EP1117696A1 - Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten - Google Patents

Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten

Info

Publication number
EP1117696A1
EP1117696A1 EP99932863A EP99932863A EP1117696A1 EP 1117696 A1 EP1117696 A1 EP 1117696A1 EP 99932863 A EP99932863 A EP 99932863A EP 99932863 A EP99932863 A EP 99932863A EP 1117696 A1 EP1117696 A1 EP 1117696A1
Authority
EP
European Patent Office
Prior art keywords
monomers
acid
weight
polymerization
quaternized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99932863A
Other languages
English (en)
French (fr)
Inventor
Volker Hildebrandt
Reinhold Dieing
Katrin Zeitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1117696A1 publication Critical patent/EP1117696A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a process for the preparation of powdery, cationic, crosslinked polymers based on monoethylenically unsaturated monomers which contain a quaternized or guaternizable nitrogen atom by free-radical polymerization in supercritical carbon dioxide.
  • EP-A 220 603 describes a process for the production of uncrosslinked powdery polymers based on N-vinyl monomers and / or ethylenically unsaturated carboxylic acid esters by radical polymerization in supercritical carbon dioxide.
  • EP-A 239 035 describes the preparation of crosslinked powdery polymers based on monoethylenically unsaturated carboxylic acids, their aids and / or esters by polymerization in supercritical carbon dioxide.
  • the reaction mixture and liquid carbon dioxide are generally placed in a pressure vessel and the supercritical state is then brought about by increasing the temperature and pressure.
  • a disadvantage of this is that, due to the non-uniform solubility of the monomers and crosslinking agents in the solvent, products with a non-uniform morphology or chemical chemistry can be formed.
  • the object of the present invention was to find an improved process for the preparation of crosslinked polymers.
  • a process for the preparation of powdered cationic crosslinked polymers based on monoethylenically unsaturated monomers which contain a quaternized or quaternizable nitrogen atom by radical-initiated polymerization which is characterized in that the polymerization in supercritical carbon dioxide as an inert diluent with mixing at temperatures from over 31 ° C to 150 ° C and pressures above 73 bar.
  • the polymerization is carried out under pressure in supercritical carbon dioxide as an inert diluent.
  • JA Hyatt, J. Org. Chem. 49, 5097-5101 (1984) reported on the properties of carbon dioxide in the liquid and in the supercritical state.
  • the critical point of carbon dioxide lies about 31 ° C and 73 bar.
  • the polymerization is preferably carried out under pressure in supercritical carbon dioxide at temperatures above about 31 ° C., the critical temperature of the carbon dioxide.
  • the upper limit for the preparation of the polymers 5 is that temperature which is 10 ° C. above the beginning of the softening range of the respective resulting polymers.
  • the upper value for this temperature limit is 150 ° C for most polymers.
  • the polymerization is preferably carried out in the temperature range from 30 to 130 ° C.
  • reaction temperature need not be kept constant; you can also set a step or ramp temperature profile. It is advisable to set temperatures in the range of 31 to 100 ° C at the beginning of the reaction.
  • the pressures are above 73 bar, preferably in the range of
  • the process according to the invention is preferably carried out in such a way that carbon dioxide in the solid, liquid or gaseous state is first used in pressure apparatus which are conventional per se in the reaction chamber
  • the carbon dioxide is converted into the supercritical state by increasing the pressure to values above 73 bar and the temperature above 31 ° C., then adjusting the reaction temperature and then metering in the starting materials.
  • the starting materials such as monomers, free radical initiators, crosslinking agents and, if appropriate, polymerization regulators, can be metered in individually or as mixtures. For example, it may be advisable to dissolve the radical initiators in the monomers. Which procedure you choose essentially depends on the solubility of the individual components among each other and in the diluent. However, the starting materials can also be introduced in whole or in part in the reaction space and then the carbon dioxide added. If desired, feedstocks can be metered in during the reaction (semi-batch procedure).
  • the polymerization reaction is started with the aid of polymerization initiators which break down into free radicals.
  • All initiators known for the polymerization of the monomers can be used. Suitable are, for example, initiators which decompose into free radicals and which have half-lives of less than 3 hours at the temperatures chosen in each case. If the polymerization is carried out at different temperatures, by first polymerizing the monomers at a lower temperature and then polymerizing them at a significantly higher temperature, it is advantageous to use at least two different initiators, which have a sufficient decay rate in the temperature range selected in each case.
  • the polymerization reaction can be carried out batchwise or continuously with thorough mixing of the reactants in appropriately designed printing apparatuses. In order to remove the heat generated during the polymerization, it is desirable that the printing apparatuses have a cooling system. Of course, they must also be heatable in order to heat the reaction mixture to the temperature desired for the polymerization.
  • the pressure equipment should have mixing devices, e.g. Stirrers (blade, impeller, multiple impulse counter-current, spiral stirrers) or blades.
  • the process according to the invention is particularly suitable for the production of powdered, cationic, crosslinked polymers.
  • powdery, cationic, crosslinked polymers are obtainable by free-radically initiated polymerization of
  • Suitable monomers (al) are selected from one of the following groups:
  • R 1 , R 2 and R 3 independently of one another are hydrogen, -CC 4 -alkyl or phenyl, preferably 2-methyl-N-vinyl imidazole or N-vinylimidazole
  • R 4 is a -C 24 alkyl, preferably N, N-diallyl-N-methylamine
  • diallylamines react under the polymerization conditions according to the invention with ring closure:
  • R 5 and R 6 are independently hydrogen or methyl
  • R 7 is a linear or branched C] _- C 4 alkylene radical
  • R 8 and R 9 are independently a C ⁇ -C 24 alkylene radical.
  • Suitable monomers of the general formula (III) are, for example, N, N-dimethylaminomethyl (meth) acrylate, N, N-diethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminobutyl (meth) acrylate, N, N-diethylamino-butyl (meth) acrylate, N, N-dimethylaminohexyl (meth) acrylate, N, N-dimethylaminooctyl (meth) acrylate, N, N-dimethylamino dodecyl (meth) acrylate, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino) butyl] methacrylamide, N-
  • Preferred monomers (al) are 3-methyl-1-vinylimidazolium chloride and methosulfate, dimethyldiallylammonium chloride and N, N-dimethylaminoethyl methacrylate and N- [3- (dimethylamino) propyl] methacrylamide, which are optionally quaternized by methyl chloride, dimethyl sulfate or diethyl sulfate were.
  • Particularly preferred monomers (al) are 3-methyl-1-vinylimidazolium chloride and methosulfate and dirnethyldiallylammonium chloride, 3-methyl-1-vinylimidazolium chloride and methosulfate are very particularly preferred.
  • Mixtures of the monomers (a1) can also be used.
  • the monomers (a1) can either be used in quaternized form as monomers or polymerized non-quaternized, in which case the copolymer obtained is either quaternized or protonated.
  • the monomers can be used either as a dried substance or in the form of concentrated solutions in solvents suitable for the monomers, for example in polar solvents such as water, methanol, ethanol, acetone or electrolyte solutions.
  • mineral acids such as HC1, H 2 SO 4 and monocarboxylic acids, for example formic acid and acetic acid, dicarboxylic acids and polyfunctional carboxylic acids, are suitable for protonation
  • Oxalic acid and citric acid as well as all other proton donating compounds and substances that are able to protonate the corresponding nitrogen atom.
  • Water-soluble acids are particularly suitable for protonation.
  • the protonation of the polymer can either take place after the polymerization or in the formulation of the cosmetic preparation, in which a physiologically tolerable pH is generally set.
  • Protonation is understood to mean that at least some of the protonatable groups of the polymer, preferably 20 to 100%, are protonated, so that a total cationic charge of the polymer results.
  • alkyl halides with 1 to 24 C atoms in the alkyl group, e.g. Methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and benzyl halides, especially benzyl chloride and benzyl bromide.
  • Other suitable quaternizing agents are dialkyl sulfates, especially dimethyl sulfate or diethyl sulfate.
  • the quaternization of the basic monomers of the general formulas (I) to (III) can also be carried out with alkylene oxides such as ethylene oxide or propylene oxide in the presence of acids.
  • the quaternization of the monomer or a polymer with one of the quaternizing agents mentioned can be carried out by generally known methods.
  • Preferred quaternizing agents are: methyl chloride, dimethyl sulfate or diethyl sulfate.
  • Suitable monomers (a2) are N-vinyl lactams, e.g. N-vinyl piperidone, N-vinyl pyrrolidone and N-vinyl caprolactam, with N-vinyl pyrrolidone being preferred.
  • Suitable crosslinkers are, for example, acrylic esters, methacrylic esters, Allylether or vinyl ethers of at least dihydric alcohols.
  • the OH groups of the underlying alcohols can be wholly or partially etherified or esterified; however, the crosslinkers contain at least two ethylenically unsaturated groups.
  • Examples of the underlying alcohols are dihydric alcohols such as 1,2-ethanediol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, but-2-ene-1,4-diol , 1, 2-pentanediol, 1, 5-pentanediol, 1, 2-hexanediol, 1, 5-hexanediol, 1, 10-decanediol, 1, 2-dodecanediol, 1, 12-dodecanediol, neopentyl glycol, 3-methylpentane -1, 5-diol, 2, 5-dodecanediol, 1, 12-dodecanediol, neopentyl glycol, 3-methylpentane -1, 5-diol, 2, 5-dodecanediol, 1, 12-dodecane
  • 2,2-bis [4- (2-hydroxypropyl) phenyl] propane diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, 3-thio-pentane-l, 5-diol, and also polyethylene glycols, polypropylene glycols and polytetrahydrofurans with molecular weights of 200 to 10,000 in each case.
  • block copolymers of ethylene oxide or propylene oxide can also be used or
  • Copoly erisate containing ethylene oxide and propylene oxide groups incorporated are used.
  • underlying alcohols with more than two OH groups are trimethylolpropane, glycerol, pentaerythritol, 1,2, 5-pentanetriol, 1, 2, 6-hexanetriol, triethoxycyanuric acid, sorbitan, sugars such as sucrose, glucose, mannose.
  • the polyvalent ones Alcohols can also be used as the corresponding ethoxylates or propoxylates after reaction with ethylene oxide or propylene oxide.
  • the polyhydric alcohols can also first be converted into the corresponding glycidyl ethers by reaction with epichlorohydrin.
  • crosslinkers are the vinyl esters or the esters of monohydric, unsaturated alcohols with ethylenically unsaturated C 3 -C 6 carboxylic acids, for example acrylic acid, methacrylic acid, itaconic acid, maleic acid or fumaric acid.
  • suitable crosslinkers are allyl alcohol, l-buten-3-ol, 5-hexen-l-ol, l-octen-3-ol, 9-decen-l-ol, dicyclopentenyl alcohol, 10-undecen-l-ol, cinnamon alcohol , Citronellol, crotyl alcohol or cis-9-octadecen-l-ol.
  • the monohydric, unsaturated alcohols can also be esterified with polybasic carboxylic acids, for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • polybasic carboxylic acids for example malonic acid, tartaric acid, trimellitic acid, phthalic acid, terephthalic acid, citric acid or succinic acid.
  • esters of unsaturated carboxylic acids with the polyhydric alcohols described above, for example oleic acid, crotonic acid, cinnamic acid or 10-undecenoic acid, as crosslinking agents.
  • straight-chain or branched, linear or cyclic, aliphatic or aromatic hydrocarbons which have at least two double bonds which must not be conjugated to aliphatic hydrocarbons, e.g. Divinylbenzene, divinyltoluene, 1, 7-octadiene, 1, 9-decadiene, 4-vinyl-1-cyclohexene, trivinylcyclohexane or polybutadienes with molecular weights from 200 to 20,000.
  • crosslinking agents are the acrylic acid amides, methacrylic acid amides and N-allylamines of at least divalent amines.
  • amines are, for example, 1,2-diaminomethane, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,2-dodecanediamine, piperazine, diethylenetriamine or isophoronediamine.
  • amides of allylamine and unsaturated carboxylic acids such as acrylic acids, methacrylic acid, itaconic acid, maleic acid, or at least dibasic carboxylic acids, as described above.
  • Triallylamine and triallylmonoalkylammonium salts e.g. Triallylmethylammonium chloride or methyl sulfate, suitable as a crosslinker.
  • N-vinyl compounds of urea derivatives at least dihydric amides, cyanurates or urethanes, for example urea, ethylene urea, propylene urea or tartaric acid diamide, e.g. N, N'-divinyl ethylene urea or N, N'-divinyl propylene urea.
  • alkylenebisacrylamides such as methylenebisacrylamide and N, N'- (2,2-) butane and 1, 1 '-bis- (3, 3'-vinylbenzimidazolite-2-one) 1,4-butane.
  • crosslinkers are for example Alkylenglykoldi- (meth) acrylates such as ethylene glycol diacrylate, acrylate Ethylenglykoldimeth- dimethacrylate, tetraethylene glycol, acrylate Tetraethylenglykoldimeth-, diethylene glycol acrylate, Diethylenglykolmethacrylat, Vinylacryla, allyl acrylate, allyl methacrylate, divinyldioxane, pentaerythritol triallyl ether and mixtures of crosslinkers.
  • Alkylenglykoldi- (meth) acrylates such as ethylene glycol diacrylate, acrylate Ethylenglykoldimeth- dimethacrylate, tetraethylene glycol, acrylate Tetraethylenglykoldimeth-, diethylene glycol acrylate, Diethylenglykolmethacrylat, Vinylacryla, allyl acrylate, ally
  • crosslinkers are divinyldioxane, tetraallylsilane or tetravinylsilane.
  • Crosslinking agents which are particularly preferably used are, for example, methylenebisacrylamide, triallylamine and triallylalkylammonium salts, divinylimidazole, N, N'-divinylethyleneurea, reaction products of polyhydric alcohols with acrylic acid or methacrylic acid, methacrylic acid esters and acrylic acid esters of polyalkylene oxides or polyhydric alcohols or with ethylene oxide and / Propylene oxide and / or epichlorohydrin have been implemented.
  • Methylene bisacrylamide, N, N'-divinylethylene urea and acrylic acid esters of glycol, butanediol, trimethylolpropane or glycerol or acrylic acid esters of glycol, butanediol, trimethylolpropane or glycerol reacted with ethylene oxide and / or epichlorohydrin are very particularly preferred as crosslinking agents.
  • the crosslinker is preferably soluble in the reaction medium. If the crosslinking agent is poorly soluble in the reaction medium, it can be dissolved in a monomer or in a monomer mixture, or it can be metered in dissolved in a solvent. that mixes with the reaction medium. Those crosslinkers which are soluble in the monomer mixture are particularly preferred.
  • the solution viscosity of the polymers according to the invention can be influenced to a large extent by the content of crosslinking agent.
  • N-vinyl acetamide N-methyl-N-vinyl acetamide, acrylamide, methacrylamide, N, N-dimethylacrylamide, N-methylol methacrylamide, N-vinyl formamide, N-vinyl oxazolidone, N-vinyl triazole.
  • the group of monomers (c) includes, for example, acrylonitrile, methacrylonitrile, acrylic acid and methacrylic acid esters, which are derived from monohydric Ci to Cig alcohols, hydroxy-C 2 -C 4 -alkyl esters of acrylic acid and methacrylic acid, Maleic anhydride, vinyl ester, 2-acrylamido-2-methylpropylsulfonic acid and / or vinyl phosphoric acid.
  • Esters of acrylic acid and methacrylic acid with fatty alcohol ethoxylates and fatty alcohol propoxylates are also suitable, the fatty alcohol component having 10 to 20 carbon atoms and the ethylene oxide or propylene oxide content being 1 to 20 mol%.
  • Such alcohol components are obtained, for example, by reacting C 1 to C 2 fatty alcohols with ethylene oxide and / or propylene oxide and esterifying the alkoxylated fatty alcohols obtained with acrylic acid or methacrylic acid.
  • the use of these comonomers results in crosslinked copolymers which have a high resistance to electrolytes.
  • the monomers of group (c) are used in an amount of 0 to 30, and preferably up to 15% by weight. If they are used for the modification of the copolymers from (a) and (b), the lower limit is 5% by weight, based on the monomer mixture. The sum of the percentages for the monomers (a), (b) and (c) is 100% in all cases.
  • Esters of acrylic acid and methacrylic acid are, for example, methyl acrylate, ethyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate, stearyl acrylate, stearyl methacrylate and the acrylic acid esters of the isomeric butyl alcohols.
  • Hydroxy-C 2 to C 4 -alkyl esters of acrylic acid and methacrylic acid are, for example, hydroxyethyl acrylates, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate and hydroxybutyl methacrylate.
  • vinyl esters vinyl acetate and vinyl propionate are preferably used.
  • Other suitable monomers are olefins such as ethylene or propylene, styrene and alkyl ethylene glycol acrylates or methacrylates with 1 to 50 ethylene glycol units.
  • Water-soluble and water-insoluble peroxo and / or azo compounds can be used as initiators for the radical polymerization, for example alkali or Ammonium peroxydisulfates, hydrogen peroxide, dibenzoyl peroxide, tert-butyl perpivalate, 2,2'-azobis (2,4-dimethylvaleronitrile), tert. -Butylperoxineodecanoate, tert-butyl-per-2-ethylhexanoate, di-tert. -butyl peroxide, tert.
  • alkali or Ammonium peroxydisulfates hydrogen peroxide
  • dibenzoyl peroxide tert-butyl perpivalate
  • tert. -Butylperoxineodecanoate tert-butyl-per-2-ethylhexanoate
  • redox coinitiators for example benzoin, dimethylaniline and organically soluble complexes and salts of heavy metals such as copper, cobalt, manganese, nickel and chromium or especially iron
  • the half-lives of the peroxides mentioned, especially the hydroperoxides can be reduced that, for example, tert. -Butyl hydroperoxide in the presence of 5 ppm copper (II) acetylacetonate is already effective at 100 ° C.
  • the polymerization can optionally also be carried out in the presence of polymerization regulators in order to regulate the molecular weight of the polymers. If you want to produce particularly low molecular weight copolymers, higher amounts of polymerization regulators are used, whereas only small amounts of polymerization regulators are used for the production of high molecular weight copolymers or the absence of these substances is used.
  • Suitable polymerization regulators are, for example, 2-mercapto-ethanol, mercaptopropanols, mercaptobutanols, thioglycolic acid, N-dodecyl mercaptan, tert.
  • the polymerization regulators are used in an amount of 0 to 10, preferably 0 to 5% by weight, based on the monomers used.
  • the polymers obtainable by the process according to the invention are suitable for use as viscosity modifiers (emulsifiers and dispersing assistants), as W / O and O / W emulsifiers, and generally as process aids, finishing aids or as superabsorbents, furthermore as detergent additives such as incrustation and color transfer inhibitors, as retention aids in papermaking, as flocculants in water treatment or for use in the field of Food technology, for example as a filter aid or complexing agent.
  • the polymers are also particularly suitable as thickeners and gelling agents in cosmetic formulations, especially for skin and hair cosmetic preparations such as hair treatments, hair lotions, hair rinses, hair emulsions, tip fluids, leveling agents for permanent waves, 'hot oil treatment' preparations, setting lotions or hair sprays, especially in skin and hair conditioners.
  • the hair cosmetic preparations can be applied as a spray, foam, gel, gel spray or mousse.
  • the polymers are also suitable as auxiliaries in pharmaceutical formulations, for example as tablet disintegrants.
  • the polymers produced according to the invention are white, free-flowing powders with a uniform morphology, which have practically no tendency to stickiness.
  • Carbon dioxide was placed in an autoclave and brought to the supercritical state and to the reaction temperature by increasing the pressure and temperature.
  • the feed materials were then metered in as a mixture in a single feed.
  • the reaction mixture was stirred at 600 rpm.
  • the residence time in the reactor was 10 hours.
  • the mixture was then cooled to room temperature and let down. Loose, white powders were obtained, which had no tendency to aggregate, with particle sizes in the range from 10 to 500 ⁇ m.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Verfahren zur Herstellung von pulverförmigen kationischen vernetzten Polymerisaten auf Basis von monoethylenisch ungesättigten Monomeren, die ein quaternisiertes oder ein quaternisierbares Stickstoffatom enthalten, dadurch gekennzeichnet, daß man die Polymerisation in überkritischem Kohlendioxid als inertem Verdünnungsmittel unter Durchmischung bei Temperaturen von über 31 °C bis 150 °C und Drücken oberhalb von 73 bar durchführt.

Description

Verfahren zur Herstellung von pulverförmigen vernetzten Polymerisaten
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von pulverförmigen kationischen vernetzten Polymerisaten auf Basis von monoethylenisch ungesättigten Monomeren, die ein quaterniertes oder guaternisierbares Stickstoffatom enthalten, durch radikalische Polymerisation in überkritischem Kohlendioxid.
Es ist allgemein bekannt, überkritisches Kohlendioxid als Lösungsmittel bei der Herstellung von Polymerisaten durch radikalische Polymerisation einzusetzen. So wird beispielsweise in der EP-A 220 603 ein Verfahren zur Herstellung von unver- netzten pulverförmigen Polymerisaten auf Basis von N-Vinyl-Monomeren und/oder ethylenisch ungesättigten Carbonsäureestern durch radikalische Polymerisation in überkritischem Kohlendioxid be- schrieben. In der EP-A 239 035 ist die Herstellung von vernetzten pulverförmigen Polymerisaten auf Basis von monoethylenisch ungesättigten Carbonsäuren, deren Aiden und/oder Estern durch Polymerisation in überkritischem Kohlendioxid beschrieben. Bei den bekannten Verfahren wird im allgemeinen die Reaktionsmischung und flüssiges Kohlendioxid in einem Druckgefäß vorgelegt und dann durch Temperatur- und Druckerhöhung der überkritische Zustand herbeigeführt. Nachteilig ist daran jedoch, daß aufgrund uneinheitlicher Löslichkeiten der Monomeren und Vernetzer im Lösungsmittel Produkte mit uneinheitlicher Morphologie oder unheitlicher chemischer Zusammensetzung entstehen können. Aufgabe der vorliegenden Erfindung war es, ein verbessertes Verfahren für die Herstellung vernetzter Polymerisate zu finden.
Demgemäß wurde ein Verfahren zur Herstellung von pulverförmigen kationischen vernetzten Polymerisaten auf Basis von monoethylenisch ungesättigten Monomeren, die ein quaterniertes oder quaternisierbares Stickstoffatom enthalten, durch radikalisch initiierte Polymerisation, welches dadurch gekennzeichnet ist, daß man die Polymerisation in überkritischem Kohlendioxid als inertem Verdünnungsmittel unter Durchmischung bei Temperaturen von über 31°C bis 150°C und Drücken von über 73 bar durchführt.
Die Polymerisation wird unter Druck in überkritischem Kohlendioxid als inertem Verdünnungsmittel durchgeführt. Über die Eigenschaften von Kohlendioxid in flüssigem und im überkritischen Zustand berichtete J.A. Hyatt, J. Org. Chem. 49, 5097-5101 (1984) . Danach liegt der kritische Punkt von Kohlendioxid bei etwa 31°C und 73 bar. Die Polymerisation wird bevorzugt unter Druck in überkritischem Kohlendioxid bei Temperaturen oberhalb von etwa 31°C, der kritischen Temperatur des Kohlendioxids, vorgenommen. Als obere Grenze für die Herstellung der Polymerisate 5 wird diejenige Temperatur angesehen, die 10°C oberhalb des beginnenden Erweichungsbereiches der jeweiligen entstehenden Polymerisate liegt. Der obere Wert für diese Temperaturgrenze beträgt für die meisten Polymerisate 150°C. Die Polymerisation wird vorzugsweise in dem Temperaturbereich von 30 bis 130°C durch-
10 geführt. Die Reaktionstemperatur muß nicht konstant gehalten sein; man kann auch ein stufen- oder rampenförmiges Temperaturprofil einstellen. Es empfiehlt sich zu Beginn der Reaktion Temperaturen im Bereich von 31 bis 100°C einzustellen. Die Drücke liegen dabei oberhalb von 73 bar, vorzugsweise in dem Bereich von
15 80 bis 300 bar, besonders bevorzugt von 120 bis 250 bar.
Das erfindungsgemäße Verfahren wird vorzugsweise so durchgeführt, daß man zunächst im Reaktionsraum Kohlendioxid in festem, flüssigem oder gasförmigem Zustand in an sich üblichen Druckapparaturen
20 vorlegt, danach durch Erhöhung des Drucks auf Werte von über 73 bar und der Temperatur auf Werte über 31°C das Kohlendioxid in den überkritischen Zustand überführt, dann die Reaktionstemperatur einstellt und anschließend die Einsatzstoffe zudosiert. Die Einsatzstoffe wie Monomere, Radikalstarter, Ver- 5 netzer und gegebenenfalls Polymerisationsregler können einzeln oder als Mischungen zudosiert werden. So kann es sich beispielsweise empfehlen, die Radikalstarter in den Monomeren zu lösen. Welche Vorgehensweise man wählt, hängt im wesentlichen von den Löslichkeiten der einzelnen Komponenten untereinander und im 0 Verdünnungsmittel ab. Man kann aber auch die Einsatzstoffe im Reaktionsraum ganz oder teilweise vorlegen und dann das Kohlendioxid zugeben. Gewünschtenfalls können Einsatzstoffe im Verlauf der Reaktion zudosiert werden (Semibatch-Fahrweise) .
5 Die Polymerisationsreaktion wird mit Hilfe von in Radikale zerfallende Polymerisationsinitiatoren gestartet. Es können sämtliche Initiatoren eingesetzt werden, die für die Polymerisation der Monomeren bekannt sind. Geeignet sind beispielsweise in Radikale zerfallende Initiatoren, die bei den jeweils gewählten 0 Temperaturen Halbwertzeiten von weniger als 3 Stunden besitzen. Falls die Polymerisation bei unterschiedlichen Temperaturen durchgeführt wird, indem man die Monomeren zunächst bei einer niedrigeren Temperatur anpolymerisiert und anschließend bei einer deutlich höheren Temperatur auspolymerisiert, so verwendet man 5 zweckmäßigerweise mindestens zwei unterschiedliche Initiatoren, die in dem jeweils gewählten Temperaturbereich eine ausreichende Zerfallsgeschwindigkeit haben.
Bezogen auf 100 Gew. -Teile der Monomerenmischung verwendet man 5 100 bis 3000, vorzugsweise 200 bis 1500 Gew. -Teile Kohlendioxid. Es ist vorzugsweise wasserfrei. Die Polymerisationsreaktion kann diskontinuierlich oder auch kontinuierlich unter Durchmischung der Reaktionspartner in entsprechend ausgelegten Druckapparaten durchgeführt werden. Um die bei der Polymerisation entstehende 0 Wärme abzuführen, ist es wünschenswert, daß die Druckapparaturen über ein Kühlsystem verfügen. Sie müssen selbstverständlich ebenso auch beheizbar sein, um die Reaktionsmischung auf die jeweilige für die Polymerisation gewünschte Temperatur zu erhitzen. Die Druckapparaturen sollten über Mischeinrichtungen verfügen, z.B. Rührer (Blatt-, Impeller-, Mehrst fenimpuls- gegenstrom-, Wendel-Rührer) oder Schaufeln.
Das erfindungsgemäße Verfahren eignet sich besonders zur Herstellung von pulverförmigen, kationischen, vernetzten Polymeren.
Diese pulverförmigen, kationischen, vernetzten Polymerisate sind erhältlich durch radikalisch initierte Polymerisation von
(al) 1 bis 99,99 Gew.-% eines radikalisch polymerisierbaren Monomers, welches ein quaterniertes oder ein quaternierbares Stickstoffatom enthält, oder Gemischen solcher Monomeren, und
(a2) 5 bis 95 Gew.-% eines N-Vinyllactams,
(b) 0,01 bis 20 Gew. -% eines vernetzend wirkenden Monomers, und
(c) 0 bis 50 Gew.-% eines weiteren radikalisch copolymerisier- baren Monomeren.
Geeignete Monomere (al) sind ausgewählt aus einer der folgenden Gruppen:
N-Vinylimidazol-Derivate der allgemeinen Formel (I)
worin R1, R2 und R3 unabhängig voneinander für Wasserstoff, Cι-C4-Alkyl- oder Phenyl- stehen, bevorzugt 2-Methyl-N-vinyl- imidazol oder N-Vinylimidazol
N,N-Diallylamine der allgemeinen Formel (II)
worin R4 für einen Cι-C24-Alkylrest steht, bevorzugt N, N-Diallyl-N-methylamin
Solche Diallylamine. reagieren unter den erfindungsgemäßen Polymerisationsbedingungen unter Ringschluß:
N,N-Diallylaminoalkyl-derivate der Acryl- oder Methacrylsäure der allgemeinen Formel (III)
worin R5 und R6 unabhängig voneinander für Wasserstoff oder Methyl- stehen, Z ein Stickstoffatom mit x=0 bedeutet, R7 für einen linearen oder verzweigten C]_-C4-Alkylenrest steht, und R8 und R9 unabhängig voneinander für einen Cχ-C24-Alkylenrest stehen.
Geeignete Monomere der allgemeinen Formel (III) sind beispielsweise N,N-Dimethylaminomethyl (meth) acrylat, N,N-Diethylaminomethyl (meth) acrylat, N,N-Dimethylamino- ethyl (meth) acrylat, N, N-Diethylaminoethyl (meth) acrylat, N,N-Dimethylaminobutyl (meth) acrylat, N,N-Diethylamino- butyl (meth) acrylat, N,N-Dimethylaminohexyl (meth) acrylat, N,N-Dimethylaminooctyl (meth) acrylat, N,N-Dimethylamino- dodecyl (meth) acrylat, N-[3- (dimethylamino) -propyl] acrylamid, N- [3- (dimethylamino)butyl]methacrylamid, N- [8- (dimethyl- amino) -octyllmethacrylamid, N- [12- (dimethylamino) dodecyl] - methacrylamid, N- [3- (diethylamino)propyl]methacrylamid oder N- [3- (diethylamino)propyl] acrylamid, oder deren Gemische.
Bevorzugte Monomere (al) sind 3-Methyl-l-vinylimidazolium- chlorid und -methosulfat, Dimethyldiallylammoniumchlorid sowie N,N-Dimethylaminoethylmethacrylat und N- [3- (dimethylamino)propyl]methacrylamid, die wahlweise durch Methyl- chlorid, Dimethylsulfat oder Diethylsulfat quaternisiert wurden.
Besonders bevorzugte Monomere (al) sind 3-Methyl-l-vinyl- imidazoliumchlorid und -methosulfat und Dirnethyldiallyl- ammoniumchlorid, ganz besonders bevorzugt sind 3-Methyl-1- vinylimidazoliumchlorid und -methosulfat.
Es können auch Gemische der Monomeren (al) eingesetzt werden.
Bevorzugt werden 5 bis 70 Gew. -%, besonders bevorzugt 10 bis 50 Gew.-% der Monomeren (al) eingesetzt.
Die Monomere (al) können entweder in quaternierter Form als Monomere eingesetzt werden oder nicht-quaterniert polymerisert werden, wobei man im letzteren Fall das erhaltene Copolymer entweder quaterniert oder protoniert. Für den Fall, daß die Monomeren in quaternierter Form eingesetzt werden, kann man sie entweder als getrocknete Substanz oder in Form konzentrierter Lösungen in für die Monomeren geeigneten Lösungsmitteln, beispielsweise in polaren Lösungsmitteln wie Wasser, Methanol, Ethanol, Aceton oder Elektrolytlösungen einsetzen.
Zur Protonierung eignen sich beispielsweise Mineralsäuren wie HC1, H2SO4, sowie Monocarbonsäuren z.B. Ameisensäure und Essig- säure, Dicarbonsäuren und mehrfunktionelle Carbonsäuren, z.B.
Oxalsäure und Zitronensäure sowie alle anderen protonenabgebenden Verbindungen und Substanzen, die in der Lage sind das entsprechende Stickstoffatom zu protonieren. Insbesondere eignen sich wasserlösliche Säuren zur Protonierung.
Die Protonierung des Polymers kann entweder im Anschluß an die Polymerisation erfolgen oder bei der Formulierung der kosmetischen Zubereitung, bei der in der Regel ein physiologisch verträglicher pH-Wert eingestellt wird. Unter Protonierung ist zu verstehen, daß mindestens ein Teil der protonierbaren Gruppen des Polymers, bevorzugt 20 bis 100 %, protoniert wird, so daß eine kationische Gesamtladung des Polymers resultiert.
Zur Quaternisierung der Verbindungen der allgemeinen Formel (I) bis (III) eignen sich beispielsweise Alkylhalogenide mit 1 bis 24 C-Atomen in der Alkylgruppe, z.B. MethylChlorid, Methylbromid, Methyliodid, Ethylchlorid, Ethylbromid, Propylchlorid, Hexyl- chlorid, Dodecylchlorid, Laurylchlorid und Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid. Weitere geeignete Quaternierungsmittel sind Dialkylsulfate, insbesondere Dimethyl- sulfat oder Diethylsulfat. Die Quaternierung der basischen Monomere der allgemeinen Formel (I) bis (III) kann auch mit Alkylenoxiden wie Ethylenoxid oder Propylenoxid in Gegenwart von Säuren durchgeführt werden.
Die Quaternisierung des Monomeren oder eines Polymeren mit einem der genannten Quatemisierungsmittel kann nach allgemein bekannten Methoden erfolgen.
Bevorzugte Quaternierungsmittel sind: Methylchlorid, Dimethyl- sulfat oder Diethylsulfat.
Als Monomere (a2) eignen sich N-Vinyllactame, wie z.B. N-Vinyl- piperidon, N-Vinylpyrrolidon und N-Vinylcaprolactam, wobei N-Vinylpyrrolidon bevorzugt ist.
Geeignete Vernetzer (Monomere (b) ) sind zum Beispiel Acrylester, Methacrylester, AIlylether oder Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrundeliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.
Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole wie 1, 2-Ethandiol, 1, 2-Propandiol, 1, 3-Butandiol, 2, 3-Butandiol, 1, 4-Butandiol, But-2-en-l, 4-diol, 1, 2-Pentandiol, 1, 5-Pentandiol, 1, 2-Hexandiol, 1, 5-Hexandiol, 1, 10-Decandiol, 1, 2-Dodecandiol, 1, 12-Dodecandiol, Neopentylglykol, 3-Methyl- pentan-1, 5-diol, 2 , 5-Dodecandiol, 1, 12-Dodecandiol, Neopentylglykol, 3-Methylpentan-l, 5-diol, 2, 5-Dimethyl-l, 3-hexandiol, 2,2, 4-Trimethyl-l, 3-pentandiol, 1, 2-Cyclohexandiol, 1,4-Cyclo- hexandiol, 1 , 4-Bis (hydroxymethyl ) cyclohexan, Hydroxypivalinsäure- neopentylglykolmonoester, 2 , 2-Bis (4-hydroxyphenyl)propan,
2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylenglykol, Tri- ethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylen- glykol, Tetrapropylenglykol, 3-Thio-pentan-l, 5-diol, sowie Poly- ethylenglykole, Polypropylenglykole und Polytetrahydrofurane mit Molekulargewichten von jeweils 200 bis 10 000. Außer den Homo- polymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propylenoxid oder
Copoly erisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende Alkohole mit mehr als zwei OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit, 1,2 , 5-Pentantriol, 1, 2, 6-Hexantriol, Triethoxycyanursäure, Sorbitan, Zucker wie Saccharose, Glucose, Mannose, Selbstverständlich können die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden.
Weitere geeignete Vernetzer sind die Vinylester oder die Ester einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten C3-C6-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, l-Buten-3-ol, 5-Hexen-l-ol, l-Octen-3-ol, 9-Decen-l-ol, Dicyclopentenylalkohol, 10-Undecen-l-ol, Zimtalkohol, Citronellol, Crotylalkohol oder cis-9-Octadecen-l-ol. Man kann aber auch die einwertigen, ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellitsäure, Phthal- säure, Terephthalsäure, Citronensäure oder Bernsteinsäure.
Ebenso können als Vernetzer Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäure, Zimtsäure oder 10-Undecensäure verwendet werden.
Geeignet sind außerdem geradkettige oder verzweigte, lineare oder cyclische, aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, die bei aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen, z.B. Divinylbenzol, Divinyltoluol, 1, 7-Octadien, 1, 9-Decadien, 4-Vinyl-l-cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20000.
Als Vernetzer sind ferner geeignet die Acrylsäureamide, Meth- acrylsäureamide und N-Allylamine von mindestens zweiwertigen Aminen. Solche Amine sind zum Beispiel 1, 2-Diaminomethan, 1, 2-Diaminoethan, 1, 3-Diaminopropan, 1, 4-Diaminobutan, 1, 6-Diaminohexan, 1, 12-Dodecandiamin, Piperazin, Diethylentriamin oder Isophorondiamin. Ebenfalls geeignet sind die Amide aus Allylamin und ungesättigten Carbonsäuren wie Acrylsäuren, Meth- acrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiwertigen Carbonsäuren, wie sie oben beschrieben wurden.
Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z.B. Triallylmethylammoniumchlorid oder -methylsulfat, als Vernetzer geeignet.
Geeignet sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen, beispielsweise von Harnstoff, Ethylenhamstoff, Propylenharnstoff oder Weinsäurediamid, z.B. N,N' -Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff .
Geeignet sind auch Alkylenbisacrylamide wie Methylenbisacrylamid und N,N'- (2,2-)butan und 1, 1 ' -bis- (3 , 3 ' -vinylbenzimidazolith-2- on) 1, 4-butan.
Andere geeignete Vernetzer sind beispielsweise Alkylenglykoldi- (meth)acrylate wie Ethylenglykoldiacrylat, Ethylenglykoldimeth- acrylat, Tetraethlyenglykolacrylat, Tetraethylenglykoldimeth- acrylat, Diethylenglykolacrylat, Diethylenglykolmethacrylat, Vinylacryla , Allylacrylat, Allylmethacrylat, Divinyldioxan, Pentaerythrittriallylether sowie Gemische der Vernetzer.
Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan.
Besonders bevorzugt eingesetzte Vernetzer sind beispielsweise Methylenbisacrylamid, Triallylamin und Triallylalkylammonium- salze, Divinylimidazol, N,N' -Divinylethylenharnstoff, Umsetzungsprodukte mehrwertiger Alkohole mit Acrylsäure oder Methacryl- säure, Methacrylsäureester und Acrylsäureester von Polyalkylen- oxiden oder mehrwertige Alkoholen, die mit Ethylenoxid und/oder Propylenoxid und/oder Epichlorhydrin umgesetzt worden sind. Ganz besonders bevorzugt als Vernetzer sind Methylenbisacrylamid, N,N' -Divinylethylenharnstoff und Acrylsäureester von Glykol, Butandiol, Trimethylolpropan oder Glycerin oder Acrylsäureester von mitEthylenoxid und/oder Epichlorhydrin umgesetzten Glykol, Butandiol, Trimethylolpropan oder Glycerin.
Der Vernetzer ist vorzugsweise im Reaktionsmedium löslich. Ist die Löslichkeit des Vernetzers im Reaktionsmedium gering, so kann er in einem Monomeren oder in einer Monomerenmischung gelöst werden oder aber in einem Lösungsmittel gelöst zudosiert werden, das sich mit dem Reaktionsmedium mischt. Besonders bevorzugt sind solche Vernetzer, die in der Monomermischung löslich sind.
Durch den Gehalt an Vernetzer kann die Lösungsviskosität der erfindungsgemäßen Polymere in weitem Maße beeinflußt werden.
Als weitere radikalisch polymerisierbare Monomere (c) kommen in
Betracht :
N-Vinylacetamid, N-Methyl-N-vinylacetamid, Acrylamid, Methacryl- amid, N,N-Dimethylacrylamid, N-Methylolmethacrylamid, N-Vinyl- formamid, N-Vinyloxazolidon, N-Vinyltriazol. Zu der Gruppe von Monomeren (c) gehören beispielsweise Acrylnitril, Methacryl- nitril, Acrylsäure- und Methacrylsäureester, die sich von einwertigen Ci- bis Cig-Alkoholen ableiten, Hydroxy-C2- bis C4-Alkyl- ester der Acrylsäure und Methacrylsäure, Maleinsäureanhydrid, Vinylester, 2-Acrylamido-2-methylpropylsulfonsäure und/oder Vinylphosphorsäure . Außerdem eignen sich Ester der Acrylsäure und Methacrylsäure mit Fettalkoholethoxylaten und Fettalkoholpropoxy- laten, wobei die Fettalkoholkomponente 10 bis 20 C-Atome besitzt und der Ethylenoxid- bzw. Propylenoxidanteil 1 bis 20 mol-% beträgt. Solche Alkoholkomponenten werden beispielsweise dadurch erhalten, daß man Cιo~ bis C2o~Fettalkohole mit Ethylenoxid und/ oder Propylenoxid umsetzt und die dabei erhaltenen alkoxylierten Fettalkohole mit Acrylsäure bzw. Methacrylsäure verestert. Der Einsatz dieser Comonomeren ergibt vernetzte Copolymerisate, die eine hohe Elektrolytbeständigkeit aufweisen. Die Monomeren der Gruppe (c) werden in einer Menge von 0 bis 30, und vorzugsweise bis 15 Gew.-% eingesetzt. Sofern sie für die Modifizierung der Copolymerisate aus (a) und (b) verwendet werden, beträgt die untere Grenze 5 Gew. -%, bezogen auf die Monomerenmischung. Die Summe der Prozentangaben für die Monomeren (a) , (b) und (c) beträgt in allen Fällen 100 %. Ester der Acrylsäure und Methacrylsäure sind beispielsweise Methylacrylat, Ethylacrylat, Methylmethacrylat, 2-Ethylhexylacrylat, Stearylacrylat , Stearyl- methacrylat und die Acrylsäureester der isomeren Butylalkohole. Als Hydroxy-C2-bis-C4-alkylester der Acrylsäure und Methacrylsäure kommen beispielsweise Hydroxy ethylacrylate, Hydroxypropyl- acrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat, Hydroxy- propylmethacrylat sowie Hydroxybutylmethacrylat in Betracht. Von den Vinylestern werden vorzugsweise Vinylacetat und Vinyl- propionat eingesetzt. Weitere geeignete Monomere sind Olefine wie Ethylen oder Propylen, Styrol sowie Alkylethylenglykolacrylate oder -methacrylate mit 1 bis 50 Ethylenglykoleinheiten.
Als Initiatoren für die radikalische Polymerisation können wasserlösliche und wasserunlösliche Peroxo- und/oder Azo- Verbindungen eingesetzt werden, beispielsweise Alkali- oder Ammoniumperoxidisulfate, Wasserstoffperoxid, Dibenzoylperoxid, tert .-Butylperpivalat, 2,2 '-Azobis- (2, 4-dimethylvaleronitril) , tert . -Butylperoxineodecanoat , tert.-Butyl-per-2-ethylhexanoat, Di-tert. -butylperoxid, tert. -Butylhydroperoxid, Azo-bis-iso- butyronitril, Azo-bis- (2-amidinopropan)dihydrochlorid oder 2, 2 ' -Azo-bis- (2-methylbutyronitril) . Geeignet sind auch Initiatormischungen oder Redox-Initiator Systeme, wie z.B. Ascorbinsäure/Eisen(II)sulfat/Natriumperoxodisulfat, tert. -Butyl- hydroperoxid/Natriumdisulfit, tert . -Butylhydroperoxid/Natrium- hydroxymethansulfanat. Die Initiatoren können in den üblichen Mengen eingesetzt werden, beispielsweise 0,05 bis 7 Gew.-%, bezogen auf die Menge der zu polymerisierenden Monomeren.
Durch die Mitverwendung von Redox-Coinitiatoren, beispielsweise Benzoin, Dimethylanilin sowie organisch löslicher Komplexe und Salze von Schwermetallen, wie Kupfer, Kobalt, Mangan, Nickel und Chrom oder insbesondere Eisen, können die Halbwertzeiten der genannten Peroxide, besonders der Hydroperoxide, verringert werden, so daß beispielsweise tert . -Buthylhydroperoxid in Gegenwart von 5 ppm Kupfer-II-Acetylacetonat bereits bei 100°C wirksam ist.
Bevorzugt werden schwer wasserlösliche oder wasserunlösliche Initiatoren eingesetzt.
Die Polymerisation kann gegebenenfalls auch in Gegenwart von Polymerisationsreglern durchgeführt werden, um das Molekulargewicht der Polymerisate zu regeln. Sofern man besonders niedrigmolekulare Copolymerisate herstellen will, setzt man höhere Mengen an Polymerisationsreglern ein, während man für die Her- Stellung von hochmolekularen Copolymerisaten nur geringe Mengen an Polymerisationsreglern verwendet bzw. in Abwesenheit dieser Stoffe arbeitet. Geeignete Polymerisationsregler sind beispielsweise 2-Mercapto-ethanol, Mercaptopropanole, Mercaptobutanole, Thioglykolsäure, N-Dodecylmercaptan, tert. -Dodecylmercaptan, Thiophenol, Mercaptopropionsäure, Allylalkohol und Acetaldehyd. Die Polymerisationsregler werden, bezogen auf die eingesetzten Monomeren, in einer Menge von 0 bis 10, bevorzugt 0 bis 5 Gew.-%, eingesetzt.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Polymerisate eignen sich zur Verwendung als Viskositätsmodifier (Emulgatoren und Dispergierhilfsmittel) , als W/O- und O/W-Emul- gatoren sowie allgemein als Prozeßhilfsmittel, Veredelungshilfsmittel oder als Superabsorber, weiterhin als Waschmittel- zusätze wie Inkrustationε- und Farbübertragungsinhibitoren, als Retentionshilfsmittel bei der Papierherstellung, als Flockungsmittel bei der Wasseraufbereitung oder zum Einsatz im Bereich der Lebensmittetechnologie, beispielsweise als Filtrierhilfsmittel oder Komplexbildner.
Die Polymerisate eignen sich insbesondere auch als Verdicker und Gelbildner in kosmetischen Formulierungen, vor allem für haut- und haarkosmetische Zubereitungen wie Haarkuren, Haarlotionen, Haarspülungen, Haaremulsionen, Spitzenfluids, Egali- sierungsmitteln für Dauerwellen, 'Hot-Oil-Treatment' -Präparate, Festigerlotionen oder Haarsprays, insbesondere in Haut- und Haar- Conditionern.
Je nach Anwendungsgebiet können die haarkosmetisehen Zubereitungen als Spray, Schaum, Gel, Gelspray oder Mousse appliziert werden.
Weiterhin eignen sich die Polymerisate auch als Hilfsmittel in pharmazeutischen Formulierungen, beispielsweise als Tabletten- sprengmittel.
Die erfindungsgemäß hergestellten Polymerisate sind weiße, freifließende Pulver mit einheitlicher Morphologie, die praktisch keine Neigung zur Klebrigkeit aufweisen.
Beispiele
Allgemeine Vorschrift
In einem Autoklaven wurde Kohlendioxid vorgelegt und durch Druck- und Temperaturerhöhung in den überkritischen Zustand und auf Reaktionstemperatur gebracht. Anschließend wurden die Einsatzstoffe als Mischung in einem einzigen Zulauf zudosiert. Das Reaktionsgemisch wurde mit 600 Upm gerührt. Die Verweilzeit im Reaktor betrug 10 Stunden. Anschließend wurde auf Raumtemperatur abgekühlt und entspannt. Man erhielt lockere, weiße Pulver, die keine Neigung zur Aggregation aufwiesen, mit Teilchengrößen im Bereich von 10 bis 500 μm.
Die jeweilige Zusammensetzung und die Reaktionsbedingungen sind in der nachstehenden Tabelle angegeben. Die Mengenangaben für die Peroxo-Radikalstarter beziehen sich jeweils auf 75 gew.-%ige Lösungen in Aliphaten. Tabelle
gelöst in 1,4 g Wasser
2) gelöst in 2,8 g Wasser

Claims

Patentansprüche
1. Verfahren zur Herstellung von pulverförmigen kationischen vernetzten Polymerisaten auf Basis von monoethylenisch ungesättigten Monomeren, die ein quatemisiertes oder ein quaternisierbares Stickstoffatom enthalten, dadurch gekennzeichnet, daß man die Polymerisation in überkritischem Kohlendioxid als inertem Verdünnungsmittel unter Durch- mischung bei Temperaturen von über 31°C bis 150°C und Drücken oberhalb von 73 bar durchführt.
2. Verfahren nach Anspruch 1 zur Herstellung von Polymerisaten aus
(al) 5 bis 99,99 Gew. -% eines radikalisch polymerisierbaren Monomeren, welches ein quaterniertes oder ein quaternier- bares Stickstoffatom enthält, oder Gemischen solcher Monomeren,
(a2) 5 bis 95 Gew.-% eines N-Vinyllactams,
(b) 0,01 bis 20 Gew.-% eines vernetzend wirkenden Monomeren mit mindestens zwei ethylenisch ungesättigten Gruppen, und
(c) 0 bis 50 Gew.-% eines weitern radikalisch polymerisierbaren Monomeren.
3. Verfahren nach Anspruch 1 oder 2, worin die quatemierbaren Stickstoffatome durch Umsetzung mit Methylchlorid, Dimethyl- sulfat oder Diethylsulfat quatemiert werden.
4. Verwendung der Polymerisate, erhältlich gemäß dem Verfahren nach einem der Ansprüche 1 bis 3, als Hilfsmittel in kosmetischen oder pharmazeutischen Formulierungen.
EP99932863A 1998-07-24 1999-07-12 Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten Withdrawn EP1117696A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19833287 1998-07-24
DE19833287A DE19833287A1 (de) 1998-07-24 1998-07-24 Verfahren zur Herstellung von pulverförmigen vernetzten Polymerisaten
PCT/EP1999/004868 WO2000005274A1 (de) 1998-07-24 1999-07-12 Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten

Publications (1)

Publication Number Publication Date
EP1117696A1 true EP1117696A1 (de) 2001-07-25

Family

ID=7875131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99932863A Withdrawn EP1117696A1 (de) 1998-07-24 1999-07-12 Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten

Country Status (6)

Country Link
US (1) US6482917B1 (de)
EP (1) EP1117696A1 (de)
JP (1) JP2002521505A (de)
CN (1) CN1311798A (de)
DE (1) DE19833287A1 (de)
WO (1) WO2000005274A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237378A1 (de) * 2002-08-12 2004-03-11 Basf Ag Vernetzte kationische Copolymere mit Reglern und ihre Verwendung in haarkosmetischen Zubereitungen
US7837742B2 (en) * 2003-05-19 2010-11-23 The Procter & Gamble Company Cosmetic compositions comprising a polymer and a colorant
CN101155842B (zh) * 2005-03-18 2011-08-03 巴斯福股份公司 作为含水和含醇组合物的增稠剂的阳离子聚合物
ATE510861T1 (de) 2006-09-21 2011-06-15 Basf Se Kationische polymere als verdicker für wässrige und alkoholische zusammensetzungen
CN105254781B (zh) * 2015-11-19 2018-01-02 湖北鄂皖高新科技有限公司 一种利用超临界二氧化碳制备离聚体的方法
JP7132316B2 (ja) * 2020-12-28 2022-09-06 高圧ガス工業株式会社 二液型硬化性組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3665594D1 (en) * 1985-10-22 1989-10-19 Basf Ag Process for preparing powdery polymers
DE3609829A1 (de) 1986-03-22 1987-09-24 Basf Ag Verfahren zur herstellung von pulverfoermigen vernetzten copolymerisaten
DE19505750A1 (de) * 1995-02-20 1996-08-22 Basf Ag Agglomerierte, feinteilige, vernetzte Vinylimidazol-Copolymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19546698A1 (de) * 1995-12-14 1997-06-19 Basf Ag Copolymerisate aus Carbonsäuren und mehrfach olefinisch ungesättigten Carbonsäurederivaten und ihre Verwendung als Verdickungs- oder Dispergiermittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0005274A1 *

Also Published As

Publication number Publication date
US6482917B1 (en) 2002-11-19
WO2000005274A1 (de) 2000-02-03
JP2002521505A (ja) 2002-07-16
CN1311798A (zh) 2001-09-05
DE19833287A1 (de) 2000-01-27

Similar Documents

Publication Publication Date Title
DE2103898A1 (de) Quaternare Copolymere
EP0239035A2 (de) Verfahren zur Herstellung von feinteiligen pulverförmigen vernetzten Copolymerisaten und deren Verwendung
EP0544158B1 (de) Verwendung von Homo- oder Copolymerisaten auf Basis von quaternisierten 1-Vinylimidazolen als organische Polyelektrolyte
DE3843780A1 (de) Verfahren zur herstellung von feinteiligen, gelfoermigen, wasserquellbaren copolymerisaten
EP0301447B1 (de) Polymere aus alkoxylierten ungesättigten quartären Ammoniumsalzen, ihre Herstellung und Verwendung
DE3049178A1 (de) "verfahren zum verdicken von waessrigen systemen"
WO2000005274A1 (de) Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten
DE10241296A1 (de) Verwendung von vernetzten kationischen Polymerisaten in der Kosmetik
EP0073296B2 (de) Verfahren zur Herstellung von Acrylkunststoffdispersionen
EP0220603B1 (de) Verfahren zur Herstellung von pulverförmigen Polymerisaten
EP0894809B1 (de) Verwendung von Kolloiddispersions-Mischungen als Schutzkolloid für die wassrige Emulsionspolymerisation
WO2005108445A1 (de) Verfahren zur herstellung von überwiegend aus vinylformamid aufgebauten polymeren
DE3321372A1 (de) Verfahren zur herstellung von acrylamid-polymerisaten
DE102006055473B4 (de) Verfahren zur Herstellung von Pfropfcopolymeren auf Basis von Polyethern
EP1658314B1 (de) Verwendung von 2-hydroxy-2-sulfinatoessigsäure oder deren salzen als initiator in w/o-emulsionen
DE10208361A1 (de) Verfahren zur Herstellung einer wässrigen thermisch härtbaren Polymerdispersion
DE19731907A1 (de) Vernetzte kationische Copolymere mit N-Vinylimidazolen
WO2000005273A1 (de) Verfahren zur herstellung von pulverförmigen vernetzten polymerisaten
DE19600405A1 (de) Verfahren zur Herstellung von wasserunlöslichen Polymerisaten
DE2324204C2 (de) Verfahren zur Herstellung von Ionenaustauschern
EP3063191B1 (de) Polymere enthaltend s-vinylthioalkanole
EP2242783B1 (de) Verfahren zur herstellung von polymeren durch ionenaustausch
EP1500666A2 (de) Verwendung von C4-C6-Polymercaptopolyolen als Regler bei der Lösungs- oder Fällungspolymerisation
DE102008039448A1 (de) Verfahren zur Herstellung einer Dispersion
DE10027391B4 (de) Oligomere und Polymere aus Crotonbetain oder Crotonbetainderivaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030505