß
    die Bodenplatte (24) des Flüssigkeitskühlers (13) derart mit dem Gehäuse (11) kommuniziert, daß vom Gehäusevolumen (14) ein innerer und ein äußerer Bereich (29, 30) abgetrennt ist,
    wobei diese Bereiche (29, 30) durch Zwischenräume (28) zwischen Bodenplatte (24) und Gehäuse (11) gebildet sind,
    wobei der äußere Bereich (30) den inneren Bereich (29) vollständig umgibt,
    wobei der innere Bereich (29) den Rücklaufkanal (22) mit dem Flüssigkeitsauslaß (26) verbindet,
    wobei der äußere Bereich (30) die Durchbrüche (26) mit dem Kühlmitteleinlaß (17) und dem Kühlmittelauslaß (18) verbindet und
    der Flüssigkeitseinlaß (15) in das Gehäusevolumen (14) mündet.
  2. Flüssigkeitskühlersystem (10) nach Anspruch 1, dadurch gekennzeichnet, daß Dichtringe (58, 59) zwischen den Flüssigkeitskühler (19) und das Gehäuse (11) eingebracht sind, welche den inneren und den äußeren Bereich (29, 30) abdichten.
  3. Flüssigkeitskühlersystem (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Flüssigkeitskühler (13) mittels einer Buchse (48), die in den Flüssigkeitsauslaß (16) eingreift, im Gehäuse (11) fixiert ist.
  4. Flüssigkeitskühlersystem (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Buchse (48) ein Gewinde, insbesondere ein selbstschneidendes Gewinde aufweist und in den Flüssigkeitsauslaß (16) eingeschraubt ist.
  5. Flüssigkeitskühlersystem (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Rippen (51) in dem Gehäuse (11) angeordnet sind, die Strömungskanäle für die durch das Gehäuse (11) geleiteten Flüssigkeiten bilden.
  6. Flüssigkeitskühlersystem (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in das Flüssigkeitskühlersystem (10) ein Filterelement (36) eingebracht ist, wobei das Filterelement (36) eine Rohflüssigkeitsseite von einer Reinflüssigkeitsseite dichtend trennt.
  7. Flüssigkeitskühlersystem (10) nach Anspruch 6, dadurch gekennzeichnet, daß das Filterelement (36) als Wechselpatrone ausgeführt ist.
  8. Flüssigkeitskühlersystem (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Flüssigkeitskühlersystem (10) zylindrisch aufgebaut ist.
  9. Flüssigkeitskühlersystem (10) nach Anspruch 8, dadurch gekennzeichnet, daß
    durch ein Mittelrohr (55), welches in dem Filterelement (36) angeordnet ist und den Flüssigkeitskühler (13) eine Kolbenstange (39), die in den Flüssigkeitsauslaß (16) hineinreicht geführt ist und durch welche ein Flüssigkeitsablaß (37), der sich an den Flüssigkeitsauslaß (16) anschließt, offen- und verschließbar ist,
    die Kolbenstange (39) in dem Gehäusedeckel (12) lösbar verrastet ist und im Flüssigkeitsauslaß (16) ein Axialanschlag für die Kolbenstange (39) vorgesehen ist, der beim Öffnen des Gehäusedeckels (12) die Kolbenstange (39) nach Öffnung des Flüssigkeitsablasses (37) im Gehäuse (11) zurückhält.
  10. Flüssigkeitskühlersystem (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß an dem Gehäuse (11) Befestigungseinheiten zur Fixierung des Flüssigkeitskühlersystems (10) an einem angrenzenden Bauteil vorgesehen sind,
EP01102782A 2000-02-10 2001-02-08 Flüssigkeitskühlersystem Expired - Lifetime EP1124105B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005889 2000-02-10
DE10005889A DE10005889A1 (de) 2000-02-10 2000-02-10 Flüssigkeitskühlersystem

Publications (3)

Publication Number Publication Date
EP1124105A2 true EP1124105A2 (de) 2001-08-16
EP1124105A3 EP1124105A3 (de) 2002-12-04
EP1124105B1 EP1124105B1 (de) 2004-04-07

Family

ID=7630452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01102782A Expired - Lifetime EP1124105B1 (de) 2000-02-10 2001-02-08 Flüssigkeitskühlersystem

Country Status (6)

Country Link
US (1) US6422305B2 (de)
EP (1) EP1124105B1 (de)
AT (1) ATE263956T1 (de)
BR (1) BR0107248A (de)
DE (2) DE10005889A1 (de)
ES (1) ES2218288T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241428A3 (de) * 2001-03-16 2003-03-19 Calsonic Kansei Corporation Wärmetauscher zur Kühlung von Öl mit Wasser
DE102005011221A1 (de) * 2005-03-11 2006-09-14 Mann+Hummel Gmbh Flüssigkeitsfilter-Wärmetauscher-Einheit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961579A1 (de) * 1999-12-21 2001-06-28 Mann & Hummel Filter Flüssigkeitsfilter mit einem Kühler
US8666238B2 (en) * 2008-08-06 2014-03-04 Nexthermal Corporation Fluid preheater
JP5773353B2 (ja) * 2011-02-15 2015-09-02 忠元 誠 熱交換器
DE102011078547A1 (de) 2011-07-01 2013-01-03 Behr Gmbh & Co. Kg Wärmetauscher-Filter-Modul
US8869758B1 (en) 2013-10-09 2014-10-28 Ford Global Technologies, Llc Exhaust valve bridge and cylinder cooling
US11634651B2 (en) * 2016-09-08 2023-04-25 Waste to Energy Systems, LLC System and method for biogasification
FR3057655B1 (fr) * 2016-10-18 2018-12-07 Novares France Echangeur thermique integre dans un repartiteur
KR102244138B1 (ko) * 2017-07-11 2021-04-22 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩
CN111213024A (zh) 2017-10-26 2020-05-29 康明斯公司 冷却的润滑剂过滤器壳体
CN109364733A (zh) * 2018-12-07 2019-02-22 山东金太阳设备制造有限公司 一种板式浆液冷却器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29622191U1 (de) 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191888A (ja) * 1983-04-13 1984-10-31 Nippon Denso Co Ltd 熱交換器
US4892136A (en) * 1986-12-31 1990-01-09 Kabushiki Kaisha Tsuchiya Seisakusho Heat exchanger
DE3923936C2 (de) * 1989-07-19 1996-07-11 Laengerer & Reich Kuehler Wärmeaustauscher, insbesondere Ölkühler
US5014775A (en) * 1990-05-15 1991-05-14 Toyo Radiator Co., Ltd. Oil cooler and manufacturing method thereof
US5787977A (en) * 1992-04-02 1998-08-04 Nippondenso Co., Ltd. Heat exchanger
JP2558019Y2 (ja) * 1992-09-24 1997-12-17 カルソニック株式会社 オイルクーラ
US5558154A (en) * 1992-12-01 1996-09-24 Modine Manufacturing Company Captive flow donut oil cooler
EP0604193B1 (de) * 1992-12-21 1998-11-04 Calsonic Corporation Ölkühler ohne Gehäuse und Verfahren zur dessen Herstellung
DE19510847C2 (de) * 1995-03-17 2002-11-21 Michael Rehberg Plattenwärmetauscher
DE19523475C1 (de) * 1995-06-28 1996-11-28 Laengerer & Reich Gmbh & Co Plattenwärmetauscher, insbesondere Ölkühler sowie Herstellungsverfahren
US5797450A (en) * 1996-05-02 1998-08-25 Honda Giken Kogyo Kabushiki Kaisha Oil cooler for automobiles
DE19711258C2 (de) * 1997-03-18 1999-09-02 Behr Gmbh & Co Stapelscheiben-Ölkühler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29622191U1 (de) 1996-02-15 1997-02-13 KTM-Kühler GmbH, Mattighofen Plattenwärmetauscher, insbesondere Ölkühler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241428A3 (de) * 2001-03-16 2003-03-19 Calsonic Kansei Corporation Wärmetauscher zur Kühlung von Öl mit Wasser
US6814133B2 (en) 2001-03-16 2004-11-09 Calsonic Kansei Corporation Heat exchanger for cooling oil with water
DE102005011221A1 (de) * 2005-03-11 2006-09-14 Mann+Hummel Gmbh Flüssigkeitsfilter-Wärmetauscher-Einheit

Also Published As

Publication number Publication date
DE10005889A1 (de) 2001-08-16
EP1124105B1 (de) 2004-04-07
DE50101877D1 (de) 2004-05-13
BR0107248A (pt) 2002-07-23
US6422305B2 (en) 2002-07-23
ATE263956T1 (de) 2004-04-15
ES2218288T3 (es) 2004-11-16
US20010025704A1 (en) 2001-10-04
EP1124105A3 (de) 2002-12-04

Similar Documents

Publication Publication Date Title
DE60010482T3 (de) Ölfilter mit zentralem stützkörper mit eingebauter schnappverbindung
DE3874727T2 (de) Kombinierter filter und waermeaustauscher.
DE69013633T2 (de) Ölkühler.
EP0401329B1 (de) Ölfilter für verbrennungsmotoren
EP0828980B1 (de) Wärmetauscher
DE69004220T2 (de) Wärmetauscher mit einer umfangsförmigen Zirkulation.
EP0653043B1 (de) Wärmetauscher
EP0623798B1 (de) Plattenwärmetauscher, insbesondere Öl/Kühlmittel-Kühler
DE19549801B4 (de) Plattenwärmetauscher
EP0748646B1 (de) Flüssigkeitsfilter
EP1124105B1 (de) Flüssigkeitskühlersystem
DE19703648A1 (de) Strömungsfilter mit wiederverwendbarem Filtergehäuse und ersetzbarem Filterelement
WO2006097086A1 (de) Filter-kühler-kombination für flüssigkeiten, insbesondere schmieröl eines kraftfahrzeug-verbrennungsmotors
DE9216351U1 (de) Scheibenölkühler
DE4322979A1 (de) Ölkühler
DE10012461A1 (de) Flüssigkeitsfilter, insbesondere Ölfilter
EP1130224A1 (de) Flüssigkeitsfilter mit einem Kühler
WO2017076766A1 (de) Wärmeübertragermodul
DE19701066B4 (de) Vorrichtung zum Filtrieren von Öl
DE19508650C2 (de) Filteranordnung
EP0819906B1 (de) Anschlussadapter für Plattenwärmetauscher
DE3902786C2 (de) Ölkühler
EP1651328B1 (de) Flüssigkeitsfilter für eine brennkraftmaschine
DE102008053054B4 (de) Ölfiltermodul
EP0775513A2 (de) Flüssigkeitsfilter mit einem Stapelscheiben-Wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030103

17Q First examination report despatched

Effective date: 20030324

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANN + HUMMEL GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50101877

Country of ref document: DE

Date of ref document: 20040513

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041013

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218288

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050208

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050208

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

26N No opposition filed

Effective date: 20050110

BERE Be: lapsed

Owner name: *MANN + HUMMEL G.M.B.H.

Effective date: 20050228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050209

BERE Be: lapsed

Owner name: *MANN + HUMMEL G.M.B.H.

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080219

Year of fee payment: 8

Ref country code: GB

Payment date: 20080220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080214

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090208