EP1122415A2 - Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor - Google Patents
Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor Download PDFInfo
- Publication number
- EP1122415A2 EP1122415A2 EP01100840A EP01100840A EP1122415A2 EP 1122415 A2 EP1122415 A2 EP 1122415A2 EP 01100840 A EP01100840 A EP 01100840A EP 01100840 A EP01100840 A EP 01100840A EP 1122415 A2 EP1122415 A2 EP 1122415A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- exhaust gas
- internal combustion
- fuel ratio
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1486—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
- F02D41/1488—Inhibiting the regulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
Definitions
- the invention relates to a method for adjusting the air-fuel ratio in an internal combustion engine, the exhaust gases of a catalyst are supplied, with the method of an engine control the signal of a seen in the flow direction of the exhaust gas before Catalyst arranged first exhaust gas sensor and the signal of an in Direction of flow seen after the catalyst arranged second Exhaust gas sensor is detected, the engine control during a closed-loop operating mode of the internal combustion engine based on the signal of the first exhaust gas sensor the air-fuel ratio of the internal combustion engine supplied air-fuel mixture to a predetermined Air-fuel ratio sets, and the engine control in the event of a deviation the set air-fuel ratio of one stoichiometric mass ratio the signal of the second exhaust gas sensor to readjust the set air-fuel ratio to the stoichiometric mass ratio used.
- the engine control also has a stoichiometric mass ratio allows a different setting of the air-fuel ratio, for example during a downhill descent of the motor vehicle or during the throttling of the fuel supply when the motor vehicle is moving it is desirable that the set air-fuel ratio from stoichiometric mass ratio deviates so that the internal combustion engine the vehicle brakes. So that the performance of the catalyst despite the air / fuel mixture not adjusted to the stoichiometric mass ratio has a sufficiently high turnover rate, the A correspondingly large surface area so that the exhaust gases in can be oxidized or reduced to a sufficient extent.
- the invention solves the problem by a method with the features according to claim 1, and in particular in that after an operation of the Internal combustion engine in an open-loop operating mode, in which the Motor control also deviates from the stoichiometric mass ratio Adjusting the air-fuel ratio takes place while a subsequent operation of the internal combustion engine in the closed-loop operating mode the readjustment of the air-fuel ratio with Be temporarily deactivated with the help of the signal of the second exhaust gas sensor can.
- the second Exhaust gas sensor detects an exhaust gas composition that is not the actual one Operating conditions of the internal combustion engine corresponds. Otherwise would be the air-fuel ratio to be set by the engine control of the mixture to be supplied to the internal combustion engine Determined the basis of adulterated exhaust gas compositions, which in turn to an unfavorable setting of the air-fuel ratio would lead.
- the air-fuel ratio is readjusted again activated so that the optimal operation of the internal combustion engine and the highest possible conversion rate of the catalyst required Adjustment of the air-fuel ratio of the mixture possible again becomes.
- this method proposes only within one predetermined first period to check whether the value of the second exhaust gas sensor signal below the predetermined minimum Threshold is. Because the exhaust gas is an example of the engine speed dependent time taken by the internal combustion engine the catalyst to get to the second exhaust gas sensor is on this Way ensured that when assessing whether the readjustment is switched off should actually be the composition of the exhaust gas is determined that immediately before switching from the open loop mode of the internal combustion engine in the closed-loop mode in the cylinders of the internal combustion engine has flowed in.
- the specified first period is specified as a fixed value for this, for example one Corresponds to the period of time that the exhaust gas during operation of the internal combustion engine at idle required by the internal combustion engine through the catalyst to get to the second exhaust gas sensor.
- the engine control defines to assess whether the air-fuel mixture with air or Fuel must be enriched at a current switching point at which Exceeded by the value of the signal from the first exhaust gas sensor the mixture with air and when it falls below the mixture with Fuel is enriched.
- the first exhaust gas sensor works in this way quasi as a digital sensor with a fixed switching point, which means a Particularly responsive regulation of the air-fuel ratio in a mixture is possible.
- the current switching point from the engine control to a predetermined Set the switching point as soon as the readjustment of the air-fuel ratio is deactivated is like this chosen that the internal combustion engine a lean air-fuel mixture or a rich air-fuel mixture in which the supplied Amount of fuel above the stoichiometrically required amount of fuel lies, is supplied so that the conveyed from the internal combustion engine Exhaust the catalyst from the intermediates stored in it cleans or compensates for these intermediates.
- Lambda sensors are preferably used as exhaust gas sensors depending on the oxygen content of the exhaust gas Voltage applied by the engine controller to determine the air-fuel ratio is tapped because lambda sensors are a quasi digital Show behavior which for determining the air-fuel ratio is particularly suitable due to the motor control.
- the current switching point is at its exceeding the mixture with air or falling below it the mixture is enriched with fuel by a voltage value defined by the motor control with the tapped Voltage of the first lambda probe is compared.
- Fig. 1 is an arrangement 10 for controlling in a schematic representation and controlling an internal combustion engine 12 one not shown Motor vehicle shown.
- the outlet of the internal combustion engine 12 is with a front silencer 14, an exhaust system 16 in flow connection.
- the front silencer 14 is in turn provided with a catalytic converter 18 connected, which merges into a central silencer 20.
- At the middle silencer 20 closes a rear silencer, not shown the exhaust system 16.
- one second lambda probe 24 positioned with its probe section in the connecting pipe of the catalytic converter 18 to the center silencer 20 protrudes.
- the two lambda probes 22 and 24 are electrically conductive with one Engine control 26 connected, which in turn is connected to an injection system 28 of the engine 12 is electrically connected.
- the injection system 28 is fueled by a fuel line 30 and by an intake port 32 supplied air.
- the injection system 28 generates regulated by the motor controller 26, one according to the specifications of Engine control 26 adjusted air-fuel mixture, which in the individual Cylinder of the internal combustion engine 12 is injected in a known manner becomes.
- the two lambda probes 22 and 24 record the oxygen content of the exhaust gas in the flow direction before and after the catalytic converter 18.
- the mode of operation of the two identically designed lambda probes 22 and 24 is explained in more detail below with reference to FIG. 2.
- the two lambda probes 22 and 24 work according to the principle of a galvanic oxygen concentration cell, the oxygen concentration in the exhaust gas being compared with the oxygen concentration in the ambient air. If the oxygen concentration of the exhaust gas differs from the oxygen concentration of the air, a voltage U 1 or U 2 corresponding to the concentration difference is applied to the lambda probe 22 or 24.
- the two lambda probes 22 and 24 are designed such that they show the characteristic curve profile of the probe voltage U 1 and U 2 shown in FIG. 2 with respect to the air ratio ⁇ .
- the probe voltage U 1 or U 2 is approximately 950 mV when the air ratio ⁇ ⁇ 0.9.
- the characteristic curve shows an approximately parallel course to the high-value axis, ie that even the smallest changes in the air ratio ⁇ lead to large changes in voltage.
- the slope of the characteristic curve decreases again until the branch shown on the right in FIG. 2 from ⁇ > 1.1 runs approximately parallel to the legal value axis.
- a high probe voltage U 1 or U 2 is present at the lambda probe 22 or 24 if the air-fuel mixture burned in the internal combustion engine 12 had a fuel quantity above the stoichiometrically required fuel quantity before the combustion, so that the air ratio ⁇ ⁇ 1.
- the characteristic curve shows an extremely low probe voltage.
- the air ratio ⁇ is approximately 1, an abrupt change in the probe voltage occurs.
- the first lambda probe 22 detects the oxygen content of the exhaust gas of the internal combustion engine 12 immediately upstream of the catalytic converter 18 and passes the detected oxygen concentration on to the engine controller 26 as the first probe voltage U 1 .
- the exhaust gas continues to flow through the catalytic converter 18, is catalyzed in it and finally flows into the central silencer 20.
- the exhaust gas catalyzed by the catalytic converter 18 is detected by the second lambda probe 24, which determines the oxygen content of the catalyzed exhaust gas and transmits it to the second sensor voltage U 2 Engine control 26 forwards.
- the engine controller 26 determines, based on the first probe voltage U 1, the air-fuel ratio to be set in a known manner from a map in which different operating conditions of the engine based on the air ratio ⁇ are stored. Since, for example, due to aging processes, insufficient combustion of the internal combustion engine 12 and the like, the air-fuel ratio determined by the engine controller 26 on the basis of the first probe voltage U 1 can deviate from the desired stoichiometric air-fuel ratio, the second probe voltage is used U 2 checks the previously set air-fuel ratio and adjusts if necessary. In accordance with the air-fuel ratio determined in this way, the injection system 28 is now controlled, which supplies the internal combustion engine 12 with the previously set amount of fuel and air.
- FIG. 3 shows the course of the probe voltage U 1 over a longer period of time, the line running parallel to the time axis defining a switching point U bias .
- the air-fuel ratio is regulated in accordance with the curve shown in FIG. 3, so that the first probe voltage U 1 exhibits an approximately sinusoidal curve around the switching point U bias .
- the previously described closed loop operating mode can no longer be maintained. If the motor vehicle is driven downhill, for example, with a low gear, the internal combustion engine 12 should work as a so-called "engine brake". For this purpose, an air-fuel mixture containing a very high proportion of air is supplied to the internal combustion engine 12. Since the engine controller 26 would attempt to set the air / fuel mixture to a stoichiometric mass ratio in the closed-loop operating mode of the combustion mode 12, this would run counter to the braking function of the internal combustion engine 12.
- the internal combustion engine 12 is operated in such a case in the so-called open-loop operating mode, in which the engine controller 26 sets an air-fuel ratio of the mixture that differs from the stoichiometric mass ratio in accordance with stored data.
- the two lambda probes 22 and 24 record the oxygen content of the exhaust gas, but the determined probe voltages U 1 and U 2 are not used directly to set the air-fuel ratio of the mixture.
- the catalytic converter 18 is usually designed in such a way that that a predetermined amount of oxygen is stored in the catalyst 18 is a predetermined percentage of the maximum in the catalyst 18 corresponds to the amount of oxygen to be stored, provided the conversion rate of the catalyst 18 has not already been removed by aging processes Has.
- the exhaust gas flows through the catalytic converter 18 Hydrocarbon molecules and the carbon monoxide molecules through the Oxygen stored in the catalyst is oxidized, while not with Oxygen occupied the surface sections of the catalyst 18 Reduce nitrogen oxides and store the oxygen.
- closed loop mode of the internal combustion engine 12 prevails in the catalytic converter 18 a balance between the oxidation and reduction reactions, so that the exhaust gases catalyze according to the legal requirements can be, if at least approximately in the internal combustion engine 12 stoichiometric air-fuel mixture is burned.
- the table below shows the test results of a Test cycle of the according to the specifications of the MVEG (Motor Vehicle Emission Group) of the European Union. In this series of experiments a total of four city cycles (supercycles) driven at which the maximum speed is about 50 km / h.
- the average total turnover rate of catalyst 18 (about 97% each) during a normal city cycle or overland cycle compared to the average turnover rate, which the catalyst 18 in a short cycle immediately after Open-loop operation, in which the internal combustion engine with a Speed of about 35 km / h or 50 km / h was operated.
- FIG. 4 shows a diagram in which the probe voltages are plotted over time. If the arrangement 10 is operated in a conventional manner, the entire control takes about 70 seconds to function properly again. While the probe voltage U 1 of the first lambda probe 22 oscillates around the switching point U bias , the second probe voltage U 2 of the second lambda probe 24 shows very low values which indicate to the engine control 26 that the oxygen content in the exhaust gas is too high, so that the engine control 26 has a correspondingly richer value Mixture sets what would not be required per se. In order to avoid this, the method according to the invention described below with reference to FIG. 5 is used, the proper operation of the catalytic converter being possible again in a comparatively short time.
- the engine controller 26 continuously checks in a step S 101 whether the internal combustion engine 12 is operated from an open-loop operating mode in a subsequent closed-loop operating mode. If this is not the case, engine controller 26 returns to its main routine (out), in which it adjusts the air-fuel ratio in a conventional manner, for example. In contrast, if the internal combustion engine 12 was previously operated in an open-loop operating mode while it is subsequently operated in a closed-loop operating mode, a counter is activated in a subsequent document S 102, which counts a predetermined time period t 1 .
- step S 201 the current value of the counter t is compared with the predetermined time t 1 . If the current time t is below the predetermined time period ti, the engine control 26 proceeds to step S 202.
- step S 202 it is checked whether the current probe voltage U 2 of the second lambda probe 24 is below a minimum threshold value U min , ie in step S 202 it is checked whether the oxygen concentration detected by the second lambda probe 24 is above or below a predetermined oxygen concentration. If the oxygen concentration in the exhaust gas is above the threshold value, the second probe voltage U 2 is below the minimum permissible voltage value U min . If, on the other hand, the oxygen concentration is below the threshold value, the second probe voltage U 2 is above the minimum permissible threshold value. In the exemplary embodiment shown, the threshold value U min is approximately 100 mV.
- step S 202 If it is detected in step S 202 that the second probe voltage U 2 is above the minimum permissible threshold value U min , the control returns to step S 201 and checks whether the time t currently counted by the counter corresponds to the predetermined time period t 1 . This process is repeated until either it is detected in step S 201 that the current time t corresponds to the predetermined time period t 1 , or it is determined in step S 202 that the second probe voltage U 2 falls below the minimum permissible threshold value U min .
- step S 301 If the current time t counted by the counter corresponds to the predetermined time period t 1 , the control proceeds to step S 301. If, on the other hand, the second probe voltage U 2 is below the minimum permissible threshold value U min , the engine control 26 continues with step S 203.
- step S 203 the engine controller 26 deactivates the readjustment function, so that during the closed-loop operating mode of the internal combustion engine 12, the air / fuel mixture is only adjusted based on the first probe voltage U 1 of the first lambda probe 22 upstream of the catalytic converter 18. while the second probe voltage U 2 is not taken into account when setting the mixture.
- the engine control unit 26 jumps to step S 301.
- the engine control unit 26 therefore checked in steps S 201 to S 203 whether the oxygen content contained in the exhaust gas exceeds a value that is correct Regulation of the air-fuel ratio of the mixture is hampered by the engine control 26, or whether the oxygen content in the exhaust gas has such a low value that the engine control 26 can determine the mixture on the basis of both probe voltages U 1 and U 2 . In this way, it is ensured that the readjustment is only deactivated when the oxygen content in the catalytic converter 18 has risen so high due to the previous mode of operation in the open-loop operation of the internal combustion engine 12 that during the subsequent closed-loop operation of the internal combustion engine 12 a proper setting of the mixture would not be possible.
- step S 301 the engine controller 26 checks whether the readjustment has been deactivated or not. If the readjustment has not been deactivated, the engine control 26 returns to its main routine. If, on the other hand, it is determined in step S 301 that the readjustment has been deactivated, the engine control 26 continues with step S 302. In step S 302 it is checked whether the switching point U bias currently set by the engine controller 26 is below a lowest permissible switching point U DFCO of approximately 609 mV. The current switching point U bias is usually around 482 mV. Nevertheless, it is possible that the current switching point already has a higher value due to a previous setting.
- the predetermined switching point U DFCO is approximately 609 mV, so that if this predetermined switching point were used, the engine control 26 would set a rich air-fuel mixture which contained a fuel quantity which was above the stoichiometrically required amount.
- step S 302 determines in step S 302 that the current switching point U bias is greater than or equal to the predetermined switching point U DFCO . If the engine controller 26 determines in step S 302 that the current switching point U bias is greater than or equal to the predetermined switching point U DFCO , the engine controller 26 jumps to step S 401. On the other hand, the engine controller 26 determines in step S 302 that the current switching point U bias is below the predetermined switching point U DFCO , it jumps to step S 303, in which the value of the current switching point U bias is set to the value of the predetermined switching point U DFCO . The engine control 26 then jumps to step S 401. In steps S 301 to S 303, the switching point at which the engine control 26 regulates the mixture based on the first probe voltage U 1 is increased, so that the mixture as a whole has a higher fuel content .
- step S 401 the motor controller 26 now checks whether the second probe voltage U 2 is above a maximum permissible threshold value, which in the present case corresponds to approximately 501 mV. In other words, the engine controller 26 checks in step S 401 whether the oxygen concentration in the exhaust gas has already decreased after catalyzing to such an extent that proper regulation is possible again.
- step S 402. the counter is reactivated and in step S 403 the current time t is compared with a second time period t 2 until the current value t of the counter corresponds to the predetermined time period t 2 corresponds. If this is the case, the engine control 26 jumps to step S 404, in which the readjustment is activated again. Control then jumps from step S 404 to its main routine. In steps S 401 and S 404 it is checked whether the oxygen stored in the catalytic converter 18 has reached such a low level that proper readjustment is possible again with the aid of the second probe voltage U 2 .
- the engine controller 26 detects that the internal combustion engine 12 is again operated in a closed loop operating mode after an open-loop operating mode, the engine controller 26 checks in steps S 201 to S 203 whether the oxygen concentration in the exhaust gas after the catalytic converter 18 has reached such a high value that proper readjustment using the second probe voltage U 2 is no longer possible. If this is the case, the readjustment is deactivated. The current switching point U bias is then raised to a predetermined switching point U DFCO in steps S 302 and S 303, as shown in FIG. 4.
- the motor controller 26 continuously checks in step S 401 whether the second probe voltage U 2 corresponds to the maximum permissible threshold value U max . In the diagram shown in FIG. 4, this is the case as soon as the second probe voltage U 2 has reached a value of 501 mV. Subsequently, the readjustment that takes place with the aid of the second probe voltage U 2 is reactivated and the predetermined switching point U DFCO is reset to the current switching point U bias in a step that is not shown.
- the conversion rates of the catalyst 18 were determined for 30 seconds during a closed-loop operation at a speed of approximately 50 km / h, which followed an open-loop operation of the internal combustion engine 12 at a speed of 70 km / h .
- the various conversion rates in Table 2 show that if the readjustment is deactivated and the switching point U bias is simultaneously increased to the higher U DFCO value, the conversion rates of the catalyst 18 can be significantly improved.
- the method according to the invention ensures that the Catalyst 18 in a shorter time by deactivating the readjustment and raising the switching point of the first lambda probe 22 the catalyst 18 reaches its maximum conversion rates faster.
- the catalyst can have a lower conversion rate Have capacity than when using a conventional control method without deactivating the readjustment since the catalytic converter when using the method according to the invention no longer has a accordingly increased storage capacity for the resulting oxygen must be designed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
- Fig. 1
- eine schematische Darstellung einer Anordnung, die nach dem erfindungsgemäßen Verfahren einen Verbrennungsmotor regelt,
- Fig. 2
- ein Diagramm, in dem die Spannungskennlinie einer Lambdasonde bezogen auf das Luftverhältnis λ dargestellt ist,
- Fig. 3
- ein Diagramm, in dem die Sondenspannung der Lambdasonde bezogen auf die Zeit dargestellt ist,
- Fig. 4
- ein Diagramm, in dem die Verläufe der Sondenspannungen der beiden Lambdasonden bezogen auf die Zeit mit und ohne Deaktivierung der Nachregelung gezeigt sind, und
- Fig. 5
- ein Ablaufdiagramm des erfindungsgemäßen Verfahrens.
Versuchszyklus | durchschnittliche Umsatzrate NOx |
Stadtzyklus normal | 97% |
Kurzzyklus unmittelbar nach Open-Loop-Betrieb | 83% |
Überlandzyklus normal | 97% |
Kurzzyklus unmittelbar nach Open-Loop-Betrieb | 74% |
Schaltpunkt | HC [%] | CO [%] | NOx [%] |
480 mV | 100% | 99,6% | 84% |
600 mV | 100% | 99,6% | 89% |
650 mV | 100% | 99,7% | 94% |
Versuchszyklus | durchschnittliche Umsatzrate NOx |
Stadtzyklus normal | 97,5% |
Kurzzyklus unmittelbar nach Open-Loop-Betrieb | 90% |
Überlandzyklus normal | 98% |
Kurzzyklus unmittelbar nach Open-Loop-Betrieb | 90% |
- 10
- Anordnung
- 12
- Verbrennungsmotor
- 14
- Vorschalldämpfer
- 16
- Abgasanlage
- 18
- Katalysator
- 20
- Mittelschalldämpfer
- 22
- erste Lambdasonde
- 24
- zweite Lambdasonde
- 26
- Motorsteuerung
- 28
- Einspritzanlage
- 30
- Kraftstoffleitung
- 32
- Ansaugstutzen
- U1
- erste Sondenspannung
- U2
- zweite Sondenspannung
- λ
- Luftverhältnis
- t1
- erster Zeitraum
- Umin
- unterer Schwellenwert
- Ubias
- aktueller Schaltpunkt
- UDFCO
- vorgegebener Schaltpunkt
- Umax
- oberer Schwellenwert
- t2
- zweiter Zeitraum
Claims (12)
- Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor (12), dessen Abgase einem Katalysator (18) zugeführt werden, wobei bei dem Verfahrenvon einer Motorsteuerung (26) das Signal (U1) eines in Strömungsrichtung des Abgases gesehen vor dem Katalysator (18) angeordneten ersten Abgassensors (22) und das Signal (U2) eines in Strömungsrichtung gesehen nach dem Katalysator (18) angeordneten zweiten Abgassensors (24) erfaßt wird,die Motorsteuerung (26) während eines Closed-Loop-Betriebsmodus des Verbrennungsmotors (12) basierend auf dem Signal (U1) des ersten Abgassensors (22) das Luft-Kraftstoff-Verhältnis des dem Verbrennungsmotor (12) zugeführten Luft-Kraftstoff-Gemisches auf ein vorgegebenes Luft-Kraftstoff-Verhältnis einstellt, unddie Motorsteuerung (26) bei einer Abweichung des eingestellten Luft-Kraftstoff-Verhältnisses von einem stöchiometrischen Massenverhältnis das Signal (U2) des zweiten Abgassensors (24) zur Nachregelung des eingestellten Luft-Kraftstoff-Verhältnisses auf das stöchiometrische Massenverhältnis verwendet,
daß nach einem Betrieb des Verbrennungsmotors (12) in einem Open-Loop-Betriebsmodus, bei dem die Motorsteuerung (26) auch ein vom stöchiometrischen Massenverhältnis abweichendes Einstellen des Luft-Kraftstoff-Verhältnisses vornimmt, während eines nachfolgenden Betriebes des Verbrennungsmotors (12) im Closed-Loop-Betriebsmodus die Nachregelung des Luft-Kraftstoff-Verhältnisses mit Hilfe des Signals (U2) des zweiten Abgassensors (24) zeitweise deaktiviert werden kann. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Nachregelung des Luft-Kraftstoff-Verhältnisses während des nachfolgenden Closed-Loop-Betriebsmodus des Verbrennungsmotors (12) dann zeitweise deaktiviert wird, wenn der Verbrennungsmotor (12) während des Open-Loop-Betriebsmodus mit einem mageren Luft-Kraftstoff-Gemisch betrieben wurde, bei dem die Luftmenge des Luft-Kraftstoff-Gemisches über der stöchiometrisch erforderlichen Luftmenge liegt. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet,
daß die Nachregelung des Luft-Kraftstoff-Verhältnisses nur dann deaktiviert wird, wenn das vom zweiten Abgassensor (24) an die Motorsteuerung (26) abgegebene Signal (U2) einen Wert annimmt, der unter einem vorgegebenen minimalen Schwellenwert (Umin) liegt. - Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
daß die Motorsteuerung (26) nur innerhalb eines vorgegebenen ersten Zeitraumes (ti) überprüft, ob der Wert des vom zweiten Abgassensor (24) abgegebenen Signals (U2) unter dem vorgegebenen minimalen Schwellenwert (Umin) liegt. - Verfahren nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet,
daß die Nachregelung des Luft-Kraftstoff-Verhältnisses nach der Deaktivierung wieder aufgenommen wird, wenn das vom zweiten Abgassensor (24) an die Motorsteuerung (26) abgegebene Signal (U2) einen Wert annimmt, der über einem vorgegebenen maximalen Schwellenwert (Umax) liegt. - Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
daß die Nachregelung des Luft-Kraftstoff-Verhältnisses erst nach Ablauf einer vorgegebenen zweiten Zeitdauer (t2) wieder aufgenommen wird, nachdem die Motorsteuerung (26) erfaßt hat, daß der Wert des vom zweiten Abgassensor (24) an die Motorsteuerung (26) abgegebenen Signals (U2) über dem vorgegebenen maximalen Schwellenwert (Umax) liegt. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß die das Signal (U1) des ersten Abgassensors (22) erfassende Motorsteuerung (26) während des Closed-Loop-Betriebsmodus des Verbrennungsmotors (12) zur Beurteilung, ob das Luft-Kraftstoff-Gemisch mit Luft oder Kraftstoff angereichert werden muß, einen aktuellen Schaltpunkt (Ubias) definiert, bei dessen Überschreiten durch den Wert des Signals (U1) des ersten Abgassensors (22) das Luft-Kraftstoff-Gemisch mit Luft und bei dessen Unterschreiten durch den Wert des Signals (U1) des ersten Abgassensors (22) das Luft-Kraftstoff-Gemisch mit Kraftstoff angereichert wird. - Verfahren nach Anspruch 7,
dadurch gekennzeichnet,
daß, sobald die Nachregelung des Luft-Kraftstoff-Verhältnisses deaktiviert wird, der aktuelle Schaltpunkt (Ubias) von der Motorsteuerung (26) auf einen vorgegebenen Schaltpunkt (UDFCO) eingestellt wird. - Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
daß der aktuelle Schaltpunkt (Ubias) nur dann auf den vorgegebenen Schaltpunkt (UDFCO) eingestellt wird, wenn der Betrag des aktuellen Schaltpunktes (Ubias) unter dem Betrag des vorgegebenen Schaltpunktes (UDFCO) liegt. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß jeder Abgassensor eine Lambdasonde (22, 24) ist, an der in Abhängigkeit vom Sauerstoffgehalt des Abgases eine Spannung (U1, U2) anliegt, die von der Motorsteuerung (26) zum Bestimmen des Luft-Kraftstoff-Verhältnisses abgegriffen wird. - Verfahren nach den Ansprüchen 7 und 10, 8 und 10 oder 9 und 10,
dadurch gekennzeichnet,
daß der aktuelle Schaltpunkt durch einen Spannungswert (Ubias) definiert ist, der von der Motorsteuerung (26) mit der abgegriffenen Spannung (U1) der ersten Lambdasonde (22) verglichen wird. - Verfahren nach Anspruch 11,
dadurch gekennzeichnet,
daß der vorgegebene Schaltpunkt ein zweiter Spannungswert (UDFCO) ist, mit dem die Motorsteuerung (26) den ersten Spannungswert (Ubias) gegebenenfalls ersetzt und mit der an der ersten Lambdasonde (22) abgegriffenen Spannung (U1) vergleicht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10004416 | 2000-02-02 | ||
DE2000104416 DE10004416A1 (de) | 2000-02-02 | 2000-02-02 | Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1122415A2 true EP1122415A2 (de) | 2001-08-08 |
EP1122415A3 EP1122415A3 (de) | 2003-10-29 |
EP1122415B1 EP1122415B1 (de) | 2006-06-14 |
Family
ID=7629494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010100840 Expired - Lifetime EP1122415B1 (de) | 2000-02-02 | 2001-01-15 | Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1122415B1 (de) |
DE (2) | DE10004416A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706959B2 (en) | 2006-04-18 | 2010-04-27 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Method for adjusting the air/fuel ratio of an internal combustion engine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006017863B3 (de) * | 2006-04-18 | 2007-03-22 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zum Einstellen des Luft-/Kraftstoffverhältnisses eines Verbrennungsmotors |
DE102007062657A1 (de) | 2007-12-24 | 2009-06-25 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zum Einstellen des Luft-/Kraftstoffverhältnisses eines Verbrennungsmotors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077971A (en) * | 1989-06-27 | 1992-01-07 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Air/fuel ratio control system for an internal combustion engine |
US5228286A (en) * | 1991-05-17 | 1993-07-20 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control device of engine |
EP0595586A2 (de) * | 1992-10-30 | 1994-05-04 | Ford Motor Company Limited | Verfahren zur Steuerung des Lüft-Kraftstoffverhältnisses in einer Innenbrennkraftmaschine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61244848A (ja) * | 1985-04-22 | 1986-10-31 | Nissan Motor Co Ltd | 空燃比制御装置 |
JPS62162746A (ja) * | 1986-01-10 | 1987-07-18 | Nissan Motor Co Ltd | 空燃比制御装置 |
JP3326811B2 (ja) * | 1992-05-19 | 2002-09-24 | 株式会社デンソー | 内燃機関のリーンバーン制御装置 |
-
2000
- 2000-02-02 DE DE2000104416 patent/DE10004416A1/de not_active Withdrawn
-
2001
- 2001-01-15 EP EP20010100840 patent/EP1122415B1/de not_active Expired - Lifetime
- 2001-01-15 DE DE50110087T patent/DE50110087D1/de not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077971A (en) * | 1989-06-27 | 1992-01-07 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Air/fuel ratio control system for an internal combustion engine |
US5228286A (en) * | 1991-05-17 | 1993-07-20 | Toyota Jidosha Kabushiki Kaisha | Air-fuel ratio control device of engine |
EP0595586A2 (de) * | 1992-10-30 | 1994-05-04 | Ford Motor Company Limited | Verfahren zur Steuerung des Lüft-Kraftstoffverhältnisses in einer Innenbrennkraftmaschine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706959B2 (en) | 2006-04-18 | 2010-04-27 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Method for adjusting the air/fuel ratio of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
DE50110087D1 (de) | 2006-07-27 |
EP1122415B1 (de) | 2006-06-14 |
DE10004416A1 (de) | 2001-08-09 |
EP1122415A3 (de) | 2003-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0697062B1 (de) | Verfahren und einrichtung zur gesteuerten einbringung eines reduktionsmittels in ein stickoxidhaltiges abgas | |
DE10103772C2 (de) | Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält | |
DE19755600C2 (de) | Betrieb eines Verbrennungsmotors in Verbindungmit einem NOx-Speicherkatalysator | |
DE102008059698A1 (de) | Verfahren zum Betreiben eines Dieselmotors mit einer einen Stickoxid-Speicherkatalysator aufweisenden Abgasreinigungsanlage | |
DE60102865T2 (de) | Vorrichtung zum Reinigen des Abgases einer Brennkraftmaschine | |
DE10339005A1 (de) | Abgasreinigungsverfahren für Verbrennungsmtoor | |
DE102006014249A1 (de) | Verfahren zur Vorsteuerung eines Lambda-Wertes | |
EP1285159A1 (de) | Verfahren zum betrieben eines dieselmotors und dieselmotor | |
EP1122415B1 (de) | Verfahren zum Einstellen des Luft-Kraftstoff-Verhältnisses bei einem Verbrennungsmotor | |
DE102004017886B3 (de) | Verfahren und Vorrichtung zur Lambdaregelung einer Brennkraftmaschine mit Abgaskatalysator | |
EP1111208B1 (de) | Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine eines Kraftfahrzeuges während einer Regeneration eines in einem Abgaskanal angeordneten Speicherkatalysators | |
EP1035313A2 (de) | Verfahren und Vorrichtung zur Abgastemperaturerhöhung | |
DE10309421B4 (de) | Verfahren zur Diagnose eines Katalysators in Abgasstrom einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens | |
DE10038458B4 (de) | Vorrichtung und Verfahren zur Abgasreinigung | |
AT521758B1 (de) | Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Schubabschaltungsstrategie | |
DE10127669B4 (de) | Verfahren zur Regeneration von NOx-Speicherkatalysatoren in mehrflutigen Abgasanlagen | |
WO2004016929A1 (de) | Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine | |
DE10010031B4 (de) | Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators | |
DE10164931B4 (de) | Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators und Anwendung des Verfahrens | |
DE10103557B4 (de) | Verfahren und Vorrichtung zur Entschwefelung einer Katalysatoreinrichtung | |
DE102004038482B3 (de) | Verfahren zur Regelung des einer Brennkraftmaschine zugeführten Luft/Kraftstoffverhältnisses | |
EP1241336A2 (de) | Verfahren und Vorrichtung zur Regelung einer externen Abgasrückführrate und/oder eines Luft Kraftstoff-Verhältnisses | |
DE102007038478A1 (de) | Verfahren zur λ-Regelung in Betriebsbereichen mit Kraftstoff-Mangel oder Kraftstoff-Überschuss bei einer Nernst-Sonde | |
DE10000339A1 (de) | Vorrichtung und Verfahren zur Steuerung einer Abgasrückführrate einer Abgasrückführeinrichtung für Verbrennungskraftmaschinen während eines Magerbetriebs | |
DE10310672B4 (de) | Verfahren und Vorrichtung zur Einstellung eines Kraftstoff-/Luftverhältnisses für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7F 02D 41/12 B Ipc: 7F 02D 41/14 A |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17P | Request for examination filed |
Effective date: 20040701 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20041025 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060614 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060620 |
|
REF | Corresponds to: |
Ref document number: 50110087 Country of ref document: DE Date of ref document: 20060727 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070315 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120111 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120118 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50110087 Country of ref document: DE Effective date: 20130801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130115 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190214 AND 20190221 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190222 AND 20190227 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200127 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200127 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210114 |