EP1108072A1 - Procede et installation pour produire des aciers a deux phases - Google Patents

Procede et installation pour produire des aciers a deux phases

Info

Publication number
EP1108072A1
EP1108072A1 EP99938282A EP99938282A EP1108072A1 EP 1108072 A1 EP1108072 A1 EP 1108072A1 EP 99938282 A EP99938282 A EP 99938282A EP 99938282 A EP99938282 A EP 99938282A EP 1108072 A1 EP1108072 A1 EP 1108072A1
Authority
EP
European Patent Office
Prior art keywords
cooling
ferrite
stage
dual
steels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99938282A
Other languages
German (de)
English (en)
Other versions
EP1108072B1 (fr
Inventor
August Sprock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Schloemann Siemag AG, Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Publication of EP1108072A1 publication Critical patent/EP1108072A1/fr
Application granted granted Critical
Publication of EP1108072B1 publication Critical patent/EP1108072B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method and a plant for the production of dual-phase steels from the hot-rolled state with a two-phase structure made of 70 to 90% ferrite and 30 to 10% martensite through a controlled temperature control and defined cooling strategy during the cooling of the steels, inter alia by means of Water cooling after its finish rolling, the cooling curve running into the ferrite area in a first cooling stage and further cooling to temperatures below the martensite starting temperature in a second cooling stage after reaching the necessary proportion
  • the targeted microstructure conversion by appropriate cooling of the steel is known.
  • DE 44 16 752 AI describes a process for producing hot wide strip, in which the surface temperature of the slab is sufficiently deep (at least before the first forming between the continuous casting machine and a compensating furnace) 2 mm) to the extent that a structural change from austenite to Fernt / Perlite occurs.
  • the cooling time is selected so that at least 70% austenite is converted to Fernt / Perlite.
  • the compensating furnace there is then a renewed conversion to Austenite with reorientation of Austenite Grain boundaries
  • second-choice scrap in particular scrap containing copper, can be used as a raw material without undesired accumulation of copper at the grain boundaries of the P ⁇ maraustenite
  • sufficient ferrite formation is achieved, for example, by cooling with water to a temperature of around 620 - 650 ° C with subsequent air cooling.
  • the duration of the air cooling (approx. 8 seconds) is selected so that at least 70% of the austenite is converted to ferrite before the second cooling stage begins During the first cooling stage and during air cooling, a conversion in the Perht stage should be avoided
  • the task is solved with the characterizing measures of claim 1 in that during the first cooling stage the cooling curve of the steels is set with a cooling rate of 20 K / s to 30 K / s so low that the cooling curve is at such a high temperature enters the ferrite area so that the ferrite formation can take place quickly and at least 70% of the austenite has already been converted into ferrite before the start of the second cooling stage
  • the cooling curve runs into the ferrite area later at a higher temperature than in the known processes, i.e. the conversion of the austenite into ferrite begins somewhat delayed but at a higher temperature than at the known methods, and it also runs faster due to the higher temperature. It has an advantageous effect if the ferrite area is reached as quickly as possible with a high transformation temperature
  • the principle of loosened cooling is used according to the invention. This is water cooling, in which water is applied to the cooling material from water cooling stages arranged one behind the other by influencing the number of water cooling stages, their distance from one another and The effective length of the water cooling stages allows the cooling rate or the amount of water applied to the cooling material (its cooling material mass and / or the surface of the cooling material) to be optimally adjusted.
  • the cooling can also be achieved with an infinitely variable quantity of coolant
  • the loosened cooling can be extended until the desired degree of conversion is reached, without the risk - as in the known methods with fast cooling - that the cooling curve leaves the ferrite area beforehand due to excessive cooling
  • the production of dual-phase steels can take place on part of the cooling section.
  • the part of the cooling section used is much shorter than in the known processes with Air cooling If the required structural components for dual-phase steels can be set without air cooling, this results in significant advantages for the operator. Fewer system components are required for the production of dual-phase steels.
  • the production spectrum can be modified with changed process and strip parameters (e.g. higher strip speed). compared to be expanded so far.
  • a system for carrying out the method of the invention is characterized by a cooling section arranged behind the last finishing mill stand, comprising a plurality of water cooling stages or cooling systems arranged one behind the other with a continuously variable amount of coolant.
  • the number of water cooling stages, their effective length and their distance from one another can be changed according to the invention, so that this cooling section can be adapted in a simple manner to changed geometries of the goods to be cooled and to different belt speeds
  • Fig. 1 is a schematic representation of the rapid cooling and the loosened cooling and their assignment in a rolling mill
  • Fig. 3 shows the degree of Ausemtumumwandung with the fast
  • Fig. 4 shows the degree of Ausemtumumwandung with the loosened
  • FIG. 1 the end of a rolling mill is shown schematically, consisting of the last finish rolling stand (1), the rolling stock or cooling stock (2) and a reel (3) with deflection rollers or driver (4) Above this part of a rolling train are two different cooling sections drawn in With the cooling section (5) according to the prior art, an early, rapid cooling of the cooling material (2) is brought about by a coherent water supply. In the cooling section (6), according to the invention, water cooling stages (7) are arranged one behind the other, thereby cooling "loosened up"
  • the cooling curve (9) shows the cooling process with the strategy commonly used today (early, rapid cooling to a certain holding temperature with subsequent air cooling, then further cooling to low temperatures below the martensite start temperature)
  • the cooling curve (10) with its first cooling stage (14) reaches the ferrite area (F) at point (15) later in the loosened cooling compared to the cooling curve (9). Since the loosened cooling is initially maintained after reaching the ferrite area (F) no time-consuming holding time with air cooling is required and the cooling curve (10) leaves the ferrite area (F) earlier
  • the loosened cooling is maintained within the ferrite area (F) until the desired degree of conversion is reached. Then the further cooling with the second cooling stage (16) takes place immediately.
  • the invention is not limited to the exemplary cooling curves described in the illustrations, but also other cooling curves, such as, for example, in cooling systems with an infinitely variable amount of cooling agent, which in the sense of the invention lead to higher conversion temperatures, are also possible.
  • the invention is not restricted to water cooling , but other cooling systems can be used, which lead to an early reaching of the ferrite area at high temperatures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Control Of Heat Treatment Processes (AREA)
EP99938282A 1998-07-24 1999-07-17 Procede et installation pour produire des aciers a deux phases Expired - Lifetime EP1108072B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19833321 1998-07-24
DE19833321A DE19833321A1 (de) 1998-07-24 1998-07-24 Verfahren und Anlage zur Herstellung von Dualphasen-Stählen
PCT/EP1999/005113 WO2000005422A1 (fr) 1998-07-24 1999-07-17 Procede et installation pour produire des aciers a deux phases

Publications (2)

Publication Number Publication Date
EP1108072A1 true EP1108072A1 (fr) 2001-06-20
EP1108072B1 EP1108072B1 (fr) 2002-09-25

Family

ID=7875154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99938282A Expired - Lifetime EP1108072B1 (fr) 1998-07-24 1999-07-17 Procede et installation pour produire des aciers a deux phases

Country Status (11)

Country Link
EP (1) EP1108072B1 (fr)
JP (1) JP2002521562A (fr)
KR (1) KR100578823B1 (fr)
CN (1) CN1173048C (fr)
AT (1) ATE224959T1 (fr)
BR (1) BR9912310A (fr)
CA (1) CA2338743C (fr)
DE (2) DE19833321A1 (fr)
MY (1) MY124339A (fr)
RU (1) RU2225453C2 (fr)
WO (1) WO2000005422A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1013359A3 (fr) 2000-03-22 2001-12-04 Centre Rech Metallurgique Procede pour la fabrication d'une bande en acier multiphase laminee a chaud.
NL1016042C2 (nl) * 2000-08-29 2001-07-24 Corus Technology B V Warmgewalste stalen band, werkwijze voor het vervaardigen ervan, en een daarmee vervaardigde wielschijf.
AUPR048000A0 (en) * 2000-09-29 2000-10-26 Bhp Steel (Jla) Pty Limited A method of producing steel
KR100516519B1 (ko) * 2001-12-26 2005-09-26 주식회사 포스코 제어압연 및 급속냉각 방식에 의한 2상조직 탄소강 선재및 봉강 제조방법
KR100521596B1 (ko) * 2002-11-20 2005-10-12 현대자동차주식회사 직접통전가열에 의한 자동차부품 제조 방법
DE10327383C5 (de) * 2003-06-18 2013-10-17 Aceria Compacta De Bizkaia S.A. Anlage zur Herstellung von Warmband mit Dualphasengefüge
CN104001742A (zh) * 2014-05-21 2014-08-27 中冶南方工程技术有限公司 一种对棒材精轧机组之间及机组后的轧件实现控制冷却的方法
CN104384207A (zh) * 2014-10-22 2015-03-04 南京钢铁股份有限公司 一种热轧轴承钢棒材的控制冷却方法及其工艺布置
KR102440768B1 (ko) * 2020-12-18 2022-09-08 주식회사 포스코 후강판 제조 장치 및 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818970B2 (ja) * 1978-08-31 1983-04-15 川崎製鉄株式会社 冷間加工性の優れた高張力薄鋼板の製造方法
US4388122A (en) * 1980-08-11 1983-06-14 Kabushiki Kaisha Kobe Seiko Sho Method of making high strength hot rolled steel sheet having excellent flash butt weldability, fatigue characteristic and formability
JPS57104650A (en) * 1980-12-19 1982-06-29 Kobe Steel Ltd High-strength hot-rolled steel plate and its manufacture
JPS57137452A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Hot rolled high tensile steel plate having composite structure and its manufacture
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
JPS61170518A (ja) * 1985-01-25 1986-08-01 Kobe Steel Ltd 成形性にすぐれた高強度熱延鋼板の製造方法
JPS6293006A (ja) * 1985-10-18 1987-04-28 Kobe Steel Ltd 高強度熱延鋼板の製造法
JP3039842B2 (ja) * 1994-12-26 2000-05-08 川崎製鉄株式会社 耐衝撃性に優れる自動車用熱延鋼板および冷延鋼板ならびにそれらの製造方法
FR2735148B1 (fr) * 1995-06-08 1997-07-11 Lorraine Laminage Tole d'acier laminee a chaud a haute resistance et haute emboutissabilite renfermant du niobium, et ses procedes de fabrication.
KR100301994B1 (ko) * 1996-12-24 2001-11-22 이구택 열간압연선재의균일냉각방법
KR100747495B1 (ko) * 2006-11-10 2007-08-08 삼성전자주식회사 용량가변 로터리 압축기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0005422A1 *

Also Published As

Publication number Publication date
CN1311826A (zh) 2001-09-05
KR100578823B1 (ko) 2006-05-11
EP1108072B1 (fr) 2002-09-25
DE19833321A1 (de) 2000-01-27
WO2000005422A1 (fr) 2000-02-03
BR9912310A (pt) 2004-08-31
ATE224959T1 (de) 2002-10-15
JP2002521562A (ja) 2002-07-16
CN1173048C (zh) 2004-10-27
MY124339A (en) 2006-06-30
KR20010071978A (ko) 2001-07-31
CA2338743C (fr) 2010-03-30
RU2225453C2 (ru) 2004-03-10
DE59902877D1 (de) 2002-10-31
CA2338743A1 (fr) 2000-02-03

Similar Documents

Publication Publication Date Title
EP1469954B2 (fr) Procede de production de feuillard lamine a chaud a partir d'aciers austenitiques inoxydables
DE4402402B4 (de) Verfahren zur Herstellung von warmgewalztem Stahlband aus stranggegossenem Vormaterial und Anlage zur Durchführung des Verfahrens
EP0804300A1 (fr) Procede et dispositif de production d'une feuille d'acier presentant les proprietes d'un produit lamine a froid
EP1169486A1 (fr) Procede de production de feuillard a chaud
EP1305122A1 (fr) Procede et installation de fabrication de produits plats minces
WO2011067315A1 (fr) Laminoir à chaud et procédé de laminage à chaud d'un feuillard ou d'une tôle
EP1108072B1 (fr) Procede et installation pour produire des aciers a deux phases
DE19600990C2 (de) Verfahren zum Warmwalzen von Stahlbändern
EP0820529B1 (fr) Procede de fabrication de produits allonges finis a chaud, notamment du type barre ou tube, en acier fortement allie ou hypereutectoide
EP1633894B1 (fr) Procede et installation pour produire un feuillard lamine a chaud a structure biphasee
DE102006032617B4 (de) Verfahren zur Herstellung eines zum Formhärten geeigneten Blechhalbzeugs
EP3033186B1 (fr) Procédé de production d'un tuyau en acier réalisé à chaud sans soudure, trempé et revenu
DE102012224531A1 (de) Verfahren zur Herstellung von kornorientierten Silizium-Stählen
DE19913498C1 (de) Verfahren zum Herstellen eines Warmbandes und Warmbandlinie zur Durchführung des Verfahrens
DE102006001198A1 (de) Verfahren und Vorrichtung zur Einstellung gezielter Eigenschaftskombinationen bei Mehrphasenstählen
DE2643572A1 (de) Verfahren zur behandlung von walzstahlerzeugnissen
DE102020214427A1 (de) Verfahren zum Herstellen eines Warmbandes mittels einer Gießwalzanlage
WO2000015362A1 (fr) Procede de production de feuillard a chaud et de toles
AT525283B1 (de) Verfahren zur Herstellung eines Dualphasenstahlbands in einer Gieß-Walz-Verbundanlage, ein mit dem Verfahren hergestelltes Dualphasenstahlband und eine Gieß-Walz-Verbundanlage
EP2543744A1 (fr) Procédé et dispositif de traitement d'un produit en acier et produit en acier
EP0970256B1 (fr) Laminage a chaud de feuillard d'acier
EP0067374A2 (fr) Procédé de traitement thermo-mécanique de l'acier laminé à chaud
DE19639298A1 (de) Verfahren und Vorrichtung zur Erzeugung von dünnen Brammen mit direkt anschließendem Walzprozeß/Walzwerk
EP0151194A1 (fr) Procédé pour améliorer la planéité de l'acier laminé
DE2345738C2 (de) Stahldraht und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010706

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020925

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

REF Corresponds to:

Ref document number: 224959

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902877

Country of ref document: DE

Date of ref document: 20021031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021226

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030717

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030717

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030717

EN Fr: translation not filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1108072E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed

Effective date: 20030626

BERE Be: lapsed

Owner name: SCHLOEMANN-SIEMAG A.G. *SMS

Effective date: 20030731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59902877

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59902877

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

R26N No opposition filed (corrected)

Effective date: 20030626

RIN2 Information on inventor provided after grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180723

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59902877

Country of ref document: DE