EP1123995B1 - Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern - Google Patents

Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern Download PDF

Info

Publication number
EP1123995B1
EP1123995B1 EP00810108A EP00810108A EP1123995B1 EP 1123995 B1 EP1123995 B1 EP 1123995B1 EP 00810108 A EP00810108 A EP 00810108A EP 00810108 A EP00810108 A EP 00810108A EP 1123995 B1 EP1123995 B1 EP 1123995B1
Authority
EP
European Patent Office
Prior art keywords
fibres
sensor system
treatment
sensor
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00810108A
Other languages
English (en)
French (fr)
Other versions
EP1123995A1 (de
Inventor
Urs Prof. Dr. Meyer
Armin Jossi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jossi Holding AG
Original Assignee
Jossi Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8174543&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1123995(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jossi Holding AG filed Critical Jossi Holding AG
Priority to DE50003629T priority Critical patent/DE50003629D1/de
Priority to AT00810108T priority patent/ATE249537T1/de
Priority to EP00810108A priority patent/EP1123995B1/de
Priority to US09/778,044 priority patent/US20010049860A1/en
Publication of EP1123995A1 publication Critical patent/EP1123995A1/de
Application granted granted Critical
Publication of EP1123995B1 publication Critical patent/EP1123995B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01BMECHANICAL TREATMENT OF NATURAL FIBROUS OR FILAMENTARY MATERIAL TO OBTAIN FIBRES OF FILAMENTS, e.g. FOR SPINNING
    • D01B3/00Mechanical removal of impurities from animal fibres
    • D01B3/02De-burring machines or apparatus
    • D01B3/025Removing pieces of metal
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G31/00Warning or safety devices, e.g. automatic fault detectors, stop motions
    • D01G31/006On-line measurement and recording of process and product parameters

Definitions

  • the invention relates to a method for controlling a treatment plant for textile fibers, in particular cotton fibers, according to the preamble of claim 1.
  • a treatment plant is also referred to as a blow room / carding machine in yarn production.
  • a card sliver is made from disordered cotton fibers, which is then processed into a yarn by stretching, combing and spinning.
  • At the producer level there is talk of a ginning plant or ginning plant in connection with the harvested cotton capsules. There the seeds are separated from the fibers and, if necessary, further impurities are removed.
  • This object is achieved according to the invention with a method which has the features in claim 1. No samples are taken, but the fiber material flow is continuously monitored for at least two different physical measurement parameters. Different material properties can be derived from these measurement parameters either individually or in combination or sub-combination. On the basis of a comparison with previously entered target values, it is possible to intervene in the treatment stations or in the transport system.
  • material properties is also understood to mean different degrees of soiling of the fibers or flakes, impurities being able to occur directly on the surface of the fibers or as a separate admixture. Homogenizing is understood to mean achieving a fiber mixture that is as uniform as possible.
  • a plurality of properties of the material are preferably determined on the sensor system. These can be flake properties (size, density, distribution, color, shape, moisture, temperature) or fiber properties (surface coating with natural wax or artificial substances, fiber fineness, maturity, length, stack distribution) or other properties if necessary.
  • the ripeness of the cotton can be determined from the wavelength range 1500 to 1550 nm and the moisture derive from the wavelength range around 1900 nm. Relationships with regard to surface properties of fibers, in particular dependencies on moisture and chemical composition, are described in “Duckett, KE, Surface Properties of Cotton Fibers", in “Fiber Science Series, Surface Characteristics of Fibers and Textiles, Part I, MJ Schick, Ed. , Marcel Dekker, NY 1975 ".
  • contactless sensors that transmit or receive electromagnetic waves and / or ultrasound waves are particularly suitable.
  • tactile sensors would also be conceivable, for example in the form of sensors that protrude into the fiber material flow and, for. B. measure the flow resistance, the electrical conductivity, the momentum of the flakes or particles, etc.
  • the near infrared range is particularly well suited to recognizing a large number of substances or properties in the reflected or transmitted spectrum. With at least two characteristic frequencies, a "fingerprint" can be defined, from which different material properties can be derived.
  • Fiber dimensions in particular fiber fineness, can be determined particularly advantageously with laser sensors.
  • a diffraction pattern and / or control pattern is formed for this purpose.
  • the measured variables can be determined with at least two sensors at different points in the treatment system, based on the transport direction.
  • an electromagnetic sensor for metal parts and an optical sensor for moisture or wax coating are conceivable.
  • a sensor it is also possible for a sensor to work on several frequencies or measuring principles and for two or more measurement signals to be determined in this way at the same point in the fiber material flow.
  • the measured variables are averaged or evaluated in different time periods.
  • the actual values determined require different reaction times. For example, a detected contamination must be eliminated by a pressure surge or a deflection flap within milliseconds after detection.
  • the bale cutter can be influenced in a matter of seconds, while the duration of the control intervention with changing moisture content e.g. Can be 5 to 10 minutes or the mean value is formed from measurements in larger time segments.
  • the treatment stations are preferably connected to a pneumatic transport system. There it may be necessary to remove the conveying air before a treatment station and to supply it again after the treatment station. But other conveyor systems such as conveyor belts or screw conveyors would also be conceivable.
  • bale removal machine it is also conceivable to control the bale removal machine to change the removal movement when foreign substances and / or deviating material properties are detected. For example, a specific bale can be identified that delivers an above-average proportion of soiled or otherwise deviating fibers. The removal movement can be controlled in such a way that the removal depth and / or speed is changed on each bale until manual rejection is possible.
  • the method according to the invention also permits data logging of the process and classification of the intermediate products and thus optimization of the quality control.
  • Influencing the transport system is also to be understood in particular as the skipping of a treatment device in a bypass line.
  • the flow of fiber material could be fed to different treatment stations on a conveyor switch depending on the fiber properties.
  • the invention also relates to a device for controlling a treatment plant for textile fibers, in particular cotton fibers, which is characterized by the features in claim 16.
  • a blowroom line / carding machine 1 consists of a bale removal machine 3, a pre-cleaner 19, a separator 4, a mixer 5, a fine cleaner 6, possibly a second fine cleaner 6 'and a carding machine 7.
  • the individual treatment stations are over a pneumatic transport system 2 connected to each other.
  • fiber flakes are removed in layers from the individual bales 11 and fed to the foreign matter separator 4 in a pre-cleaned form in already dissolved form.
  • This has a sensor system, for example in the form of CCD cameras 12, with the aid of which color changes can be determined. Colored foreign substances are excreted.
  • NIR sensors 13 can also be provided, which for example determine the degree of moisture, the wax coating or other parameters.
  • the fibers are then fed to a mixer 5 which is equipped with various filling chutes 14.
  • the material columns in the individual shafts are compacted by their own weight and then again removed in layers.
  • the various fiber batches are mixed.
  • other types of mixers are also known.
  • the sensor system is advantageously installed in front of the mixer 5, so that the mixing process can be intervened or an intervention in the bale removal can be carried out as quickly as possible.
  • the sensor system should also be arranged at a location where the fibers or flakes are suitable to get presented. This can also be, for example, on the boom of the bale removal machine 3, in the area of an opening member or directly in a suitable area of the fiber transport line.
  • a cleaning line / carding machine is again shown schematically in the diagram according to FIG.
  • the cotton bales are removed from a warehouse and prepared at 16 for bale removal, i.e. freed from the outer wrapping and identified with respect to the specified warehouse data.
  • the bales are placed in order to be removed by means of the bale removal machine 3.
  • the flakes are opened at 18 in order to be presented to the sensor system 10 in the most suitable form.
  • the flakes or fibers then reach the separator 4, where foreign substances are removed.
  • the flakes are pre-cleaned, where mainly vegetable waste is excreted.
  • the flakes are dosed so that they can be fed to the mixer 5 or preferably several mixers in a classified and dosed form. After mixing, the fine cleaning takes place in cleaner 6.
  • cleaner 6 There is an excretion of fine plant parts and other foreign matter such as sand, etc. Only now do the cleaned flakes reach card 7 where the card sliver 15 is filled into a can 21 for further processing.
  • the pre-cleaner 19 could also be arranged between the bale removal machine 3 and the separator 4. The number and arrangement of fine cleaners in the line can also vary.
  • the sensor system 10 could of course also be arranged at a different location, or different sensors that work according to different physical principles could be arranged at different locations on the fiber transport line.
  • the sensor system transmits different physical measurement variables 22 to an evaluation device 8. Actual values 23 for different fiber properties can be called up there.
  • a control device 9 the actual values are compared with entered target values 24. The deviations determined in this way form control signals 25 for influencing various machine parameters.
  • the separator 4 is actuated and / or the mixing process, the cleaning process or the carding process is influenced. Orders can be placed on the bale feed 17 or on the bale preparation 16 in order to remove or replace certain bales.
  • bales are identified by identification signals 26, which enables fiber properties to be traced back to the corresponding bales.
  • the illustration according to FIG. 3 is intended to clarify that different measurement variables 22 on the sensor system 10 are used for this can be used to identify various material properties 27 using correlation methods to be determined beforehand.
  • the three different matrices M1, M2 and M3 show that signals averaged over different time periods can also be taken into account for the signal formation.
  • a near infrared sensor can have the frequency ranges A, B, C, with each range correlating with specific material properties a, b, c, d or e. This can be the moisture content, the degree of maturity, foreign substances, the wax coating or another size.
  • the signals determined for very short-term control interventions in the millisecond range for the excretion of foreign substances can be evaluated on the matrix M1.
  • the fiber properties c, e, f and g e.g. the stickiness, derived, but which are used for medium-term tax interventions in the range of seconds.
  • the bale removal machine could skip a certain bale if a certain fiber quality and / or a strong contamination is found there, or limit the removal of this component in the sense of a controlled admixture.
  • the measured variables D, E and F are used to determine the fiber properties a, b, c, d and g e.g. Moisture closed. Rule interventions lasting longer are triggered here, e.g. to change the machine parameters of a cleaner or a card or to change the indoor climate.
  • the sensor system can be expanded as required to optimize the processing process.
  • it does not necessarily have to be a processing plant for cotton fibers.
  • Processing processes for Animal fibers or, in certain cases, synthetic fibers can be controlled in the same way.
  • FIG. 4 schematically shows a ginning installation 42, which can also be controlled using the method according to the invention.
  • the fiber properties are not determined periodically as in the prior art, but continuously on the material flow.
  • the raw cotton is unloaded from harvest vehicles 44 into a buffer store 45 and layered there. Here the flakes are homogenized for the first time.
  • the cotton pneumatically reaches a feed module 28 and is then subjected to a first cleaning process in a sand separator 29.
  • the cotton then passes through a first tower dryer 30 and, after passing through a first diagonal roller cleaner, through a separating machine 31 for larger plant parts.
  • the excess moisture of the fibers is extracted in a second tower dryer 32.
  • a second cross roll cleaner 39 and a blow cleaner 34 remove further foreign matter before the cotton fibers are fed to a cleaner (extractor) 35.
  • a gin 36 There, primarily plant-based foreign substances such as Grains, fruit capsules etc. removed.
  • the fibers finally reach a fiber fine cleaner 37 (lint cleaner), where the high-quality fiber parts of the cotton plant are further cleaned.
  • the pneumatic onward transport finally leads to a baler 38.
  • a first sensor 40 is arranged in front of the first tower dryer 30 or possibly already after the buffer store 45 for influencing machine or conveying parameters.
  • a second sensor 41 is in the transition area between the cleaner (extractor) 35 and the gin 36. The two sensors 40 and 41 and, if appropriate, further sensors can be used to control the tower dryer, the ginning machine and the fiber fine cleaner and to remove foreign substances, so that fiber bales 43 of known, as constant as possible quality can be produced.

Description

  • Die Erfindung betrifft ein Verfahren zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern, gemäss dem Oberbegriff von Anspruch 1. Eine derartige Behandlungsanlage wird bei der Garnproduktion auch als Putzerei/Karderie bezeichnet. Dabei wird aus ungeordneten Baumwollfasern ein Kardenband hergestellt, das anschliessend durch Strecken, Kämmen und Spinnen zu einem Garn verarbeitet wird. Auf der Erzeugerstufe wird im Zusammenhang mit den geernteten Baumwollkapseln von einer Entkörnungsanlage oder Ginning-Anlage gesprochen. Dort werden die Samenkörner von den Fasern getrennt und ggf. weitere Verunreinigungen entfernt.
  • Es sind bereits zahlreiche Verfahren bekannt, mit deren Hilfe Fremdstoffe erkannt und aus einem Fasergutstrom ausgeschieden werden können. Der Steuerung des gesamten Arbeitsprozesses und insbesondere der Verspinnbarkeit des Fasermaterials auf Grund von unterschiedlichen Fasereigenschaften wurde bisher keine Beachtung geschenkt. Die Fasereigenschaften werden in der Regel nur durch Stichproben ermittelt, was jedoch häufig zu schlechten Fasermischungen und zu ungenügenden Informationen über die Eigenschaften der verarbeiteten Kardenbänder führt. Zwar ist es beispielsweise durch die US-A-5,892,142 auf der Stufe der Faserproduktion beim sogenannten Ginning-Prozess bereits bekannt, durch ein automatisiertes Verfahren einem Faserstrom in regelmässigen Abständen Stichproben zu entnehmen und diese auf verschiedene Parameter wie Feuchtigkeit, Farbe oder Faserfeinheit zu messen. Die Messergebnisse werden einem zentralen Rechner zugeführt und können auf diese Weise verwertet werden. Dieses Verfahren ist aber mechanisch sehr aufwendig und erlaubt keine schnellen Eingriffe in den Fasergutstrom beispielsweise innerhalb einer Zeitspanne von wenigen Sekunden oder gar Millisekunden.
  • Es ist daher eine Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art zu schaffen, das eine Optimierung des Arbeitsprozesses in der Putzerei/Karderie oder in der Ginning-Anlage aufgrund von bestimmten Materialeigenschaften ermöglicht. Diese Aufgabe wird erfindungsgemäss mit einem Verfahren gelöst, das die Merkmale im Anspruch 1 aufweist. Dabei werden keine Stichproben entnommen, sondern der Fasergutstrom wird kontinuierlich auf mindestens zwei unterschiedliche physikalische Messgrössen überwacht. Aus diesen Messgrössen lassen sich entweder einzeln oder in Kombination oder Unterkombination verschiedene Materialeigenschaften ableiten. Auf Grund eines Vergleiches mit vorher eingegebenen Sollwerten kann in die Behandlungsstationen oder in das Transportsystem eingegriffen werden. Unter dem Ausdruck Materialeigenschaften werden auch verschiedene Verschmutzungsgrade der Fasern oder Flocken verstanden, wobei Verunreinigungen unmittelbar auf der Oberfläche der Fasern oder aber als separate Beimischung auftreten können. Unter homogenisieren wird das Erzielen einer möglichst gleichförmigen Fasermischung verstanden.
  • Vorzugsweise wird am Sensorsystem eine Mehrzahl von Eigenschaften des Materials ermittelt. Dabei kann es sich um Flockeneigenschaften (Grösse, Dichte, Verteilung, Farbe, Form, Feuchtigkeit, Temperatur) oder Fasereigenschaften (Oberflächenbeschichtung mit natürlichem Wachs oder künstlichen Substanzen, Faserfeinheit, Faserreife, Faserlänge, Stapelverteilung) oder ggf. um andere Eigenschaften handeln. Die Reife der Baumwolle lässt sich aus dem Wellenlängenbereich 1500 bis 1550 nm und die Feuchtigkeit aus dem Wellenlängenbereich um 1900 nm ableiten. Zusammenhänge bezüglich Oberflächen-Eigenschaften von Fasern, insbesondere Abhängigkeiten von Feuchtigkeit und chemischer Zusammensetzung sind in "Duckett, K.E., Surface Properties of Cotton Fibers", in "Fiber Science Series, Surface Characteristics of Fibers and Textiles, Part I, M.J. Schick, Ed., Marcel Dekker, N.Y. 1975" beschrieben. Angaben zur Erkennung der Wachsbeschichtung sind u.a. beschrieben in "Measuring Natural Waxes on Cotton using NIR Absorbance, R.A. Taylor and L.C. Godbey, USDA, ARS, Cotton Quality Res. Station, Clemson, S.C.". Es kann aber auch das Vorhandensein von Fremdstoffen ermittelt werden, wobei unter die Kategorie Fremdstoffe Fremdfasern natürlichen Ursprungs, Kunststoffmaterial, pflanzliches Fremdmaterial, Metalle, mineralisches Fremdmaterial, Nissen, tierische Sekrete, insbesondere Honigtau, Reste von Textilien und anderes mehr fallen.
  • Da das Sensorsystem die physikalischen Messgrössen am vorbeiströmenden Fasergutstrom ermitteln muss, eignen sich insbesondere berührungslose Sensoren, die elektromagnetische Wellen und/oder Ultraschallwellen senden bzw. empfangen. In bestimmten Einzelfällen wären aber auch taktile Sensoren denkbar, beispielsweise in der Form von Messfühlern, die in den Fasergutstrom hineinragen und z. B. den Strömungswiderstand, die elektrische Leitfähigkeit den Impuls der Flocken bzw. Partikel usw. messen. Bei den Sensoren auf der Basis elektromagnetischer Wellen eignet sich vor allem der nahe Infrarotbereich besonders gut, um im reflektierten oder transmittierten Spektrum eine grosse Reihe von Stoffen oder Eigenschaften zu erkennen. Mit wenigstens zwei charakteristischen Frequenzen lässt sich ein "Fingerprint" definieren, aus dem sich verschiedene Materialeigenschaften ableiten lassen.
  • Faserdimensionen, insbesondere die Faserfeinheit lassen sich besonders vorteilhaft mit Lasersensoren ermitteln. Zu diesem Zweck wird ein Beugungsmuster und/oder Steuerungsmuster gebildet.
  • Selbstverständlich sind aber auch andere elektromagnetische Wellen denkbar wie z.B. Ultraviolett, sichtbares Licht oder auch Röntgenstrahlen.
  • Die Messgrössen können mit wenigstens zwei Sensoren an, bezogen auf die Transportrichtung, verschiedenen Stellen der Behandlungsanlage ermittelt werden. So wäre z.B. ein elektromagnetischer Sensor für Metallteile und ein optischer Sensor für Feuchtigkeit oder Wachsbeschichtung denkbar. Es ist aber auch möglich, dass ein Sensor auf mehreren Frequenzen bzw. Messprinzipien arbeitet und dass auf diese Weise zwei oder mehr Messsignale an der gleichen Stelle des Fasergutstroms ermittelt werden können.
  • Besonders vorteilhaft kann es auch sein, wenn die Messgrössen in unterschiedlichen Zeitabschnitten gemittelt bzw. ausgewertet werden. Je nach der betroffenen Materialeigenschaft erfordern nämlich die ermittelten Istwerte unterschiedliche Reaktionszeiten. So muss beispielsweise eine festgestellte Verschmutzung innerhalb von Millisekunden nach der Detektion durch einen Druckstoss oder durch eine Umlenkklappe ausgeschieden werden. Eine Beeinflussung der Ballenfräse kann im Sekundenbereich erfolgen, während die Dauer des Regeleingriffs bei sich veränderndem Feuchtigkeitsgehalt z.B. 5 bis 10 Minuten betragen kann bzw. der Mittelwert aus Messungen in grösseren Zeitabschnitten gebildet wird.
  • In einer Putzerei/Karderie werden die Behandlungsstationen vorzugsweise mit einem pneumatischen Transportsystem verbunden. Dabei ist es gegebenenfalls erforderlich, die Förderluft vor einer Behandlungsstation zu entfernen und nach der Behandlungsstation wieder zuzuführen. Aber auch andere Fördersysteme wie z.B. Förderbänder oder Förderschnecken wären denkbar.
  • Eine erhebliche Prozessoptimierung lässt sich bereits erreichen, wenn die Fasern als Ballen vorgelegt und mittels einer Ballenabtragmaschine abgetragen werden, einen Ausscheider durchlaufen, wenigstens einem Mischer zugeführt werden und anschliessend wenigstens auf einer Karde zu einem Band verarbeitet werden, wobei über die Auswerteeinrichtung beim Erkennen von Fremdstoffen der Ausscheider aktiviert wird und beim Erkennen von anderen Materialeigenschaften der Mischer zum Ändern des Mischungsverhältnisses angesteuert wird. Auf diese Weise werden nicht nur wie bisher üblich Fremdstoffe zuverlässig ausgeschieden, sondern es findet auch noch eine kontinuierliche Beeinflussung des Mischungsverhältnisses statt, sodass möglichst homogene Fasermischunge erzeugt werden, um stets eine optimale Verspinnbarkeit der Fasern anzustreben. Zusätzlich kann beim Erkennen von abweichenden Materialeigenschaften die Karde oder eine andere Behandlungsstation zum Ändern der Maschinenparameter angesteuert werden. Schliesslich ist es auch denkbar, beim Erkennen von Fremdstoffen und/oder von abweichenden Materialeigenschaften die Ballenabtragmaschine zum Ändern der Abtragbewegung anzusteuern. So kann beispielsweise ein bestimmter Ballen identifiziert werden, der einen überdurchschnittlich hohen Anteil von verschmutzten oder anderweitig abweichenden Fasern liefert. Die Abtragbewegung kann dabei so gesteuert werden, dass jeweils an diesem Ballen die Abtragtiefe und/oder Geschwindigkeit verändert wird, bis eine manuelle Aussonderung möglich ist.
  • Grundsätzlich können aber auch noch ganz andere Bearbeitungsstationen, wie z.B. Flockenauflösemaschinen, Feinreiniger, Grobreiniger und dergleichen angesteuert werden. Das erfindungsgemässe Verfahren erlaubt auch eine datenmässige Protokollierung des Prozesses und eine Klassierung der Zwischenprodukte und damit eine Optimierung der Qualitätskontrolle.
  • Unter Beeinflussung des Transportsystems ist insbesondere auch das Überspringen einer Behandlungseinrichtung in einer Bypassleitung zu verstehen. Alternativ könnte der Fasergutstrom an einer Förderweiche je nach Fasereigenschaften unterschiedlichen Behandlungsstationen zugeführt werden.
  • Die Erfindung betrifft auch eine Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern, welche durch die Merkmale im Anspruch 16 gekennzeichnet ist.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird nachstehend erläutert. Es zeigen:
  • Figur 1
    eine symbolische Darstellung der wichtigsten Behandlungsanlagen in einer Putzerei mit anschliessender Karderie,
    Figur 2
    eine schematische Darstellung eines Behandlungsablaufs mit den steuertechnischen Wechselbeziehungen,
    Figur 3
    die schematische Darstellung der Korrelation zwischen verschiedenen Messsignalen und Materialeigenschaften, und
    Figur 4
    eine symbolische Darstellung der wichtigsten Behandlungsanlagen in einer Entkörnungsanlage (GinningAnlage).
  • Wie in Figur 1 dargestellt, besteht eine Putzereilinie/Karderie 1 aus einer Ballenabtragmaschine 3, einem Vorreiniger 19, einem Ausscheider 4, einem Mischer 5, einem Feinreiniger 6, ggf. einem zweiten Feinreiniger 6' und einer Karde 7. Die einzelnen Behandlungsstationen sind über ein pneumatisches Transportsystem 2 miteinander verbunden. Dabei werden von den Einzelballen 11 schichtweise Faserflocken entfernt und in bereits aufgelöster Form vorgereinigt dem Fremdstoffausscheider 4 zugeführt. Dieser verfügt über ein Sensorsystem, beispielsweise in der Form von CCD-Kameras 12, mit deren Hilfe farbliche Veränderungen festgestellt werden können. Farbige Fremdstoffe werden dabei ausgeschieden. Gleichzeitig können auch noch NIR-Sensoren 13 vorgesehen sein, welche beispielsweise den Feuchtigkeitsgrad, die Wachsbeschichtung oder andere Parameter ermitteln.
  • Anschliessend werden die Fasern einem Mischer 5 zugeführt, der mit verschiedenen Füllschächten 14 ausgerüstet ist. Die Materialsäulen in den einzelnen Schächten werden durch ihr Eigengewicht verdichtet und dann wiederum gemeinsam schichtweise abgetragen. Dabei erfolgt eine Durchmischung der verschiedenen Faserchargen. Es sind aber auch andere Mischertypen bekannt.
  • Am Feinreiniger 6 bzw. 6' werden durch gezahnte Garnituren Verunreinigungen wie z.B. Schalenteile, Schmutz, Sand usw. von den Fasern getrennt und weggeschleudert. Schliesslich gelangen die gereinigten Fasern zur Karde 7, wo sie auf an sich bekannte Weise zu einem Kardenband 15 verarbeitet werden.
  • Das Sensorsystem wird vorteilhaft vor dem Mischer 5 eingebaut, damit in den Mischvorgang eingegriffen werden kann bzw. damit ein Eingriff an der Ballenabtragung möglichst verzögerungsfrei möglich ist. Das Sensorsystem soll ausserdem an einer Stelle angeordnet sein, wo die Fasern bzw. Flocken auf geeignete Weise präsentiert werden. Dies kann beispielsweise auch am Ausleger der Ballenabtragmaschine 3, im Bereich eines Öffnungsorgans oder unmittelbar in einem geeigneten Bereich der Fasertransportleitung sein.
  • Bezüglich Aufbau und Wirkungsweise der Sensoranordnung kann beispielsweise auf die nachfolgenden Vorpublikationen hingewiesen werden, deren Inhalt hiermit ausdrücklich zum Offenbarungsinhalt erklärt wird:
    • Uhlmann Jürg, "Fremdstofferkennung in der Rohbaumwolle" Diss. Eidgenössische Technische Hochschule, Zürich, 1996
    • WO 96/35831
    • DE U 297 19 245.0
    • EP A 893 516
  • Im Diagramm gemäss Figur 2 ist eine Putzereilinie/Karderie nochmals schematisch dargestellt. Dabei werden die Baumwollballen aus einem Lager entnommen und bei 16 für die Ballenabtragung vorbereitet, d.h. von der Aussenumhüllung befreit und bezüglich den angegebenen Lagerdaten identifiziert. Bei 17 werden die Ballen vorgelegt, um mittels der Ballenabtragmaschine 3 abgetragen zu werden.
  • Die Flocken werden bei 18 geöffnet, um in möglichst geeigneter Form dem Sensorsystem 10 präsentiert zu werden. Anschliessend gelangen die Flocken oder Fasern zum Ausscheider 4, wo Fremdstoffe ausgeschieden werden. Bei 19 erfolgt eine Vorreinigung der Flocken, wo vor allem pflanzlicher Abgang ausgeschieden wird. Bei 20 erfolgt eine Dosierung der Flocken, damit diese in klassierter und dosierter Form dem Mischer 5 oder vorzugsweise mehreren Mischern zugeführt werden können. Nach dem Mischen erfolgt die Feinreinigung im Reiniger 6. Dort erfolgt ein Ausscheiden von feinen Pflanzenteilen und anderen Fremdstoffen wie Sand usw. Erst jetzt gelangen die gereinigten Flocken zur Karde 7, wo das Kardenband 15 für die weitere Verarbeitung in eine Kanne 21 abgefüllt wird. Selbstverständlich könnte wie in Figur 1 dargestellt, der Vorreiniger 19 auch zwischen der Ballenabtragmaschine 3 und dem Ausscheider 4 angeordnet sein. Auch die Anzahl und Anordnung der Feinreiniger in der Linie kann variieren.
  • Das Sensorsystem 10 könnte selbstverständlich auch an einer anderen Stelle angeordnet sein, bzw. es könnten verschiedene Sensoren, die nach unterschiedlichen physikalischen Prinzipien arbeiten, an unterschiedlichen Stellen der Fasertransportleitung angeordnet sein. Das Sensorsystem übermittelt unterschiedliche physikalische Messgrössen 22 an eine Auswerteeinrichtung 8. Dort können Istwerte 23 für verschiedene Fasereigenschaften abgerufen werden. In einer Steuereinrichtung 9 werden die Istwerte mit eingegebenen Sollwerten 24 verglichen. Die so ermittelten Abweichungen bilden Steuersignale 25 zum Beeinflussen verschiedener Maschinenparameter. So wird beim Ermitteln eines Fremdstoffes der Ausscheider 4 betätigt und/oder es wird der Mischprozess, der Reinigungsprozess oder der Kardierprozess beeinflusst. An die Ballenvorlage 17 bzw. an die Ballenvorbereitung 16 können Aufträge erteilt werden, um bestimmte Ballen zu entfernen oder auszuwechseln.
  • Zu erwähnen wäre noch, dass im Verlaufe des Abtragprozesses die Ballen durch Identifikationssignale 26 identifiziert werden, was eine Rückverfolgung von Fasereigenschaften auf die entsprechenden Ballen ermöglicht.
  • Mit der Darstellung gemäss Figur 3 soll verdeutlicht werden, dass unterschiedliche Messgrössen 22 am Sensorsystem 10 dazu benutzt werden können, unter Ausnutzung vorgängig zu bestimmender Korrelationsverfahren verschiedene Materialeigenschaften 27 zu identifizieren. Mit den drei verschiedenen Matrizes M1, M2 und M3 ist dargestellt, dass für die Signalbildung auch über verschiedene Zeiträume gemittelte Signale berücksichtigt werden können. So kann beispielsweise ein Nah-Infrarot-Sensor die Frequenzbereiche A, B, C aufweisen, wobei jeder Bereich mit bestimmten Materialeigenschaften a, b, c, d oder e korreliert. Dabei kann es sich um den Feuchtigkeitsgehalt, den Reifegrad, Fremdstoffe, die Wachsbeschichtung oder um eine andere Grösse handeln. Auf der Matrix M1 können die ermittelten Signale für sehr kurzfristige Steuerungseingriffe im Millisenkundenbereich für die Ausscheidung von Fremdstoffen ausgewertet werden.
  • Auf der Matrix M2 werden aus den Messgrössen A, B und G die Fasereigenschaften c, e, f und g, z.B. die Klebrigkeit, abgeleitet, die jedoch zu mittelfristigen Steuereingriffen im Sekundenbereich benutzt werden. So könnte beispielsweise die Ballenabtragmaschine einen bestimmten Ballen überspringen, wenn dort eine bestimmte Faserqualität und/oder eine starke Verunreinigung festgestellt wird, oder den Abtrag dieser Komponente im Sinne einer kontrollierten Beimischung begrenzen.
  • Auf der Matrix M3 wird aus den Messgrössen D, E und F auf die Fasereigenschaften a, b, c, d und g z.B. Feuchtigkeit geschlossen. Hier werden eher länger dauernde Regeleingriffe im Minutenbereich ausgelöst, z.B. um die Maschinenparameter eines Reinigers oder einer Karde oder um das Raumklima zu verändern.
  • Insgesamt kann das Sensorsystem beliebig ausgebaut werden, um den Verarbeitungsprozess zu optimieren. Selbstverständlich braucht es sich dabei nicht zwingend um eine Verarbeitungsanlage für Baumwollfasern zu handeln. Auch Verarbeitungsprozesse für tierische Fasern oder in bestimmten Fällen für synthetische Fasern lassen sich auf die gleiche Weise steuern.
  • Figur 4 zeigt schematisch eine Ginninganlage 42, die ebenfalls mit dem erfindungsgemässen Verfahren steuerbar ist. Die Fasereigenschaften werden dabei nicht wie im Stand der Technik durch periodisch entnommene Proben, sondern kontinuierlich am Materialstrom ermittelt.
  • Von Erntefahrzeugen 44 wird die Rohbaumwolle in ein Pufferlager 45 entladen und dort geschichtet. Hier erfolgt eine erste Homogenisierung der Flocken. In der Entkörnungsanlage gelangt die Baumwolle pneumatisch an ein Einspeisemodul 28 und wird dann in einem Sandausscheider 29 einem ersten Reinigungsprozess unterzogen. Anschliessend durchläuft die Baumwolle einen ersten Turmtrockner 30 und nach dem Passieren eines ersten Schrägwalzenreinigers eine Ausscheidemaschine 31 für grössere Pflanzenteile. In einem zweiten Turmtrockner 32 wird die überschüssige Feuchte der Fasern entzogen. Ein zweiter Schrägwalzenreiniger 39 und ein Schlagreiniger 34 entfernen weitere Fremdstoffe, bevor die Baumwollfasern einem Reiniger (Extractor) 35 zugeführt werden. Unmittelbar darunter ist eine Entkörnungsmaschine (Gin) 36 angeordnet. Dort werden in erster Linie pflanzliche Fremdstoffe wie z.B. Samenkörner, Fruchtkapseln usw. entfernt. Die Fasern gelangen schliesslich zu einem Faserfeinreiniger 37 (Lint Cleaner), wo die hochwertigen Faseranteile der Baumwollpflanze weiter gereinigt werden. Der pneumatische Weitertransport führt schliesslich zu einer Ballenpresse 38.
  • Für die Beeinflussung von Maschinen - oder Förderparametern ist vor dem ersten Turmtrockner 30 oder ggf. bereits nach dem Pufferlager 45 ein erster Sensor 40 angeordnet. Ein zweiter Sensor 41 ist im Übergangsbereich zwischen dem Reiniger (Extractor) 35 und der Entkörnungsmaschine 36 angeordnet. Die beiden Sensoren 40 und 41 sowie gegebenenfalls weitere Sensoren können dazu benutzt werden, um die Turmtrockner, die Entkörnungsmaschine und den Faserfeinreiniger zu steuern und um Fremdstoffe auszuscheiden, sodass Faserballen 43 von bekannter, möglichst gleichbleibender Qualität hergestellt werden können.

Claims (24)

  1. Verfahren zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern, vor dem Spinnen, bei dem die Fasern mittels eines Transportsystems nacheinander verschiedene Behandlungsstationen in einem Zug kontinuierlich durchlaufen und dabei insbesondere wenigstens gereinigt und homogenisiert werden, dadurch gekennzeichnet,
    - dass während des Transports der Fasern mit einem Sensorsystem laufend wenigstens zwei unterschiedliche physikalische Messgrössen an den Fasern ermittelt werden,
    - dass aus den ermittelten Messgrössen in einer Auswerteeinrichtung ein Istwert für bestimmte Materialeigenschaften abgeleitet wird, der mit einem Sollwert für jede Materialeigenschaft verglichen wird,
    - und dass beim Vorliegen von Abweichungen von einem Sollwert der Betriebszustand wenigstens einer Behandlungsstation und/oder des Transportsystems verändert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine der folgenden Eigenschaften ermittelt wird:
    - Farbe,
    - Feuchtigkeit,
    - Oberflächenbeschichtung (Klebrigkeit, Wachsgehalt),
    - Temperatur,
    - Flockengrösse und -dichte, Flockenverteilung, Flockenmasse, Flockengeschwindigkeit
    - Faserfeinheit,
    - Faser- bzw. Flockenreinheit,
    - Faserlänge (Stapelverteilung).
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass am Sensorsystem das Vorhandensein von Fremdstoffen ermittelt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Vorhandensein wenigstens eines der folgenden Fremdstoffe ermittelt wird:
    - Fremdfasern natürlichen Ursprungs,
    - Kunstoffmaterial,
    - pflanzliches Fremdmaterial,
    - Metalle,
    - mineralisches Fremdmaterial
    - Nissen,
    - tierische Sekrete, insbesondere Honigtau,
    - landwirtschaftliche Hilfsstoffe.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Sensorsystem elektromagnetische Wellen sendet bzw. empfängt und auf wenigstens zwei unterschiedliche Wellenspektren reagiert.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Sensorsystem im nahen Infrarotbereich arbeitet.
  7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Sensorsystem Ultraschallwellen sendet bzw. empfängt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Sensorsystem die Messgrössen mit wenigstens zwei Sensoren an, bezogen auf die Transportrichtung, verschiedenen Stellen der Behandlungsanlage ermittelt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Fasern mit einem pneumatischen Transportsystem die Behandlungsstationen durchlaufen bzw. anlaufen.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Messgrössen in unterschiedlichen Zeitabschnitten gemittelt bzw. ausgewertet werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es bei der Verarbeitung von Rohbaumwolle (Ginning) zwischen dem Einspeisen der Baumwollkapsel und dem Pressen der gereinigten Baumwollfasern zu Ballen stattfindet.
  12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es bei der Verarbeitung von Baumwollfasern in der Spinnerei zwischen dem Öffnen der Baumwollballen und dem Kardieren zu einem Faservlies stattfindet.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Fasern
    - als Ballen vorgelegt und mittels einer Ballenabtragmaschine abgetragen werden,
    - einen Ausscheider durchlaufen,
    - wenigstens einem Mischer zugeführt werden,
    - und anschliessend auf wenigstens einer Karde zu einem Band verarbeitet werden,
    - wobei über die Auswerteeinrichtung beim Erkennen von Fremdstoffen oder stark von einem Sollwert abweichendem Material der Ausscheider aktiviert wird und beim Erkennen von anderen Abweichungen der Mischer zum Ändern des Mischungsverhältnisses angesteuert wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass beim Erkennen von anderen Abweichungen zusätzlich ein Reiniger und/oder eine Karde zum Ändern der Maschinenparameter angesteuert wird.
  15. Verfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass beim Erkennen von Fremdstoffen und/oder anderen Abweichungen die Ballenabtragmaschine zum Ändern der Abtragbewegung angesteuert wird.
  16. Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern, vor dem Spinnen, mit mehreren Behandlungsstationen, insbesondere wenigstens einem Reiniger und einer Homogenisiereinrichtung, und mit einem Transportsystem zum kontinuierlichen Transportieren der Fasern in einem Zug durch die Behandlungsstationen, gekennzeichnet durch,
    - ein Sensorsystem mit dem wenigstens zwei unterschiedliche physikalische Messgrössen an den Fasern erfassbar sind,
    - eine Auswerteeinrichtung mit einem Sollwertgeber für mindestens eine Materialeigenschaft, in der aus verschiedenen Messgrössen ein Istwert dieser Materialeigenschaft ableitbar ist, der mit einem Sollwert vergleichbar ist,
    - und einer Steuereinrichtung zum Verändern des Betriebszustands wenigstens einer Behandlungsstation und/oder des Transportsystems beim Vorliegen von Abweichungen der ermittelten Istwerte von einem Sollwert.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass das Sensorsystem wenigstens einen Sensor aufweist, der elektromagnetische Wellen unterschiedlicher Wellenspektren sendet bzw. empfängt.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass wenigstens ein Sensor ein Nah-Infrarot-Sensor ist.
  19. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass das Sensorsystem wenigstens einen Ultraschallsensor aufweist.
  20. Vorrichtung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass das Sensorsystem wenigstens zwei Einzelsensoren aufweist, welche bezogen auf die Transportrichtung an verschiedenen Stellen der Behandlungsanlage angeordnet sind.
  21. Vorrichtung nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, dass das Transportsystem ein pneumatisches Transportsystem ist und dass das Sensorsystem direkt wenigstens einem Abschnitt der Fasertransportleitung zugeordnet ist.
  22. Vorrichtung nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, dass die Behandlungsanlage als Behandlungsstationen in Serie
    - eine Ballenabtragmaschine,
    - einen Ausscheider,
    - einen Mischer,
    - und eine Karde aufweist,
    - und dass über die Steuereinrichtung beim Erkennen von Fremdstoffen oder stark abweichendem Material der Ausscheider und beim Erkennen von anderen abweichenden Materialeigenschaften der Mischer ansteuerbar ist.
  23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, dass zusätzlich ein Reiniger und/oder die Karde ansteuerbar ist.
  24. Vorrichtung nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass zusätzlich die Ballenabtragmaschine ansteuerbar ist.
EP00810108A 2000-02-09 2000-02-09 Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern Revoked EP1123995B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50003629T DE50003629D1 (de) 2000-02-09 2000-02-09 Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern
AT00810108T ATE249537T1 (de) 2000-02-09 2000-02-09 Verfahren und vorrichtung zum steuern einer behandlungsanlage für textile fasern, insbesondere baumwollfasern
EP00810108A EP1123995B1 (de) 2000-02-09 2000-02-09 Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern
US09/778,044 US20010049860A1 (en) 2000-02-09 2001-02-07 Method and device for controlling a treatment installation for textile fibres, in particular cotton fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00810108A EP1123995B1 (de) 2000-02-09 2000-02-09 Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern

Publications (2)

Publication Number Publication Date
EP1123995A1 EP1123995A1 (de) 2001-08-16
EP1123995B1 true EP1123995B1 (de) 2003-09-10

Family

ID=8174543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810108A Revoked EP1123995B1 (de) 2000-02-09 2000-02-09 Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern

Country Status (4)

Country Link
US (1) US20010049860A1 (de)
EP (1) EP1123995B1 (de)
AT (1) ATE249537T1 (de)
DE (1) DE50003629D1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347240B4 (de) 2003-10-10 2015-10-15 Trützschler GmbH & Co Kommanditgesellschaft Vorrichtung in der Spinnereivorbereitung zum Erkennen von Fremdteilen aus Kunststoff in Faserflocken
DE102004030967A1 (de) * 2004-06-26 2006-01-12 Trützschler GmbH & Co KG Vorrichtung zur Messung der Masse eines eine Spinnereivorbereitungsmaschine oder -anlage durchlaufenden Fasermaterials
CN102443884B (zh) * 2011-09-08 2013-09-11 潘超鸣 梳棉机棉条密度检测装置
CN102758277B (zh) * 2012-07-02 2018-09-18 湖北金源麻纺织科技有限公司 梳棉自调匀整仪及其控制方法
DE102013010468A1 (de) * 2013-06-24 2014-12-24 Trützschler GmbH & Co. Kommanditgesellschaft Vorrichtung in der Spinnereivorbereitung zum Erkennen von Fremdteilen aus Kunststoff, wie Polypropylenbändchen, -gewebe und -folien u. dgl. in oder zwischen Faserflocken, z. B. aus Baumwolle
DE102017126753A1 (de) * 2017-11-14 2019-05-29 Autefa Solutions Germany Gmbh Überwachungstechnik für Vliesfabrikationsanlagen
EP3918119B1 (de) * 2019-01-31 2023-06-28 Uster Technologies AG Optimierung eines spinnprozesses bezüglich fremdmaterialien.
CH716607A1 (de) * 2019-09-17 2021-03-31 Uster Technologies Ag Verfahren und Vorrichtung zur Überwachung von Fremdmaterialien in einem Textilfasergebilde.
CN114047324A (zh) * 2021-11-10 2022-02-15 中国科学技术大学 一种棉纤维自动化检测系统
EP4306694A1 (de) * 2022-07-13 2024-01-17 Gebrüder Loepfe AG Steuern oder bewerten der garnherstellung unter verwendung von farbparametern

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221047A (ja) * 1985-07-19 1987-01-29 Nippon Mengiyou Gijutsu Keizai Kenkyusho 繊維材料中の着色異物検出方法とその装置
ATE103069T1 (de) * 1988-10-11 1994-04-15 Rieter Ag Maschf Erkennung von fremdgut in textilfasern.
JPH0382828A (ja) * 1989-08-28 1991-04-08 Tatsumi Eyaa Eng:Kk 原綿中の異物の検出装置
DE69327840T2 (de) * 1993-01-11 2000-05-25 Zellweger Uster Inc Vorrichtung und Verfahren zur Messung und Klassifizierung von Trashteilen in Faserproben
DE29622931U1 (de) * 1996-08-08 1997-09-04 Truetzschler Gmbh & Co Kg Vorrichtung in einer Spinnereivorbereitungsanlage (Putzerei) zum Erkennen und Auswerten von Fremdstoffen

Also Published As

Publication number Publication date
EP1123995A1 (de) 2001-08-16
ATE249537T1 (de) 2003-09-15
US20010049860A1 (en) 2001-12-13
DE50003629D1 (de) 2003-10-16

Similar Documents

Publication Publication Date Title
DE3490510C2 (de)
EP0399315B1 (de) Reinigungs-Optimierung
EP1454133B1 (de) Verwendung von mikrowellen in der spinnereiindustrie zur messung der faserbandmasse
EP0628646A2 (de) Verfahren zum Mischen von Textilfasern
EP1123995B1 (de) Verfahren und Vorrichtung zum Steuern einer Behandlungsanlage für textile Fasern, insbesondere Baumwollfasern
EP0891436A1 (de) Verfahren und vorrichtung zur qualitätsüberwachung von garnen
DE19516568A1 (de) Vorrichtung in einer Spinnereivorbereitungseinrichtung (Putzerei) zum Erkennen und Ausscheiden von Fremdstoffen, z. B. Gewebestücke, Bänder, Schnüre, Folienstücke, in bzw. aus Fasergut
WO2001092875A1 (de) Verfahren und vorrichtung zur erkennung von fremdstoffen in einem längsbewegten fadenförmigen produkt
EP1167590A2 (de) Faserlängenmessung
DE10204328B4 (de) Verfahren zum Ermitteln der Bandmasse eines bewegten Faserverbandes und Spinnereivorbereitungsmaschine zur Durchführung dieses Verfahrens
EP0285602B1 (de) Verfahren und Vorrichtung zum Erkennen und Entfernen von Fremdstoffen aus Rohbaumwolle
EP0874070B1 (de) Spinnereivorbereitungseinrichtung
DE3711640C2 (de)
EP0006970B1 (de) Vorrichtung zum Auftrennen der Baumwollabgänge einer üblichen Baumwollreinigungsmaschine in Gutfasern und Schmutz
EP0485881B1 (de) Verfahren und Vorrichtung zur Steuerung einer Karde
EP3320495A1 (de) Lokales netzwerk für textile qualitätskontrolle
CH683347A5 (de) Steuerung bzw. Regelung einer Faserverarbeitungsanlage.
DE19530715A1 (de) Verfahren und Anlage zur Herstellung von Faserbändern für Spinnmaschinen
EP0409772A1 (de) Verfahren zur optimierten Aufbereitung von Textilfasern verschiedener Provenienzen
EP3918119B1 (de) Optimierung eines spinnprozesses bezüglich fremdmaterialien.
WO2019173929A1 (de) Optimierung eines spinnprozesses bezüglich fremdmaterialien
DE102019115138B3 (de) Karde, Vliesleitelement, Spinnereivorbereitungsanlage und Verfahren zur Erfassung von störenden Partikeln
EP1103640B1 (de) Selektive Reinigungslinie
EP1167591A1 (de) Übertragungsfaktor
EP1233086A1 (de) Verfahren und Vorrichtung zum Erkennen und Ausscheiden von Fremdstoffen in Fasermaterial, insbesondere in Rohbaumwolle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010831

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50003629

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040128

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040209

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040223

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040227

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040301

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040427

Year of fee payment: 5

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

26 Opposition filed

Opponent name: TRUETZSCHLER GMBH & CO. KG

Effective date: 20040514

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

NLR1 Nl: opposition has been filed with the epo

Opponent name: TRUETZSCHLER GMBH & CO. KG TEXTIL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20050221

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20050221

NLR2 Nl: decision of opposition

Effective date: 20050221