EP1101953A2 - Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten - Google Patents

Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten Download PDF

Info

Publication number
EP1101953A2
EP1101953A2 EP00123300A EP00123300A EP1101953A2 EP 1101953 A2 EP1101953 A2 EP 1101953A2 EP 00123300 A EP00123300 A EP 00123300A EP 00123300 A EP00123300 A EP 00123300A EP 1101953 A2 EP1101953 A2 EP 1101953A2
Authority
EP
European Patent Office
Prior art keywords
cylinder housing
pressure medium
valves
valve
electrorheological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00123300A
Other languages
English (en)
French (fr)
Other versions
EP1101953A3 (de
Inventor
Dorothea Adams
Horst Dr. Rosenfeldt
Horst Scherk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Automotive Test Systems GmbH
Original Assignee
Schenck Pegasus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schenck Pegasus GmbH filed Critical Schenck Pegasus GmbH
Publication of EP1101953A2 publication Critical patent/EP1101953A2/de
Publication of EP1101953A3 publication Critical patent/EP1101953A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/202Externally-operated valves mounted in or on the actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/06Use of special fluids, e.g. liquid metal; Special adaptations of fluid-pressure systems, or control of elements therefor, to the use of such fluids
    • F15B21/065Use of electro- or magnetosensitive fluids, e.g. electrorheological fluid

Definitions

  • the invention relates to a pressure medium motor based on electrorheological Liquids, one in a cylinder housing guided piston is provided in the cylinder housing forms two variable-volume working chambers, one Inlet hole for the electrorheological fluid with a pressure medium source (pump) is connected, one Outlet hole for the electrorheological fluid with is connected to a tank and arranged in the cylinder housing Valves based on electrorheological fluids, some have a variable-volume working chamber valve gap connecting to the inlet bore or the outlet bore have, the boundary surfaces of the valve gap designed as electrically controllable electrode surfaces are.
  • Electrorheological fluids are liquids where the rheological properties depending on one electric field are controllable. As a rule, it is in electrorheological fluids to suspensions that means solid particles suspended in a carrier medium are polarizable via the electric field. Because of the engagement of electrorheological fluids as working fluid it has become possible to reduce the number of moving parts in hydraulic Systems significantly. A variety of possible applications, e.g. the use of hydraulic valves, Hydraulic cylinders, vibrators, viscosity couplings, Shock absorbers or engine mounts are in the review article "Applications of the electrorheological effect in engineering practice, Fluid mechanics Soviet research, Vol.8, No. 4, July - August 1979 ".
  • a pressure medium motor is based known electrorheological fluids.
  • the control the pressure medium motor is implemented via four integrated in the cylinder electrorheological valves that work as a full bridge with each other are connected.
  • the electrorheological valves as annular gap valves formed by the introduced into the cylinder housing wall Bores and mandrels arranged in the bores are formed. The boundary walls are used to generate an electric field of the annular gap as electrically controllable electrode surfaces educated.
  • the object of the present invention is a hydraulic motor develop with integrated valves such that at even more compact outer dimensions, higher dynamics as well high actuating forces can be achieved.
  • the boundary surfaces are formed, on the one hand, by first housing sections formed on the outer circumferential surface of the cylinder housing and, on the other hand, by second housing sections which are spaced apart from one another.
  • Valve gaps through boundary surfaces of the cylinder housing as well formed a sleeve concentrically surrounding the cylinder housing become.
  • a pressure medium motor is realized, which has a mechanically simple structure.
  • two in parallel for each valve Flat column provided. Through this training you can higher flow rates can be achieved.
  • a special feature of the pressure fluid motor is its property the effect electronically on a differential cylinder to achieve a synchronous cylinder. This becomes possible due to the high dynamics of the compact pressure medium motor.
  • the valves are connected as a full bridge and controlled in such a way that the pressures in the variable-volume working chambers A and B are inversely proportional to their respective Behave piston surfaces.
  • the pressure medium motor 1 shown in FIGS. 1-3 exists from a cylinder housing2, into which a cylindrical Through hole 3 is introduced.
  • a piston 4 with a one-sided outward Piston rod 5 guided axially.
  • the piston 4 divided the cylindrical through hole 3 in two variable volume Working chambers A, B.
  • the cylinder housing2 is from surrounded a sleeve 6 which is concentric with the cylinder housing 2 is arranged. Between the inner surface 7 of the Sleeve 6 and the outer circumferential surface 8 of the cylinder housing 2 This leaves an annular space 9 that extends over the entire axial length of the cylinder housing 2 extends.
  • Sleeve 6 and Cylinder housing 2 are uniform over the circumference over four Distributed plastic strips 10, which are in axial Direction over the entire length of the cylinder housing 2 extend, connected to each other.
  • the annular space 9 is in four of the same size Partitions 11 divided, which are sealed from each other.
  • the subspaces 11 are each formed by a tubular segment element 12, which extends over the entire axial length of the cylinder housing 2 extends into two flat columns 13 divided, each parallel spaced cylindrical boundary surfaces exhibit.
  • the tube segment elements 12 are each held at the end in a plastic strip 10 by the flat gaps 13 are sealed from one another.
  • Four valves are thus between cylinder housing 2 and sleeve 6 based on electrorheological fluids (a1, a2, b1, b2) formed, each having two flat gaps 13.
  • electrorheological fluids (a1, a2, b1, b2) formed, each having two flat gaps 13.
  • a plurality of flat gaps arranged in parallel could for each Valve a plurality of flat gaps arranged in parallel be provided.
  • the electrorheological valves a1, a2, b1, b2 are capacitors executed, the electrode surfaces on the one hand through the boundary surfaces of the pipe segment elements 12 and on the other hand through the inner surface of the sleeve 6 or the outer surface of the cylinder housing 2 are formed.
  • the tube segment elements 12 are each one from the Pressure medium motor led out as an electrical connection serving isolated mandrel 14 with a high voltage supply connected and individually electrically controllable.
  • the Cylinder housing 2 and sleeve 6 are each grounded.
  • the Plastic strips 10 are used for insulation.
  • the cylinder housing 2 has end parts 15, 16 provided that have a cylindrical projection 17 in the middle, which closes the cylindrical through hole 3.
  • the cover parts 15, 16 have the same radial extent like the sleeve 6.
  • In the cover parts 15, 16 are each two essentially semi-cylindrical chambers 18, 19 and 20, 21 introduced, which to the cylinder housing 2 and the cylinder housing 2 surrounding sleeve 6 have. Chambers 18, 19 and 20, 21 are via a radially extending separator 22, 23 separated from each other.
  • the end parts 15, 16 are rotated by 90 ° arranged to each other so that the dividers 22, 23rd are aligned perpendicular to each other.
  • the chamber 18 is over an axial through hole made in the cover part 15 24 connected to a pressure medium pump.
  • Chamber 19 is an axial introduced into the cover part 15 Through hole 25 connected to a tank.
  • Chamber 20 stands over a bore made in the cylinder housing2 26 in connection with the variable-volume working chamber A, the chamber 21 is located in the cylinder housing 2 introduced bore 27 with the variable-volume working chamber B in connection.
  • the chamber 18 stands with the electrorheological valves a1 and a2 and the chamber 19 in connection with the electrorheological valves b1 and b2. Furthermore, chamber 20 is with the flat columns 13 of the Valves a1 and b2 and chamber 21 with the flat columns 13 of the Valves a2 and b1 in connection.
  • FIG. 4 is a schematic representation of the circuit of the four electrorheological valves to a full represents the bridge, the functionality or control is closer described.
  • the lines denote the flow channels, through which the electrorheological fluid acts as a working fluid coming from a pump P to a tank. Between the pump P and the tank T are two parallel flow branches available.
  • the top branch contains connected in series the electrorheological valves a1 and b2 the lower one Flow branch the electrorheological valves a2 and b1.
  • the electro-rheological valves are schematic as circular areas shown.
  • the flow chamber is the variable-volume working chamber B of the pressure fluid motor 1 connected.
  • the electrorheological valves a1, b1 closed by applying an electrical voltage, the is called by the electrical generated in the flat columns 13 Field, the electrorheological fluid changes its viscosity from liquid to solid.
  • the pressure side of the pump delivers the electrorheological fluid then directly over the Through hole 24 in the chamber 18.
  • valve a1 blocked is the electrorheological fluid through the Valve or the flat gaps 13 of the valve a2 in the chamber 21 is promoted and is then converted into volume Working chamber B pressed. This increases the pressure in the Working chamber B.
  • the pressure in working chamber A remains on the other hand, at the level of the tank, since valve b2 is open is.
  • the electrorheological displaced from working chamber A Liquid is passed through bore 26 into the chamber 20 pressed. Since the valve al is closed, the flows electrorheological fluid through the flat column of the valve b2 into chamber 19 and then through the through hole 25 in the tank. If the piston 4 in the direction of Working chamber B are moved, so the electrorheological Valves a2, b2 blocked and the electrorheological Valves a1, b1 de-energized and thus switched to continuity.
  • the cylinder housing provided with four flats on the outer surface, which extend over the entire axial length and each have a boundary surface of a flat gap Form valve. These are planar boundaries spaced in parallel each further as electrode surfaces trained boundary surfaces assigned to the cylinder housing flanged housing sections are formed, so that flat gap valves with flat gap surfaces are created.
  • magnetorheological can also be used as a pressure medium Liquid are used.
  • magnetorheological Liquids are used instead of the electrode surfaces electrically controllable coil arrangements are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vehicle Body Suspensions (AREA)
  • Hydraulic Motors (AREA)

Abstract

Bei einem Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten mit einem in einem Zylindergehäuse geführten Kolben, der in dem Zylindergehäuse zwei volumenveränderliche Arbeitskammern bildet, einer Einlaßbohrung für die elektrorheologische Flüssigkeit die mit einer Druckmittelquelle (Pumpe) in Verbindung steht, einer Auslaßbohrung für die elektrorheologische Flüssigkeit die mit einem Tank in Verbindung steht und in dem Zylindergehäuse angeordneten Ventilen auf Basis elektrorheologischer Flüssigkeiten, die einen jeweils eine volumenveränderliche Arbeitskammer mit der Einlaßbohrung oder der Auslaßbohrung verbindenen Ventilspalt aufweisen, wobei die Begrenzungsflächen des Ventilspaltes als elektrisch ansteuerbare Elektrodenflächen ausgebildet sind, werden die Begrenzungsflächen (7,8,12) einerseits durch an der äußeren Mantelfläche des Zylindergehäuses (2) gebildeten ersten Gehäuseabschnitten und andererseits durch diesen gegenüberliegend beabstandet angeordneten zweiten Gehäuseabschnitten gebildet. <IMAGE>

Description

Die Erfindung betrifft ein Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten, bei dem ein in einem Zylindergehäuse geführter Kolben vorgesehen ist, der in dem Zylindergehäuse zwei volumenveränderliche Arbeitskammern bildet, einer Einlaßbohrung für die elektrorheologische Flüssigkeit die mit einer Druckmittelquelle (Pumpe) in Verbindung steht, einer Auslaßbohrung für die elektrorheologische Flüssigkeit die mit einem Tank in Verbindung steht und in dem Zylindergehäuse angeordneten Ventilen auf Basis elektrorheologischer Flüssigkeiten, die einen jeweils eine volumenveränderliche Arbeitskammer mit der Einlaßbohrung oder der Auslaßbohrung verbindenen Ventilspalt aufweisen, wobei die Begrenzungsflächen des Ventilspaltes als elektrisch ansteuerbare elektrodenflächen ausgebildet sind.
Elektrorheologische Flüssigkeiten sind Flüssigkeiten, bei denen die rheologischen Eigenschaften in Abhängigkeit von einem elektrischen Feld steuerbar sind. In der Regel handelt es sich bei elektrorheologischen Flüssigkeiten um Suspensionen, daß heißt in einem Trägermedium suspendierte Festpartikel, die über das elektrische Feld polarisierbar sind. Durch den Einsatz von elektrorheologischen Flüssigkeiten als Arbeitsfluid ist es möglich geworden, die Anzahl der bewegten Teile bei hydraulischen Systemen erheblich zu verringern. Eine Vielzahl von Anwendungsmöglichkeiten beispielsweise der Einsatz bei Hydraulikventilen, Hydraulikzylindern, Vibratoren, Viskositäts-kupplungen, Stoßdämpfern oder Motorlagern sind in dem Übersichtsartikel "Applications of the electrorheological effect in engineering practice, Fluid mechanics Soviet research, Vol.8, No. 4, July - August 1979" bekannt.
Aus der DE-OS 197 35 466 ist ein Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten bekannt. Die Ansteuerung des Druckmittelmotors erfolgt über vier im Zylinder integrierten elektrorheologischen Ventilen, die als Vollbrücke miteinander verschaltet sind. Bei diesem bekannten Druckmittelmotor sind die elektrorheologischen Ventile als Ringspaltventile ausgebildet, die durch in die Zylindergehäusewand eingebrachte Bohrungen und in den Bohrungen angeordnete Dorne gebildet werden. Zur Erzeugung eines elektrischen Feldes sind die Begrenzungswände des Ringspaltes als elektrisch ansteuerbare Elektrodenflächen ausgebildet.
Aufgabe der vorliegenden Erfindung ist es, einen Druckmittelmotor mit integrierten Ventilen derart weiterzubilden, daß bei noch kompakteren äußeren Abmessungen eine höhere Dynamik sowie hohe Stellkräfte erreicht werden können.
Diese Aufgabe wird dadurch gelöst, daß die Begrenzungsflächen einerseits durch an der äußeren Mantelfläche des Zylindergehäuses gebildeten ersten Gehäuseabschnitten und andererseits durch diesen gegenüberliegend beabstandet angeordneten zweiten Gehäuseabschnitten gebildet werden.
Hierdurch kann ein hinsichtlich seiner äußeren Abmessungen kompakter Druckmittelmotor realisiert werden, mit dem eine noch höhere Dynamik erreicht wird. Aufgrund der kompakten Bauweise kann eine höhere hydraulische Steifigkeit erreicht werden. Da der Druckmittelmotor ein niedriges Gewicht aufweist ist seine dynamische Steifigkeit niedrig. Hierdurch kann er insbesondere in der Automationstechnik eingesetzt werden.
In einer Weiterbildung der Erfindung ist vorgesehen, daß die Ventilspalte durch Begrenzungsflächen des Zylindergehäuses sowie eine das Zylindergehäuse konzentrisch umgebende Hülse gebildet werden. Hierdurch wird ein Druckmittelmotor realisiert, der einen mechanisch einfachen Aufbau aufweist. In einer weiteren Ausgestaltung sind für jedes Ventil zwei parallel angeordnete Flachspalte vorgesehen. Durch diese Ausbildung können höhere Strömungsgeschwindigkeiten erzielt werden.
Eine Besonderheit des Druckmittelmotors ist seine Eigenschaft, auf elektronischem Weg bei einem Differentialzylinder die Wirkung eines Gleichlaufzylinders zu erreichen. Dies wird möglich aufgrund der hohen Dynamik des kompakten Druckmittelmotors. Die Ventile werden als Vollbrücke verschaltet und derart angesteuert, daß die Drücke in den volumenveränderlichen Arbeitskammern A und B sich umgekehrt proportional zu den jeweiligen Kolbenflächen verhalten.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels, das in den Figuren 1- 4 dargestellt ist, näher erläutert. Es zeigt:
Fig. 1:
einen Längsschnitt durch einen erfindungsgemäßen Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten;
Fig.2:
einen Querschnitt Y-Z des Druckmittelmotors gemäß Figur 1;
Fig.3:
einen Querschnitt W-X des Druckmittelmotors gemäß Figur 1;
Fig.4:
eine schematische Darstellung der Ansteuerung eines erfindungsgemäßen Druckmittelmotors.
Der in den Figuren 1 - 3 dargestellte Druckmittelmotor 1 besteht aus einem Zylindergehäuse2, in das eine zylindrische Durchgangsbohrung 3 eingebracht ist. In der Durchgangsbohrung 3 ist ein Kolben 4 mit einer einseitig nach außen geführten Kolbenstange 5 axial verschiebbar geführt. Der Kolben 4 unterteilt die zylindrische Durchgangsbohrung 3 in zwei volumenveränderliche Arbeitskammern A,B. Das Zylindergehäuse2 ist von einer Hülse 6 umgeben, die konzentrisch zu dem Zylindergehäuse2 angeordnet ist. Zwischen der inneren Mantelfläche 7 der Hülse 6 und der äußeren Mantelfläche 8 des Zylindergehäuse2 verbleibt dabei ein Ringraum 9, der sich über die gesamte axiale Baulänge des Zylindergehäuse2 erstreckt. Hülse 6 und Zylindergehäuse 2 sind über vier gleichmäßig über den Umfang verteilt angeordneten Kunststoffleisten 10, die sich in axialer Richtung über die gesamte Baulänge de Zylindergehäuse2 erstrecken, miteinander verbunden. Durch die Anordnung der Kunststoffleisten 10, wird der Ringraum 9 in vier gleichgroße Teilräume 11 aufgeteilt, die voneinander abgedichtet sind.
Die Teilräume 11 werden jeweils durch ein Rohrsegmentelement 12, das sich über die gesamte axiale Baulänge des Zylindergehäuse2 erstreckt in je zwei Flachspalte 13 unterteilt, die jeweils parallel beabstandete zylindrisch verlaufende Begrenzungsflächen aufweisen. Die Rohrsegmentelemente 12 sind jeweils endseitig in einer Kunststoffleiste 10 gehalten, durch die eine Abdichtung der Flachspalte 13 voneinander erfolgt. Zwischen Zylindergehäuse 2 und Hülse 6 werden somit vier Ventile auf Basis elektrorheologischer Flüssigkeiten (a1, a2, b1, b2) gebildet, die jeweils zwei Flachspalten 13 aufweisen. In einer nichtdargestellten Ausführungsform könnten für jedes Ventil eine Vielzahl von parallel angeordneten Flachspalten vorgesehen sein.
Die elektrorheologischen Ventile a1, a2, b1, b2 sind als Kondensatoren ausgeführt, wobei die Elektrodenflächen einerseits durch die Begrenzungsflächen der Rohrsegmentelemente 12 und andererseits durch die innere Mantelfläche der Hülse 6 bzw. der äußeren Mantelfläche des Zylindergehäuse2 gebildet werden.
Die Rohrsegmentelemente 12 sind jeweils über einen aus dem Druckmittelmotor herausgeführten als elektrischen Anschluß dienenden isolierten Dorn 14 mit einer Hochspannungsversorgung verbunden und einzeln elektrisch ansteuerbar ausgeführt. Das Zylindergehäuse2 sowie die Hülse 6 sind jeweils geerdet. Die Kunststoffleisten 10 dienen der Isolation.
Das Zylindergehäuse2 ist endseitig mit Deckelteilen 15, 16 versehen, die mittig einen zylindrischen Ansatz 17 aufweisen, der jeweils die zylindrische Durchgangsbohrung 3 abschließt. Die Deckelteile 15, 16 besitzen die gleiche radiale Erstrekkung wie die Hülse 6. In die Deckelteile 15, 16 sind jeweils zwei im wesentlichen halbzylindrische Kammern 18,19 bzw. 20, 21 eingebracht, die zu dem Zylindergehäuse2 sowie der das Zylindergehäuse2 umgebenden Hülse 6 weisen. Die Kammern 18, 19 bzw. 20, 21 sind über einen radial sich erstreckenden Trennsteg 22, 23 voneinander abgetrennt.
Die endseitig angeordneten Deckelteile 15, 16 sind um 90° verdreht zueinander angeordnet, so daß die Trennstege 22, 23 senkrecht zueinander ausgerichtet sind. Die Kammer 18 ist über eine axiale in das Deckelteil 15 eingebrachte Durchgangsbohrung 24 mit einer Druckmittelpumpe verbunden. Die Kammer 19 ist über eine axiale in das Deckelteil 15 eingebrachte axiale Durchgangsbohrung 25 mit einem Tank verbunden. Die Kammer 20 steht über eine in das Zylindergehäuse2 eingebrachte Bohrung 26 mit der volumenveränderlichen Arbeitskammer A in Verbindung, die Kammer 21 steht über eine in das Zylindergehäuse2 eingebrachten Bohrung 27 mit der volumenveränderlichen Arbeitskammer B in Verbindung.
Aufgrund der oben beschriebenen Anordnung steht die Kammer 18 mit den elektrorheologischen Ventilen a1 und a2 und die Kammer 19 mit den elektrorheologischen Ventilen b1 und b2 in Verbindung. Weiterhin steht Kammer 20 mit den Flachspalten 13 der Ventile a1 und b2 sowie Kammer 21 mit den Flachspalten 13 der Ventile a2 und b1 in Verbindung.
Anhand von Figur 4, die eine schematische Darstellung der Verschaltung der vier elektrorheologischen Ventile zu einer Voll- brücke darstellt, wird die Funktionsweise bzw. Ansteuerung näher beschrieben. Die Linien bezeichnen die Strömungskanäle, durch die die elektrorheologische Flüssigkeit als Arbeitsfluid von einer Pumpe P kommend zu einem Tank gefördert wird. Zwischen der Pumpe P und dem Behälter T sind zwei parallele Strömungszweige vorhanden. Der obere Zweig enthält in Reihe geschaltet die elektrorheologischen Ventile a1 sowie b2 der untere Strömungszweig die elektrorheologischen Ventile a2 und b1. Die ektrorheologischen Ventile sind schematisch als Kreisflächen dargestellt. Zwischen den elektrorheologischen Ventilen a1, b2 des oberen Strömungszweigs ist die volumenveränderliche Arbeitskammer A des Druckmittelmotors angeschlossen, zwischen den elektrorheologischen Ventilen a2, b1 des unteren Strömungszweigs ist die volumenveränderliche Arbeitskammer B des Druckmittelmotors 1 angeschlossen. Soll der die Arbeitskammern A und B trennende Kolben 4 in Richtung der Kammer A bewegt werden, so werden die elektrorheologischen Ventile a1, b1 durch Anlegen einer elektrischen Spannung geschlossen, das heißt durch das in den Flachspalten 13 erzeugte elektrische Feld verändert die elektrorheologische Flüssigkeit ihre Viskosität von flüssig in fest. Die Druckseite der Pumpe fördert die elektrorheologische Flüssigkeit dann direkt über die Durchgangsbohrung 24 in die Kammer 18. Da das Ventil a1 gesperrt ist, wird die elektrorheologische Flüssigkeit durch das Ventil bzw. die Flachspalte 13 des Ventils a2 in die Kammer 21 gefördert und wird anschließend in die volumenveränderliche Arbeitskammer B gedrückt. Hierdurch steigt der Druck in der Arbeitskammer B an. Der Druck in der Arbeitskammer A bleibt hingegen auf dem Niveau des Tankes, da das Ventil b2 geöffnet ist. Durch die Druckdifferenz der Arbeitskammer B und der Arbeitskammer A wird der Kolben 4 in Richtung der Arbeitskammer A bewegt. Die aus der Arbeitskammer A verdrängte elektrorheologische Flüssigkeit wird durch die Bohrung 26 in die Kammer 20 gedrückt. Da das Ventil al geschlossen ist, fließt die elektrorheologische Flüssigkeit durch die Flachspalte des Ventils b2 in die Kammer 19 und anschließend durch die Durchgangsbohrung 25 in den Tank. Soll der Kolben 4 in Richtung der Arbeitskammer B bewegt werden, so werden die elektrorheologischen Ventile a2, b2 gesperrt und die elektrorheologischen Ventile a1, b1 spannungslos und damit auf Durchgang geschaltet.
In einer nichtdargestellten Ausführungsform ist das Zylindergehäuse an der äußeren Mantelfläche mit vier Abflachungen versehen, die sich über die gesamte axiale Baulänge erstrecken und die jeweils eine Begrenzungsfläche eines Flachspaltes eines Ventils bilden. Diesen planen Begrenzungsflächen werden parallel beabstandet jeweils weitere als Elektrodenflächen ausgebildete Begrenzungsflächen zugeordnet, die in an das Zylindergehäuse angeflanschten Gehäuseabschnitten gebildet werden, so daß Flachspaltventile mit ebenen Spaltflächen entstehen.
Anstelle der Verwendung von einer elektrorheologischen Flüssigkeit als Druckmittel kann auch eine magnetorheologische Flüssigkeit eingesetzt werden. Bei der Verwendung von magnetorheologischen Flüssigkeiten werden anstelle der Elektrodenflächen elektrisch ansteuerbare Spulenanordnungen vorgesehen.

Claims (6)

  1. Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten, bei dem ein in einem Zylindergehäuse geführter Kolben vorgesehen ist, der in dem Zylindergehäuse zwei volumenveränderliche Arbeitskammern bildet, einer Einlaßbohrung für die elektrorheologische Flüssigkeit die mit einer Druckmittelquelle (Pumpe) in Verbindung steht, einer Auslaßbohrung für die elektrorheologische Flüssigkeit die mit einem Tank in Verbindung steht und in dem Zylindergehäuse angeordneten Ventilen auf Basis elektrorheologischer Flüssigkeiten, die einen jeweils eine volumenveränderliche Arbeitskammer mit der Einlaßbohrung oder der Auslaßbohrung verbindenen Ventilspalt aufweisen, wobei die Begrenzungsflächen des Ventilspaltes als elektrisch ansteuerbare Elektrodenflächen ausgebildet sind, dadurch gekennzeichnet, daß die Begrenzungsflächen (7,8,12) einerseits durch an der äußeren Mantelfläche des Zylindergehäuses (2) gebildeten ersten Gehäuseabschnitten und andererseits durch diesen gegenüberliegend beabstandet angeordneten zweiten Gehäuseabschnitten gebildet werden.
  2. Druckmittelmotor nach Anspruch 1, wobei ein Ringraum (9) durch eine konzentrisch zu dem Zylindergehäuse (2) beabstandet angeordnete Hülse (6) gebildet wird, der durch vier Kunststoffleisten (10) in vier Teilräume (11) unterteilt wird und jeder Teilraum ein Ventil (a1,a2,b1,b2) bildet, wobei die Begrenzungsflächen des Ventilspaltes jedes Ventils (a1,a2,b1,b2) durch Mantelabschnitte der äußeren Mantelfläche (8) des Zylindergehäuses (2) und durch Mantelabschnitte der inneren Mantelfläche (7) der Hülse (6) gebildet werden.
  3. Druckmittelmotor nach Anspruch 2, wobei die Teilräume (11) jedes Ventils (a1,a2,b1,b2) jeweils durch ein Rohrsegmentelement (12) in zwei Flachspalte (13) unterteilt wird und die Begrenzungsflächen jedes Ventils (a1,a2,b1,b2) durch die Begrenzungsflächen des Rohrsegmentelementes (12) einerseits und ein Mantelabschnitt der inneren Mantelfläche der Hülse (6) bzw. einem Mantelabschnitt der äußeren Mantelfläche des Zylindergehäuses (2) gebildet werden.
  4. Druckmittelmotor nach einem der vorhergehenden Ansprüche, wobei die volumenveränderlichen Arbeitskammern (A,B) jeweils über endseitig an dem Zylindergehäuse (2) angeordneten Deckelteilen (15,16) abgedichtet werden und in den Deckelteilen (15,16) Kammern (18,19,20,21) vorgesehen sind, durch die die Ventilspalte (13) der Ventile (a1,a2,b1,b2) mit der Einlaßbohrung (24) und der Auslaßbohrung (25) bzw. einer volumenveränderlichen Arbeitskammer (A,B)verbunden sind.
  5. Druckmittelmotor nach einem der vorhergehenden Ansprüche, wobei die Ventile (a1,a2,b1,b2) als Vollbrücke miteinander verschaltet sind.
  6. Druckmittelmotor nach einem der vorhergehenden Ansprüche, wobei magnetorheologische Flüssigkeit verwendet wird und die Ventile als magnetorheologische Ventile mit Spulenanordnungen zur Erzeugung eines magnetischen Feldes ausgebildet sind.
EP00123300A 1999-11-19 2000-10-27 Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten Withdrawn EP1101953A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19955959 1999-11-19
DE1999155959 DE19955959A1 (de) 1999-11-19 1999-11-19 Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten

Publications (2)

Publication Number Publication Date
EP1101953A2 true EP1101953A2 (de) 2001-05-23
EP1101953A3 EP1101953A3 (de) 2004-01-02

Family

ID=7929795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00123300A Withdrawn EP1101953A3 (de) 1999-11-19 2000-10-27 Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten

Country Status (4)

Country Link
EP (1) EP1101953A3 (de)
JP (1) JP2001187907A (de)
CN (1) CN1340664A (de)
DE (1) DE19955959A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562587A (zh) * 2019-08-19 2019-12-13 姜素琴 一种防倾倒容器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124365B4 (de) * 2001-05-18 2005-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Positionieren und Fixieren eines Objektes
DE102004010532A1 (de) * 2004-03-04 2005-12-15 Fludicon Gmbh Ventilansteuerung von hydraulischen Aktoren auf Basis elektrorheologischer Flüssigkeiten
CN1318193C (zh) * 2004-11-24 2007-05-30 东南大学 力反馈数据手套的力反馈装置
DE102005049177A1 (de) * 2005-10-14 2007-04-19 Zf Friedrichshafen Ag Parksperrensystem
CN103953608B (zh) * 2014-05-09 2015-12-02 济南优柏电子科技有限公司 磁流体致直线往复运动结构及应用方法
DE102014011541B4 (de) * 2014-08-08 2016-04-07 Fludicon Gmbh Elektrorheologischer Aktor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735466A1 (de) 1997-08-16 1999-02-18 Schenck Ag Carl Druckmittelmotor für elektrorheologische Flüssigkeiten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1214998B (de) * 1960-06-27 1966-04-21 Gen Dynamics Corp Hydraulischer Stellmotor mit laengsbeweglichem Vorschubkolben
DE3632562A1 (de) * 1986-09-25 1988-04-07 Bosch Gmbh Robert Zweirohr-stossdaempfer
US4840112A (en) * 1988-01-12 1989-06-20 Ga Technologies Inc. Combined valve/cylinder using electro-rheological fluid
DE19717691A1 (de) * 1997-04-26 1998-10-29 Schenck Ag Carl Aktuator auf Basis einer elektrorheologischen und/oder magnetorheologischen Flüssigkeit
DE19820570A1 (de) * 1998-05-08 1999-11-11 Schenck Ag Carl Schwingungsdämpfer auf Basis elektrorheologischer und/oder magnetorheologischer Flüssigkeiten

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735466A1 (de) 1997-08-16 1999-02-18 Schenck Ag Carl Druckmittelmotor für elektrorheologische Flüssigkeiten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562587A (zh) * 2019-08-19 2019-12-13 姜素琴 一种防倾倒容器

Also Published As

Publication number Publication date
CN1340664A (zh) 2002-03-20
DE19955959A1 (de) 2001-05-23
EP1101953A3 (de) 2004-01-02
JP2001187907A (ja) 2001-07-10

Similar Documents

Publication Publication Date Title
EP2236853B1 (de) Verstellbare Dämpfventileinrichtung
EP1075610A1 (de) Ventil auf basis elektrorheologischer und/oder magnetorheologischer flüssigkeiten
EP2964972A1 (de) Schwingungsdämpfer
DE19833410B4 (de) Hydraulische Ansteuereinheit für eine Kraftfahrzeugbremsanlage
DE4139821A1 (de) Zweirohr-stossdaempfer
EP0261427A2 (de) Zweirohr-Stossdämpfer
DE102012002921A1 (de) Servoventil
DE102013001650A1 (de) Zylinder-Kolben-Einheit mit Kolbendrossel
DE102008042103A1 (de) Schwingungsdämpfer mit amplitudenselektiver Dämpfkraft
DE19717691A1 (de) Aktuator auf Basis einer elektrorheologischen und/oder magnetorheologischen Flüssigkeit
EP1101953A2 (de) Druckmittelmotor auf Basis elektrorheologischer Flüssigkeiten
DE102007042910A1 (de) Zylinder-Kolben-Anordnung auf Basis elektrorheologischer/magnetorheologischer Flüssigkeiten
DE10320005B3 (de) Schwingungsdämpfer mit feldkraftabhängig regelbarer Dämpfkraft
DE19735466B4 (de) Druckmittelmotor für elektrorheologische Flüssigkeiten
DE102004043281A1 (de) Vorrichtung zum Fixieren von beweglich gelagerten Teilen
DE3817058C2 (de) Hydraulische Stoßbremse für Rohrleitungssysteme u. dgl.
EP1688637A1 (de) Gasfeder
EP0764241B1 (de) Hydraulischer arbeitszylinder
DE102008044081A1 (de) Schwingungsdämpfer mit hubabhängiger Dämpfkraft
DE102015104489B4 (de) Schwingungsdämpfer mit verkürzter Baulänge
EP0898093B1 (de) Ventil und Stossdämpfer auf Basis elektrorheologischer Flüssigkeiten
DE4404963C2 (de) Regelbarer Schwingungsdämpfer für Kraftfahrzeuge
DE2648608A1 (de) Schaltvorrichtung fuer einen ein- oder mehrstufigen hydraulischen zylinder
DE102010005362A1 (de) Hydromaschinenanordnung
DE3104989A1 (de) Servozylinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040623

17Q First examination report despatched

Effective date: 20040715

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041126