EP1113633B1 - Dispositif et procédé d'estimation de canal dans un système de communication par radio - Google Patents

Dispositif et procédé d'estimation de canal dans un système de communication par radio Download PDF

Info

Publication number
EP1113633B1
EP1113633B1 EP00128658A EP00128658A EP1113633B1 EP 1113633 B1 EP1113633 B1 EP 1113633B1 EP 00128658 A EP00128658 A EP 00128658A EP 00128658 A EP00128658 A EP 00128658A EP 1113633 B1 EP1113633 B1 EP 1113633B1
Authority
EP
European Patent Office
Prior art keywords
interpolator
symbols
signal
channel
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00128658A
Other languages
German (de)
English (en)
Other versions
EP1113633A2 (fr
EP1113633A3 (fr
Inventor
Kyu-Hak Kim
Je-Woo Kim
Hyung-Suk Kim
Ki-Soo Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP1113633A2 publication Critical patent/EP1113633A2/fr
Publication of EP1113633A3 publication Critical patent/EP1113633A3/fr
Application granted granted Critical
Publication of EP1113633B1 publication Critical patent/EP1113633B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/76Pilot transmitters or receivers for control of transmission or for equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0214Channel estimation of impulse response of a single coefficient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals

Definitions

  • the present invention relates generally to data demodulation in a radio communication system, and in particular, to an apparatus and method for demodulating data against signal distortion caused by fading or other factors.
  • Radio communication technology mainly cellular communication technology has been rapidly developed and GMPCS (Global Mobile Personal Communication System) is being deployed for communication throughout the world.
  • GMPCS Global Mobile Personal Communication System
  • predetermined symbols e.g., pilot symbols
  • a transmitter inserts agreed symbols between data symbols prior to transmission and a receiver extracts those agreed symbols for use in channel estimation.
  • Conventional channel estimation relies on the use of an interpolator or extended symbol-aided estimation (ESAE).
  • FIG. 1 is a schematic block diagram of a conventional channel estimating apparatus in a radio communication system for data recovery.
  • FIG. 2 is the format of a frame used in the conventional radio communication system.
  • FIG. 3 is a detailed block diagram of the conventional channel estimating apparatus in the radio communication system.
  • FIG. 4 is a block diagram of another conventional channel estimating apparatus relying on ESAE in a radio communication system and
  • FIG. 5 conceptually illustrates channel estimation for data recovery relying on the ESAE.
  • FIG. 1 illustrates a channel estimating apparatus using pilot symbols for channel estimation in a PSAM (Pilot Symbol Assisted Modulation) system.
  • PSAM Packet Symbol Assisted Modulation
  • pilot symbols are periodically inserted by pilot symbol inserter 101 between data symbols and the entire signal is pulse-shaped by pulse shaper 102 prior to transmission.
  • Fading and AWGN are added to the transmission signal by multiplier 103 and adder 104, respectively.
  • a receiver separates an input signal into pilot symbols and data symbols by passing the input signal through a matched filter 105 and estimates the channel of data symbols using the pilot symbols.
  • an interpolator 108 is required and data is recovered using the interpolation result.
  • Delay 106 compensates for the signal delay through interpolator 108.
  • St(t) is the transmitter signal
  • Re[zO(t)exp(j2 ⁇ fct)] represents the real number part of zO(t)exp(j2 ⁇ fct)
  • fc is a carrier frequency
  • zO(t) is a transmission baseband signal with its band limited by a transmission filter.
  • preset pilot symbols are inserted into a transmission frame.
  • Sr(t) is the received signal
  • nc(t) is the AWGN component.
  • U t C t Z t + n t
  • Fading-caused distortion of an information symbol can be detected using an interpolator as applied to Eq. (8).
  • interpolation methods There are generally two interpolation methods: fixed interpolation and adaptive interpolation.
  • fixed interpolation a sync (Nyquist), Gaussian, linear, or a cubic interpolator is applied throughout a channel to estimate the distortion of the channel regardless of channel variation
  • adaptive interpolation for example, a Wiener interpolator using a Wiener filter accurately estimates a channel by adaptively compensating for channel variation utilizing parameters like Doppler frequency and symbol energy per power spectrum density (Es/No).
  • FIG. 3 is a conceptual view of the fading estimation and compensation using a sync interpolator.
  • a fading estimator 301 estimates fading of pilot symbols and an interpolator 302 interpolates data symbols based on the channel estimation of the pilot symbols.
  • the channel estimation result is reflected in an input signal delayed by a delay 304, to thereby compensate the input signal.
  • FIGs. 4 and 5 illustrate the other channel estimation scheme, ESAE.
  • a receiver separates an input signal into pilot symbols and data symbols by passing the input signal through a matched filter 401.
  • an interpolator 403 is required and data is recovered using the interpolation result.
  • First delay 402 compensates for the signal delay through interpolator 403.
  • Demodulator 405 demodulates the signal. As shown in FIG. 5, recovered data before a symbol "S" is used along with pilot symbols "P1", “P2", “P3", and "P4" to estimate the channel of the symbol "S".
  • the data estimation scheme using pilot symbol channel estimation and the ESAE scheme have shortcomings in that channel estimation is not reliable when a received signal has weak strength or experiences severe fading.
  • the channel estimating apparatus for a radio communication system in accordance with the preamble part of claim 1 is known from EP-A-0 715 440.
  • the object of the present invention to provide a channel estimating apparatus and method capable of channel estimation even in an environment where fading causes severe distortion.
  • a fading estimator estimates a channel using preset symbols of an input signal
  • a first interpolator interpolates the other symbols of the input signal based on the fading estimation
  • a first inverter inverts the output signal of the first interpolator
  • a first delay delays the input signal for a predetermined time
  • a first multiplier primarily compensates the output signal of the first delay by means of the output signal of the first inverter
  • a second interpolator interpolates each symbol of the input signal relating to primarily compensated symbols in a predetermined period before and after the symbol
  • a level controller controls the level of the output signal of the second interpolator
  • a second inverter inverts the output signal of the level controller
  • a second delay delays the primarily compensated signal for a predetermined time
  • a second multiplier secondarily compensates the output signal of the second delay by means of the output signal of the second in
  • FIG. 6 is a block diagram of a channel estimating apparatus according to an embodiment of the present invention
  • FIG. 7 is a conceptual view of channel estimation for data recovery according to the embodiment of the present invention.
  • a fading estimator 600 estimates fading using preset pilot symbols in an input signal.
  • a first interpolator 610 interpolates information symbols based on the fading estimation.
  • a Wiener interpolator may be used as the first interpolator 610.
  • a first inverter 620 obtains the reciprocal number of the output of the first interpolator 610 through inverting.
  • a first delay 630 delays an input signal for a predetermined time to provide action time to the fading estimator 600, the first interpolator 610, and the first inverter 620.
  • a multiplier 640 primarily compensates the delayed signal received from the first delay 630 using the channel estimation signal inverted by the first inverter 620.
  • the primary compensated signal is fed to a second interpolator 650 and a second delay 680.
  • the second interpolator 650 is preferably a sync or Nyquist interpolator and estimates fading relating to the primarily compensated data as shown in FIG. 7.
  • the second interpolator 650 estimates fading relating to the primarily compensated symbols (marked with slash lines) preceding and following a data symbol S to be estimated. Pilot symbols P1, P2, P3, and P4 that were used for the primary compensation may be used along with the primarily compensated symbols for the secondary channel estimation. The same weight or different weights can be given to the primarily compensated data symbols and the pilot symbols.
  • a level controller 660 controls the level of the estimated value. For example, if reference symbols are (1, 0) and (-1, 0), all symbols are shifted to a (1, 0) domain by generalizing the other quadrature phase-shift keying (QPSK) symbols (0, 1) and (0, -1), for achieving the channel estimated value.
  • QPSK quadrature phase-shift keying
  • a second inverter 670 inverts the level-controlled signal and a multiplier 690 secondarily compensates the delayed signal received from the second delay 680 by multiplying the delayed signal by the inverted signal received from the second inverter 670.
  • the channel of the symbol S is estimated through the primary estimation using pilot symbols and the secondary estimation using symbols compensated for by the Wiener interpolator 610 as new pilot symbols using the Nyquist interpolator 650.
  • the Nyquist interpolator 650 is used for the secondary channel estimation because the primarily compensated symbols related thereto are located near the symbol to be estimated.
  • data symbols are more accurately channel-estimated as signal to noise ratio (SNR) increases and use of compensated data symbols along with the pilot symbols increases channel estimation reliability.
  • SNR signal to noise ratio
  • FIGs. 8A to 8D illustrate BER characteristics according to the embodiment of the present invention.
  • the horizontal axis of each of FIGs. 8A to 8D represents Es/No and the vertical axis represents BER variations.
  • Table 1 lists experimental data. TABLE 1 Figure K fd 8A 7dB 20Hz 8B 7dB 200Hz 8C 12dB 20Hz 8D 12dB 200Hz
  • performance is improved in the embodiment of the present invention, as compared to performance in a conventional Wiener interpolator using scheme.
  • K denotes a Ricean fading factor and fd is a Doppler frequency.
  • Normalized Doppler frequencies (fdT) are 0.0011 and 0.011, that is, 20Hz and 200Hz in the case where a symbol rate is 18,000 symbols per second.
  • a pilot insertion period M is 20.
  • a channel is primarily estimated using pilot symbols and secondarily estimated using the primarily compensated symbols. Therefore, channel estimation can be performed even at severe distortion caused by fading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Claims (6)

  1. Appareil d'estimation de canal dans un système de communication radio, comprenant :
    un estimateur d'évanouissement (600), destiné à estimer un canal en utilisant des symboles prédéterminés d'un signal d'entrée ;
    un premier interpolateur (610), destiné à interpoler d'autres symboles du signal d'entrée, sur la base de l'estimation de l'évanouissement ;
    un premier multiplicateur (640), destiné à appliquer une première compensation à un signal de sortie d'un premier circuit à retard, à l'aide d'un signal de sortie d'un premier inverseur ;
    caractérisé par
    le premier inverseur (620), destiné à inverser un signal de sortie du premier interpolateur ;
    le premier circuit à retard (630), destiné à retarder le signal d'entrée d'une période de temps prédéterminée ;
    un second interpolateur (650), destiné à interpoler chaque symbole du signal d'entrée qui est lié aux symboles ayant subi la première compensation, sur une période prédéterminée avant et après le symbole ;
    un contrôleur de niveau (660), destiné à commander le niveau d'un signal de sortie du second interpolateur ;
    un second inverseur (670), destiné à inverser un signal de sortie du contrôleur de niveau ;
    un second circuit à retard (670), destiné à retarder un signal ayant subi une première compensation d'une période de temps prédéterminée ; et
    un second multiplicateur (690), destiné à appliquer une seconde compensation à un signal de sortie du second circuit à retard, à l'aide d'un signal de sortie du second inverseur.
  2. Appareil d'estimation de canal selon la revendication 1, dans lequel le premier interpolateur est un interpolateur de Wiener.
  3. Appareil d'estimation de canal selon la revendication 1 ou 2, dans lequel le second interpolateur est soit un interpolateur de synchronisation, soit un interpolateur de Nyquist.
  4. Appareil d'estimation de canal selon l'une des revendications 1 à 3, dans lequel les symboles prédéterminés sont des symboles pilotes.
  5. Procédé d'estimation de canal, dans un système de communication radio, comprenant les étapes consistant à :
    estimer un canal en utilisant des symboles prédéterminés ; et
    interpoler, à l'aide d'un premier interpolateur (610), d'autres symboles d'un signal d'entrée, sur la base d'une estimation du canal, et obtenir un premier signal interpolé ; et
    appliquer une première compensation au signal d'entrée, à l'aide d'un premier signal inversé, et obtenir un signal ayant subi la première compensation ;
    caractérisé par les étapes consistant à :
    inverser, à l'aide d'un premier inverseur (620), le premier signal interpolé et obtenir le premier signal inversé ; et
    interpoler, à l'aide d'un second interpolateur (650), chaque symbole lié à des symboles ayant subi la première compensation et obtenir des seconds symboles interpolés ; et
    commander, à l'aide d'un contrôleur de niveau (660), le niveau des seconds symboles interpolés et obtenir un signal à niveau commandé ; et
    inverser, à l'aide d'un second inverseur (670), le signal à niveau commandé ; et
    appliquer une seconde compensation au signal compensé ayant subi la première compensation.
  6. Procédé d'estimation de canal selon la revendication 5, dans lequel les symboles prédéterminés sont des symboles pilotes.
EP00128658A 1999-12-29 2000-12-28 Dispositif et procédé d'estimation de canal dans un système de communication par radio Expired - Lifetime EP1113633B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990065273A KR100318952B1 (ko) 1999-12-29 1999-12-29 무선통신시스템에서 채널 추정을 위한 장치 및 방법
KR6527399 1999-12-29

Publications (3)

Publication Number Publication Date
EP1113633A2 EP1113633A2 (fr) 2001-07-04
EP1113633A3 EP1113633A3 (fr) 2004-01-02
EP1113633B1 true EP1113633B1 (fr) 2006-11-29

Family

ID=19632477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00128658A Expired - Lifetime EP1113633B1 (fr) 1999-12-29 2000-12-28 Dispositif et procédé d'estimation de canal dans un système de communication par radio

Country Status (6)

Country Link
US (1) US6751274B2 (fr)
EP (1) EP1113633B1 (fr)
JP (1) JP3652247B2 (fr)
KR (1) KR100318952B1 (fr)
CN (1) CN1166080C (fr)
DE (1) DE60032109T2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438638B1 (en) * 2000-07-06 2002-08-20 Onspec Electronic, Inc. Flashtoaster for reading several types of flash-memory cards with or without a PC
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
JP3565344B2 (ja) * 2002-02-21 2004-09-15 株式会社エヌ・ティ・ティ・ドコモ 干渉除去システム、及び、干渉除去方法
ES2278113T3 (es) * 2003-09-05 2007-08-01 Agence Spatiale Europeenne Procedimiento para la sincronizacion de fase de portadora asistida por piloto.
JP4358686B2 (ja) 2004-06-17 2009-11-04 富士通株式会社 フェージング周波数推定装置およびその推定方法
CN100394826C (zh) * 2004-09-02 2008-06-11 上海贝尔阿尔卡特股份有限公司 信道质量内插方法
WO2006106474A2 (fr) * 2005-04-08 2006-10-12 Koninklijke Philips Electronics N.V. Procede et appareil d'estimation de canal dans un systeme de communication mobile
US8612970B2 (en) * 2005-11-30 2013-12-17 Red Hat, Inc. Purpose domain for low overhead virtual machines
US8104034B2 (en) * 2005-11-30 2012-01-24 Red Hat, Inc. Purpose domain for in-kernel virtual machine for low overhead startup and low resource usage
CN101039288B (zh) * 2006-03-16 2010-05-12 中国科学院上海微系统与信息技术研究所 Ofdm系统中能对抗定时偏差的信道估计方法和装置
US8085873B2 (en) * 2007-01-02 2011-12-27 Qualcomm, Incorporated Systems and methods for enhanced channel estimation in wireless communication systems
US7778360B2 (en) * 2007-01-09 2010-08-17 Fujitsu Limited Demodulating a signal encoded according to ASK modulation and PSK modulation
JP2009088984A (ja) * 2007-09-28 2009-04-23 Kyocera Corp 受信装置、無線通信端末、無線基地局及び受信方法
US10371783B2 (en) 2014-08-18 2019-08-06 Mediatek Inc. Direction finding antenna format
EP3139532B1 (fr) 2015-09-07 2018-12-12 MediaTek Inc. Formats et allocation du champ commun de he-sig-b
US10594462B2 (en) 2015-09-28 2020-03-17 Mediatek Inc. Structured resource allocation signaling
US10187124B2 (en) 2015-10-01 2019-01-22 Mediatek Inc Beam-change indication for channel estimation enhancement
US10211948B2 (en) 2015-10-12 2019-02-19 Mediatek Inc. LDPC tone mapping schemes for dual-sub-carrier modulation in WLAN
US10686641B2 (en) * 2015-11-05 2020-06-16 Mediatek Inc. Signaling and feedback schemes of time-vary channels in high-efficiency WLAN
US11019559B2 (en) 2015-12-09 2021-05-25 Mediatek Inc. VHT operation information subfield design in WLAN
US10200228B2 (en) 2015-12-17 2019-02-05 Mediatek Inc. Interleaver design for dual sub-carrier modulation in WLAN
US10225122B2 (en) 2016-02-04 2019-03-05 Mediatek Inc. Low PAPR dual sub-carrier modulation scheme for BPSK in WLAN

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658016B1 (fr) 1990-02-06 1994-01-21 Etat Francais Cnet Procede de diffusion de donnees numeriques, notamment pour la radiodiffusion a haut debit vers des mobiles, a entrelacement temps-frequence et demodulation coherente, et recepteur correspondant.
US5414734A (en) * 1993-01-06 1995-05-09 Glenayre Electronics, Inc. Compensation for multi-path interference using pilot symbols
JP3342177B2 (ja) 1994-05-13 2002-11-05 富士通テン株式会社 多値qamのフェージング補償方法
DE69533156T2 (de) 1994-06-22 2005-07-14 Ntt Docomo Inc. Synchrondetektorschaltung und synchronisierungsmethode für einen digitalsignalempfänger
JP3462937B2 (ja) 1994-09-27 2003-11-05 富士通株式会社 自動振幅等化器
US5809083A (en) * 1994-11-23 1998-09-15 At&T Wireless Services, Inc. Differentially encoded pilot word system and method for wireless transmissions of digital data
JP3013763B2 (ja) * 1995-08-25 2000-02-28 日本電気株式会社 キャリア同期ユニット
US5748677A (en) * 1996-01-16 1998-05-05 Kumar; Derek D. Reference signal communication method and system
US5901185A (en) * 1996-04-15 1999-05-04 Ericsson Inc. Systems and methods for data-augmented, pilot-symbol-assisted radiotelephone communications
US5912931A (en) * 1996-08-01 1999-06-15 Nextel Communications Method for multicarrier signal detection and parameter estimation in mobile radio communication channels
KR100218671B1 (ko) * 1996-09-16 1999-09-01 정선종 주파수 선택적 레일레이 페이딩 보상 시스템
JP3663562B2 (ja) 1996-12-20 2005-06-22 富士通株式会社 干渉キャンセラ及びチャネル推定方法
US6085103A (en) 1997-02-19 2000-07-04 Ericsson, Inc. Compensating for fading in analog AM radio signals
JP3441636B2 (ja) * 1997-11-21 2003-09-02 株式会社エヌ・ティ・ティ・ドコモ チャネル推定値を求める装置および方法、受信装置ならびに伝送システム
US6381290B1 (en) 1998-05-15 2002-04-30 Ericsson Inc. Mobile unit for pilot symbol assisted wireless system and method of improving performance thereof
JP3289676B2 (ja) * 1998-05-28 2002-06-10 日本電気株式会社 パイロット信号を含む受信信号の復調方法及びその装置
KR100272011B1 (ko) * 1998-09-03 2000-11-15 윤종용 직접 시퀀스 코드분할 다중액세스 시스템 수신기의채널 보상 장치
US6510190B1 (en) * 1998-12-17 2003-01-21 Nortel Networks Limited Method and apparatus for estimating fading distortion of a signal propagating in a communication channel
KR100277039B1 (ko) * 1998-12-31 2001-01-15 윤종용 코드분할다원접속 통신시스템 채널수신기의채널상태 추정장치및 방법
US6519296B1 (en) * 1999-06-03 2003-02-11 General Electric Company Variable-interval pilot symbol aided modulation and demodulation

Also Published As

Publication number Publication date
CN1166080C (zh) 2004-09-08
CN1308417A (zh) 2001-08-15
US20010006540A1 (en) 2001-07-05
KR100318952B1 (ko) 2002-01-04
JP3652247B2 (ja) 2005-05-25
JP2001217882A (ja) 2001-08-10
EP1113633A2 (fr) 2001-07-04
KR20010065396A (ko) 2001-07-11
US6751274B2 (en) 2004-06-15
DE60032109D1 (de) 2007-01-11
DE60032109T2 (de) 2007-03-08
EP1113633A3 (fr) 2004-01-02

Similar Documents

Publication Publication Date Title
EP1113633B1 (fr) Dispositif et procédé d'estimation de canal dans un système de communication par radio
US6219334B1 (en) Receiving apparatus for receiving orthogonal frequency division multiplexing signal and receiving method thereof
EP0605955B1 (fr) Procédé et dispositif pour la compensation d'évanouissement multivoie et d'interférence à onde commune dans un signal radio
EP0715440B1 (fr) Detecteur synchrone et procede de synchronisation pour un recepteur numerique de telecommunications
EP1303064B1 (fr) Système et procédé d'estimation en service du rapport signal-bruit commandée par décision
EP0563300B1 (fr) Appareil et procede servant a egaliser un signal altere dans un recepteur
AU610003B2 (en) Timing and carrier recovery in tdma without preamble sequence
US5875215A (en) Carrier synchronizing unit
EP1159790B1 (fr) Estimation de la compensation de l'effet doppler dans un systeme de communication mobile
CA2345534A1 (fr) Poursuite adaptative de voies a l'aide de sequences pilotes
WO2002032067A1 (fr) Procede de regulation de frequence automatique
EP0894366B1 (fr) Compensation adaptative de decalage doppler dans un systeme de communication mobile
EP0958666B1 (fr) Compensation de decalage doppler dans un systeme de communication mobile
US6381290B1 (en) Mobile unit for pilot symbol assisted wireless system and method of improving performance thereof
AU5037399A (en) Compensation of doppler shift in a mobile communication system
US20020160731A1 (en) Transmission gain controlling method and radio apparatus
US20040252789A1 (en) Receiver and a receiving method
Gómez et al. Field trials of the VHF data exchange system (VDES) satellite downlink component
Naitoh et al. Real-time RLS-MLSE equalizer implementation for application to PDC (Personal Digital Cellular)
EP1133125A1 (fr) Dispositif et procede d'emission
JPH0435129A (ja) 時分割多重用復調器
JPH0642653B2 (ja) 交差偏波補償回路

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60032109

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091223

Year of fee payment: 10

Ref country code: FR

Payment date: 20091221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091224

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60032109

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101228