EP1118596B1 - Alkali-free aluminoborosilicate glass and its use - Google Patents

Alkali-free aluminoborosilicate glass and its use Download PDF

Info

Publication number
EP1118596B1
EP1118596B1 EP00125339A EP00125339A EP1118596B1 EP 1118596 B1 EP1118596 B1 EP 1118596B1 EP 00125339 A EP00125339 A EP 00125339A EP 00125339 A EP00125339 A EP 00125339A EP 1118596 B1 EP1118596 B1 EP 1118596B1
Authority
EP
European Patent Office
Prior art keywords
oxide
glass
glasses
weight
aluminoborosilicate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00125339A
Other languages
German (de)
French (fr)
Other versions
EP1118596A2 (en
EP1118596A3 (en
Inventor
Ulrich Dr. Peuchert
Peter Dr. Brix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Publication of EP1118596A2 publication Critical patent/EP1118596A2/en
Publication of EP1118596A3 publication Critical patent/EP1118596A3/en
Application granted granted Critical
Publication of EP1118596B1 publication Critical patent/EP1118596B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the invention relates to an alkali-free aluminoborosilicate glass. object The invention also relates to uses of this glass.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • AMLCDs Active Matrix Liquid Crystal Displays
  • TFTs Thin Film Transistors
  • PLCs Plasma Addressed Liquid Crystals
  • the glasses should have a high transparency over a wide spectral range (VIS, UV) and a low density to save weight.
  • VIS, UV spectral range
  • TFT displays (“chip on glass”) also requires the thermal adaptation to the thin film silicon material.
  • amorphous silicon This is usually deposited as amorphous silicon (a-Si) at low temperatures up to 300 ° C on the glass substrate.
  • a-Si amorphous silicon
  • the thermal expansion coefficient ⁇ 20/300 may vary between 2.9 ⁇ 10 -6 / K and 4.2 ⁇ 10 -6 / K. If crystalline Si layers are largely generated by high-temperature treatments above 700 ° C. or direct deposition by means of CVD processes, as desired also in thin-film photovoltaics, a substrate with a significantly reduced thermal expansion of up to 3.2 ⁇ 10 -6 / K or less is required ,
  • Suitable glasses should be industrially in sufficient quality (no bubbles, knots, inclusions), z. B. be economically produced on a float plant or in drawing process.
  • the production of thin ( ⁇ 1 mm) streak-free substrates of low surface waviness via drawing process requires a high devitrification stability of the glasses.
  • a disadvantage of the semiconductor microstructure shrinking ("compaction") of the substrate during manufacture, in particular in the case of TFT displays, can be counteracted by setting a suitable temperature-dependent viscosity characteristic of the glass.
  • the glasses of WO 98/27019 are with their very small shares of BaO and SrO susceptible to crystallization.
  • the glasses containing relatively little SiO 2 show, especially if they contain larger amounts of B 2 O 3 and / or MgO and are low in alkali, not sufficiently high chemical resistance. This concerns the glasses from WO 97/11919 and EP 672 629 A2.
  • the SiO 2 -rich variants of the last-mentioned document have only low Al 2 O 3 contents, which is disadvantageous for the crystallization behavior.
  • the glasses for hard disks described in JP 9-12333 A are comparatively Al 2 O 3 or B 2 O 3 arm, the latter component being only an optional one.
  • the glasses are highly alkaline earth metal containing and have a high thermal expansion, which makes them unsuitable for use in LCD or PV technology.
  • DE 196 17 344 C1 and DE 196 03 689 C1 of the applicant are alkali-free tin oxide-containing SiO 2 arms or low-Al 2 O 3 glasses with a coefficient of thermal expansion ⁇ 20/300 of about 3.7 ⁇ 10 -6 / K and very good chemical resistance. They are suitable for use in display technology. However, since they necessarily contain ZnO, they are not optimally suited for processing on a float plant. In particular, at higher contents ZnO (> 1.5% by weight) there is the danger of the formation of ZnO coatings on the glass surface by evaporation and subsequent condensation in the hot forming area.
  • JP 9-156 953 A also relates to alkali-free glasses for display technology which are Al 2 O 3 arms.
  • the temperature resistance of these glasses is not sufficient, as evidenced by the transformation temperatures of the sample glasses.
  • JP 10-25132A, JP 10-114538 A, J P 10-130034 A, J P 10-59741 A, J P 10-324526 A, J P 11-43350 A, JP 10-139467 A, JP 10-231139 A and JP 11-49520 A are very large and compositional ranges variable with many optional components for display glasses, each with one or more specific refining agents be added. However, these writings give no indication how targeted glasses with the complete described requirement profile can be obtained.
  • the glass contains between> 58 and 65 wt .-% SiO 2 . At lower levels, the chemical resistance deteriorates, at higher levels, the thermal expansion increases too low and increases the crystallization tendency of the glass. Preferred is a maximum level of 64.5 wt .-%.
  • the glass contains> 20 to 25 wt .-% Al 2 O 3 .
  • Al 2 O 3 has a positive effect on the temperature stability of the glass without raising the processing temperature too much. With a low content, the crystallization susceptibility of the glass increases.
  • a content of at least 20.5% by weight, in particular of at least 21% by weight, of Al 2 O 3 is preferred.
  • a content of at most 24% by weight of Al 2 O 3 is preferred.
  • the B 2 O 3 content is limited to at most 11.5 wt .-% in order to achieve a high transformation temperature T g . Also, higher levels would degrade the chemical resistance.
  • the B 2 O 3 content is at most 11 wt .-%.
  • the B 2 O 3 content is more than 6 wt .-%, in order to ensure good meltability and good crystallization resistance of the glass.
  • An essential glass component is the network-converting alkaline earth oxides. Especially by varying their proportions, a thermal expansion coefficient ⁇ 20 / 300 between 2.8 ⁇ 10 -6 / K and 3.6 ⁇ 10 -6 / K is achieved.
  • the individual oxides are present in the following proportions:
  • the glass contains 4 to ⁇ 6.5 wt.% MgO and> 4.5 to 8 wt.% CaO. Rather high proportions of the two components have a positive effect on the desired Low density and low processing temperature properties while rather low levels of crystallization resistance and promote chemical resistance.
  • the glass contains BaO, at least 0.5 wt .-%.
  • the BaO maximum level is limited to less than 5 wt .-%. That's how the good ones become Ensuring meltability and keeping the density low.
  • the glass can also be up to ⁇ 4 wt .-% of also comparatively heavy alkaline earth oxide containing SrO.
  • the limitation of this facultative Component to this low maximum level is especially for a low Density and good meltability of the glass advantageous.
  • SrO be present is, preferably at least 0.2 wt .-%.
  • the total content of BaO and SrO is at least> 3 wt .-%, to to ensure adequate crystallization stability.
  • the glass can contain up to 2% by weight of ZnO, preferably up to ⁇ 2% by weight of ZnO.
  • ZnO has a framework-loosening function as a network converter and has little influence on the thermal expansion of the alkaline earth oxides. It has a similar influence on the viscosity characteristic as B 2 O 3 .
  • the ZnO content is limited to at most 1.5 wt .-%. Higher levels would increase the risk of interfering ZnO deposits on a glass surface resulting from evaporation and subsequent condensation. can form in the hot forming area.
  • the glass is alkali-free.
  • Alkaline-free is here understood to mean essentially is free of alkali oxides, with impurities of less may contain as 1000 ppm.
  • the glasses can contain up to 2% by weight ZrO + TiO 2 , wherein both the TiO 2 content and the ZrO 2 content individually can be up to 2% by weight.
  • ZrO 2 advantageously increases the temperature stability of the glass. However, due to its poor solubility, it increases the risk of ZrO 2 -containing melt relics (so-called "zircon nests") in the glass. Therefore, it is preferable to dispense with the addition of ZrO 2 . Low levels of ZrO 2 , which result from the corrosion zirkon restroomn tub material, are not a problem.
  • TiO 2 advantageously lowers the solarization tendency, ie the decrease in the transmission in the visible wavelength range due to UV-VIS radiation. At levels greater than 2% by weight, color casts may occur by complexing with Fe 3+ ions present in the glass at low levels due to impurities in the raw materials used.
  • the glasses may contain conventional refining agents in conventional amounts: for example, it may contain up to 1.5% by weight of As 2 O 3 , Sb 2 O 3 , SnO 2 and / or CeO 2 . It is also possible to add 1.5% by weight of Cl - (for example as BaCl 2 ), F - (for example as CaF 2 ) or SO 4 2- (for example as BaSO 4 ). However, the sum of As 2 O 3 , Sb 2 O 3 , CeO 2, SnO 2, Cl - , F - and SO 4 2- should not exceed 1.5% by weight.
  • the glasses can be processed not only with the different drawing methods but also with the float method.
  • both ZrO 2 and SnO 2 can be dispensed with and still glasses with the mentioned property profile, in particular with high thermal and chemical resistance and with low crystallization tendency, are obtained.
  • the glasses have a high thermal shock resistance and good Devitrification stability on.
  • the glasses ideal for use as a substrate glass in display technology, especially for TFT displays, and in the Thin film photovoltaics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • External Artificial Organs (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The invention relates to an alkali-free aluminoborosilicate glass having a coefficient of thermal expansion alpha20/300 of between 2.8.10<-6>/K and 3.6.10<-6>/K, which has the following composition (in % by weight, based on oxide): silicon dioxide (SiO2)>58-65, boric oxide (B2O3)>6-11.5, aluminum oxide (Al2O3)>20-25, magnesium oxide (MgO) 4-<6.5, calcium oxide (CaO)>4.5-8, strontium oxide (SrO) 0-<4, barium oxide (BaO) 0.5-<5, with strontium oxide (SrO)+barium oxide (BaO)>3, zinc oxide (ZnO) 0-<2, and which is highly suitable for use as a substrate glass both in display technology and in thin-film photovoltaics.

Description

Gegenstand der Erfindung ist ein alkalifreies Aluminoborosilicatglas. Gegenstand der Erfindung sind auch Verwendungen dieses Glases.The invention relates to an alkali-free aluminoborosilicate glass. object The invention also relates to uses of this glass.

An Gläser für Anwendungen als Substrate in der Flüssigkristall-Flachdisplaytechnologie, z. B. in TN (Twisted Nematic)/STN (Super Twisted Nematic) - Displays, Active Matrix Liquid Crystal Displays (AMLCD's), Thin Film Transistors (TFT's) oder Plasma Adressed Liquid Crystals (PALC's) werden hohe Anforderungen gestellt. Neben einer hohen Temperaturwechselbeständigkeit sowie einer guten Resistenz bezüglich der im Herstellungsverfahren der Flachbildschirme eingesetzten aggressiven Chemikalien sollten die Gläser eine über einen weiten Spektralbereich (VIS, UV) hohe Transparenz sowie zur Gewichtseinsparung eine geringe Dichte aufweisen. Der Einsatz als Trägermaterial für integrierte Halbleiterschaltkreise z. B. in TFT-Displays ("chip on glass") erfordert darüber hinaus die thermische Anpassung an das Dünnfilmmaterial Silicium. Dieses wird üblicherweise als amorphes Silicium (a-Si) bei niedrigen Temperaturen bis 300 °C auf dem Glassubstrat abgeschieden. Durch eine nachfolgende Wärmebehandlung bei Temperaturen von ca. 600 °C rekristallisiert das amorphe Silicium partiell. Die resultierende teilweise kristalline poly-Si-Schicht ist aufgrund der a-Si-Anteile charakterisiert durch einen Wert der thermischen Ausdehnung von a 20/300 = 3,7 x 10-6/K. Je nach dem Verhältnis von a-Si zu poly-Si kann der thermische Ausdehnungskoeffizient α 20/300 zwischen 2,9 · 10-6/K und 4,2 · 10-6/K variieren. Werden durch Hochtemperaturbehandlungen oberhalb 700 °C bzw. direkte Abscheidung über CVD-Prozesse weitestgehend kristalline Si-Schichten generiert, so gewünscht auch in der Dünnschichtphotovoltaik, ist ein Substrat mit deutlich reduzierter thermischer Dehnung bis 3,2 x 10-6/K oder weniger erforderlich.To glasses for applications as substrates in liquid crystal flat panel display technology, e.g. For example, TN (Twisted Nematic) / STN (Super Twisted Nematic) displays, Active Matrix Liquid Crystal Displays (AMLCDs), Thin Film Transistors (TFTs), or Plasma Addressed Liquid Crystals (PALCs) have high requirements. In addition to a high thermal shock resistance and a good resistance to the aggressive chemicals used in the production process of flat screens, the glasses should have a high transparency over a wide spectral range (VIS, UV) and a low density to save weight. The use as a carrier material for semiconductor integrated circuits z. As in TFT displays ("chip on glass") also requires the thermal adaptation to the thin film silicon material. This is usually deposited as amorphous silicon (a-Si) at low temperatures up to 300 ° C on the glass substrate. By a subsequent heat treatment at temperatures of about 600 ° C, the amorphous silicon recrystallized partially. The resulting partially crystalline poly-Si layer is characterized by a thermal expansion value of a 20/300 = 3.7 × 10 -6 / K due to the a-Si content. Depending on the ratio of a-Si to poly-Si, the thermal expansion coefficient α 20/300 may vary between 2.9 × 10 -6 / K and 4.2 × 10 -6 / K. If crystalline Si layers are largely generated by high-temperature treatments above 700 ° C. or direct deposition by means of CVD processes, as desired also in thin-film photovoltaics, a substrate with a significantly reduced thermal expansion of up to 3.2 × 10 -6 / K or less is required ,

Für Anwendungen in der Display- und Photovoltaiktechnologie ist femer die Abwesenheit von Alkaliionen Bedingung. Herstellungsbedingte Anteile von Natriumoxid unterhalb 1000 ppm sind in Hinblick auf die i. a. "vergiftende" Wirkung durch Eindiffusion von Na+ in die Halbleiterschicht noch tolerierbar.For applications in the display and photovoltaic technology, the absence of alkali ions is also a condition. Manufacturing-related proportions of sodium oxide below 1000 ppm are still tolerable in view of the ia "poisoning" effect by diffusion of Na + into the semiconductor layer.

Geeignete Gläser sollten großtechnisch in ausreichender Qualität (keine Blasen, Knoten, Einschlüsse), z. B. auf einer Floatanlage oder in Ziehverfahren wirtschaftlich produzierbar sein. Besonders die Herstellung dünner (< 1 mm) streifenfreier Substrate von geringer Oberflächenwelligkeit über Ziehverfahren erfordert eine hohe Entglasungsstabilität der Gläser. Einem auf die Halbleiter-Microstruktur nachteilig wirkenden Schrumpf ("compaction") des Substrates während der Herstellung, insbesondere im Falle von TFT-Displays, kann durch Einstellen einer geeigneten temperaturabhängigen Viskositätskennlinie des Glases entgegengewirkt werden. Hinsichtlich der thermischen Prozeßund Formstabilität sollte es bei einerseits nicht zu hohen Schmelz- und Verarbeitungs (VA) -temperaturen, d. h. bei einem VA≤ 1350 °C, eine ausreichend hohe Transformationstemperatur, d. h. Tg > 700°C aufweisen.Suitable glasses should be industrially in sufficient quality (no bubbles, knots, inclusions), z. B. be economically produced on a float plant or in drawing process. In particular, the production of thin (<1 mm) streak-free substrates of low surface waviness via drawing process requires a high devitrification stability of the glasses. A disadvantage of the semiconductor microstructure shrinking ("compaction") of the substrate during manufacture, in particular in the case of TFT displays, can be counteracted by setting a suitable temperature-dependent viscosity characteristic of the glass. With regard to the thermal process and dimensional stability, it should have a sufficiently high transformation temperature, ie T g > 700 ° C., on the one hand, if the melting and processing (V A ) temperatures are not too high, ie at a V A ≦ 1350 ° C.

Die Anforderungen an Glassubstrate für die LCD-Displaytechnologie bzw. Dünnschicht-Photovoltaik-Technologie sind auch in "Glass Substrates for AMLCD applications: properties and implications" von J.C. Lapp, SPIE Proceedings, Vol. 3014, Invited paper (1997) beschrieben bzw. in "Photovoltaik-Strom aus der Sonne" von J. Schmid, Verlag C.F. Müller, Heidelberg 1994.The requirements for glass substrates for LCD display technology or Thin-film photovoltaic technology is also available in "Glass Substrates for AMLCD applications: properties and implications "by J.C. Lapp, SPIE Proceedings, Vol. 3014, Invited paper (1997) or in "Photovoltaic Electricity from the Sun "by J. Schmid, Verlag C.F. Müller, Heidelberg 1994.

Das genannte Anforderungsprofil wird am ehesten durch Erdalkalialuminoborosilicatgläser erfüllt. Die bekannten und in den folgenden Schriften beschriebenen Gläser für Display- oder Solarzellensubstrate weisen jedoch noch Nachteile auf und erfüllen nicht den gesamten Anforderungskatalog:The mentioned requirement profile is most likely due to alkaline earth aluminoborosilicate glasses Fulfills. The known and described in the following documents However, glasses for display or solar cell substrates still have Disadvantages and do not meet the entire catalog of requirements:

Zahlreiche Schriften beschreiben Gläser, mit geringen MgO- und/oder CaO-Gehalten:JP 9-169 538 A, JP 4-160 030 A, JP 9-100 135 A, EP 714 862 A1, EP 341 313 B1, US 5,374,595, JP 9-48632 A, JP 8-295530 A, WO 97/11919 und WO 97 11920. Diese Gläser besitzen nicht die gewünschte Schmelzbarkeit, was sehr hohe Temperaturen bei den Viskositäten 102 dPas und 104 dPas bestätigen, und weisen relativ hohe Dichten auf. Gleiches gilt für die MgO-freien Gläser der DE 37 30 410 A1, US 5,116,787 und US 5,116,789.Numerous documents describe glasses with low MgO and / or CaO contents: JP 9-169 538 A, JP 4-160 030 A, JP 9-100 135 A, EP 714 862 A1, EP 341 313 B1, US Pat. No. 5,374,595, US Pat. JP 9-48632 A, JP 8-295530 A, WO 97/11919 and WO 97 11920. These glasses do not possess the desired meltability, which confirm very high temperatures at the viscosities 10 2 dPas and 10 4 dPas, and have relatively high densities on. The same applies to the MgO-free glasses of DE 37 30 410 A1, US 5,116,787 and US 5,116,789.

Andererseits zeigen Gläser mit hohen Gehalten an MgO, wie sie in JP 61-123 536 A beschrieben sind, Mängel hinsichtlich ihrer chemischen Beständigkeit sowie ihres Entglasungs- und Entmischungverhaltens.On the other hand, glasses with high levels of MgO, as described in JP 61-123 536 A, defects in their chemical resistance as well as their devitrification and demixing behavior.

Auch die Gläser der WO 98/27019 sind mit ihren sehr geringen Anteilen an BaO und SrO kristallisationsanfällig.The glasses of WO 98/27019 are with their very small shares of BaO and SrO susceptible to crystallization.

Gläser mit hohen Gehalten an den schweren Erdalkalioxiden BaO und/oder SrO, wie sie in EP 341313 B1 beschrieben sind, besitzen unerwünscht hohe Dichten und sind nicht gut schmelzbar. Dies gilt auch für die Gläser der JP 10-72237 A. Nachweislich der Beispiele weisen die Gläser hohe Temperaturen bei den Viskositäten 104 dPas und 102 dPas auf.Glasses with high contents of the heavy alkaline earth oxides BaO and / or SrO, as described in EP 341313 B1, have undesirably high densities and are not readily fusible. This also applies to the glasses of JP 10-72237 A. As can be seen from the examples, the glasses have high temperatures at the viscosities 10 4 dPas and 10 2 dPas.

Auch Gläser mit geringen Borsäuregehalten weisen zu hohe Schmelztemperaturen bzw. aufgrund dessen bei verfahrensbedingt vorgegebenen Schmelzund Verarbeitungstemperaturen zu hohe Viskositäten auf. Dies betrifft die Gläser aus JP 10-45422 A, JP 9-263421 A und JP 61-132536 A. In Kombination mit niedrigen BaO-Gehalten weisen solche Gläser außerdem eine hohe Entglasungsneigung auf.Even glasses with low boric acid contents have too high melting temperatures or due to the fact that, given process-related melting and Processing temperatures to high viscosities. This concerns the Glasses of JP 10-45422 A, JP 9-263421 A and JP 61-132536 A. In combination with low BaO levels, such glasses also exhibit a high devitrification tendency.

Dagegen zeigen Gläser mit hohen Anteilen an Borsäure, wie sie beispielsweise in US 4,824,808 beschrieben sind, keine ausreichende Temperaturbeständigkeit und chemische Beständigkeit, insbesondere gegenüber salzsauren Lösungen.In contrast, glasses with high levels of boric acid, as for example in US 4,824,808, not sufficient temperature resistance and chemical resistance, especially to hydrochloric acid Solutions.

Auch die Gläser, die relativ wenig SiO2 enthalten, zeigen, insbesondere wenn sie größere Mengen an B2O3 und/oder MgO enthalten und erdalkaliarm sind, keine ausreichend hohe chemische Beständigkeit. Dies betrifft die Gläser aus WO 97/11919 und EP 672 629 A2. Die SiO2-reicheren Varianten der letztgenannten Schrift weisen nur geringe Al2O3-Anteile auf, was nachteilig für das Kristallisationsverhalten ist.Also, the glasses containing relatively little SiO 2 show, especially if they contain larger amounts of B 2 O 3 and / or MgO and are low in alkali, not sufficiently high chemical resistance. This concerns the glasses from WO 97/11919 and EP 672 629 A2. The SiO 2 -rich variants of the last-mentioned document have only low Al 2 O 3 contents, which is disadvantageous for the crystallization behavior.

Die in JP 9-12333 A beschriebenen Gläser für Festplatten sind vergleichsweise Al2O3- bzw. B2O3-arm, wobei letztgenannte Komponente nur eine fakultative ist. Die Gläser sind hoch erdalkalioxidhaltig und besitzen eine hohe thermische Dehnung, die sie für den Einsatz in der LCD- bzw. PV-Technologie ungeeignet macht.The glasses for hard disks described in JP 9-12333 A are comparatively Al 2 O 3 or B 2 O 3 arm, the latter component being only an optional one. The glasses are highly alkaline earth metal containing and have a high thermal expansion, which makes them unsuitable for use in LCD or PV technology.

DE 42 13 579 A1 beschreibt Gläser für TFT-Anwendungen mit thermischen Ausdehnungskoeffizienten < 5,5 x 10-6/K, ausweislich der Beispiele ≥4,0 x 10-6/K. Diese Gläser mit relativ hohen Anteilen an B2O3 bei vergleichsweise niedrigen SiO2-Gehalten sind nicht sehr chemisch resistent, insbesondere nicht gegenüber verdünnter Salzsäure.DE 42 13 579 A1 describes glasses for TFT applications with thermal expansion coefficients <5.5 x 10 -6 / K, as shown by the examples ≥ 4.0 x 10 -6 / K. These glasses with relatively high proportions of B 2 O 3 at comparatively low SiO 2 contents are not very chemically resistant, in particular not to dilute hydrochloric acid.

DE 196 01 022 A1 beschreibt Gläser aus einem sehr variablen Zusammensetzungesbereich, die zwingend ZrO2 und SnO enthalten. Diese Al2O3-armen Gläser neigen aufgrund ihres ZrO2-Anteils zu Glasfehlern. DE 196 01 022 A1 describes glasses from a very variable composition range, which necessarily contain ZrO 2 and SnO. These Al 2 O 3 poor glasses tend to glass defects due to their ZrO 2 content.

Aus DE 196 17 344 C1 und DE 196 03 689 C1 der Anmelderin sind alkalifreie zinnoxidhaltige SiO2-arme bzw. Al2O3-arme Gläser mit einem thermischen Ausdehnungskoeffizieten α20/300 von ca. 3,7 · 10-6/K und sehr guten chemischen Beständigkeiten bekannt. Sie sind geeignet für den Einsatz in der Displaytechnik. Da sie jedoch zwingend ZnO enthalten, sind sie insbesondere für eine Verarbeitung auf einer Floatanlage nicht optimal geeignet. Insbesondere bei höheren Gehalten ZnO (> 1,5 Gew. -%) besteht nämlich die Gefahr der bildung von ZnO-Belägen auf der Glasoberfläche durch Verdampfung und anschließende Kondensation im Heißformgebungsbereich.DE 196 17 344 C1 and DE 196 03 689 C1 of the applicant are alkali-free tin oxide-containing SiO 2 arms or low-Al 2 O 3 glasses with a coefficient of thermal expansion α 20/300 of about 3.7 · 10 -6 / K and very good chemical resistance. They are suitable for use in display technology. However, since they necessarily contain ZnO, they are not optimally suited for processing on a float plant. In particular, at higher contents ZnO (> 1.5% by weight) there is the danger of the formation of ZnO coatings on the glass surface by evaporation and subsequent condensation in the hot forming area.

Auch JP 9-156 953 A betrifft alkalifreie Gläser für die Displaytechnik, die Al2O3-arm sind. Die Temperaturbeständigkeit dieser Gläser ist, wie die Transformationstemperaturen der Beispielgläser belegen, nicht ausreichend.JP 9-156 953 A also relates to alkali-free glasses for display technology which are Al 2 O 3 arms. The temperature resistance of these glasses is not sufficient, as evidenced by the transformation temperatures of the sample glasses.

In den ungeprüften japanischen Veröffentlichungen JP 10-25132 A, JP 10-114538 A, J P 10-130034 A, J P 10-59741 A, J P 10-324526 A, J P 11-43350 A, JP 10-139467 A, JP 10-231139 A und JP 11-49520 A werden sehr große und mit vielen fakultativen Komponenten variierbare Zusammensetzungsbereiche für Displaygläser genannt, denen jeweils ein oder mehrere bestimmte Läuterungsmittel zugesetzt werden. Diese Schriften geben jedoch keinerlei Hinweise, wie gezielt Gläser mit den kompletten beschriebenen Anforderungsprofil erhalten werden können.In Japanese Unexamined Publication JP 10-25132A, JP 10-114538 A, J P 10-130034 A, J P 10-59741 A, J P 10-324526 A, J P 11-43350 A, JP 10-139467 A, JP 10-231139 A and JP 11-49520 A are very large and compositional ranges variable with many optional components for display glasses, each with one or more specific refining agents be added. However, these writings give no indication how targeted glasses with the complete described requirement profile can be obtained.

Es ist Aufgabe der Erfindung, Gläser bereitzustellen, die die genannten physikalischen und chemischen Anforderungen an Glassubstrate für Flüssigkristall-Displays, insbesondere für TFT-Displays, und für Dünnschichtsolarzellen, insbesondere auf Basis von µc-Si gestellt wird, erfüllen, Gläser, die eine hohe Temperaturbeständigkeit, einen prozeßgünstigen Verarbeitungsbereich und eine ausreichende Entglasungsstabilität aufweisen.It is an object of the invention to provide glasses containing the said physical and chemical requirements for glass substrates for liquid crystal displays, especially for TFT displays, and for thin-film solar cells, is made in particular on the basis of μc-Si, glasses that have a high Temperature resistance, a process-friendly processing area and have sufficient devitrification stability.

Die Aufgabe wird durch Aluminoborosilicatgläser gemäß dem Hauptanspruch gelöst.The object is achieved by Aluminoborosilicatgläser according to the main claim solved.

Das Glas enthält zwischen > 58 und 65 Gew.-% SiO2. Bei geringeren Gehalten verschlechtert sich die chemische Beständigkeit, bei höheren Anteilen nimmt die thermische Ausdehnung zu geringe Werte an und nimmt die Kristallisationsneigung des Glases zu. Bevorzugt ist ein Höchstgehalt von 64,5 Gew.-%. The glass contains between> 58 and 65 wt .-% SiO 2 . At lower levels, the chemical resistance deteriorates, at higher levels, the thermal expansion increases too low and increases the crystallization tendency of the glass. Preferred is a maximum level of 64.5 wt .-%.

Das Glas enthält > 20 bis 25 Gew.-% Al2O3. Al2O3 wirkt sich positiv auf die Temperaturstabilität des Glases, ohne die Verarbeitungstemperatur zu sehr anzuheben. Bei einem geringen Gehalt erhöht sich die Kristallisationsfälligkeit des Glases. Bevorzugt ist ein Gehalt von wenigstens 20,5 Gew.-%, insbesondere von wenigstens 21 Gew.-% Al2O3. Bevorzugt ist ein Gehalt von höchstens 24 Gew.-% Al2O3.The glass contains> 20 to 25 wt .-% Al 2 O 3 . Al 2 O 3 has a positive effect on the temperature stability of the glass without raising the processing temperature too much. With a low content, the crystallization susceptibility of the glass increases. A content of at least 20.5% by weight, in particular of at least 21% by weight, of Al 2 O 3 is preferred. A content of at most 24% by weight of Al 2 O 3 is preferred.

Der B2O3-Gehalt ist auf höchstens 11,5 Gew.-% beschränkt, um eine hohe Transformationstemperatur Tg zu erzielen. Auch würden höhere Gehalte die chemische Beständigkeit verschlechtern. Vorzugsweise beträgt der B2O3-Gehalt höchstens 11 Gew.-%. Der B2O3-Gehalt beträgt mehr als 6 Gew.-%, um eine gute Schmelzbarkeit und die gute Kristallisationsbeständigkeit des Glases zu gewährleisten.The B 2 O 3 content is limited to at most 11.5 wt .-% in order to achieve a high transformation temperature T g . Also, higher levels would degrade the chemical resistance. Preferably, the B 2 O 3 content is at most 11 wt .-%. The B 2 O 3 content is more than 6 wt .-%, in order to ensure good meltability and good crystallization resistance of the glass.

Ein wesentlicher Glasbestandteil sind die netzwerkwandelnden Erdalkalioxide. Vor allem durch Variation ihrer Anteile wird ein thermischer Ausdehnungskoeffizient α20/300 zwischen 2,8 · 10-6/K und 3,6 · 10-6/K erzielt. Die einzelnen Oxide liegen in den folgenden Anteilen vor:An essential glass component is the network-converting alkaline earth oxides. Especially by varying their proportions, a thermal expansion coefficient α20 / 300 between 2.8 · 10 -6 / K and 3.6 · 10 -6 / K is achieved. The individual oxides are present in the following proportions:

Das Glas enthält 4 bis < 6,5 Gew.-% MgO und > 4,5 bis 8 Gew.-% CaO. Eher hohe Anteile an den beiden Komponenten wirken sich positiv auf die gewünschten Eigenschaften niedrige Dichte und niedrige Verarbeitungstemperatur aus, während eher geringe Anteile die Kristallisationsbeständigkeit und die chemische Beständigkeit begünstigen.The glass contains 4 to <6.5 wt.% MgO and> 4.5 to 8 wt.% CaO. Rather high proportions of the two components have a positive effect on the desired Low density and low processing temperature properties while rather low levels of crystallization resistance and promote chemical resistance.

Weiter enthält das Glas BaO, und zwar wenigstens 0,5 Gew.-%. Der BaO-Höchstgehalt ist auf weniger als 5 Gew.-% beschränkt. So werden die gute Schmelzbarkeit gewährleistet und die Dichte niedrig gehalten.Further, the glass contains BaO, at least 0.5 wt .-%. The BaO maximum level is limited to less than 5 wt .-%. That's how the good ones become Ensuring meltability and keeping the density low.

Das Glas kann weiterhin bis zu < 4 Gew.-% des ebenfalls vergleichsweise schweren Erdalkalioxides SrO enthalten. Die Beschränkung dieser fakultiven Komponente auf diesen geringen Höchstgehalt ist insbesondere für eine geringe Dichte und eine gute Schmelzbarkeit des Glases vorteilhaft. Zur Verbesserung der Kristallisationsstabilität ist es bevorzugt, daß SrO vorhanden ist, und zwar vorzugsweise mit wenigstens 0,2 Gew.-%.The glass can also be up to <4 wt .-% of also comparatively heavy alkaline earth oxide containing SrO. The limitation of this facultative Component to this low maximum level is especially for a low Density and good meltability of the glass advantageous. For improvement For crystallization stability, it is preferred that SrO be present is, preferably at least 0.2 wt .-%.

Der Gesamtgehalt an BaO und SrO beträgt dabei wenigstens > 3 Gew.-%, um eine ausreichende Kristallisationsstabilität zu gewährleisten. The total content of BaO and SrO is at least> 3 wt .-%, to to ensure adequate crystallization stability.

Das Glas kann bis zu 2 Gew.-% ZnO, bevorzugt bis zu < 2 Gew.-% ZnO, enthalten, ZnO hat als Netzwerkwandler eine gerüstlockernde Funktion, und es hat einen geringen Einfluß auf die thermische Ausdehnung als die Erdalkalioxide. Es hat einen ähnlichen Einfluß auf die Viskositätskennlinie wie B2O3. Vorzugsweise, insbesondere bei einer Verarbeitung des Glases im Floatverfahren, ist der ZnO-Anteil auf höchstens 1,5 Gew.-% beschränkt. Höhere Anteile würden die Gefahr störender ZnO-Beläge auf einer Glasoberfläche erhöhen, die sich durch Verdampfung und anschließende Kondensation. im Heißformgebungsbereich bilden können.The glass can contain up to 2% by weight of ZnO, preferably up to <2% by weight of ZnO. ZnO has a framework-loosening function as a network converter and has little influence on the thermal expansion of the alkaline earth oxides. It has a similar influence on the viscosity characteristic as B 2 O 3 . Preferably, in particular in a processing of the glass in the float process, the ZnO content is limited to at most 1.5 wt .-%. Higher levels would increase the risk of interfering ZnO deposits on a glass surface resulting from evaporation and subsequent condensation. can form in the hot forming area.

Das Glas ist alkalifrei. Unter alkalifrei wird hierbei verstanden, daß es im wesentlichen frei ist von Alkalioxiden, wobei es Verunreinigungen von weniger als 1000 ppm enthalten kann.The glass is alkali-free. Alkaline-free is here understood to mean essentially is free of alkali oxides, with impurities of less may contain as 1000 ppm.

Die Gläser können bis zu 2 Gew.-% ZrO + TiO2 enthalten, wobei sowohl der TiO2-Gehalt als auch der ZrO2-Gehalt einzeln bis zu 2 Gew.-% betragen kann. ZrO2 erhöht vorteilhaft die Temperaturstabilität des Glases. Aufgrund seiner Schwerlöslichkeit erhöht es jedoch die Gefahr von ZrO2-haltigen Schmelzrelikten (sog. "Zirkonnester") im Glas. Daher wird vorzugsweise auf die Zugabe von ZrO2 verzichtet. Geringe Gehalte an ZrO2, die von der Korrosion zirkonhaltigen Wannenmaterials herrühren, sind unproblematisch. TiO2 setzt vorteilhaft die Solarisationsneigung, d. h. die Abnahme der Transmission im sichtbaren Wellenlängenbereich aufgrund von UV-VIS-Strahlung, herab. Bei Gehalten von mehr als 2 Gew.-% können durch Komplexbildung mit Fe3+-lonen, die im Glas in geringen Gehalten infolge von Verunreinigungen der eingesetzten Rohstoffe vorhanden sind, Farbstiche auftreten.The glasses can contain up to 2% by weight ZrO + TiO 2 , wherein both the TiO 2 content and the ZrO 2 content individually can be up to 2% by weight. ZrO 2 advantageously increases the temperature stability of the glass. However, due to its poor solubility, it increases the risk of ZrO 2 -containing melt relics (so-called "zircon nests") in the glass. Therefore, it is preferable to dispense with the addition of ZrO 2 . Low levels of ZrO 2 , which result from the corrosion zirkonhaltigen tub material, are not a problem. TiO 2 advantageously lowers the solarization tendency, ie the decrease in the transmission in the visible wavelength range due to UV-VIS radiation. At levels greater than 2% by weight, color casts may occur by complexing with Fe 3+ ions present in the glass at low levels due to impurities in the raw materials used.

Die Gläser können herkömmliche Läutermittel in herkömmlichen Mengen enthalten: So kann es bis zu 1,5 Gew.-% As2O3, Sb2O3, SnO2 und/oder CeO2 enthalten. Auch ist der Zusatz von je 1,5 Gew.-% Cl- (beispielsweise als BaCl2), F-(z. B. als CaF2) oder SO4 2- (z. B. als BaSO4) möglich. Die Summe aus As2O3, Sb2O3, CeO2, SnO2, Cl-, F- und SO4 2- soll jedoch 1,5 Gew.-% nicht überschreiten.The glasses may contain conventional refining agents in conventional amounts: for example, it may contain up to 1.5% by weight of As 2 O 3 , Sb 2 O 3 , SnO 2 and / or CeO 2 . It is also possible to add 1.5% by weight of Cl - (for example as BaCl 2 ), F - (for example as CaF 2 ) or SO 4 2- (for example as BaSO 4 ). However, the sum of As 2 O 3 , Sb 2 O 3 , CeO 2, SnO 2, Cl - , F - and SO 4 2- should not exceed 1.5% by weight.

Wenn auf die Läutermittel As2O3 und Sb2O3 verzichtet wird, sind die Gläser nicht nur mit den verschiedenen Ziehverfahren, sondern auch mit dem Floatverfahren verarbeitbar. If the refining agents As 2 O 3 and Sb 2 O 3 are dispensed with, the glasses can be processed not only with the different drawing methods but also with the float method.

Beispielsweise im Hinblick auf eine einfache Gemengezubereitung ist es von Vorteil, daß sowohl auf ZrO2 als auch auf SnO2 verzichtet werden kann und dennoch Gläser mit dem genannten Eigenschaftsprofil, insbesondere mit hoher thermischer und chemischer Beständigkeit und mit geringer Kristallisationsneigung, erhalten werden.For example, with regard to a simple batch preparation, it is advantageous that both ZrO 2 and SnO 2 can be dispensed with and still glasses with the mentioned property profile, in particular with high thermal and chemical resistance and with low crystallization tendency, are obtained.

Ausführungsbeispiele:EXAMPLES

Aus herkömmlichen, von unvermeidlichen Verunreinigungen abgesehen im wesentlichen alkalifreien, Rohstoffen wurden bei 1620°C Gläser in Pt/lr-Tiegeln erschmolzen. Die Schmelze wurde anderthalb Stunden bei dieser Temperatur geläutert, anschließend in induktiv beheizte Platintiegel umgegossen und zur Homogenisierung 30 Minuten bei 1550°C gerührt.From conventional, apart from inevitable impurities in the Raw materials were at 1620 ° C glasses in Pt / lr crucibles melted. The melt was at this for one and a half hours Purified temperature, then poured into inductively heated platinum crucible and stirred for 30 minutes at 1550 ° C for homogenization.

Die Tabelle zeigt 11 Beispiele erfindungsgemäßer Gläser mit ihren Zusammensetzungen (in Gew.-% auf Oxidbasis) und ihren wichtigsten Eigenschaften. Das Läutermittel SnO2 mit einem Anteil von 0,3 Gew.-% ist nicht aufgeführt. Folgende Eigenschaften sind angegeben:

  • der thermische Ausdehnungskoeffizient α20/300 [10-6/K]
  • die Dichte p [g/cm3]
  • die dilatometrische Transformationstemperatur Tg [°C] nach DIN 52324
  • die Temperatur bei der Viskosität 104 dPas (bezeichnet als T 4 [°C])
  • die Temperatur bei der Viskosität 102 dPas (bezeichnet als T2 [ °C], berechnet aus der Vogel-Fulcher-Tammann-Gleichung
  • der Brechwert nd
  • eine Säurebeständigkeit "HCl" als Gewichtsverlust (Abtragswert) von allseitig polierten Glasplättchen der Abmessungen 50 mm x 50 mm x 2 mm nach Behandlung mit 5 %iger Salzsäure für 24 Stunden bei 95°C [mg/cm2].
  • die Beständigkeit gegenüber gepufferter Fluorwasserstoffsäure "BHF" als Gewichtsverlust (Abtragswert) vonallseitig polierten Glasplättchen der Abmessungen 50 mm x 50 mm x 2 mm nach Behandlung mit 10 % iger NH4F · HF für 20 Min. bei 23 °C [mg/cm2].
Beispiele: Zusammensetzungen (in Gew.-% auf Oxidbasis) und wesentliche Eigenschaften von erfindungsgemäßen Gläsern. 1 2 3 4 5 6 SiO2 59,0 58,5 58,5 60,0 58,5 60,7 B2O3 7,0 6,5 6,5 6,6 8,1 6,5 Al2O3 20,5 21,2 21,2 21,2 21,2 20,2 MgO 4,5 4,5 4,5 4,2 4,2 4,2 CaO 5,0 5,0 5,0 4,6 4,6 4,8 SrO 1,9 0,5 3,5 2,6 2,6 2,8 BaO 1,8 3,5 0,5 0,5 0,5 0,5 ZnO - - - - - - α 20/300 [10-6/K] 3,44 3,42 3,55 3,31 3,33 3,37 p [g/cm3] 2,50 2,52 2,52 2,48 2,48 2,48 Tg[°C] 741 747 742 749 738 745 T 4 [°C) 1279 1285 1263 1293 1276 1292 T 2 [°C] 1629 1632 1620 1648 1627 1650 nd 1,526 1,528 1,528 1,524 1,524 1,523 HCl [mg/cm2] 0,88 0,76 n. b. n. b. n. b. 0,68 BHF [mg/cm21 0,66 0,65 0,73 0,67 0,67 0,65 n. b.= nicht bestimmt
(Fortsefzung der Tabelle s. nächste Seite)
7 8 9 10 11 SiO2 59,5 59,3 58,3 58,5 58,2 B2O3 7,5 6,1 6,1 6,5 7,2 Al2O3 20,2 20,2 20,2 22,8 20,9 MgO 4,2 6,0 6,0 4,1 4,1 CaO 4,8 4,8 4,8 4,6 6,0 SrO 2,8 2,8 2,8 0,2 0,2 BaO 0,5 0,5 0,5 3,0 3,1 ZnO - - 1,0 - - α 20/300 [10-6/K] 3,38 3,54 3,57 3,24 3,47 p [g/cm3 2,48 2,51 2,53 2,50 2,51 Tg[°C] 736 744 738 756 740 T4[°C] 1278 1271 1255 1298 1264 T2[°C] 1633 1617 1695 1647 1624 Nd 1,523 1,529 1,531 1,526 1,528 HCl [mg/cm2] n. b. 0,67 0,66 0,94 n. b. BHF [mg/cm2] 0,66 0,74 0,77 0,64 0,62 n. b.= nicht bestimmt The table shows 11 examples of glasses according to the invention with their compositions (in% by weight based on oxide) and their most important properties. The refining agent SnO 2 with a proportion of 0.3 wt .-% is not listed. The following properties are specified:
  • the thermal expansion coefficient α 20/300 [10 -6 / K]
  • the density p [g / cm 3 ]
  • the dilatometric transformation temperature T g [° C] according to DIN 52324
  • the temperature at the viscosity 10 4 dPas (referred to as T 4 [° C])
  • the temperature at the viscosity 10 2 dPas (referred to as T2 [° C] calculated from the Vogel-Fulcher-Tammann equation
  • the refractive index n d
  • an acid resistance "HCl" as weight loss (removal value) of all-round glass plates of dimensions 50 mm × 50 mm × 2 mm after treatment with 5% hydrochloric acid for 24 hours at 95 ° C. [mg / cm 2 ].
  • the resistance to buffered hydrofluoric acid "BHF" as weight loss (Abtragswert) of all sides polished glass plates of dimensions 50 mm x 50 mm x 2 mm after treatment with 10% NH 4 F · HF for 20 min. At 23 ° C [mg / cm 2 ].
Examples: Compositions (in% by weight based on oxides) and essential properties of glasses according to the invention. 1 2 3 4 5 6 SiO 2 59.0 58.5 58.5 60.0 58.5 60.7 B 2 O 3 7.0 6.5 6.5 6.6 8.1 6.5 Al 2 O 3 20.5 21.2 21.2 21.2 21.2 20.2 MgO 4.5 4.5 4.5 4.2 4.2 4.2 CaO 5.0 5.0 5.0 4.6 4.6 4.8 SrO 1.9 0.5 3.5 2.6 2.6 2.8 BaO 1.8 3.5 0.5 0.5 0.5 0.5 ZnO - - - - - - α 20/300 [10 -6 / K] 3.44 3.42 3.55 3.31 3.33 3.37 p [g / cm 3 ] 2.50 2.52 2.52 2.48 2.48 2.48 T g [° C] 741 747 742 749 738 745 T 4 [° C] 1279 1285 1263 1293 1276 1292 T 2 [° C] 1629 1632 1620 1648 1627 1650 n d 1,526 1,528 1,528 1.524 1.524 1.523 HCl [mg / cm 2 ] 0.88 0.76 nb nb nb 0.68 BHF [mg / cm 2 1 0.66 0.65 0.73 0.67 0.67 0.65 nb = not determined
(Continuation of the table see next page)
7 8th 9 10 11 SiO 2 59.5 59.3 58.3 58.5 58.2 B 2 O 3 7.5 6.1 6.1 6.5 7.2 Al 2 O 3 20.2 20.2 20.2 22.8 20.9 MgO 4.2 6.0 6.0 4.1 4.1 CaO 4.8 4.8 4.8 4.6 6.0 SrO 2.8 2.8 2.8 0.2 0.2 BaO 0.5 0.5 0.5 3.0 3.1 ZnO - - 1.0 - - α 20/300 [10 -6 / K] 3.38 3.54 3.57 3.24 3.47 p [g / cm 3 2.48 2.51 2.53 2.50 2.51 T g [° C] 736 744 738 756 740 T4 [° C] 1278 1271 1255 1298 1264 T2 [° C] 1633 1617 1695 1647 1624 N d 1.523 1,529 1,531 1,526 1,528 HCl [mg / cm 2 ] nb 0.67 0.66 0.94 nb BHF [mg / cm 2 ] 0.66 0.74 0.77 0.64 0.62 nb = not determined

Wie die Ausführungsbeispiele verdeutlichen, besitzen die erfindungsgemäßen Gläser folgende vorteilhafte Eigenschaften:

  • eine thermische Dehnung α 20/300 zwischen 2,8 10-6/K und 3,6 x 10-6/K, damit angepaßt an das Ausdehnungsverhalten von amorphen und auch zunehmend polykristallinem Silicium.
  • mit Tg > 700 °C eine hohe Transformationstemperatur, also eine hohe Temperturbeständigkeit. Dies ist wesentlich für einen möglichst geringen herstellungsbedingten Schrumpf ("compaction") und für die Verwendung der Gläser als Substrate für Beschichtungen mit amorphen Si-Schichten und deren anschließende Temperung.
  • mit ρ < 2,600 g/cm3 eine geringe Dichte
  • eine Temperatur bei der Viskosität 104 dPas von maximal 1350 °C, und eine Temperatur bei der Viskosität 102 dPas von maximal 1720 °C, was hinsichtlich der Heißformgebung sowie Schmelzbarkeit eine geeignete Viskositätskennlinie bedeutet. Die Gläser sind als Flachgläser mit den verschiedenen Zieverfahren, z. B. Micro-sheet-Down-draw-, Up-draw-oder Overflow-fusion-Verfahren und in bevorzugter Ausführung, wenn sie frei von As2O3 und Sb2O3 sind, auch mit dem Floatverfahren herstellbar.
  • eine hohe chemische Beständigkeit, dokumentiert durch gute Beständigkeit gegenüber Salzsäure und gegenüber gepufferter Flußsäurelösung, was sie ausreichend inert gegen die bei der Herstellung von Flachbildschirmen verwendeten Chemikalien macht.
  • mit nd ≤1,531 einen geringen Brechwert. Diese Eigenschaft ist physikalische Grundlage für eine hohe Transmission.
As the exemplary embodiments make clear, the glasses according to the invention have the following advantageous properties:
  • a thermal expansion α 20/300 between 2.8 10 -6 / K and 3.6 x 10 -6 / K, thus adapted to the expansion behavior of amorphous and increasingly polycrystalline silicon.
  • with T g > 700 ° C a high transformation temperature, ie a high Temperturbeständigkeit. This is essential for the lowest possible production-related shrinkage ("compaction") and for the use of the glasses as substrates for coatings with amorphous Si layers and their subsequent heat treatment.
  • with ρ <2.600 g / cm 3 a low density
  • a temperature at the viscosity 10 4 dPas of at most 1350 ° C, and a temperature at the viscosity 10 2 dPas of at most 1720 ° C, which means a suitable viscosity characteristic in terms of hot molding and meltability. The glasses are flat glasses with the different Zieverfahren, z. As micro-sheet down-draw, up-draw or overflow-fusion process and in a preferred embodiment, if they are free of As 2 O 3 and Sb 2 O 3 , can also be produced by the float process.
  • high chemical resistance, documented by good resistance to hydrochloric acid and to buffered hydrofluoric acid solution, rendering it sufficiently inert to the chemicals used in the manufacture of flat panel displays.
  • with n d ≤ 1.531 a low refractive index. This property is the physical basis for high transmission.

Die Gläser weisen einen hohe Temperaturwechselbeständigkeit und eine gute Entglasungsstabilität auf.The glasses have a high thermal shock resistance and good Devitrification stability on.

Damit sind die Gläser hervorragend geeignet für die Verwendung als Substratglas in der Displaytechnik, insbesondere für TFT-Displays, und in der Dünnschicht-Photovoltaik.This makes the glasses ideal for use as a substrate glass in display technology, especially for TFT displays, and in the Thin film photovoltaics.

Claims (7)

  1. Alkali-free aluminoborosilicate glass which has the following composition (in % by weight, based on oxide): SiO2 > 58 - 65 B2O3 > 6 - 11.5 Al2O3 > 20 - 25 MgO 4 - < 6.5 CaO > 4.5 - 8 SrO 0 - < 4 BaO 0.5 - < 5 with SrO + BaO > 3 ZnO 0 - 2
  2. Aluminoborosilicate glass according to Claim 1, characterized in that it comprises at least 20.5% by weight, preferably more than 21% by weight, of Al2O3.
  3. Aluminoborosilicate glass according to Claim 1 or 2, characterized by the following composition (in % by weight, based on oxide): ZrO2 0 - 2 TiO2 0 - 2 with ZrO2 + TiO2 0 - 2 As2O3 0 - 1.5 Sb2O3 O - 1.5 SnO2 O - 1.5 CeO2 O - 1.5 C1- 0 - 1.5 F- 0 - 1.5 SO4 2- 0 - 1.5 with AS2O3 + Sb2O3 + SnO2 + CeO2 0 - 1.5 + C1 + F- + SO4 2-
  4. Aluminoborosilicate glass according to at least one of Claims 1 to 3, characterized in that the glass is free of arsenic oxide and antimony oxide, apart from unavoidable impurities, and that it can be produced in a float-glass plant.
  5. Aluminoborosilicate glass according to at least one of Claims 1 to 4, which has a coefficient of thermal expansion α20/300 of 2.8 · 10-6/K-3.6 . 10-6 /K, a glass transition temperature Tg of > 700°C and a density p of < 2.600 g/cm3.
  6. Use of the aluminoborosilicate glass according to at least one of Claims 1 to 5 as substrate glass in display technology.
  7. Use of the aluminoborosilicate glass according to at least one of Claims 1 to 6 as substrate glass in thin-film photovoltaics.
EP00125339A 2000-01-12 2000-11-30 Alkali-free aluminoborosilicate glass and its use Expired - Lifetime EP1118596B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10000839 2000-01-12
DE10000839A DE10000839C1 (en) 2000-01-12 2000-01-12 Alkali-free aluminoborosilicate glass used as substrate glass in displays and in thin layer photovoltaics contains oxides of silicon, boron, aluminum, magnesium, calcium, strontium, barium and zinc

Publications (3)

Publication Number Publication Date
EP1118596A2 EP1118596A2 (en) 2001-07-25
EP1118596A3 EP1118596A3 (en) 2001-08-01
EP1118596B1 true EP1118596B1 (en) 2003-10-15

Family

ID=7627186

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00125339A Expired - Lifetime EP1118596B1 (en) 2000-01-12 2000-11-30 Alkali-free aluminoborosilicate glass and its use

Country Status (10)

Country Link
US (1) US6671026B2 (en)
EP (1) EP1118596B1 (en)
JP (1) JP4603702B2 (en)
KR (1) KR100741584B1 (en)
CN (1) CN1190378C (en)
AT (1) ATE252064T1 (en)
CA (1) CA2330752A1 (en)
DE (2) DE10000839C1 (en)
HK (1) HK1038731B (en)
TW (1) TWI224583B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381203B (en) * 2008-10-27 2011-02-09 北京滨松光子技术股份有限公司 Component of molybdenum-containing sunalux glass and application

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034985C1 (en) * 2000-07-19 2001-09-06 Schott Glas Production of an alkali-free aluminosilicate glass used as a substrate glass for displays comprises adding tin oxide as refining agent to the starting materials, melting the glass and hot molding the glass
DE10204150A1 (en) 2002-02-01 2003-08-14 Schott Glas Alkaline earth aluminosilicate glass and use
DE10209949A1 (en) * 2002-03-06 2003-09-25 Schott Glas Glass body with porous coating
JP2005060215A (en) * 2003-07-29 2005-03-10 Nippon Electric Glass Co Ltd Glass substrate for display, and its manufacturing method
CN1898168B (en) * 2003-12-26 2012-08-01 旭硝子株式会社 Alkali - free glass and its production method and liquid crystal display panel
CN1651346B (en) * 2004-02-06 2010-04-28 力诺集团有限责任公司 Base plate glass for film transistor liquid crystal display
JP4737709B2 (en) * 2004-03-22 2011-08-03 日本電気硝子株式会社 Method for producing glass for display substrate
WO2008132904A1 (en) * 2007-04-13 2008-11-06 Semiconductor Energy Laboratory Co., Ltd. Photovoltaic device and method for manufacturing the same
JP2008273782A (en) * 2007-04-27 2008-11-13 Ohara Inc Glass
DE102008005857A1 (en) * 2008-01-17 2009-07-23 Schott Ag Alkali-free glass
RU2010154445A (en) * 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) METHOD AND SYSTEM FOR ENERGY GENERATION BY BURNING IN PURE OXYGEN
US8975199B2 (en) 2011-08-12 2015-03-10 Corsam Technologies Llc Fusion formable alkali-free intermediate thermal expansion coefficient glass
CN102515524A (en) * 2011-12-19 2012-06-27 彩虹(张家港)平板显示有限公司 Boroaluminosilicate glass substrate and preparation method thereof
CN102584007B (en) * 2011-12-20 2015-12-16 东旭集团有限公司 A kind of formula of environment-friendly type TFT-LCD base plate glass
KR101833805B1 (en) 2011-12-29 2018-03-02 니폰 덴키 가라스 가부시키가이샤 Alkali-free glass
TWI614227B (en) 2012-02-29 2018-02-11 康寧公司 Low cte alkali-free boroaluminosilcate glass compositions and glass articles comprising the same
CN104350018B (en) * 2012-06-07 2018-10-19 Agc 株式会社 Alkali-free glass and the alkali-free glass plate for having used the alkali-free glass
US9150448B2 (en) * 2013-03-14 2015-10-06 Corning Incorporated Dimensionally-stable, damage-resistant, glass sheets
JP6365826B2 (en) * 2013-07-11 2018-08-01 日本電気硝子株式会社 Glass
WO2015023561A2 (en) 2013-08-15 2015-02-19 Corning Incorporated Intermediate to high cte glasses and glass articles comprising the same
WO2015023525A1 (en) 2013-08-15 2015-02-19 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass
EP3142977B1 (en) * 2014-05-15 2021-10-06 Corning Incorporated Aluminosilicate glasses
WO2016115685A1 (en) * 2015-01-20 2016-07-28 Schott Glass Technologies (Suzhou) Co. Ltd. Low cte glass with high uv-transmittance and solarization resistance
CN114751643A (en) * 2016-04-27 2022-07-15 Agc株式会社 Alkali-free glass
WO2018025727A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Alkali-free glass substrate, laminated substrate, and glass substrate production method
JP6770984B2 (en) * 2018-01-17 2020-10-21 日本電気硝子株式会社 Glass and glass substrate
JP6955522B2 (en) * 2018-01-17 2021-10-27 日本電気硝子株式会社 Glass and glass substrate
JP6709519B2 (en) * 2019-01-31 2020-06-17 日本電気硝子株式会社 Glass and glass substrate
CN112441743A (en) * 2020-11-26 2021-03-05 河南旭阳光电科技有限公司 Alkali-free glass composition, alkali-free glass, preparation method and application

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US482408A (en) * 1892-09-13 Faucet and bung
JPS61132536A (en) * 1984-12-01 1986-06-20 Nippon Electric Glass Co Ltd Glass composition
JPS6374935A (en) * 1986-09-17 1988-04-05 Nippon Electric Glass Co Ltd Glass composition for substrate, having improved chemical resistance
JPS6425132A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Liquid crystal display device
US4766158A (en) * 1987-08-03 1988-08-23 Olin Corporation Urethane-containing oxazolidone-modified isocyanurate foams and a composition and method for their production
JPS6459741A (en) * 1987-08-31 1989-03-07 Toshiba Corp X-ray image tube device
JPS6472237A (en) * 1987-09-14 1989-03-17 Hitachi Ltd Address calculation system
DE3882039T2 (en) * 1987-10-01 1994-02-03 Asahi Glass Co Ltd ALKALINE-FREE GLASS.
US4824808A (en) 1987-11-09 1989-04-25 Corning Glass Works Substrate glass for liquid crystal displays
JPH01143350A (en) * 1987-11-30 1989-06-05 Fujitsu Ltd Semiconductor memory
JPH01149520A (en) * 1987-12-04 1989-06-12 Hitachi Ltd Semiconductor integrated circuit device
JP2644622B2 (en) * 1990-10-24 1997-08-25 ホーヤ株式会社 Glass for liquid crystal display substrates
JP2871163B2 (en) * 1991-04-26 1999-03-17 日本板硝子株式会社 Alkali-free glass
US5116789A (en) * 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
US5116787A (en) * 1991-08-12 1992-05-26 Corning Incorporated High alumina, alkaline earth borosilicate glasses for flat panel displays
US5374595A (en) * 1993-01-22 1994-12-20 Corning Incorporated High liquidus viscosity glasses for flat panel displays
US6292242B1 (en) * 1993-12-15 2001-09-18 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with positive uniaxial and negative biaxial retarders
US5508237A (en) * 1994-03-14 1996-04-16 Corning Incorporated Flat panel display
JPH0834634A (en) * 1994-07-26 1996-02-06 Nippon Electric Glass Co Ltd Glass substrate excellent in chemical resistance
JP4250208B2 (en) * 1994-11-30 2009-04-08 旭硝子株式会社 Non-alkali glass and liquid crystal display panel for display substrates
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
DE69508706T2 (en) * 1994-11-30 1999-12-02 Asahi Glass Co. Ltd., Tokio/Tokyo Alkali-free glass and flat screen
JP3804101B2 (en) * 1995-04-27 2006-08-02 旭硝子株式会社 Glass substrate for magnetic disk
JP3666608B2 (en) * 1995-04-27 2005-06-29 日本電気硝子株式会社 Alkali-free glass substrate
JP3804111B2 (en) * 1995-07-28 2006-08-02 旭硝子株式会社 Alkali-free glass and display substrate
JP3666610B2 (en) * 1995-08-02 2005-06-29 日本電気硝子株式会社 Alkali-free glass substrate
JP3002635B2 (en) 1995-09-07 2000-01-24 西川ゴム工業株式会社 Weather Strip
DE19680966T1 (en) * 1995-09-28 1998-01-08 Nippon Electric Glass Co Alkali-free glass substrate
KR100262115B1 (en) * 1995-09-28 2000-07-15 기시다 기요사쿠 Alkali-free glass substrate
JP3858293B2 (en) * 1995-12-11 2006-12-13 日本電気硝子株式会社 Alkali-free glass substrate
DE19601022A1 (en) 1996-01-13 1997-07-17 Mtu Friedrichshafen Gmbh Cylinder head for internal combustion engine
DE19601922C2 (en) * 1996-01-13 2001-05-17 Schott Glas Tin and zirconium oxide-containing, alkali-free alkaline earth aluminum-borosilicate glasses and their use
DE19603689A1 (en) 1996-02-02 1997-08-28 Gutermuth Patent Gmbh & Co Kg Separator removing particles below specified size from e.g. oil mists
DE19603698C1 (en) 1996-02-02 1997-08-28 Schott Glaswerke Alkali-free aluminoborosilicate glass and its use
JP3800657B2 (en) * 1996-03-28 2006-07-26 旭硝子株式会社 Alkali-free glass and flat display panel
DE19617344C1 (en) * 1996-04-30 1997-08-07 Schott Glaswerke Alkali-free alumino:borosilicate glass
JP3988209B2 (en) 1996-06-03 2007-10-10 旭硝子株式会社 Alkali-free glass and liquid crystal display panel
JP3800438B2 (en) * 1996-07-09 2006-07-26 日本電気硝子株式会社 Alkali-free glass and method for producing the same
JP3804112B2 (en) 1996-07-29 2006-08-02 旭硝子株式会社 Alkali-free glass, alkali-free glass manufacturing method and flat display panel
JP3861271B2 (en) * 1996-08-21 2006-12-20 日本電気硝子株式会社 Alkali-free glass and method for producing the same
JP3800440B2 (en) * 1996-08-21 2006-07-26 日本電気硝子株式会社 Alkali-free glass and method for producing the same
JP3861272B2 (en) * 1996-12-18 2006-12-20 日本電気硝子株式会社 Alkali-free glass and method for producing the same
JP3800443B2 (en) * 1996-10-22 2006-07-26 日本電気硝子株式会社 Non-alkali glass substrate for display and method for producing the same
US6137048A (en) * 1996-11-07 2000-10-24 Midwest Research Institute Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
JPH10139467A (en) * 1996-11-12 1998-05-26 Asahi Glass Co Ltd Alkali-free glass and flat display panel
US6060168A (en) * 1996-12-17 2000-05-09 Corning Incorporated Glasses for display panels and photovoltaic devices
JP4739468B2 (en) * 1997-05-20 2011-08-03 旭硝子株式会社 Alkali-free glass and its clarification method
JPH11143350A (en) 1997-11-14 1999-05-28 Matsushita Joho System Kk Device and method for simulating disaster prevention and record medium recording the simulation method
JP4071328B2 (en) 1997-11-18 2008-04-02 富士通株式会社 Document image processing apparatus and method
EP0953549B1 (en) * 1998-04-28 2002-09-11 Asahi Glass Company Ltd. Plate glass and substrate glass for electronics
JP4306044B2 (en) * 1998-09-22 2009-07-29 日本電気硝子株式会社 Alkali-free glass and method for producing the same
US6468933B1 (en) * 1998-09-22 2002-10-22 Nippon Electric Glass Co., Ltd. Alkali-free glass and method of producing the same
DE19934072C2 (en) * 1999-07-23 2001-06-13 Schott Glas Alkali-free aluminoborosilicate glass, its uses and processes for its manufacture
DE19939789A1 (en) * 1999-08-21 2001-02-22 Schott Glas Alkali-free aluminoborosilicate glasses and their uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381203B (en) * 2008-10-27 2011-02-09 北京滨松光子技术股份有限公司 Component of molybdenum-containing sunalux glass and application

Also Published As

Publication number Publication date
JP4603702B2 (en) 2010-12-22
DE10000839C1 (en) 2001-05-10
US6671026B2 (en) 2003-12-30
TWI224583B (en) 2004-12-01
DE50004064D1 (en) 2003-11-20
EP1118596A2 (en) 2001-07-25
HK1038731A1 (en) 2002-03-28
CN1303828A (en) 2001-07-18
KR100741584B1 (en) 2007-07-20
JP2001220172A (en) 2001-08-14
KR20010089897A (en) 2001-10-13
CN1190378C (en) 2005-02-23
EP1118596A3 (en) 2001-08-01
HK1038731B (en) 2005-10-14
CA2330752A1 (en) 2001-07-12
ATE252064T1 (en) 2003-11-15
US20020013210A1 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
EP1118596B1 (en) Alkali-free aluminoborosilicate glass and its use
EP1219573B1 (en) Alkali-free aluminoborosilicate glasses and their applications
EP1118594B1 (en) Alkali-free aluminoborosilicate glass and its use
EP1118593B1 (en) Alkali-free aluminoborosilicate glass and its use
DE10000836B4 (en) Alkali-free aluminoborosilicate glass and its uses
EP1373155B1 (en) Aluminoborosilicate glass devoid of alkali and uses thereof
EP1044932B1 (en) Alkali-free aluminoborosilicate glass and its use
DE19739912C1 (en) New alkali-free aluminoborosilicate glass
EP1070681B1 (en) Alkali-free aluminoborosilicate glass, its uses and process of production
EP1078893B1 (en) Alkali-free aluminoborosilicate glasses and their applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20001130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTT GLAS

Owner name: CARL-ZEISS-STIFTUNG TRADING AS SCHOTT GLAS

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20021016

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031015

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031015

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50004064

Country of ref document: DE

Date of ref document: 20031120

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040105

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091201

Year of fee payment: 10

Ref country code: GB

Payment date: 20091119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091224

Year of fee payment: 10

BERE Be: lapsed

Owner name: *SCHOTT A.G.

Effective date: 20101130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171121

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004064

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601