EP1123373A1 - Nichtionische tensidmischungen - Google Patents

Nichtionische tensidmischungen

Info

Publication number
EP1123373A1
EP1123373A1 EP99953790A EP99953790A EP1123373A1 EP 1123373 A1 EP1123373 A1 EP 1123373A1 EP 99953790 A EP99953790 A EP 99953790A EP 99953790 A EP99953790 A EP 99953790A EP 1123373 A1 EP1123373 A1 EP 1123373A1
Authority
EP
European Patent Office
Prior art keywords
weight
acid
mixtures
radical
surfactant mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99953790A
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Schmid
Rainer Eskuchen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1123373A1 publication Critical patent/EP1123373A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives

Definitions

  • the invention is in the detergent sector and relates to mixtures of alkyl oligoglucosides of different chain lengths and their use for the production of detergents.
  • Alkyl oligogiucosides are nonionic surfactants that are produced by acid acetalization of glucose or starch degradation products with primary alcohols. By choosing the process conditions, the average degree of polymerization, i.e. control the distribution of acetalized mono-, di-, tri- and oligoglucosides. If you also vary the chain length of the alcohol component or even use mixtures of different alcohols, countless types of alkyl oligoglucosides are available, which differ in their primary detergent properties - washing, emulsifying, foaming, wetting - more or less clearly.
  • Alkyl oligogiucosides are characterized by a foaming power, which clearly exceeds the conventional nonionic surfactants and is more similar to the anionic surfactants. This is undoubtedly an advantage for use in the area of manual dishwashing detergents or hair shampoos, whereas in the area of detergents, the opposite behavior, namely low foam, is desired in order to prevent the washing machine from overflowing or to keep the amount of defoamer required as low as possible .
  • Another problem is that the commercially available alkyl oligogiucosides, especially with regard to cosmetic soiling, show a rather average cleaning ability. This explains why alkyl oligogiucosides have so far only been used in modest amounts in detergent formulations. In this connection, reference is made to the two German patent applications DE-A1 4319699 and DE-A1 4319700, from which mild alkyl oligoglucoside mixtures with defined chain lengths and DP are known.
  • the complex object of the invention was therefore to provide new alkyl oligogiucosides which, with reduced foaming, should be distinguished by improved washability, particularly in relation to cosmetic soiling.
  • the invention relates to nonionic surfactant mixtures consisting of (a) alkyl oligoglucosides of the formula (I),
  • R 1 represents a tetradecyl radical
  • G represents a glucose radical
  • p1 represents a number in the range from 1 to 3
  • R 2 is a hexadecyl radical
  • G is a glucose radical
  • p2 is a number in the range from 1 to 3, with the proviso that the weight ratio of the two components in the range from 25:75 to 35:65 and the average degree of polymerization in Range from 1, 4 to 1, 5 is.
  • the mixtures compared to conventional commercial products with reduced foaming, are distinguished by improved washing performance, in particular with regard to cosmetic soiling.
  • Alkyl oligogiucosides are known nonionic surfactants which are usually prepared by acid-catalyzed acetalization of glucose or degraded starch syrup with primary alcohols; the catalyst is then neutralized and excess alcohol is distilled off.
  • Representative of the extensive literature here is the review by Biermann et al. in Starch /force 45, 281 (1993), B.Salka in Cosm.Toil. 108, 89 (1993) and J.Kahre et al. in S ⁇ FW- Journal issue 8, 598 (1995).
  • the DP ie the average degree of polymerization
  • the index number p1 or p2 for the individual, to a certain extent, chain-pure alkyl glucosides can be in the range from 1 to 3, since in the sense of the invention it is only important that the mixture has a DP of 1.4 to 1.5 having. This can be important, for example, if the surfactant mixtures are produced by mixing the individual glucosides.
  • the preparation takes place in such a way that an appropriate alcohol mixture is used in the acetalization and the reaction is controlled in such a way that the desired DP is established immediately.
  • the alkyl oligogiucosides are obtained after production in the form of aqueous pastes with a solids content in the range from 30 to 50% by weight and can be used directly in this form, in particular if they are to be incorporated into liquid detergents.
  • it is also possible to dewater the glucosides for example by spray drying, steam drying or simultaneous drying and granulation in a horizontal thin-film evaporator (flash dryer) or in a fluidized bed system, and then adding powder detergents as dry powders or granules.
  • another object of the invention is their use for the production of detergents, in particular liquid detergents, in which they are present in amounts of 5 to 50, preferably 10 to 30 and in particular 15 to 25% by weight .-% - based on - can be included.
  • the liquid detergents obtainable for the purposes of the invention using the nonionic surfactant mixtures can have a nonaqueous fraction in the range from 5 to 50 and preferably 15 to 35% by weight. In the simplest case, these are aqueous solutions of the surfactant mixtures mentioned.
  • the liquid detergents can, however, also be essentially water-free detergents. In the context of this invention, "essentially anhydrous" means that the agent preferably contains no free water which is not bound as water of crystallization or in a comparable form. In some cases, small amounts of free water are tolerable, especially in amounts up to 5% by weight.
  • liquid detergents may also have other typical ingredients, such as, for example, solvents, hydrotropes, bleaches, builders, viscosity regulators, enzymes, enzyme stabilizers, optical brighteners, soil repellants, foam inhibitors, inorganic salts and fragrances and colorants, provided that these are sufficiently stable in an aqueous environment.
  • solvents such as, for example, solvents, hydrotropes, bleaches, builders, viscosity regulators, enzymes, enzyme stabilizers, optical brighteners, soil repellants, foam inhibitors, inorganic salts and fragrances and colorants, provided that these are sufficiently stable in an aqueous environment.
  • suitable organic solvents are monofunctional and / or polyfunctional alcohols having 1 to 6 carbon atoms, preferably having 1 to 4 carbon atoms.
  • Preferred alcohols are ethanol, 1, 2-propanediol, glycerol and mixtures thereof.
  • the compositions preferably contain 2 to 20% by weight and in particular 5 to 15% by weight of ethanol or any mixture of ethanol and 1, 2-propanediol or in particular of ethanol and glycerol. It is also possible that the preparations either contain, in addition to the mono- and / or polyfunctional alcohols having 1 to 6 carbon atoms or solely polyethylene glycol with a relative molecular weight between 200 and 2000, preferably up to 600, in amounts of 2 to 17% by weight .
  • toluenesulfonate, xylenesulfonate, cumene sulfonate or mixtures thereof can be used as hydrotropes.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other bleaching agents are, for example, peroxy carbonate, citrate perhydrates and salts of peracids, such as perbenzoates, peroxyphthalates or diperoxydodecanedioic acid. They are usually used in amounts of 8 to 25% by weight.
  • the use of sodium perborate monohydrate in amounts of 10 to 20% by weight and in particular 10 to 15% by weight is preferred. Due to its ability to bind free water with the formation of the tetrahydrate, it contributes to increasing the stability of the agent. However, the preparations are preferably free from such bleaching agents.
  • Suitable builders are ethylenediaminetetraacetic acid, nitrilotriacetic acid, citric acid and inorganic phosphonic acids, e.g. the neutral reacting sodium salts of 1-hydroxyethane-1, 1, - diphosphonate, which can be present in amounts of 0.5 to 5, preferably 1 to 2 wt .-%.
  • Viscosity regulators which can be used are, for example, hardened castor oil, salts of long-chain fatty acids, preferably in amounts of 0 to 5% by weight and in particular in amounts of 0.5 to 2% by weight, for example sodium, potassium, aluminum, magnesium - And titanium stearates or the sodium and / or potassium salts of behenic acid, and other polymeric compounds are used.
  • the latter preferably include polyvinylpyrrolidone, urethanes and the salts of polymeric polycarboxylates, for example homopolymeric or copolymeric polyacrylates, polymethacrylates and in particular copolymers of acrylic acid with maleic acid, preferably those composed of 50% to 10% maleic acid.
  • the relative molecular weight of the homopolymers is generally between 1000 and 100000, that of the copolymers between 2000 and 200000, preferably between 50,000 and 120,000 on the free acid.
  • Water-soluble polyacrylates which are crosslinked, for example, with about 1% of a polyallyl ether of sucrose and which have a relative molecular weight above one million are also particularly suitable. Examples of this are the polymers with thickening action available under the name Carbopol® 940 and 941.
  • the crosslinked polyacrylates are preferably used in amounts not exceeding 1% by weight, preferably in amounts of 0.2 to 0.7% by weight.
  • the agents can additionally contain about 5 to 20% by weight of a partially esterified copolymer, as described in European patent application EP-A1 0367049.
  • This partially esterified polymers are prepared by copolymerizing (a) at least one C -C28-olefin or mixtures of at least one C-C2 0-olefin of up to 20 mol% Ci-C ⁇ -alkyl vinyl ethers and (b) ethylenically unsaturated dicarboxylic anhydrides with 4 to 8 carbon atoms in a molar ratio of 1: 1 to copolymers with K values from 6 to 100 and subsequent partial esterification of the copolymers with reaction products such as C 1 -C 3 alcohols, C 8 -C 22 fatty acids, C 1 -C 2 alkyl phenols , C ⁇ -C3o secondary amines or their mixtures with at least one C2-C-alkylene oxide or tetrahydrofuran and hydrolysis of the anhydride groups of the copolymers to carboxyl groups, the partial esterification of the copolymers being carried out to such an extent that 5 to 50% of the carboxyl groups
  • Preferred copolymers contain maleic anhydride as the ethylenically unsaturated dicarboxylic anhydride.
  • the partially esterified copolymers can be present either in the form of the free acid or preferably in partially or completely neutralized form.
  • the copolymers are advantageously used in the form of an aqueous solution, in particular in the form of a 40 to 50% strength by weight solution.
  • the copolymers not only contribute to the primary and secondary washing performance of the liquid washing and cleaning agent, but also bring about a desired reduction in the viscosity of the concentrated liquid washing agent.
  • the use of these partially esterified copolymers gives concentrated aqueous liquid detergents which are flowable under the sole influence of gravity and without the action of other shear forces.
  • the concentrated aqueous liquid detergents preferably contain partially esterified copolymers in amounts of 5 to 15% by weight and in particular in amounts of 8 to 12% by weight.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymatic active ingredients obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used. Their proportion can be about 0.2 to about 2% by weight. The enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition. In addition to the mono- and polyfunctional alcohols and the phosphates, the agents can contain further enzyme stabilizers.
  • 0.5 to 1% by weight of sodium formate can be used. It is also possible to use proteases which contain soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the Enzyme that are stabilized.
  • proteases which contain soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the Enzyme that are stabilized.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates, such as the salts of orthoboric acid (H3BO3), metaboric acid (HBO2) and pyrobic acid (tetraboric acid H2B4O7), is particularly advantageous.
  • Suitable soil-repellants are those substances which preferably contain ethylene terephthalate and / or polyethylene glycol terephthalate groups, the molar ratio of ethylene terephthalate to polyethylene glycol terephthalate being in the range from 50:50 to 90:10 .
  • the molecular weight of the linking compounds Polyethylene glycol units are in particular in the range from 750 to 5000, ie the degree of ethoxylation of the polymers containing polyethylene glycol groups can be approximately 15 to 100.
  • the polymers are characterized by an average molecular weight of approximately 5000 to 200,000 and can have a block, but preferably a random Preferred polymers are those with molar ratios of ethylene terephthalate / polyethylene glycol terephthalate from about 65:35 to about 90:10, preferably from about 70:30 to 80:20. Also preferred are those polymers which have linking polyethylene glycol units with a molecular weight Weight from 750 to 5000, preferably from 1000 to about 3000 and a molecular weight of the polymer from about 10,000 to about 50,000. Examples of commercially available polymers are the products Milease® T (IG) or Repelotex® SRP 3 (Rhône-Poulenc).
  • foam inhibitors When used in machine washing processes, it can be advantageous to add conventional foam inhibitors to the agents.
  • Soaps of natural or synthetic origin with a high content of Ci8-C24 fatty acids are suitable.
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally silanized silica, and paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide.
  • Mixtures of different foam inhibitors are also used with advantages, e.g. those made of silicone, paraffins or waxes.
  • the foam inhibitors, in particular silicone or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • the pH of the concentrated agents according to the invention is generally 7 to 10.5, preferably 7 to 9.5 and in particular 7 to 8.5. Higher pH values, for example above 9, can be set by using small amounts of sodium hydroxide solution or alkaline salts such as sodium carbonate or sodium silicate.
  • the liquid detergents according to the invention generally have viscosities between 150 and 10,000 mPas (Brookfield viscometer, spindle 1, 20 revolutions per minute, 20 ° C.). Viscosities between 150 and 5000 mPas are preferred for the essentially water-free agents.
  • the viscosity of the aqueous compositions is preferably below 2000 mPas and in particular between 150 and 1000 mPas. Powder detergent
  • the surfactants mentioned can, in addition to the surfactants mentioned, include other typical ingredients, such as, for example, builders, bleaches, bleach activators, detergency boosters, enzymes, enzyme stabilizers, graying inhibitors, optical brighteners, soil repellants, foam inhibitors, inorganic salts as well as fragrances and dyes.
  • builders for example, bleaches, bleach activators, detergency boosters, enzymes, enzyme stabilizers, graying inhibitors, optical brighteners, soil repellants, foam inhibitors, inorganic salts as well as fragrances and dyes.
  • finely crystalline, synthetic and bound water-containing zeolite such as zeolite NaA in detergent quality is used as the solid builder.
  • zeolite NaX and mixtures of NaA and NaX are also suitable.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension that is still moist from its manufacture.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated Ci2-Ci8 fatty alcohols with 2 to 5 ethylene oxide groups or ethoxylated Isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22, in particular 20 to 22% by weight of bound water.
  • Suitable substitutes or partial substitutes for zeolites are crystalline, layered sodium silicates of the general formula NaMSixG ⁇ x + ryH ⁇ O, where M is sodium or hydrogen, x is a number from 1, 9 to 4 and y is a number from 0 to 20 and is preferred Values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A1 0164514.
  • Preferred crystalline layered silicates are those in which M in the general formula stands for sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na2Si2C , 5 , yH2 ⁇ are preferred, it being possible, for example, to obtain ⁇ -sodium disilicate by the process described in international patent application WO 91/08171.
  • the powder detergents according to the invention preferably contain 10 to 60% by weight of zeolite and / or crystalline layered silicates as solid builders, mixtures of zeolite and crystalline layered silicates in any ratio being particularly advantageous.
  • the agents contain 20 to 50% by weight of zeolite and / or crystalline layered silicates.
  • agents contain up to 40% by weight of zeolite and in particular up to 35% by weight of zeolite, in each case based on anhydrous active substance.
  • Other suitable ingredients of the agents are water-soluble amorphous silicates; they are preferably used in combination with zeolite and / or crystalline layered silicates.
  • Particularly preferred are agents which contain, above all, sodium silicate with a molar ratio (module) Na ⁇ O: SiO ⁇ of 1: 1 to 1: 4.5, preferably of 1: 2 to 1: 3.5.
  • the content of amorphous sodium silicates in the agents is preferably up to 15% by weight and preferably between 2 and 8% by weight.
  • Phosphates such as tripolyphosphate Phates, pyrophosphates and orthophosphates can be contained in small amounts in the agents.
  • the content of the phosphates in the compositions is preferably up to 15% by weight, but in particular 0 to 10% by weight.
  • the agents can also contain layered silicates of natural and synthetic origin. Layered silicates of this type are known, for example, from patent applications DE-C1 2334899, EP-A1 0026529 and DE-A1 3526405. Their usability is not limited to a special composition or structural formula. However, smectites, in particular bentonites, are preferred here. Suitable layered silicates, which belong to the group of water-swellable smectites, are, for example, those of the general formulas
  • the layered silicates can contain hydrogen, alkali, alkaline earth ions, in particular Na + and Ca 2+ .
  • the amount of water of hydration is usually in the range of 8 to 20% by weight and depends on the swelling condition or the type of processing.
  • Useful layer silicates are known, for example, from US 3,966,629, US 4,062,647, EP-A 0026529 and EP-A 0028432.
  • Layer silicates are preferably used which are largely free of calcium ions and strongly coloring iron ions due to an alkali treatment.
  • Usable organic builders are, for example, the polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrotriesriacetic acid (NTA), provided that such use is not objectionable for ecological reasons. and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000. The use of polymeric polycarboxylates is not absolutely necessary.
  • agents are preferred which are biodegradable polymers, for example terpolymers, the monomers acrylic acid and maleic acid or salts thereof, and vinyl alcohol or vinyl alcohol derivatives, or the monomers acrylic acid and 2-alkylallylsulfonic acid or salts thereof as well as sugar derivatives.
  • Terpolymers in particular preferred, which are obtained according to the teaching of German patent applications DE-A1 4221381 and DE-A1 4300772.
  • Further suitable builder substances are polyacetals, which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A1 0280223.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyolcarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • bleach activators can be incorporated into the preparations.
  • these are N-acyl or O-acyl compounds which form organic peracids with hydrogen peroxide, preferably N, N'-tetraacylated diamines, furthermore carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate.
  • the bleach activators contain bleach activators in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylenediamine and 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine.
  • Graying inhibitors have the task of keeping the dirt detached from the fibers suspended in the liquor and thus preventing graying.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, e.g. degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose, methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and also polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the composition.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which are used instead of Morpholino group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyis, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • Uniform white granules are obtained if, apart from the usual brighteners, the agents are used in conventional amounts, for example between 0.1 and 0.5% by weight, preferably between 0.1 and 0.3 wt .-%, even small amounts, for example, 10- 6 to 10- 3 wt .-%, preferably by 10 "5 wt .-% of a blue dye.
  • a particularly preferred dye is Tinolux® (commercial product of Ciba-Geigy).
  • the bulk density of the detergents is generally 300 to 1200 g / l, in particular 500 to 1100 g / l.
  • They can be produced by any of the known processes such as mixing, spray drying, granulating and extruding. Processes in which several partial components, for example spray-dried components and granulated and / or extruded components, are mixed with one another are particularly suitable. It is also possible for spray-dried or granulated components to be subsequently treated, for example with nonionic surfactants, in particular ethoxylated fatty alcohols, by the customary processes.
  • the anionic surfactants which may be present in the form of a spray-dried, granulated or extruded compound, either as an additive component in the process or as an additive to other granules.
  • the preferred heavier granules with bulk densities above 600 g / l preferably contain components which improve the flushing behavior and / or the dissolving behavior of the granules.
  • Alkoxylated fatty alcohols with 12 to 80 moles of ethylene oxide per mole of alcohol for example tallow fatty alcohol with 14 EO, 30 EO or 40 EO, and polyethylene glycols with a relative molecular weight between 200 and 12000, preferably between 200 and 600, are advantageously used for this purpose.
  • Suitable surface modifiers are known from the prior art.
  • suitable, finely divided zeolites, silicas, amorphous silicates, fatty acids or fatty acid salts for example calcium stearate, but in particular mixtures of zeolite and silicas or zeolite and calcium stearate are particularly preferred.
  • Alkyl oligogiucosides with different carbon chain distribution in the alkyl radical and with different DPs were characterized with regard to their application properties.
  • the foaming power was investigated according to the Ross-Miles test in 1% by weight solution at 40 ° C. in hard water (16 °). Base foam and foam height were determined after 20 min. Detergency, in a standard liquid detergent formulation (concentration: 100 g / wash) wash at 40 ° C with a hot / colored ⁇ was determined photometrically against a barium sulfate white standard depending on various stains and fabrics. The mean values from 5 determinations are given. The results are summarized in Table 1.
  • Example 1 is according to the invention, Examples V1 to V5 are used for comparison; V5 is a commercial alkyl oligoglucoside.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Detergent Compositions (AREA)

Abstract

Vorgeschlagen werden nichtionische Tensidmischungen, bestehend aus (a) Alkyloligoglucosiden der Formel (I): R1O(G)p1, in der R1 für einen Tetradecylrest, G für einen Glucoserest und p1 für eine Zahl im Bereich von 1 bis 3 steht, und (b) Alkyloligoglucosiden der Formel (II): R2O(G)p2, in der R2 für einen Hexadecylrest, G für einen Glucoserest und p2 für eine Zahl im Bereich von 1 bis 3 steht, mit der Maßgabe, daß das Gewichtsverhältnis der beiden Komponenten im Bereich von 25:75 bis 35:65 und der durchschnittliche Polymerisationsgrad im Bereich von 1,4 und 1,5 liegt. Die Mischungen zeichnen sich durch verbesserte Waschleistung bei verminderter Schaumentwicklung aus.

Description

Nichtionische Tensidmischungen
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Waschmittelsektor und betrifft Gemische von Alkyloligoglucosiden unterschiedlicher Kettenlänge sowie deren Verwendung zur Herstellung von Waschmitteln.
Stand der Technik
Alkyloligogiucoside stellen nichtionische Tenside dar, die durch saure Acetalisierung von Glucose oder Stärkeabbauprodukten mit primären Alkoholen hergestellt werden. Durch Wahl der Prozeßbedingungen läßt sich der durchschnittliche Polymerisationsgrad, d.h. die Verteilung der acetalisierten Mono-, Di-, Tri- und Oligoglucosiden, steuern. Variiert man zusätzlich die Kettenlänge der Alkoholkomponente oder setzt gar Mischungen verschiedener Alkohole ein, sind unzählige Typen von Alkyloligoglucosiden zugänglich, die sich in ihren primären Detergenseigenschaften - Waschen, Emulgieren, Schäumen, Netzen - mehr oder weniger deutlich unterscheiden. Für den Fachmann besteht nun die Aufgabe, das für eine bestimmte Aufgabe geeignetste Alkylglucosid zur Verfügung zu stellen, was bei der großen Zahl möglicher Spezies umfangreiche Testprogramme erforderlich macht, zumal die Strukturparameter nicht alle stets in die gleiche Richtung laufen und Voraussagen über das Verhalten eines definierten Gluco- sids in einer Anwendung daher praktisch nicht möglich ist. Die Entwicklung von Alkyloligoglucosiden mit besonderen Eigenschaften erfolgt daher zwangsläufig nach dem Motto „trial and error".
Alkyloligogiucoside zeichnen sich durch ein Schaumvermögen aus, welches das üblicher nichtionischer Tenside deutlich übersteigt und mehr dem anionischer Tenside ähnelt. Für die Anwendung im Bereich manueller Geschirrspülmittel oder Haarshampoos stellt dies zweifellos einen Vorteil dar, während im Bereich der Waschmittel gerade das umgekehrte Verhalten, nämlich Schaumarmut, gewünscht wird, um ein Überlaufen der Waschmaschine zu verhindern bzw. die erforderliche Menge an Entschäumer möglichst gering zu halten. Ein weiteres Problem besteht darin, daß die handelsüblichen Alkyloligogiucoside insbesondere gegenüber kosmetischen Anschmutzungen ein eher durchschnittliches Reinigungsvermögen zeigen. Dies erklärt, weshalb Alkyloligogiucoside in Waschmittelformulierungen bislang nur eher in bescheidenen Mengen Eingang gefunden haben. In diesem Zusammenhang sei auf die beiden deutschen Patentanmeldungen DE-A1 4319699 und DE- A1 4319700 verwiesen, aus der milde Alkyloligoglucosidmischungen mit definierten Kettenlängen und DP bekannt sind.
Die komplexe Aufgabe der Erfindung hat daher darin bestanden, neue Alkyloligogiucoside zur Verfügung zu stellen, welche sich bei verminderter Schaumentwicklung durch ein verbessertes Waschvermögen, insbesondere gegenüber kosmetischen Anschmutzungen, auszeichnen sollten.
Beschreibung der Erfindung
Gegenstand der Erfindung sind nichtionische Tensidmischungen, bestehend aus (a) Alkyloligoglucosiden der Formel (I),
in der R1 für einen Tetradecylrest, G für einen Glucoserest und p1 für eine Zahl im Bereich von 1 bis 3 steht, und (b) Alkyloligoglucosiden der Formel (II),
in der R2 für einen Hexadecylrest, G für einen Glucoserest und p2 für eine Zahl im Bereich von 1 bis 3 steht, mit der Maßgabe, daß das Gewichtsverhältnis der beiden Komponenten im Bereich von 25 : 75 bis 35 : 65 und der durchschnittliche Polymerisationsgrad im Bereich von 1 ,4 bis 1 ,5 liegt.
Überraschenderweise wurde gefunden, daß die Mischungen sich gegenüber konventionellen Produkten des Handels bei verminderter Schaumentwicklung durch verbesserte Waschleistung, insbesondere gegenüber kosmetischen Anschmutzungen, auszeichnen.
Alkyloligogiucoside
Alkyloligogiucoside stellen bekannte nichtionische Tenside dar, die üblicherweise durch säurekatalysierte Acetalisierung von Glucose oder abgebautem Stärkesirup mit primären Alkoholen hergestellt werden; im Anschluß wird der Katalysator neutralisiert und überschüssiger Alkohol abdestilliert. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B.Salka in Cosm.Toil. 108, 89 (1993) sowie J.Kahre et al. in SÖFW- Journal Heft 8, 598 (1995) verwiesen. Durch die Wahl der Reaktionsbedingungen, insbesondere des Alkoholüberschusses, läßt sich der DP, d.h. der durchschnittliche Polymerisationsgrad einstellen, der eine Maßzahl dafür ist, wieviele Zuckermoleküle unter den Bedingungen der Acetalisierung kondensieren, ehe sie sich mit dem Alkohol verbinden. Bezogen auf die erfindungsgemäße Mischung kann die Indexzahl p1 bzw. p2 für die einzelnen, gewissermaßen kettenreinen Alkylglucoside im Bereich von 1 bis 3 liegen, da es im Sinne der Erfindung nur darauf ankommt, daß die Mischung einen DP von 1 ,4 bis 1 ,5 aufweist. Dies kann beispielsweise dann von Bedeutung sein, wenn die Tensidmischungen durch Ausmischen der Einzelglucoside hergestellt werden. Üblicherweise erfolgt die Herstellung jedoch dergestalt, daß man eine entsprechende Alkoholmischung in die Acetalisierung einsetzt und die Reaktion so steuert, daß sich der gewünschte DP unmittelbar einstellt. Die Alkyloligogiucoside fallen nach der Herstellung in Form wäßriger Pasten mit einem Feststoffgehalt im Bereich von 30 bis 50 Gew.-% an und können in dieser Form direkt eingesetzt werden, insbesondere dann, wenn sie in Flüssigwaschmittel eingearbeitet werden sollen. Es ist jedoch ebenfalls möglich, die Glucoside beispielsweise durch Sprühtrocknung, Wasserdampftrockung oder gleichzeitige Trocknung und Granulierung in einem horizontalen Dünnschichtverdampfer (Flash Dryer) oder in einer Wirbelschichtanlage zu entwässern und dann als trockene Pulver oder Granulate Pulverwaschmitteln zuzumischen.
Gewerbliche Anwendbarkeit
Nachdem sich die erfindungsgemäßen Tensidgemische durch verbesserte Reinigungsleistung bei verminderter Schaumentwicklung auszeichnen, besteht ein weiterer Gegenstand der Erfindung in ihrer Verwendung zur Herstellung von Waschmitteln, insbesondere Flüssigwaschmitteln, in denen sie in Mengen von 5 bis 50, vorzugsweise 10 bis 30 und insbesondere 15 bis 25 Gew.-% - bezogen auf die - enthalten sein können.
Flüssigwaschmittel
Die im Sinne der Erfindung unter Verwendung der nichtionischen Tensidgemische erhältlichen Flüssigwaschmittel können einen nicht wäßrigen Anteil im Bereich von 5 bis 50 und vorzugsweise 15 bis 35 Gew.-% aufweisen. Im einfachsten Fall handelt es sich um wäßrige Lösungen der genannten Tensidmischungen. Bei den Flüssigwaschmitteln kann es sich aber auch um im wesentlichen wasserfreie Mittel handeln. Dabei bedeutet "im wesentlichen wasserfrei" im Rahmen dieser Erfindung, daß das Mittel vorzugsweise kein freies, nicht als Kristallwasser oder in vergleichbarer Form gebundenes Wasser enthält. In einigen Fällen sind geringe Menge an freiem Wasser tolerierbar, insbesondere in Mengen bis zu 5 Gew.-%. Die Flüssigwaschmittel können neben den genannten Tensiden noch weitere typische Inhaltsstoffe, wie beispielsweise Lösungsmittel, Hydrotrope, Bleichmittel, Builder, Viskositätsregulatoren, Enzyme, Enzymstabilisatoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe aufweisen, unter der Voraussetzung, daß diese im wäßrigen Milieu hinreichend lagerstabil sind.
Als organische Lösungsmittel kommen beispielsweise mono- und/oder polyfunktionelle Alkohole mit 1 bis 6 Kohlenstoffatomen, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in Frage. Bevorzugte Alkohole sind Ethanol, 1 ,2-Propandiol, Glycerin sowie deren Gemische. Die Mittel enthalten vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Ethanol oder ein beliebiges Gemisch aus Ethanol und 1 ,2-Propandiol oder insbesondere aus Ethanol und Glycerin. Ebenso ist es möglich, daß die Zubereitungen entweder zusätzlich zu den mono- und/oder polyfunktionellen Alkoholen mit 1 bis 6 Kohlenstoffatomen oder allein Polyethylenglykol mit einer relativen Molekülmasse zwischen 200 und 2000, vorzugsweise bis 600 in Mengen von 2 bis 17 Gew.-% enthalten. Als Hydrotrope können beispielsweise Toluolsulfonat, Xylolsulfonat, Cumolsulfonat oder deren Mischungen eingesetzt werden.
Unter den als Bleichmittel dienenden, in Wasser Wasserstoffperoxid liefernden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie Salze der Persäuren, wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew.-% eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können, trägt es zur Erhöhung der Stabilität des Mittels bei. Vorzugsweise sind die Zubereitungen jedoch frei von derartigen Bleichmitteln.
Geeignete Builder sind Ethylendiamintetraessigsäure, Nitrilotriessigsäure, Citronensäure sowie anorganische Phosphonsäuren, wie z.B. die neutral reagierenden Natriumsalze von 1-Hydroxyethan-1 ,1 ,- diphosphonat, die in Mengen von 0,5 bis 5, vorzugsweise 1 bis 2 Gew.-% zugegen sein können.
Als Viskositätsregulatoren können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Zu den letzteren gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycar- boxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polymethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymeren zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1 % eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere mit verdickender Wirkung. Die quervernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen von 0,2 bis 0,7 Gew.-% eingesetzt. Die Mittel können zusätzlich etwa 5 bis 20 Gew.-% eines partiell veresterten Copolymerisats enthalten, wie es in der europäischen Patentanmeldung EP-A1 0367049 beschrieben ist. Diese partiell veresterten Polymere werden durch Copolymerisation von (a) mindestens einem C -C28-Olefin oder Mischungen aus mindestens einem C -C20-Olefin mit bis zu 20 Mol-% Ci-C∑β-Alkylvinylethern und (b) ethylenisch ungesättigten Dicarbonsäureanhydriden mit 4 bis 8 Kohlenstoffatomen im Molverhältnis 1 : 1 zu Copoly- merisaten mit K-Werten von 6 bis 100 und anschließende partielle Veresterung der Copolymerisate mit Umsetzungsprodukten wie Cι-Ci3-Alkoholen, C-8-C22-Fettsäuren, Cι-Ci2-Alkylphenolen, sekundären C∑- C3o-Aminen oder deren Mischungen mit mindestens einem C2-C -Alkylenoxid oder Tetrahydrofuran sowie Hydrolyse der Anhydridgruppen der Copolymerisate zu Carboxylgruppen erhalten, wobei die partielle Veresterung der Copolymerisate soweit geführt wird, daß 5 bis 50 % der Carboxylgruppen der Copolymerisate verestert sind. Bevorzugte Copolymerisate enthalten als ethylenisch ungesättigtes Dicar- bonsäureanhydrid Maleinsäureanhydrid. Die partiell veresterten Copolymerisate können entweder in Form der freien Säure oder vorzugsweise in partiell oder vollständig neutralisierter Form vorliegen. Vorteilhafterweise werden die Copolymerisate in Form einer wäßrigen Lösung, insbesondere in Form einer 40 bis 50 Gew.-%igen Lösung eingesetzt. Die Copolymerisate leisten nicht nur einen Beitrag zur Primär- und Sekundärwaschleistung des flüssigen Wasch- und Reinigungsmittels, sondern bewirken auch eine gewünschte Viskositätserniedrigung der konzentrierten flüssigen Waschmittel. Durch den Einsatz dieser partiell veresterten Copolymerisate werden konzentrierte wäßrige Flüssigwaschmittel erhalten, die unter dem alleinigen Einfluß der Schwerkraft und ohne Einwirkung sonstiger Scherkräfte fließfähig sind. Vorzugsweise beinhalten die konzentrierten wäßrigen Flüssigwaschmittel partiell vere- sterte Copolymerisate in Mengen von 5 bis 15 Gew.-% und insbesondere in Mengen von 8 bis 12 Gew.-%.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus sub- tilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis etwa 2 Gew.-% betragen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Zusätzlich zu den mono- und polyfunktionellen Alkoholen und den Phos- phonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Nathumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1 ,2-Gew.-%, bezogen auf das Enzym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Ortho- borsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Als schmutzabweisenden Polymere („soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 lie¬ gen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random- Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephtha- lat/Polyethylenglycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 auf- weisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (IG) oder Repelotex® SRP 3 (Rhöne-Poulenc).
Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Ci8-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristaliinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere silikon- oder paraffinhaltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Der pH-Wert der erfindungsgemäßen und insbesondere bevorzugten konzentrierten Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7 bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH- Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Die erfindungsgemäßen Flüssigwaschmittel weisen im allgemeinen Viskositäten zwischen 150 und 10000 mPas (Brookfield-Viskosi- meter, Spindel 1 , 20 Umdrehungen pro Minute, 20°C). Dabei sind bei den im wesentlichen wasserfreien Mitteln Viskositäten zwischen 150 und 5000 mPas bevorzugt. Die Viskosität der wäßrigen Mittel liegt vorzugsweise unter 2000 mPas und liegt insbesondere zwischen 150 und 1000 mPas. Pulverwaschmittel
Werden die erfindungsgemäßen Tensidgemische zur Herstellung von Pulverwaschmitteln verwendet, so können die neben den genannten Tensiden noch weitere typische Inhaltsstoffe, wie beispielsweise Builder, Bleichmittel, Bleichaktivatoren, Waschkraftverstärker, Enzyme, Enzymstabilisatoren, Vergrau- ungsinhibitoren, optische Aufheller, Soil repellants, Schauminhibitoren, anorganische Salze sowie Duft- und Farbstoffe enthalten. Eine Reihe dieser Stoffklassen wurde schon im Kapitel „Flüssigwaschmittel" erläutert.
Als feste Builder wird insbesondere feinkristalliner, synthetisches und gebundenes Wasser enthaltender Zeolith wie Zeolith NaA in Waschmittelqualität eingesetzt. Geeignet sind jedoch auch Zeolith NaX sowie Mischungen aus NaA und NaX. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Ci2-Ci8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen oder ethoxylierte Isotridecanole. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Geeignete Substitute bzw. Teilsubstitute für Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixG^x+ryH∑O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A1 0164514 beschrieben. Bevorzugte kristalline Schichtsilicate sind solche, in denen M in der allgemeinen Formel für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch γ-Natriumdisilicate Na2Si2C,5,yH2θ bevorzugt, wobei ß-Nathumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Die erfindungsgemäßen Pulverwaschmittel enthalten als feste Builder vorzugsweise 10 bis 60 Gew.-% Zeolith und/oder kristalline Schichtsilicate, wobei Mischungen von Zeolith und kristallinen Schichtsilicaten in einem beliebigen Verhältnis besonders vorteilhaft sein können. Insbesondere ist es bevorzugt, daß die Mittel 20 bis 50 Gew.-% Zeolith und/oder kristalline Schichtsilicate enthalten. Besonders bevorzugte Mittel enthalten bis 40 Gew.-% Zeolith und insbesondere bis 35 Gew.-% Zeolith, jeweils bezogen auf wasserfreie Aktivsubstanz. Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche amorphe Silicate; vorzugsweise werden sie in Kombination mit Zeolith und/oder kristallinen Schichtsilicaten eingesetzt. Insbesondere bevorzugt sind dabei Mittel, welche vor allem Nat umsilicat mit einem molaren Verhältnis (Modul) Na∑O : SiO∑ von 1 :1 bis 1 :4,5, vorzugsweise von 1 :2 bis 1 :3,5, enthalten. Der Gehalt der Mittel an amorphen Natriumsilicaten beträgt dabei vorzugsweise bis 15 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%. Auch Phosphate wie Tripolyphos- phate, Pyrophosphate und Orthophosphate können in geringen Mengen in den Mitteln enthalten sein. Vorzugsweise beträgt der Gehalt der Phosphate in den Mitteln bis 15 Gew.-%, jedoch insbesondere 0 bis 10 Gew.-%. Außerdem können die Mittel auch zusätzlich Schichtsilicate natürlichen und synthetischen Ursprungs enthalten. Derartige Schichtsilicate sind beispielsweise aus den Patent-anmeldungen DE-C1 2334899, EP-A1 0026529 und DE-A1 3526405 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)θ2o Montmorrilonit (OH)4Si8-yAly(Mg6-zLiz)θ2o Hectoht (OH) Si8-yAly(MgS-z Alz)0 o Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP-A 0026529 und EP-A 0028432 bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal- ciumionen und stark färbenden Eisenionen sind. Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronen- säure, Adipinsäure, Bemsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitri- lotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citro- nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Der Einsatz polymerer Polycarboxylate ist nicht zwingend erforderlich. Falls jedoch polymere Polycarboxylate eingesetzt werden, so sind Mittel bevorzugt, welche biologisch abbaubare Polymere, beispielsweise Terpolymere, die als Monomere Acrylsäure und Maleinsäure bzw. deren Salze sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Acrylsäure und 2- Alkylallylsulfonsäure bzw. deren Salze sowie Zuckerderivate enthalten. Insbesondere sind Terpolymere bevorzugt, die nach der Lehre der deutschen Patentanmeldungen DE-A1 4221381 und DE-A1 4300772 erhalten werden. Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 Kohlenstoffatome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A1 0280223 beschrieben erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Glucon- säure und/oder Glucoheptonsäure erhalten.
Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit Wasserstoffperoxid organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise N,N'- tetraacylierte Diamine, femer Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin und 1 ,5-Diacetyl-2,4-dioxo-hexahydro-1 ,3,5- triazin.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose, Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhy- droxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische sowie Polyvinylpyrrolidon, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1 ,3,5-triazinyl-6-ami- no)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino- Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Meth- oxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyis, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel außer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, Vorzugs- weise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10"5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Herstellverfahren
Das Schüttgewicht der Waschmittel beträgt im allgemeinen 300 bis 1200 g/l, insbesondere 500 bis 1100 g/l. Ihre Herstellung kann nach jedem der bekannten Verfahren wie Mischen, Sprühtrocknung, Granulieren und Extrudieren erfolgen. Geeignet sind insbesondere solche Verfahren, in denen mehrere Teilkomponenten, beispielsweise sprühgetrocknete Komponenten und granulierte und/oder extrudierte Komponenten miteinander vermischt werden. Dabei ist es auch möglich, daß sprühgetrocknete oder granulierte Komponenten nachträglich in der Aufbereitung beispielsweise mit nichtionischen Tensiden, insbesondere ethoxylierten Fettalkoholen, nach den üblichen Verfahren beaufschlagt werden. Insbesondere in Granululations- und Extrusionsverfahren ist es bevorzugt, die gegebenenfalls vorhandenen Aniontenside in Form eines sprühgetrockneten, granulierten oder extrudierten Compounds entweder als Zumischkomponente in dem Verfahren oder als Additiv nachträglich zu anderen Granulaten einzusetzen. Insbesondere die bevorzugten schwereren Granulate mit Schüttgewichten oberhalb 600 g/l enthalten vorzugsweise Komponenten, welche das Einspülverhalten und/oder das Löseverhalten der Granulate verbessern. Vorteilhafterweise werden hierzu alkoxylierte Fettalkohole mit 12 bis 80 Mol Ethylenoxid pro Mol Alkohol, beispielsweise Taigfettalkohol mit 14 EO, 30 EO oder 40 EO, und Polye- thylenglykole mit einer relativen Molekülmasse zwischen 200 und 12000, vorzugsweise zwischen 200 und 600, eingesetzt.
Ebenso ist es möglich und kann in Abhängigkeit von der Rezeptur von Vorteil sein, wenn weitere einzelne Bestandteile des Mittels, beispielsweise Citrat bzw. Citronensäure oder andere Polycarboxylate bzw. Polycarbonsäuren, polymere Polycarboxylate, Zeolith und/oder Schichtsilikate, die gegebenenfalls kristallin sein können, nachträglich zu sprühgetrockneten, granulierten und/oder extrudierten Komponenten, die gegebenenfalls mit nichtionischen Tensiden und/oder anderen bei der Verarbeitungstemperatur flüssigen bis wachsartigen Inhaltsstoffen beaufschlagt sind, hinzugemischt werden. Bevorzugt ist dabei ein Verfahren, bei dem die Oberfläche von Teilkomponenten des Mittels oder des gesamtem Mittels zur Reduzierung der Klebrigkeit der an Niotensiden reichen Granulate und/oder zu ihrer verbesserten Löslichkeit nachträglich behandelt wird. Geeignete Oberflächenmodifizierer sind dabei aus dem Stand der Technik bekannt. Neben weiteren geeigneten sind dabei feinteilige Zeolithe, Kieselsäuren, amorphe Silikate, Fettsäuren oder Fettsäuresalze, beispielsweise Calciumstearat, insbesondere jedoch Mischungen aus Zeolith und Kieselsäuren oder Zeolith und Calciumstearat besonders bevorzugt. Beispiele
Alkyloligogiucoside unterschiedlicher C-Kettenverteilung im Alkylrest und mit verschiedenen DP wurden hinsichtlich ihrer anwendungstechnischen Eigenschaften charakterisiert. Das Schaumvermögen wurden nach dem Ross-Miles Test in 1 Gew.-%iger Lösung bei 40°C in hartem Wasser (16°) untersucht. Bestimmt wurden Basisschaum und Schaumhöhe nach 20 min. Das Waschvermögen in einer Standard-Flüssigwaschmittelformulierung (Konzentration : 100 g/Waschgang) bei 40°C mit einer Koch/Bunt¬ wäsche wurde in Abhängigkeit verschiedener Anschmutzungen und Gewebe photometrisch gegen einen Bariumsulfat-Weißstandard bestimmt. Angegeben sind die Mittelwerte aus 5 Bestimmungen. Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Beispiel 1 ist erfindungsgemäß, die Beispiele V1 bis V5 dienen zum Vergleich; V5 stellt dabei ein Alkyloligoglucosid des Handels dar.
Tabelle 1
Schaumvermögen und Waschleistung

Claims

Patentansprüche
1. Nichtionische Tensidmischung, bestehend aus (a) Alkyloligoglucosiden der Formel (I),
in der R1 für einen Tetradecylrest, G für einen Glucoserest und p1 für eine Zahl im Bereich von 1 bis 3 steht, und (b) Alkyloligoglucosiden der Formel (II),
R20(G)P2 (II)
in der R2 für einen Hexadecylrest, G für einen Glucoserest und p2 für eine Zahl im Bereich von 1 bis 3 steht, mit der Maßgabe, daß das Gewichtsverhältnis der beiden Komponenten im Bereich von 25 : 75 bis 35 : 65 und der durchschnittliche Polymerisationsgrad der Mischung im Bereich von 1 ,4 bis 1 ,5 liegt.
2. Tensidmischungen nach Anspruch 1 , dadurch gekennzeichnet, daß sie als wäßrige Pasten mit einem Feststoffgehalt im Bereich von 5 bis 50 Gew.-% vorliegen.
3. Tensidmischungen nach Anspruch 1 , dadurch gekennzeichnet, daß sie als wasserfreie Granulate vorliegen.
4. Verwendung von Tensidmischungen nach Anspruch 1 zur Herstellung von Waschmitteln.
5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, daß man die Tensidmischungen zur Herstellung von Flüssigwaschmitteln verwendet.
EP99953790A 1998-10-21 1999-10-12 Nichtionische tensidmischungen Withdrawn EP1123373A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19848549 1998-10-21
DE1998148549 DE19848549A1 (de) 1998-10-21 1998-10-21 Nichtionische Tensidmischungen
PCT/EP1999/007664 WO2000023551A1 (de) 1998-10-21 1999-10-12 Nichtionische tensidmischungen

Publications (1)

Publication Number Publication Date
EP1123373A1 true EP1123373A1 (de) 2001-08-16

Family

ID=7885206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953790A Withdrawn EP1123373A1 (de) 1998-10-21 1999-10-12 Nichtionische tensidmischungen

Country Status (4)

Country Link
EP (1) EP1123373A1 (de)
JP (1) JP2002527608A (de)
DE (1) DE19848549A1 (de)
WO (1) WO2000023551A1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4019790A1 (de) * 1990-06-21 1992-01-02 Henkel Kgaa Fluessige alkylglykosidhaltige tensidmischung
DE4319700A1 (de) * 1993-06-16 1994-12-22 Henkel Kgaa Ultramilde Tensidmischungen
FR2712595B1 (fr) * 1993-11-19 1995-12-22 Seppic Sa Un concentré comportant des alkylglycosides et ses utilisations.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0023551A1 *

Also Published As

Publication number Publication date
DE19848549A1 (de) 2000-04-27
WO2000023551A1 (de) 2000-04-27
JP2002527608A (ja) 2002-08-27

Similar Documents

Publication Publication Date Title
EP1148868B1 (de) Detergensgemische
WO1995020029A1 (de) Gerüststoff für wasch- oder reinigungsmittel
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
DE69723607T2 (de) Tensid-Mischungen, Verfahren zu ihrer Herstellung und diese enthaltende teilchenförmige Reinigungsmittelzusammensetzungen
DE4024531A1 (de) Fluessigwaschmittel
DE19624416A1 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
WO1994013771A1 (de) Granulare wasch- und reinigungsmittel mit hohem tensidgehalt
EP1217064B1 (de) Nichtionische Tenside
DE19723616A1 (de) Granulares Waschmittel
EP1123372B1 (de) Nichtionische tensidmischungen
EP1141186B1 (de) Tensidgranulate
WO2000023551A1 (de) Nichtionische tensidmischungen
EP0784668A1 (de) Verbessertes extrusionsverfahren zur herstellung von waschmitteln
DE19624415A1 (de) Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
EP0705328A1 (de) Waschmittel mit verfärbungsinhibierenden eigenschaften
WO1999010471A1 (de) Feste waschmittel enthaltend fettsäurepolyglycolestersulfate und feste builder
WO1994000544A1 (de) Granulares wasch- und reinigungsmittel
EP0769045B1 (de) Waschmittel mit cellulase
EP0745119B1 (de) Verfahren zur herstellung von sprühgetrockneten granulaten
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
DE4408502A1 (de) Sprühgetrocknetes Granulat mit hohem Schüttgewicht
EP2036973A1 (de) Tensidsysteme
DE19611014A1 (de) Verfahren zur Herstellung rieselfähiger Wasch- oder Reinigungsmittel
DE19939804A1 (de) Schaumkontrollierte feste Waschmittel
DE4300658A1 (de) Wasch- und Reinigungsmittel in flüssiger bis pastöser Form

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020502