EP1110429B1 - Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage - Google Patents

Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage Download PDF

Info

Publication number
EP1110429B1
EP1110429B1 EP99946054A EP99946054A EP1110429B1 EP 1110429 B1 EP1110429 B1 EP 1110429B1 EP 99946054 A EP99946054 A EP 99946054A EP 99946054 A EP99946054 A EP 99946054A EP 1110429 B1 EP1110429 B1 EP 1110429B1
Authority
EP
European Patent Office
Prior art keywords
heating
temperature
heating device
fluid
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99946054A
Other languages
German (de)
English (en)
Other versions
EP1110429A1 (fr
Inventor
Heinrich-Wolfgang Steinel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steinel GmbH and Co KG
Original Assignee
Steinel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steinel GmbH and Co KG filed Critical Steinel GmbH and Co KG
Publication of EP1110429A1 publication Critical patent/EP1110429A1/fr
Application granted granted Critical
Publication of EP1110429B1 publication Critical patent/EP1110429B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0297Heating of fluids for non specified applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material

Definitions

  • the present invention relates to an electric heater according to the preamble of claim 1 and a method of operating a heater.
  • the radiator is cylindrical in this publication Body with i.w. homogeneous outer surface described in particular, however, the heat-insulated assembly of this body for example in a plastic housing of a hot air blower turns out to be difficult and manually complex.
  • a hot water device which has a temperature error detection circuit.
  • the Circuit is equipped with control electronics.
  • the The heater of the water heater is switched off when the Deviation of the actual temperature from the target temperature one exceeds a certain value and this definitely does not occur an operational functioning of the described Water heater is attributable.
  • the object of the present invention is therefore a generic Heating device with regard to its heating properties, their mechanical and assembly properties as well with regard to their maximum drive power improve.
  • the task is performed by the heater with the features of claim 1 and the method with the Features of claim 8 solved.
  • the invention provided electronic storage device, for which preferred Modular heating device specifically measured, to record individual parameters directly on the module and for a later, electronic operation control in the device, for example a hot air blower to deliver.
  • electronic operation control in the device for example a hot air blower to deliver.
  • an individual temperature sensor measured value according to Test measurement of the relevant heating module stored in the memory is so that one to be connected to the heating module Control electronics then taking this individual into account Worth the device completely and up to the performance limit can control without causing any disadvantage Effects on the life of the heating coil due to overload comes.
  • the memory module also offers advantageously the possibility of further, for example or to specify parameters specific to the supply network, so an upstream, universally oriented control electronics then by means of these values the user an individual on his needs as well as on the respective Local conditions, such as the network frequencies of a certain one Austin, offering tailored device without that, for example, an end user is tedious and / or prone to errors Settings.
  • the connectable according to the invention Control electronics in such a way that the user the specification of one to be selected for the fluid to be heated Target temperature allows, then the invention Device by the output side according to the invention provided temperature sensor, the regulation of the Activation until this preset temperature is reached.
  • This is done in an otherwise known manner usual control processes, which are particularly preferred on digital Level using a current temperature reading (obtained by the temperature sensors) on the one hand and the On the other hand, the default value can be realized.
  • a comprehensive regulation based on both the engine and temperature parameters on the one hand, it increases operational safety Way of ensuring that overheating, due to low engine speed, cannot occur, and on the other hand, reaching becomes more predetermined Set temperatures, if necessary, by reducing the Airflow ensured. Since, as mentioned, the present Invention the maximum use of heating options or the heating potential of the heating device, appears especially for the operation in the border area this regulation is particularly useful and advantageous.
  • a numerical one Output unit for immediate temperature display (optional target and / or actual temperature), because in particular professional users such information, about the temperature actually reached, may need for their work. It is further preferred to display this temperature with a time-dependent Switch mode.
  • the memory chip according to the invention for storing an electronic identifier for a Mains frequency with which to operate the heating device and / or for a temperature display format (degrees Celsius, degrees Fahrenheit) for processing by the control electronics is writable.
  • the special design of the web-shaped sections simultaneous guiding and holding of a continuously spiral, coiled heating element which in this way simply assembled and evenly heated, and by that Fluid can flow around.
  • the device according to the invention which at a Melting temperature of the temperature coils exceeded such a training is advantageous and increases lifespan and operational reliability of one with the invention Heating device realized device the state of the art.
  • constructive realization of the flow channels between adjacent, radially extending struts a ceramic body between an outer ring section and an inner midsection that continues preferred, additional channels for supply lines or the like. can have obtained.
  • spiral heating coil is consistently trained and generally about the extends the entire length of the flow channel, or else Spiral heating coil in several parts in the axial direction and is separately controllable.
  • two heating coils with different outside diameters which are arranged along the same axis, by the invention Guide heater, being in this If the web-shaped sections each have two neighboring sections Have recesses for an inside or outside spiral.
  • Such a heating coil arrangement is further preferred, which leads to the desired increase in heating output, through separate, individual control of the individual helices adjustable in performance, both described Versions with two over the entire channel length of the flow channel extending individual helices have proven, as well, in succession in the direction of flow arranged, double spiral pieces, which are controlled separately become.
  • the invention also has the cylindrical outer surface in each case a raised edge at the end, realized by corresponding ring heels on end pieces of the carrier elements. This creates a particularly simple and manufacturing technology cheap with an insulator or the like. material Wrapped receptacle, which then provides good thermal insulation the arrangement thus created in a surrounding Device housing ensures.
  • the connected to the heating coil or the temperature sensor Control electronics that a power control on a predetermined electrical power value, in particular the maximum power or slightly below the maximum power horizontal electrical power value, regulated becomes.
  • control means that the Speed of the fan motor provided in the context of the invention automatically influence (increase) that the heating the predetermined power value, e.g. 5/6 of the maximum power, receives.
  • the heater of the first embodiment shown in FIG. 1 consists of a plurality of cylinders strung together disc-shaped radiator elements 10 (nine elements in the embodiment of Fig. 1), each as in 6 shows an annular outer region (outer ring) 12, a disc-shaped inner region 14 and a plurality connecting the outer ring 12 and the inner region 14, have radially extending struts 16.
  • a single radiator element 10, as in the sectional view 4, has an outer diameter of approx. 35 mm and is approx. 9 mm deep.
  • a marking groove 31 is provided, which at correctly seated individual elements 10 to the in Fig. 1 shown, continuous line pattern added.
  • the inner region 14 has a plurality i.w. circular Breakthroughs 18 on each other, in the arrangement of FIG. 1 are in alignment and can thus be moved through the Radiator arrangement of FIG. 1 extending longitudinally, continuously Form channels. More specifically, they prefer Radiator elements made of ceramic material 10 a square opening 19 in the center of the inner region 14, through which one in FIG. 1 only schematically indicated, square-shaped clamping element 20 can be performed and so for a firm, twist-proof hold of the plurality of elements 10 ensures. In addition, are on the disc-shaped interior 14 each radiator element 10 four conical projections arranged in the form of centering tips 22 around the center, which in each assigned center holes an adjacent element in the arrangement of FIG. 1 intervene and so for an exact positioning of the individual Elements to each other.
  • end pieces On both sides of the majority of the radiator elements 10 in FIG. 1 end pieces are provided, namely an entry-side (Blower side) end piece 24, which is a blower motor to convey a fluid (preferably air) through the radiator arrangement through, sitting next to each other, as well as on the opposite End of an outlet end piece 26.
  • Both End pieces 24, 26 limit the radiator arrangement in this way of Fig. 1, being, as is apparent from the comparison the longitudinal sections through the individual elements 10, 24, 26 of FIGS. 3 to 5 results in both the entry-side End piece 24 and the outlet end piece 26 each a ring heel to their respective, external Have end face.
  • a ring shoulder 28 of the outlet side End piece 26 forms a somewhat smaller one Outside diameter as a ring shoulder 30 of the inlet side End piece 24.
  • the ring shoulders 28, 30 create a bordered on both sides by an edge Outer surfaces of the respective radiator elements 10 formed Sheath section, which for wrapping with an insulating film is trained and provided. More specifically allows this arrangement, insulating film compact, accurate position and mechanically reliable on the radiator arrangement of Fig. 1 to apply without this Precautions for guiding or attaching the insulating film should be hit.
  • the catchy and stepless heating coil shown in FIG. 2 32 runs inside the radiator arrangement of FIG Fig. 1, namely the coiled sections of the Heating coil 32 by at a suitable point in the struts 16th of the radiator elements 10 formed recesses or Breakthroughs.
  • This mechanism results from the Sequence of the partial sectional views according to FIGS. 7 to 10, which the course of a formed in the respective strut 16 Show recess 34. 7 to 10, the Course over a circumferential angle of about 120 ° of the radiator element 10 of FIG.
  • each disc-shaped radiator element thus forms 10 a support for a full turn the helix 32 so that by putting a plurality together of radiator elements 10 a correspondingly long Helix can be held and guided.
  • both an outlet-side feed line 36 as well as an inlet-side supply line 38 by appropriate Openings 18 of the radiator element 10 lengthways the direction of extension of the radiator arrangement of FIG. 1 to the end of the connection, with the openings 18, as shown in FIG. 6, also suitable for this in a radial direction Have openings in the direction.
  • radiator elements 10 with the openings in the interior of the individual elements Channels for additional lines, for example for one thermocouple which can be provided on the outlet-side end piece 26, on, the feed lines then in a corresponding manner at the entry end with associated evaluation electronics can be connected.
  • the one shown in FIG. 2 runs in the ready-to-use device Wendel, performed in the manner described above, in Area of the struts 16 between the outer ring 12 and the inner area 14 of a respective radiator element. This ensures that air flowing in the direction of arrow 42 in that entry-side end of the radiator arrangement of FIG. 1 enters through the outer ring 12 and inner region 14 limited, hollow cylindrical area is guided with optimized attack surface can flow around the coil and so with the best efficiency from the arrangement, to an outlet temperature from e.g. 600 ° heated, can escape.
  • FIG. 13 assembled in perspective view second embodiment, analogous to the first embodiment, from a series of individual radiator elements 44 to each other by means of a marking line 46 are aligned and on both ends by a connection side End piece 48 or an outlet side End piece 50 are limited. Again, both form here End pieces 48, 50 an edge for an intermediate, continuous outer surface, which in the above Way can be wrapped with insulating paper.
  • Geometric the arrangement of FIG. 13 differs from the device 1 by a slightly larger outer diameter the middle radiator elements 44, namely in described embodiment about 45 mm, and by a slightly different arrangement of one inside 52 respective individual element lying openings 54 for the Supply lines to the heating elements.
  • this embodiment provides that one (FIG. 11) and two (alternative embodiment FIG. 12) double helix (s) for heating the air flow between the inner region and the outer ring section of the respective one Care radiator elements 44. 15 through a central radiator element 44 (with a diameter of 45 mm, the element is approximately 8 mm thick in the exemplary embodiment shown), struts 58 which connect the ring section 56 to the inner region 52 can be in the region of the struts 58 connect, two helices with different helix diameters are guided, and the struts 58 have correspondingly helically extending or circumferentially stepped recesses 60 for this purpose. As the sequence of FIGS.
  • the slope of an inside spiral 59, recognizable by inner recesses 60 a is also less than the slope of an outer spiral 61, guided in associated, outer recesses 60 b in the respective struts 58.
  • the coils can be guided continuously and continuously; in the case of the exemplary embodiment in FIG. 12, however, in two sections, which are divided into a front, outlet-side double spiral section 62 and a rear, fan-side (inlet-side) double spiral section 64 and each consist of a parallel connection of the inner and outer helix. The fluid is in turn supplied from the direction of the connections or feed lines to the coils.
  • an element 44 in FIG. 15 is the number of supply lines due to the double spiral heating higher, and the number increases accordingly of the openings 54 provided in the interior area 52.
  • 14 or 15 takes place analogously 6, an alignment of neighboring ones Radiator elements 44 to each other for the arrangement of 13 by means of truncated cone-shaped elevations 66, distributed around the circumference, provided on the ring portion 56 are and in the illustrated, not radially symmetrical Arrangement a clear fixation of the individual elements define each other in the circumferential direction.
  • the arrangement shown takes the radiator elements either the one-piece double spiral 11, or the divided double helix of Fig. 12, with appropriate interconnection or control of these helix arrangements each have two power levels can be activated: With regard to the Fig. 11 would only activate a first (low) heating level the inner heating coil 59, and on one second, higher heating level would then be the parallel connection both heating coils 59, 61 are activated.
  • Fig. 12 there is both the rear and the front double helix section 64, 62 each already from a parallel connection of the corresponding resistance heating elements, and accordingly a first heating level would the activation of one of the two double spiral sections provide, then at full load in a second To activate the heating level of the other in addition.
  • connection head Point on the inlet side (i.e. directed towards the fan motor) the above-described embodiments one in the Fig. connection head, not shown, which, in addition to suitable Plug pins for connecting the respective radiator to the associated electronics, an EEPROM as with the electrical and test data of a respective device Storage element carries. More specifically are in this electronic memory module individual data with regard to heating type (one-stage / two-stage, one coil or two coils), temperature parameters (e.g. display in Degrees Celsius or degrees Fahrenheit), further adjustment values (concrete temperature behavior) and production data saved. At the end opposite this connection head a thermocouple (not shown in the figures) sits on the outlet side, whose temperature information is then also about the connection head can be tapped.
  • the electronics 68 shown in FIG. 20 on a suitable carrier, for example a circuit board, in the housing of a hot air blower is included and communicates electrically with the connections on the heating module 70 (more precisely: the connection head on the arrangements shown in FIGS. 1 and 13).
  • the complexes "electronics" 68 and “heating module” 70 are delimited from one another by dashed lines, the electronics 68 also including the fan motor 72 in the form of a brushless DC motor (which in the assembled state causes air to flow through the Arrangements described), a motor control unit 74 for the electronic control of the motor 72 and for detecting an actual speed of the motor n is , which has corresponding semiconductor components, a switching power supply and a control ASIC for the motor and in the manner to be described below by one central, processor-controlled control loop is controlled.
  • a heating control unit 76 has triacs for switching the heating coil and optocouplers for zero-crossing detection in order to be able to determine the switch-on time with sufficient accuracy.
  • control unit 76 works with the first Heating line 78 and a second heating line 80 together (in In the case of the embodiment of FIG. 1, the second is omitted heating section; in the case of Fig. 12 for the second embodiment the heating strands mean the inner or outer heating coil 59, 61, and in the case of Fig. 12 the front or rear double helix section 62, 64).
  • the heating module 70 is in the implementation of the embodiments 13 or 13 dimensioned such that the Surface temperature of the heating wire for the coils close is at its melting point, so it's for maintenance an operating period to be guaranteed is necessary, that each individually made heating arrangement on the respective hottest point is measured by a test device, whereupon the specific properties of the Heating for electronic control or parameterization of the operating procedure can.
  • the aforementioned EEPROM is a reference number 82 in the block diagram of FIG. 20, immediately provided on the heating module and contains the respective product-specific ones Data as follows:
  • thermocouple voltage also on Heating module provided, realized as a Cr-Ni-Cr thermocouple Thermocouple 84 at a temperature of e.g. 600 ° C (maximum, desired operating temperature) at each hottest place saved.
  • a temperature of e.g. 600 ° C maximum, desired operating temperature
  • An expert for the supply network or the network frequency of an intended operating country as follows the control for the motor unit when operating on a 50 Hz network changed in a 60 Hz network.
  • the memory module 82 contains a reference temperature value for temperature compensation using a compensation measuring element 86 (thermocouple 84 created as Thermovoltage a measured value relative to a reference junction. However, since this reference point when operating the device is heated by means of the compensation measuring element 86, e.g. an NTC, the temperature of this cold junction be measured to the resulting error to compensate).
  • a compensation measuring element 86 thermocouple 84 created as Thermovoltage a measured value relative to a reference junction.
  • Other parameters individually assigned to a heating module are details of a type of heating (one or two heating lines), Duration of an ad to be set by a user Temperature setpoint (instead of a permanent one displayed actual temperature value), an automatic speed reduction at high temperature values and other status information.
  • the specifically programmed Memory block 82 all heating and temperature relevant Parameters ready to connect the connected electronics 68 to provide the basis for an engine and heating control, which makes maximum use of the load capacity of the heating coils and still no unintended wear of the material causes.
  • the memory chip is the most important Information the specifically measured thermocouple voltage of the Ni-CrNi element 84 at maximum operating temperature.
  • the heating unit 70 is operated by one in the electronics module 68 provided central control unit according to the specifications of the user or those stored in the memory module 82 Parameters controlled, the control unit in which Fig. 20 indicated by the dashed line 88, the has the following functional components (these can both be implemented by dedicated hardware circuits, as is immediately clear to the person skilled in the art, or else functionalities a microcontroller with the appropriate software or the like. Processor element).
  • a comparison and Test module 89 receives the parameter data of EEPROM 82 from the heating module and also loads more from one separate EEPROM 90 read parameters and specifications.
  • a current thermal voltage output by the thermocouple 84 is amplified via an amplifier unit 94 and fed to an A / C converter 96 as the actual temperature T ist .
  • N addition to a speed set value of the A / C converter of the central control unit 88 also receives an externally specified by the operator temperature setpoint T set as well.
  • a compensation temperature T comp of the compensation measuring element 86 is read in.
  • the AD converter 96 also receives the current engine speed n is the engine control unit 74, wherein the actual engine speed n is monitored by means of an error detection unit 98, which is connected downstream of an engine control unit 100.
  • the central control unit 88 switches off the heating lines 78 and, if applicable, 80 and outputs them on the display unit 92 a corresponding error or service message.
  • temperature control unit 102 is implemented as a digital PI controller.
  • An interaction between engine control 100 and temperature control 102 takes place in this respect through mutual influence, than an increase in engine speed, a change in Control behavior for the temperature causes, and an increase the temperature a decrease in the engine speed because the air flow rate of the fan motor is so large that the temperature control without an automatic lowering of the Engine speed is not able at high set temperatures would be to set the required temperature.
  • the user can preselect a desired temperature value of the hot air escaping from the device by specifying a target temperature, which is displayed on the display unit 92 in the form of a digital, multi-digit (e.g. 7-segment display) display, and it is then controlled by the central unit Control unit 88 according to the currently recorded actual temperature value T , the control output for the heating is increased until the predetermined target value is reached.
  • the temperature is then kept at the desired level by means of a control loop.
  • the display module 92 makes it possible to display the setpoint set by the operator for a predetermined time since the actuation of an actuating element until switching back to a display mode for an actual actual temperature T ist .
  • T 60 ms or an integer multiple of it, and within that 60 ms each half-wave becomes single or double-stranded switched so that the total, switched DC power component remains zero within a period. While four possible with only one heating element Switching stages (0, 1/3, 2/3, full) arise with a heating system with two independently switched Strands (but during the same period T) total seven power levels by varying the switching pattern for whole, switched half-waves.
  • This training is based on the knowledge that that of the present electric heater a workpiece transportable (heat) energy quantity i.w. of the electrical power supplied and of that Fan wheel generated dynamic pressure in the heating element depending is; the dynamic pressure is a measure of how much Fluid (air) at a predetermined outlet cross section can be transported by the fan wheel. at decreasing speed of the fan wheel decreases (in practical Realization almost proportional) the dynamic pressure inside the heating element and thus on the workpiece transferable amount of heat energy at constant temperature.
  • a user now uses a front nozzle with a very small diameter (i.e.
  • the amount of energy released by the device decreases again, because of the reduction in cross-section the nozzle with the internal pressure kept constant Air volume drops and according to the controller the power consumption the heating coil reduced, since it is now with a smaller electrical power the required temperature can adjust.
  • the central control unit micro-controller
  • the central control unit would, for example, at a preset, maximum target speed and a temperature of 600 ° C by the user the central control unit (micro-controller) otherwise the Reduce engine speed to a fixed, preset value, the normal operation of the invention
  • the maximum possible speed value at the heater required temperature would be used here small front nozzle the electrical power consumed decrease because the amount of air delivered drops and thus the Temperature control reduces the electrical output of the heater.
  • the speed control provided according to the training would with the same settings in normal operation (i.e. without Intent) work in the same way, however when using an attachment nozzle with a small cross-section cause the control unit to set the turbine speed increased until about 5/6 (sample value) of the total Heating power is reached on average, or the target speed is equal to the actual speed.
  • the control circuit variants described are possible together with one of the above Exemplary embodiments for the heating module, a heating device for a fluid, especially a hot air blower, to create which is extremely powerful with an even more compact design, high heating outputs with a precise temperature control, which is extremely user-friendly Way with one to be set by the user Set temperature works to combine.
  • a heating device for a fluid especially a hot air blower
  • parameters and temperature data allow maximum tax benefits without the lifespan of the highly stressed heating strands.

Landscapes

  • General Induction Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

L'invention concerne un dispositif de chauffage électrique pour chauffer un fluide, en particulier un courant d'air. Le dispositif comporte un dispositif support pour loger un corps chauffant hélicoïdal. Le dispositif support présente une pluralité d'éléments support pouvant être placés axialement les uns à côté des autres pour produire au moins un canal d'écoulement traversant pour le fluide, le canal s'étendant axialement. Le dispositif selon l'invention comporte aussi un capteur électrique de température situé à la sortie. Les fils d'alimentation du capteur sont dirigés vers un module de connexion situé à l'entrée. Le module de connexion, qui peut être connecté à une électronique de commande, comprend un module de mémoire affecté individuellement au dispositif de chauffage. Ce module de mémoire est configuré pour le stockage non volatile de valeurs individuelles de mesure et de test du dispositif de chauffage, incluant le stockage d'une valeur de test individuelle du capteur de température à une température de fonctionnement.

Claims (10)

  1. Dispositif de chauffage électrique pour le chauffage d'un fluide, en particulier d'un courant d'air, avec un dispositif de support configuré pour recevoir au moins un serpentin de chauffage (32), et qui présente une pluralité d'éléments de support (10; 44) configurés pour être ajustables axialement les uns aux autres, pour réaliser au moins un canal d'écoulement continu s'étendant axialement pour le fluide, caractérisé par un capteur de température électrique (84) prévu du côté de la sortie, dont les fils de raccordement (40) sont conduits à un module de raccordement du côté de l'entrée, au dispositif de chauffage, dans lequel le module terminal pouvant être relié à une électronique de commande porte un module de mémoire électronique (82), associé individuellement au dispositif de chauffage, qui est configuré pour la fixation non volatile de valeurs individuelles de mesure et de contrôle du dispositif de chauffage, y compris d'une valeur de contrôle individuelle du capteur de température à une température de régime.
  2. Dispositif selon la revendication 1, caractérisé en ce que les fils de raccordement du capteur de température électrique sont conduits en direction axiale à travers des passages associés (18; 54) des éléments de support (10; 44) jusqu'au module de raccordement.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'électronique de commande (68) raccordée audit au moins un serpentin de chauffage est configurée pour régler une température de consigne du fluide à prédéterminer par un utilisateur en fonction de la valeur de contrôle individuelle, ainsi qu'un signal de température instantané du capteur de température (84).
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'électronique de commande est configurée pour détecter une vitesse de rotation d'un moteur de ventilateur (72) faisant circuler le fluide à travers le dispositif de chauffage et pour la régulation électronique de la température du fluide en fonction aussi bien d'une vitesse de rotation réelle effective que d'une vitesse de rotation de consigne pouvant être prédéfinie du moteur de ventilateur.
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé par une unité d'affichage (92) reliée à l'électronique de commande, qui est configurée pour émettre de façon numérique une température réelle instantanée du fluide et/ou une température de consigne du fluide, pouvant être prédéterminée par un utilisateur, et qui émet les températures en degrés Celsius ou en degrés Fahrenheit de préférence en fonction d'un paramètre stocké dans le module de mémoire (82), dans lequel il est en outre de préférence prévu une unité à commande manuelle pour présélectionner une température de consigne pour le fluide, dans lequel l'unité d'affichage (92) est configurée pour afficher la température de consigne et ensuite pour commuter et afficher la température réelle en réaction à une commande manuelle de l'unité de présélection pendant une durée prédéterminée.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que des parties en forme de nervures (16; 58) des éléments de support (10; 44), déterminant le canal d'écoulement, présentent des évidements (34; 60) pour maintenir et guider ledit au moins un serpentin de chauffage hélicoïdal qui, le long d'une direction périphérique des éléments de support, sont configurés et dimensionnés de telle manière que les évidements suivent une pente constante des serpentins de chauffage de façon continue sur une pluralité d'éléments de support adjacents.
  7. Dispositif selon la revendication 6, caractérisé en ce que les parties en forme de nervures des éléments de support sont configurées pour maintenir et guider deux serpentins de chauffage (59, 61), qui sont disposés axialement l'un par rapport à l'autre, qui présentent des diamètres de spirale de valeur différente et qui peuvent être actives de préférence séparément par une tension électrique de service.
  8. Procédé d'exploitation d'un dispositif de chauffage électrique selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'une activation dudit au moins un serpentin de chauffage du dispositif de chauffage électrique est effectuée avec un courant alternatif en connectant et en déconnectant le courant alternatif avec des demi-périodes entières et chaque fois pour des demi-ondes entières connectées, dans lequel un programme de connexion et de déconnexion est formé de telle manière qu'à l'intérieur de périodes de temps successives T = k x 3.000/f, avec k = nombre entier naturel ≥ 2 et f = fréquence du courant alternatif, la fraction de courant continu connectée soit zéro.
  9. Procédé selon la revendication 8, caractérisé en ce qu'à l'intérieur de la même période de temps T, on connecte deux serpentins de chauffage indépendamment l'un de l'autre, la fraction cumulée de courant continu connectée des deux serpentins étant nulle.
  10. Procédé selon la revendication 9, caractérisé en ce que l'on connecte deux serpentins de chauffage hélicoïdaux, l'un intérieur, l'autre extérieur, alignés le long d'un axe commun, ou en ce que l'on connecte un serpentin double situé en aval ainsi qu'un serpentin double situé en amont, qui sont disposés le long d'un axe commun.
EP99946054A 1998-08-28 1999-08-27 Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage Expired - Lifetime EP1110429B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839044 1998-08-28
DE19839044A DE19839044A1 (de) 1998-08-28 1998-08-28 Elektrische Heizvorrichtung und Verfahren zum Betreiben einer Heizvorrichtung
PCT/EP1999/006335 WO2000013467A1 (fr) 1998-08-28 1999-08-27 Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage

Publications (2)

Publication Number Publication Date
EP1110429A1 EP1110429A1 (fr) 2001-06-27
EP1110429B1 true EP1110429B1 (fr) 2003-05-02

Family

ID=7878945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99946054A Expired - Lifetime EP1110429B1 (fr) 1998-08-28 1999-08-27 Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage

Country Status (3)

Country Link
EP (1) EP1110429B1 (fr)
DE (2) DE19839044A1 (fr)
WO (1) WO2000013467A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701237B1 (fr) * 2001-01-24 2012-11-07 Leister Technologies AG Elément chauffant
AT501559A1 (de) * 2005-02-25 2006-09-15 Haslmayr Johann Dipl Ing Heisslufteinrichtung
EP1814362A1 (fr) 2006-01-30 2007-08-01 Leister Process Technologies Elément chauffant pour un dispositif à air chaud
ATE492140T1 (de) 2008-06-09 2011-01-15 Leister Process Tech Elektrisches widerstandsheizelement für eine heizeinrichtung zum erhitzen eines strömenden gasförmigen mediums
DE102010031520A1 (de) * 2010-07-19 2012-01-19 BSH Bosch und Siemens Hausgeräte GmbH Elektrischer Heizkörper und Durchlauferhitzer
CN108267260B (zh) * 2016-12-30 2019-05-17 北京金风科创风电设备有限公司 电连接件、流体状态测试装置和流体换热系统
GB2582930B (en) * 2019-04-08 2023-01-11 Edwards Ltd Induction heating method and apparatus
DE102021215100A1 (de) 2021-12-30 2023-07-06 BSH Hausgeräte GmbH Haushalts-Dampfgargerät

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE17297T1 (de) * 1983-04-22 1986-01-15 Steinel Gmbh & Co Kg Elektrischer heizkoerper zum erhitzen eines fluidstroms.
DE4343256C2 (de) * 1993-12-17 2000-11-16 Bsh Bosch Siemens Hausgeraete Warmwassergerät

Also Published As

Publication number Publication date
WO2000013467A1 (fr) 2000-03-09
EP1110429A1 (fr) 2001-06-27
DE19839044A1 (de) 2000-03-02
DE59905345D1 (de) 2003-06-05

Similar Documents

Publication Publication Date Title
EP0888702B1 (fr) Dispositif pour le chauffage d'un fluide
EP1110429B1 (fr) Dispositif de chauffage electrique et procede pour faire fonctionner un dispositif de chauffage
EP0531987A2 (fr) Dispositif de chauffage électrique
EP1732357A2 (fr) Dispositif de chauffage pour appareils de cuisson à induction
DE102005057476B3 (de) Schrumpfvorrichtung mit Kühlvorrichtung, Kühlvorrichtung für eine Schrumpfvorrichtung, Kühlerschaltvorrichtung, Verfahren zur Montage einer Kühlerschaltvorrichtung
EP1233650B1 (fr) Dispositif à air chaud
DE19707240A1 (de) Vorrichtung und Verfahren zum Erwärmen von Räumen mit einem elektrisch erwärmten Heißwasserrohr
EP2299199A2 (fr) Dispositif de chauffage d'eau, notamment accumulateur d'eau chaude
DE4005437C2 (fr)
EP0800334A2 (fr) Circuit pour alimenter des lampes électriques
EP0503263A2 (fr) Soupape de carburant
DE2400478A1 (de) Elektrisch beheizter durchlauferhitzer
DE2530075B2 (de) Elektrischer heizkoerper fuer gasfoermige medien
DE69106145T2 (de) Kochfeld mit induktionsbeheizung.
DE1966175B2 (de) Elektrischer ofen mit einem heizelement und einer vorheizung
EP0385235A1 (fr) Chauffage pour appareil à chauffage électrique, en particulier pour pistolet à colle fondue, avec au moins une résistance variant en fonction de la température
EP3109465B1 (fr) Pale de rotor d'éolienne dotée d'un dispositif de chauffage electrique
DE29815514U1 (de) Elektrische Heizvorrichtung
DE69614647T2 (de) Elektrischer Strahlungsheizkörper und Verfahren zu dessen Betrieb
EP0202401A2 (fr) Elément chauffant
DE1690587B1 (de) Automatisch arbeitender elektrischer Kaffeekocher
DE19931357C1 (de) Verfahren und Vorrichtung zum Trocknen von Granulat
DE2319733C3 (de) Regelsystem zur Aufrechterhaltung der mittleren Temperatur in einer Ersatzlast
EP0048772B1 (fr) Dispositif à gaz chauds pour le dessoudage, le soudage, la contraction et analogues
WO2005114060A1 (fr) Appareil electrique de chauffage d'eau potable et non-potable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020110

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59905345

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HIEBSCH & PEEGE AG PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1110429E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: STEINEL GMBH & CO. KG

Free format text: STEINEL GMBH & CO. KG#DIESELSTRASSE 80-84#33442 HERZEBROCK-CLARHOLZ (DE) -TRANSFER TO- STEINEL GMBH & CO. KG#DIESELSTRASSE 80-84#33442 HERZEBROCK-CLARHOLZ (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110822

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180820

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59905345

Country of ref document: DE

Representative=s name: MUELLER HOFFMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59905345

Country of ref document: DE