EP1116330A2 - Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem - Google Patents

Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem

Info

Publication number
EP1116330A2
EP1116330A2 EP99953670A EP99953670A EP1116330A2 EP 1116330 A2 EP1116330 A2 EP 1116330A2 EP 99953670 A EP99953670 A EP 99953670A EP 99953670 A EP99953670 A EP 99953670A EP 1116330 A2 EP1116330 A2 EP 1116330A2
Authority
EP
European Patent Office
Prior art keywords
input
common mode
mode voltage
circuit according
differential input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99953670A
Other languages
English (en)
French (fr)
Other versions
EP1116330B1 (de
Inventor
Franz Kuttner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP1116330A2 publication Critical patent/EP1116330A2/de
Application granted granted Critical
Publication of EP1116330B1 publication Critical patent/EP1116330B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • H03M1/1295Clamping, i.e. adjusting the DC level of the input signal to a predetermined value
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • H03M1/068Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
    • H03M1/0682Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground

Definitions

  • the invention relates to a differential input circuit for a digital signal processing system, with an analog differential input and an analog / digital converter, as well as a device for setting a direct component in a digitally converted input signal.
  • the transmission of signals is analog due to a bandwidth that is only available to a limited extent in the transmission medium, so that an analog / digital converter (A / D converter) must be connected upstream of the digital signal processing systems.
  • a / D converter analog / digital converter
  • input circuits with a differential input are often used, the input signal often being supplied to the A / D converter via an anti-alias filter.
  • DC component (signal component at frequency 0). Since such a constant component is important for some signals, such as video signals with porch, it must be reconstructed separately on the basis of information transmitted with the signal.
  • (differential) input circuits are known, in which a direct component of the signal can be recovered and set with resistors and capacitors.
  • resistors are mismatched or an offset is used in a downstream anti-aliasing filter or the A / D converter, the DC component of the digitally converted input signal is faulty ("clamping error"). This can lead to color distortions in the case of video signals or color casts in the case of a black and white image.
  • the invention is therefore based on the object of providing a differential input circuit of the type mentioned at the outset, with which errors in the DC component of an analog transmitted and digitally converted input signal can be largely avoided.
  • a differential input circuit for a digital signal processing system which has an analog differential input and an A / D converter, as well as a device for setting a direct component in a digitally converted input signal, and is characterized by a with the output of the A / D Converter-connected evaluation device for comparing the DC component of the digitally converted input signal with a threshold value and at least one current source that can be connected by the evaluation device to the differential input in such a way that the differential input is charged or discharged with a current to increase or decrease the DC component in the direction of the threshold value becomes.
  • the threshold value is preferably a target value of the direct component of an input signal derived from the input signal.
  • the differential input preferably has a first, non-inverting input connection and a second, inverting input connection, the first input connection being assigned a first and a second current source and the second input connection being assigned a third and a fourth current source, each for charging or discharging the differential input by actuating a switch assigned to each power source by the evaluation device can be connected to them.
  • first and third current sources are each connected between a positive reference potential and the first and second input connections
  • second and fourth current sources are each connected between the first and second input connections and a ground potential.
  • the current sources can also be controlled in such a way that a common mode voltage of the digitally converted input signal is regulated to a desired common mode voltage.
  • a further, particularly advantageous embodiment consists in that the current sources are formed by controllable semiconductor components which can be controlled by a control circuit for comparing a nominal value common mode voltage with a common mode voltage of the input signal in such a way that, depending on the difference between the common mode voltage and the common-mode voltage is adjusted to the setpoint each time one of the switches is actuated.
  • Fig.l is a basic circuit diagram to illustrate the function of the input circuit according to the invention.
  • FIG. 2 shows a circuit diagram of the preferred embodiment.
  • FIG. 1 shows a differential input circuit with a differential input 1, which is connected to an antialias filter 2 known per se. Its outputs are connected to an A / D converter 3, which is also known per se. The digitally converted differential input signal (adout) generated by this converter is fed to a digital signal processing system and at the same time to an evaluation device 4.
  • the differential input 1 has a first, non-inverting input connection 11 (inp) and a second, inverting input connection 12 (inn), each in the usual way
  • a first current source 13 is connected between a positive reference potential and the first input connection 11, and a second current source 14 is connected between the first input connection 11 and ground. Furthermore, a first switch 15 is provided between the first current source 13 and the first input connection 11 and a second switch 16 between the first input connection 11 and the second current source 14.
  • third current source 17 between the positive reference potential and the second input terminal 12 and a fourth current source 18 between the second input terminal 12 and ground.
  • Both current sources 17, 18 are here also via a third or fourth Switches 19, 20 can be connected to the second input terminal 12.
  • the basic function of the circuit is to supply a differential input signal present at the differential input 1 after filtering and A / D conversion to the evaluation device 4, in which it is determined whether its DC component is above or below a certain threshold value, which is done digitally , for example by evaluating information transmitted with the input signal. If the DC component is too low, the first input connection 11 is charged higher via the first current source 13 by the evaluation device 4 closing the first switch 15 by means of a suitable switching signal. As an alternative to this, the DC component can also be increased by discharging the second input connection 12 via the fourth current source 18, in that the fourth switch 20 is closed by the evaluation device 4 by means of a corresponding switching signal.
  • the second and third switches 16, 19 are in the open state.
  • the first input connection 11 is discharged via the second current source 14 by closing the second switch 16 or the second input connection 12 is charged via the third current source 17 by closing the third switch 19.
  • the first and fourth switches 15, 20 are in the open state. All switches are opened or closed by the evaluation device 4 by generating corresponding switching signals.
  • the tracking of the constant level can be carried out slowly.
  • the control can be made insensitive to interference using a digital filter.
  • the control loop pulls the difference between the analog signals to the desired value. With this arrangement, however, a rain not yet provided for the common-mode signal of the analog inputs.
  • Non-inverting or at the second (inverting) input terminal 11 or 12 can be performed. If the difference is to be increased, this can be done by closing the first switch 15 at the first input connection 11 or by closing the fourth switch 20 at the second input connection 12. Conversely, the difference can be reduced if the second switch 16 on the first input connection 11 or the third switch 19 on the second input connection 12 is closed. The other switches are open.
  • FIG. 2 shows a preferred embodiment of the circuit with such a common mode control.
  • the current sources 13, 14, 17, 18 are each designed as a controllable semiconductor component (in particular as a field effect transistor) and are used to adjust the size of the current via their base or. Gate connection controlled.
  • the elements shown in FIG. 1 can also be found in this circuit and are identified by the same reference numerals.
  • a control circuit 100 is provided for the current sources, which has a differential stage 110.
  • This differential stage 110 is supplied on the one hand with the common mode voltage of the input signals and on the other hand with a desired nominal common mode voltage Vcm.
  • the voltage applied to the first input terminal 11 is tapped via a first field effect transistor T1 connected as a source follower with a drain current source II and a first resistor R1, while the voltage applied to the second input terminal 12 is tapped via a second source follower connected Field effect transistor T2 is supplied with a drain current source 12 and a second resistor R2.
  • the respective other ends of the first and second resistor R1, R2 are connected to one side of the differential stage 110.
  • the two source followers serve for decoupling and prevent the analog input voltages from being influenced by the resistors R1, R2.
  • the desired common mode voltage Vcm is present on the other side of the differential stage 110 and is supplied via a third field effect transistor T3 connected as a source follower and having a drain current source 13.
  • the two sides of the differential stage 110 are each formed by two transistors T4 and T5 or T6 and T7 connected in series, the common-mode voltages being applied to the gate connections of the fourth and sixth transistors T4, T6.
  • the fifth transistor T5 is connected to the control connections of the first and third current sources 13, 15 via two further transistors T51, T52, and the sixth transistor T6 is connected to the control connections of the second and fourth current sources 14, 16.
  • current sources Igl, Ig2, Ig3 connected in parallel are provided, each with a current source switch S1, S2, S3 in series, which are closed or opened by the evaluation device 4 depending on the level of the current to be fed into the differential input.
  • the current sources are connected to the connection point of the fourth and sixth transistor T4, T6 via two further transistors Til, Ti2.
  • the difference stage 110 evaluates only the difference between the common mode voltage at the input connections and the desired common mode voltage Vcm.
  • the difference level distributes the fed in at its base Current in such a way that, depending on the deviation of the common mode voltage of the input signal from the desired common mode voltage, each time the difference value is adjusted by closing the first and fourth or second and third switches 15, 20; 16, 19 the common mode voltage is adjusted in the correct direction.
  • the evaluation device 4 In order to match the common mode voltage of the digitally converted input signal to the desired common mode voltage Vcm as quickly as possible, the evaluation device 4 not only determines in which direction the common mode voltage is to be changed, but also how large the difference between the two voltages is. Depending on the size of this difference, the clamping current is made as large as possible with large deviations via a control output Si of the evaluation device 4 by appropriately closing the current source switches SI, S2, S3. This causes a faster settling to the desired value, especially when switched on.
  • the circuit can be used both for continuous clamping (the control process is always active) and for keyed clamping, such as for video signals in which the DC component is only available as an information signal at certain times.
  • the evaluation device 4 can be supplied with a clamping switching signal Sk, with which it is activated only at the clamping times.

Abstract

Es ist eine mit dem Ausgang eines A/D-Wandlers (3) verbundene Auswerteeinrichtung (4) zum Vergleichen des Gleichanteils eines digital gewandelten Eingangssignals mit einem Schwellwert und mindestens eine durch die Auswerteeinrichtung (4) mit dem Differenzeingang (1) in der Weise verbindbare Stromquelle (13, 14, 17, 18) vorgesehen, daß der Differenzeingang (1) zur Erhöhung oder Verminderung des Gleichanteils in Richtung auf den Schwellwert mit einem Strom geladen bzw. entladen wird.

Description

Beschreibung
Differentielle Eingangsschaltung für ein digitales Signalverarbeitungssystem
Die Erfindung betrifft eine differentielle Eingangsschaltung für ein digitales Signalverarbeitungssystem, mit einem analogen Differenzeingang und einem Analog/Digital-Wandler sowie einer Einrichtung zur Einstellung eines Gleichanteils in ei- nem digital gewandelten Eingangssignal.
Digitale Signalverarbeitungssysteme haben eine weite Verbreitung gefunden. Da sie gegenüber analogen Schaltungen zahlreiche technische und wirtschaftliche Vorteile besitzen, erset- zen sie die analogen Schaltungen in zunehmendem Maße auch bei solchen Anwendungen, die bisher typischerweise analog realisiert wurden.
Die Übertragung von Signalen erfolgt allerdings in vielen Fällen auf Grund einer in dem Übertragungsmedium nur begrenzt zur Verfügung stehenden Bandbreite analog, so daß den digitalen Signalverarbeitungssystemen ein Analog/Digital-Wandler (A/D-Wandler) vorgeschaltet sein muß. Zur Verbesserung der Störsicherheit werden dabei häufig Eingangsschaltungen mit einem Differenzeingang verwendet, wobei das Eingangssignal häufig über ein Antialias-Filter dem A/D-Wandler zugeführt wird.
Die Signalübertragung mit den üblichen Modulationsverfahren hat jedoch zur Folge, daß das empfangene Signal keinen
Gleichanteil (Signalkomponente bei der Frequenz 0) aufweist. Da ein solcher Gleichanteil bei einigen Signalen, wie zum Beispiel Videosignalen mit Schwarzschulter von Bedeutung ist, muß dieser anhand einer mit dem Signal übertragenen Informa- tion gesondert rekonstruiert werden. Zu diesem Zweck sind (differentielle) Eingangsschaltungen bekannt, bei denen ein Gleichanteil des Signals mit Widerständen und Kondensatoren wiedergewonnen und eingestellt werden kann. Ein Nachteil dieser Schaltungen besteht jedoch darin, daß bei einer Fehlanpassung der Widerstände oder einem Offset in einem nachgeschalteten Antialias-Filter oder dem A/D- Wandler die Gleichkomponente des digital gewandelten Eingangssignals fehlerbehaftet ist ("Klemmfehler"). Dies kann im Falle von Videosignalen zu Farbverfälschungen bzw. bei einem Schwarzweiß-Bild zu Farbstichen führen.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine diffe- rentielle Eingangsschaltung der eingangs genannten Art zu schaffen, mit der Fehler in der Gleichkomponente eines analog übertragenen und digital gewandelten Eingangssignals weitgehend vermieden werden können.
Gelöst wird diese Aufgabe mit einer differentiellen Eingangsschaltung für ein digitales Signalverarbeitungssystem, die einen analogen Differenzeingang und einen A/D-Wandler sowie eine Einrichtung zur Einstellung eines Gleichanteils in einem digital gewandelten Eingangssignal aufweist und sich auszeichnet durch eine mit dem Ausgang des A/D-Wandlers verbundene Auswerteeinrichtung zum Vergleichen des Gleichanteils des digital gewandelten Eingangssignals mit einem Schwellwert und mindestens eine durch die Auswerteeinrichtung mit dem Differenzeingang in der Weise verbindbare Stromquelle, daß der Differenzeingang zur Erhöhung oder Verminderung des Gleichanteils in Richtung auf den Schwellwert mit einem Strom geladen bzw. entladen wird.
Ein wesentlicher Vorteil dieser Lösung besteht darin, daß durch die Auswertung des digital gewandelten Eingangssignals die durch ein Antialias-Filter und den A/D-Wandler und ggf. weitere Komponenten verursachten Fehler kompensiert werden. Vorteilhafte Weiterbildungen und Ausführungsformen der Erfindung sind in den Unteransprüchen beschrieben.
Danach ist der Schwellwert vorzugsweise ein aus dem Eingangsignal abgeleiteter Sollwert des Gleichanteils eines Eingangssignals.
Ferner weist der Differenzeingang vorzugsweise einen ersten, nichtinvertierenden Eingangsanschluß und einen zweiten, invertierenden Eingangsanschluß auf, wobei dem ersten Eingangsanschluß eine erste und eine zweite Stromquelle und dem zweiten Eingangsanschluß eine dritte und eine vierte Stromquelle zugeordnet ist, die jeweils zum Laden bzw. Entladen des Differenzeingangs durch Betätigung eines jeder Stromquelle zuge- ordneten Schalters durch die Auswerteeinrichtung mit diesen verbindbar sind.
Weiterhin ist die erste und dritte Stromquelle jeweils zwischen ein positives Bezugspotential und den ersten bzw. zwei- ten Eingangsanschluß und die zweite und vierte Stromquelle jeweils zwischen den ersten bzw. zweiten Eingangsanschluß und ein Massepotential geschaltet.
Die Stromquellen sind ferner in der Weise steuerbar, daß eine Gleichtaktspannung des digital gewandelten Eingangssignals auf eine gewünschte Gleichtaktspannung geregelt wird.
Eine weitere, besonders vorteilhafte Ausgestaltung besteht darin, daß die Stromquellen durch steuerbare Halbleiterbau- elemente gebildet sind, die durch eine Ansteuerschaltung zum Vergleichen einer Sollwert-Gleichtaktspannung mit einer Gleichtaktspannung des Eingangssignals in der Weise ansteuerbar sind, daß in Abhängigkeit von der Differenz zwischen der Gleichtaktspannung und dem Sollwert bei jeder Betätigung ei- nes der Schalter die Gleichtaktspannung nachgestellt wird. Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform anhand der Zeichnung. Es zeigen:
Fig.l ein Prinzipschaltbild zur Verdeutlichung der Funktion der erfindungsgemäßen Eingangsschaltung, und
Fig.2 ein Schaltbild der bevorzugten Ausführungsform.
Figur 1 zeigt eine differentielle Eingangsschaltung mit einem Differenzeingang 1, der mit einem an sich bekannten Antialias-Filter 2 verbunden ist. Dessen Ausgänge liegen an einem ebenfalls an sich bekannten A/D-Wandler 3 an. Das von diesem Wandler erzeugte, digital gewandelte Differenz-Eingangssignal (adout)wird einem digitalen Signalverarbeitungssystem und gleichzeitig einer Auswerteeinrichtung 4 zugeführt.
Der Differenzeingang 1 weist einen ersten, nichtinvertieren- den Eingangsanschluß 11 (inp) und einen zweiten, invertieren- den Eingangsanschluß 12 (inn) auf, die jeweils in üblicher
Weise mit einem Kondensator Cl, C2 zum Abblocken von Gleichspannungen aus einer vorhergehenden Stufe beschaltet sind.
Eine erste Stromquelle 13 ist zwischen ein positives Bezugs- potential und den ersten Eingangsanschluß 11, und eine zweite Stromquelle 14 zwischen den ersten Eingangsanschluß 11 und Masse geschaltet. Weiterhin ist ein erster Schalter 15 zwischen der ersten Stromquelle 13 und dem ersten Eingangsanschluß 11 sowie ein zweiter Schalter 16 zwischen dem ersten Eingangsanschluß 11 und der zweiten Stromquelle 14 vorgesehen.
In entsprechender Weise liegt zwischen dem positiven Bezugspotential und dem zweiten Eingangsanschluß 12 eine dritte Stromquelle 17 und zwischen dem zweiten Eingangsanschluß 12 und Masse eine vierte Stromquelle 18. Beide Stromquellen 17, 18 sind auch hier jeweils über einen dritten bzw. vierten Schalter 19, 20 mit dem zweiten Eingangsanschluß 12 verbindbar.
Die prinzipielle Funktion der Schaltung besteht darin, ein an dem Differenzeingang 1 anliegendes differentielles Eingangssignal nach der Filterung und A/D-Wandlung der Auswerteeinrichtung 4 zuzuführen, in der festgestellt wird, ob sein Gleichanteil über oder unter einem bestimmten Schwellwert liegt, der auf digitalem Wege, zum Beispiel durch Auswertung einer mit dem Eingangssignal übertragenen Information, ermittelt wird. Ist der Gleichanteil zu gering, so wird der erste Eingangsanschluß 11 über die erste Stromquelle 13 höher geladen, indem die Auswerteeinrichtung 4 durch ein geeignetes Schaltsignal den ersten Schalter 15 schließt. Alternativ dazu kann der Gleichanteil auch durch Entladen des zweiten Eingangsanschlusses 12 über die vierte Stromquelle 18 erhöht werden, indem der vierte Schalter 20 durch ein entsprechendes Schaltsignal von der Auswerteeinrichtung 4 geschlossen wird. Der zweite und der dritte Schalter 16, 19 befindet sich hier- bei in geöffnetem Zustand.
Ist im umgekehrten Fall der Gleichanteil zu hoch, so wird der erste Eingangsanschluß 11 über die zweite Stromquelle 14 durch Schließen des zweiten Schalters 16 entladen oder der zweite Eingangsanschluß 12 über die dritte Stromquelle 17 durch Schließen des dritten Schalters 19 geladen. Der erste und der vierte Schalter 15, 20 befindet sich hierbei in geöffneten Zustand. Sämtliche Schalter werden durch die Auswerteeinrichtung 4 geöffnet bzw. geschlossen, indem entsprechen- de Schaltsignale erzeugt werden.
Die Nachführung des Gleichpegels kann langsam durchgeführt werden. Die Regelung kann dabei durch ein digitales Filter unempfindlich gegen Störungen gemacht werden. Die Regel- schleife zieht zwar die Differenz der Analogsignale auf den gewünschten Wert. Bei dieser Anordnung ist jedoch eine Rege- lung für das Gleichtaktsignal der Analogeingänge noch nicht vorgesehen.
Zur Gleichtaktregelung wird deshalb von der Tatsache Gebrauch gemacht, daß die Regelung des Differenzsignals am ersten
(nichtinvertierenden) oder am zweiten (invertierenden) Eingangsanschluß 11 bzw. 12 durchgeführt werden kann. Sofern also die Differenz erhöht werden soll, kann dies durch Schließen des ersten Schalter 15 am ersten Eingangsanschluß 11 oder durch Schließen des vierten Schalter 20 am zweiten Eingangsanschluß 12 erfolgen. In umgekehrter Weise kann die Differenz vermindert werden, wenn der zweite Schalter 16 am ersten Eingangsanschluß 11 oder der dritte Schalter 19 am zweiten Eingangsanschluß 12 geschlossen wird. Die anderen Schalter sind dabei jeweils offen.
Figur 2 zeigt eine bevorzugte Ausführungsform der Schaltung mit einer solchen Gleichtaktregelung. Die Stromquellen 13, 14, 17, 18 sind jeweils als steuerbares Halbleiterbauelement (insbesondere als Feldeffekt-Transistor) ausgebildet und werden zur Einstellung der Größe des Stroms über ihren Basisbzw. Gateanschluß angesteuert. Darüberhinaus finden sich die in Figur 1 dargestellten Elemente auch in dieser Schaltung wieder und sind jeweils mit gleichen Bezugsziffern bezeich- net. Zusätzlich ist eine Ansteuerschaltung 100 für die Stromquellen vorgesehen, die eine Differenzstufe 110 aufweist.
Dieser Differenzstufe 110 wird einerseits die Gleichtaktspannung der Eingangssignale und andererseits eine gewünschte Soll-Gleichtaktspannung Vcm zugeführt.
Im einzelnen wird die an dem ersten Eingangsanschluß 11 anliegende Spannung über einen ersten, als Sourcefolger geschalteten Feldeffekttransistor Tl mit einer Drain- Stromquelle II sowie einen ersten Widerstand Rl abgegriffen, während die an dem zweiten Eingangsanschluß 12 anliegende Spannung über einen zweiten, als Sourcefolger geschalteten Feldeffekttransistor T2 mit einer Drain-Stromquelle 12 sowie einen zweiten Widerstand R2 zugeführt wird. Die jeweils anderen Enden des ersten und zweiten Widerstandes Rl, R2 sind mit einer Seite der Differenzstufe 110 verbunden. Die beiden Sourcefolger dienen zur Entkopplung und verhindern, daß die analogen Eingangsspannungen durch die Widerstände Rl, R2 beeinflußt werden.
An der anderen Seite der Differenzstufe 110 liegt die ge- wünschte Gleichtaktspannung Vcm an, die über einen dritten, als Sourcefolger geschalteten Feldeffekttransistor T3 mit Drain-Stromquelle 13 zugeführt wird.
Die beiden Seiten der Differenzstufe 110 sind durch jeweils zwei in Reihe geschaltete Transistoren T4 und T5 bzw. T6 und T7 gebildet, wobei die Gleichtaktspannungen jeweils an den Gateanschlüssen des vierten und sechsten Transistors T4, T6 anliegen. Der fünfte Transistor T5 ist über zwei weitere Transistoren T51, T52 mit den Steueranschlüssen der ersten und dritten Stromquelle 13, 15, und der sechste Transistor T6 mit den Steueranschlüssen der zweiten und vierten Stromquelle 14, 16 verbunden.
Weiterhin sind drei parallel geschaltete Stromquellen Igl, Ig2, Ig3 mit jeweils einem in Reihe dazu liegenden Stromquellenschalter Sl, S2, S3 vorgesehen, die je nach der Höhe des in den Differenzeingang einzuspeisenden Stroms durch die Auswerteeinrichtung 4 geschlossen bzw. geöffnet werden. Die Stromquellen sind zu diesem Zweck über zwei weitere Transi- stören Til, Ti2 mit dem Verbindungspunkt des vierten und sechsten Transistors T4, T6 verbunden.
Da alle drei Sourcefolger (Transistoren Tl, T2, T3) identisch sind, wird von der Differenzstufe 110 nur die Differenz zwi- sehen der Gleichtaktspannung an den Eingangsanschlüssen und der gewünschte Gleichtaktspannung Vcm ausgewertet. Die Differenzstufe verteilt dabei den an ihrem Fußpunkt eingespeisten Strom in der Weise, daß in Abhängigkeit von der Abweichung der Gleichtaktspannung des Eingangssignals von der gewünschten Gleichtaktspannung bei jedem Nachstellen des Differenzwertes durch Schließen des ersten und vierten oder zweiten und dritten Schalters 15, 20; 16, 19 die Gleichtaktspannung in der richtigen Richtung nachgestellt wird.
Um die Gleichtaktspannung des digital gewandelten Eingangssignals möglichst schnell an die gewünschte Gleichtaktspan- nung Vcm anzugleichen, wird durch die Auswerteeinrichtung 4 nicht nur ermittelt, in welche Richtung die Gleichtaktspannung zu verändern ist, sondern auch wie groß die Differenz zwischen beiden Spannungen ist. In Abhängigkeit von der Größe dieser Differenz wird der Klemmstrom über einen Steuerausgang Si der Auswerteeinrichtung 4 durch entsprechendes Schließen der Stromquellenschalter SI, S2, S3 bei großen Abweichungen möglichst groß gemacht. Dies bewirkt insbesondere beim Einschalten ein schnelleres Einschwingen auf den gewünschten Wert.
Die Schaltung kann sowohl für eine kontinuierliche Klemmung (der Regelvorgang ist ständig aktiv) , als auch für eine getastete Klemmung, wie zum Beispiel bei Videosignalen, bei denen der Gleichanteil nur zu bestimmten Zeiten als Informations- signal vorhanden ist, verwendet werden. Zu diesem Zweck kann der Auswerteeinrichtung 4 ein Klemm-Schaltsignal Sk zugeführt werden, mit dem diese nur zu den Klemmzeitpunkten aktiv geschaltet wird.

Claims

Patentansprüche
1. Differentielle Eingangsschaltung für ein digitales Signalverarbeitungssystem, mit einem analogen Differenzeingang und einem A/D-Wandler sowie einer Einrichtung zur Einstellung eines Gleichanteils in einem digital gewandelten Eingangssignal, g e k e n n z e i c h n e t d u r c h : eine mit dem Ausgang des A/D-Wandlers (3) verbundene Auswer- teeinrichtung (4) zum Vergleichen des Gleichanteils des digital gewandelten Eingangssignals mit einem Schwellwert und mindestens eine durch die Auswerteeinrichtung (4) mit dem Differenzeingang (1) in der Weise verbindbare Stromquelle (13, 14, 17, 18), daß der Differenzeingang (1) zur Erhöhung oder Verminderung des Gleichanteils in Richtung auf den Schwellwert mit einem Strom geladen bzw. entladen wird.
2. Eingangsschaltung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Schwellwert ein aus dem Eingangsignal abgeleiteter Sollwert des Gleichanteils eines Eingangssignals ist.
3. Eingangsschaltung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der Differenzeingang (1) einen ersten, nichtinvertierenden
Eingangsanschluß (11) und einen zweiten, invertierenden Eingangsanschluß (12) aufweist und dem ersten Eingangsanschluß eine erste und eine zweite Stromquelle (13, 14) und dem zweiten Eingangsanschluß eine dritte und eine vierte Stromquelle (17, 18) zugeordnet ist, die jeweils zum Laden bzw. Entladen des Differenzeingangs (1) durch Betätigung eines jeder Stromquelle zugeordneten Schalters (15, 16, 19, 20) durch die Auswerteeinrichtung (4) mit diesen verbindbar sind.
4. Eingangsschaltung nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, daß die erste und dritte Stromquelle (13, 17) jeweils zwischen ein positives Bezugspotential und den ersten bzw. zweiten Eingangsanschluß und die zweite und vierte Stromquelle (14, 18) jeweils zwischen den ersten bzw. zweiten Eingangsanschluß (11; 12) und ein Massepotential geschaltet sind.
5. Eingangsschaltung nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t, daß die Stromquellen (13, 14; 17, 18) in der Weise steuerbar sind, daß eine Gleichtaktspannung des digital gewandelten
Eingangssignals auf eine gewünschte Gleichtaktspannung geregelt wird.
6. Eingangsschaltung nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Stromquellen (13, 14; 17, 18) durch steuerbare Halbleiterbauelemente gebildet sind, die durch eine Ansteuerschaltung (100) zum Vergleichen einer Sollwert-Gleichtaktspannung mit einer Gleichtaktspannung des Eingangssignals in der Weise ansteuerbar sind, daß in Abhängigkeit von der Differenz zwischen der Gleichtaktspannung und dem Sollwert bei jeder Betätigung eines der Schalter (15, 16, 19, 20) die Gleichtaktspannung nachgestellt wird.
7. Eingangsschaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß zwischen den Differenzeingang (1) und den A/D-Wandler (3) ein Antialias-Filter (2) geschaltet ist.
8. Eingangsschaltung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die Auswerteeinrichtung (4) mindestens ein Tiefpaßfilter aufweist.
EP99953670A 1998-09-04 1999-09-01 Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem Expired - Lifetime EP1116330B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19840443 1998-09-04
DE19840443 1998-09-04
PCT/DE1999/002757 WO2000014883A2 (de) 1998-09-04 1999-09-01 Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem

Publications (2)

Publication Number Publication Date
EP1116330A2 true EP1116330A2 (de) 2001-07-18
EP1116330B1 EP1116330B1 (de) 2002-07-24

Family

ID=7879858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953670A Expired - Lifetime EP1116330B1 (de) 1998-09-04 1999-09-01 Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem

Country Status (6)

Country Link
US (1) US6552592B1 (de)
EP (1) EP1116330B1 (de)
JP (1) JP4273479B2 (de)
KR (1) KR20010074951A (de)
DE (1) DE59902141D1 (de)
WO (1) WO2000014883A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832579A1 (fr) * 2001-11-19 2003-05-23 St Microelectronics Sa Dispositif de calibrage pour un etage d'entree video
US8248283B2 (en) 2010-06-11 2012-08-21 Texas Instruments Incorporated Multi-channel SAR ADC
KR101198252B1 (ko) * 2010-08-31 2012-11-07 에스케이하이닉스 주식회사 반도체 메모리 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700871A (en) * 1971-06-21 1972-10-24 Shell Oil Co Multiple multiplexer gain-ranging amplifier
JPS6139625A (ja) * 1984-07-28 1986-02-25 Victor Co Of Japan Ltd アナログ/デイジタル変換装置
JPH0555918A (ja) * 1991-08-22 1993-03-05 Fujitsu Ltd クランプ回路
FR2682866B1 (fr) 1991-10-25 1996-09-13 Ela Medical Sa Procede d'acquisition numerique d'un signal electrique analogique cardiaque et dispositif correspondant.
FR2727595A1 (fr) 1994-11-25 1996-05-31 Sgs Thomson Microelectronics Circuit d'asservissement d'un signal sur une valeur de preference
JP3493890B2 (ja) * 1996-04-26 2004-02-03 カシオ計算機株式会社 感度設定装置および該装置を備える心電計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0014883A2 *

Also Published As

Publication number Publication date
US6552592B1 (en) 2003-04-22
WO2000014883A2 (de) 2000-03-16
JP4273479B2 (ja) 2009-06-03
JP2002524959A (ja) 2002-08-06
KR20010074951A (ko) 2001-08-09
WO2000014883A3 (de) 2000-05-25
DE59902141D1 (de) 2002-08-29
EP1116330B1 (de) 2002-07-24

Similar Documents

Publication Publication Date Title
DE2713714B2 (de)
EP0529119A1 (de) Monolithisch integrierter Differenzverstärker mit digitaler Verstärkungseinstellung
EP0300560B1 (de) Vergleichsschaltung
DE3725339A1 (de) Automatische justierschaltung zum justieren der zeitkonstanten einer filterschaltung
EP0275941A2 (de) ECL-kompatible Eingangs-/Ausgangsschaltungen in CMOS-Technik
EP1545028B1 (de) Optischer Empfänger mit Regeleinrichtung mit einer schaltbaren Bandbreite
DE2508850A1 (de) Spannungsdifferenzverstaerker
DE4420988A1 (de) Verfahren zum Testen einer integrierten Schaltung sowie integrierte Schaltungsanordnung mit einer Testschaltung
EP1116330B1 (de) Differentielle eingangsschaltung für ein digitales signalverarbeitungssystem
DE602004009781T2 (de) Verfahren zur regelung eines verstärkers mit variabler verstärkung und elektronische schaltung
DE3113800A1 (de) Frequenzmodulator
EP0155702A2 (de) Analog/Digital-Wandlung
EP1545000B1 (de) Schaltungsanordnung zur Regelung des Duty Cycle eines elektrischen Signals
DE2744249A1 (de) Schaltungsanordnung zur wahlweisen dynamik-kompression oder -expansion
DE10217852B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Oszillators oder einer Phasenverzögerungseinrichtung in einem Phasenregelkreis
EP0465713B1 (de) CMOS-Schaltung für mittelwertbildende Digital-Analogumsetzer
DE3911486A1 (de) Schaltungsanordnung zur kompensation einer offsetspannung und verwendung dieser schaltungsanordnung
DE2545870A1 (de) Schaltungsanordnung fuer einen delta- modulator mit automatischer geraeuschsperre und automatischer verstaerkungsregelung
DE3724917C2 (de) Schaltungsanordnung zur Ableitung eines digitalen Signals
EP0004008B1 (de) Schneller Amplitudenentscheider für digitale Signale
DE3347484C2 (de)
DE3341767A1 (de) Spannungsschaltregler
DE3928886C2 (de)
DE102022116806A1 (de) Verfahren und Schaltung zur Stromkontrolle
DE2924746A1 (de) Schaltungsanordnung fuer einen analog-digital-umwandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010321

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020724

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902141

Country of ref document: DE

Date of ref document: 20020829

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020724

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1116330E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090915

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090922

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59902141

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091001

Year of fee payment: 11