EP1095390A1 - Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux - Google Patents

Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux

Info

Publication number
EP1095390A1
EP1095390A1 EP99929381A EP99929381A EP1095390A1 EP 1095390 A1 EP1095390 A1 EP 1095390A1 EP 99929381 A EP99929381 A EP 99929381A EP 99929381 A EP99929381 A EP 99929381A EP 1095390 A1 EP1095390 A1 EP 1095390A1
Authority
EP
European Patent Office
Prior art keywords
electronic tube
beams
tube according
current
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99929381A
Other languages
German (de)
English (en)
Other versions
EP1095390B1 (fr
Inventor
A. Thomson-CSF Propr. Int. Dept. Brevets BEUNAS
G. Thomson-CSF Propr. Int. Dpt.Brevets FAILLON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP1095390A1 publication Critical patent/EP1095390A1/fr
Application granted granted Critical
Publication of EP1095390B1 publication Critical patent/EP1095390B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/06Tubes having only one resonator, without reflection of the electron stream, and in which the modulation produced in the modulator zone is mainly velocity modulation, e.g. Lüdi-Klystron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/09Electric systems for directing or deflecting the discharge along a desired path, e.g. E-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J2225/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2225/00Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
    • H01J2225/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J2225/36Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field

Definitions

  • the present invention relates to multi-beam longitudinal interaction electronic tubes such as, for example, klystrons or traveling wave tubes.
  • These tubes generally constructed around an axis have several longitudinal electron beams parallel to this axis. These beams are often produced by a common electron gun, equipped with several cathodes and are collected at the end of the race in one or more collectors. Between the barrel and the collector, they pass through a body which is a microwave structure at the exit of which is extracted microwave energy. This structure can be formed of a succession of resonant cavities and sliding tubes.
  • the electron beams to keep their long and fine shape, are focused by the magnetic field of a focusing centered on the main axis and which surrounds the microwave structure.
  • the advantages of multi-beam electronic tubes are as follows: the current produced is higher and / or the high voltage and the length are shorter.
  • the size of the tube is generally reduced.
  • the power supply and the modulator used are thus simplified and more compact.
  • the interaction efficiency is better due to the generally lower perveance of each of the beams.
  • the bandwidth is widened due to the fact that the cavities are charged with a higher current.
  • One of the main drawbacks compared to single-beam tubes is that it is difficult to generate an optimum focusing magnetic field which allows the beams to circulate in the microwave structure without notable interception by the sliding tubes.
  • the intercepted current In multi-beam klystrons the intercepted current, called body current, is often of the order of 4 to 8% whereas it does not exceed 2 to 3% in conventional single-beam klystrons even when the beam is strongly modulated at high frequency such as this is the case with high yielding klystrons. Too much interception leads not only to a prohibitive heating requiring a complex and expensive cooling system but also to a malfunction of the tube because it can occur expansion, degassing, frequency changes, oscillations, excitations of parasitic modes, reflected electrons, ion bombardments and a disturbed interaction between the beam and the microwave structure.
  • each beam creates an azimuthal magnetic field which, depending on the configuration of the tube and its operating mode, may disturb the other beams.
  • This azimuthal magnetic field is reflected, at the offset axes, by a centrifugal radial force which deflects them.
  • Improvements can also be made at the level of the barrel so that the magnetic flux lines substantially follow the trajectory of the electrons as soon as they are emitted.
  • One can also act on the inclination of the sliding tubes so that they follow the general movement of the beams.
  • the present invention therefore aims to reduce or even cancel this induced azimuthal magnetic field without degrading the gain or yield characteristics.
  • the present invention provides a multibeam electronic tube comprising several substantially parallel electron beams passing through a body. Among these beams, at least some, delimit an inter-beam volume. Each of the beams delimiting the inter-beam volume is subjected to a disturbing azimuthal magnetic field induced by all the others.
  • the tube comprises, at the level of the body, means allowing, in at least one conductive element located in the inter-beam volume, a circulation of a counter-current in a direction opposite to that of the current of the beams, this counter-current generating at level of the beams delimiting the inter-beam volume, a magnetic field of correction which opposes the disturbing magnetic field.
  • the conductive element can be integrated into the body or, on the contrary, electrically isolated from the body.
  • the means allowing the circulation of the counter-current in the conductive element integrated into the body may include a ground connection, near the entry of the body, so that the counter-current comes from the current of the beams which closes by this ground, the collector being at an intermediate potential between that of cathodes producing the beams and ground.
  • this ground connection will be connected to a high voltage power supply which delivers the potential to the cathodes.
  • the body has a succession of cavities and at the input and output of the cavities, the beams are contained in sliding tubes.
  • this conductive block serves as a conductive element in which the counter-current flows.
  • the conductive block may have a resistance, in a central part including the inter-beam volume, smaller than that possessed by a peripheral part of the block, situated around the central part.
  • the central part can be made of a first material and the peripheral part of a second material, the second material having the greatest resistance.
  • a resistive insert can be included in the conductive block and the common wall, this resistive insert forces the counter current to circulate in the conductive block in a loop around the insert and in the common wall on either side of the insert in opposite directions.
  • the means allowing the circulation of the counter-current may comprise a first connection means near the inlet of the body and a second connection means near the outlet of the body, these connection means being intended to be connected to a power supply. having to deliver the counter current.
  • the conductive element In the configuration where the conductive element is integrated into the body, the latter and / or the collector must be electrically isolated from various members with which they are usually in electrical contact.
  • the inter-beam volume is hollow at the level of the sliding tubes and it is possible to accommodate the conducting element therein substantially parallel to the sliding tubes and without electrical contact with the body.
  • This conductive element may comprise a rigid section at the inlet and at the outlet of a cavity and a flexible connection which spans a cavity by connecting two rigid sections situated on either side of the cavity.
  • FIG. 1 a in cross section, the body of a multibeam tube according to the invention
  • FIG. 2 a longitudinal section of a multibeam klystron according to the invention
  • FIGS. 3a, 3b partial longitudinal and transverse sections of the body of a klystron according to the invention with a conductive element integrated into the body,
  • FIGS. 4a, 4b partial longitudinal and transverse sections of another variant of another of a klystron according to the invention, with a conductive element integrated into the body,
  • FIGS. 5a, 5b, 5c of partial longitudinal and transverse sections of the klystron body according to the invention with conductive elements isolated from the body,
  • Figure 1a shows in cross section, the electron beams 1-7 of a multibeam tube. These substantially parallel beams are each contained in a sliding tube 13 at the level of the section. These sliding tubes 13 are hollowed out in the same conductive block 15 which forms part of the body 10 of the tube.
  • One of these beams 1 is centered on a central axis, perpendicular to the sheet, passing at point 0.
  • the other beams 2 to 7, arranged on a circle centered at 0, are offset. They are conventionally substantially equidistant from each other.
  • At least one offset beam 7 of the tube of FIG. 1a is therefore subjected on the one hand to its own field bg7 which generates a non-deviant centripetal focusing force and to the resultant B ⁇ of the fields bel, b ⁇ 2, b ⁇ 3, b ⁇ 4, b ⁇ 5, be6 induced by all the other beams 1 to 6.
  • FIG. 2 shows a multibeam tube according to the invention.
  • This tube is a multibeam klystron. It is built around an axis XX '.
  • the tube has several beams numbered from 1 to 7 arranged like those of FIG. 1a to which we also refer.
  • these seven beams six referenced from 2 to 7 delimit an inter-beam volume 22.
  • they are placed on a circle of radius a and the inter-beam volume 22 is cylindrical.
  • the last beam 1 is centered on the axis XX ', the others are offset.
  • the beams 1 to 7 are produced by a barrel 17, they then enter a body 10 which they pass through and at its outlet S are collected in a collector 11.
  • the barrel 17 has seven cathodes 18 which produce the beams 1 to 7 when '' they are brought to an appropriate VK potential delivered by a high voltage A1 supply. It also includes an anode 16 which accelerates the electrons towards the entry E of the body 10. It is brought to a less negative potential than that VK of the cathodes. In Figure 2, only three cathodes are visible.
  • the body 10 is formed by alternating cavities 20 and sliding tubes 13.
  • the cavities 20 have side walls 27.
  • the beams 1 to 7 are contained in the sliding tubes 13 before entering the first cavity 20, leaving the last cavity 20 and more generally between each cavity 20.
  • the body 10 is placed in a tubular focusing device 12.
  • the body 10 begins after an input pole piece 19.1 and ends before an output pole piece 19.2.
  • the multibeam electronic tube according to the invention comprises, at level of the body 10, means M allowing, in at least one conductive element 23 located in the interbeam volume 22, a circulation of a counter-current I 'in the opposite direction from the current I carried by all the beams.
  • the conductive element 23 is integrated into the body 10 of the tube and the means M allowing the circulation of the counter current I 'comprise a ground connection P, near the entry E of the body 10, so that the counter current I 'comes from the current I carried by all the beams which closes with this mass.
  • the collector 11 is naturally at a potential VQ intermediate between that V of the cathodes 18 and the ground.
  • the conducting block 15 shown is a cylinder of radius a + g + t with g radius of a sliding tube and t thickness of material located between the sliding tubes 13 and the edge of the block 15. This thickness t contributes to sealing inside the body 10.
  • the counter-current I ' circulates throughout the body 10 in the opposite direction to the current I of the beams 1-7 but only the part which circulates inside the inter-beam space 22 provides a correction.
  • the part circulating outside the inter-beam volume 22, in particular in the side walls 27 of the cavities, does not participate in the correction but does not induce disturbance.
  • the ground connection P is located at the level of the anode 16 of the barrel 17. It can be envisaged to bring it to the level of the input pole piece 19.1. This input pole piece 19.1 prevents the cathodes 18 from being disturbed by the magnetic field of the focusing device 12.
  • the potential VK of the cathodes 18 is delivered by the supply A1 which is connected between the cathodes 18 and the ground connection P.
  • Circulating the counter current I 'in a conductive element 23 integrated into the body 10 of the tube now requires electrical insulation of this body 10 and / or of the collector 11 with respect to other organs of the tube with which they were in electrical contact in the conventional configurations of the prior art.
  • These include the focusing device 12 which will be electrically isolated from the body 10 using dielectric material 24.1.
  • the insulation is done by means of the pole pieces 19.1, 19.2 of entry and exit.
  • These pole pieces 19.1, 19.2 are in conventional tubes in contact with the body at its inlet E and at its outlet S.
  • a sheet 24.1 of teflon inserted between the focusing device 12 and the pole pieces 19.1, 19.2 will be used. They are also transmission guides, located at the level of the extreme cavities.
  • An input waveguide 25.1 is connected to the first cavity 20 and allows a signal to be amplified to be injected there.
  • This waveguide 25 is electrically isolated from the body 10 using an insulating flange 24.2.
  • the last cavity 20 communicates with an output waveguide 25.2, intended for the transmission of the microwave energy produced by the tube to a user member (not shown).
  • This waveguide 25.2 is electrically isolated from the body 10 using an insulating flange 24.2.
  • a cooling device 26 is provided around the manifold 11 and even possibly of the body 10.
  • This cooling device 26 will be electrically isolated from the manifold 11 and if necessary from the body 10.
  • This insulation can be obtained by making the cooling device with dielectric materials, for example at least one conduit 28 made of plastic material in which a resistant cooling fluid circulates. As coolant deionized water can be used.
  • the azimuthal magnetic field induced on one of the beams delimiting the inter-beam space 22, by the other beams is worth: 051
  • B n ⁇ n - 1 - if the beams delimiting the inter-beam space are ⁇ u 2 ⁇ a arranged on a circle of radius a.
  • FIGS. 3a, 3b, 4a, 4b show in longitudinal and transverse section a portion of the body 10 of a multibeam klystron according to the invention in which the circulation of current in the interbeam volume is promoted in two different ways.
  • FIG. 3a Two successive cavities 20 are shown diagrammatically in FIG. 3a. They are not shown in Figure 4a for simplicity.
  • the cross sections of Figures 3b, 4b are made along the cutting plane aa.
  • the conductive blocks 15 are formed by a central part 31 surrounded by a peripheral part 32.
  • the sliding tubes 13 are located in the central part 31.
  • the limit of the inter-beam volume 22 corresponds substantially to the circle , in dotted lines in FIG. 3b, passing through the center of the sliding tubes 13 and the central part 31 includes the inter-beam volume 22.
  • the central part 31 in a first material and the peripheral part 32 in a second material By making for at least one of the blocks, the central part 31 in a first material and the peripheral part 32 in a second material and choosing these materials so that the resistivity of the first material is lower than that of the second material, this preferential circulation in the interfaiseau volume 22.
  • the central part 31 can for example be made based on copper and the peripheral part based on stainless steel. Other choices are possible.
  • the choice of material of the peripheral part 32 must be compatible with the desired seal.
  • Another solution for increasing the resistivity at the periphery of at least one block 15 relative to that in the interfaiseau volume is to cut baffles 33 at the periphery of the block 15. These baffles 33 are illustrated in FIGS. 4a, 4b. This configuration with baffles can be combined with that described in Figures 3a, 3b as Figures 4 show but it is not necessary.
  • the means M allowing the circulation of the counter current I' comprise two connection means C1, C2, one near the entry E of the body 10 and the other near its output S, these connection means being intended to be connected to the terminals of a low voltage supply A2 having to deliver the counter current I '.
  • Figure 6 shows this characteristic applied to a multibeam traveling wave tube. It is of course applicable to multibeam klystrons. In the multibeam klystrons described, there is a compensation for the trajectory of the beams where the counter-current circulates inside the inter-beam volume, that is to say at the level of the sliding tubes 13.
  • slip 13 occupy about 75% of the length of the body 10 which means that only 25% of the length of the beams does not receive correction but this is not a problem.
  • a suitable correction at the input and output of the cavities 20 can be envisaged if necessary to reduce this harmful defocusing effect.
  • the interbeam volume 22 is not not full of conductive material.
  • Figures 5a, 5b show in partial longitudinal and transverse sections, a multibeam klystron body with this characteristic.
  • the conductive element 23 in which the counter current circulates I ' is electrically insulated and distinct from the body 10. It extends in the inter-beam volume 22, parallel to the sliding tubes 13, without electrical contact with them or with the cavities 20. It can be formed of rigid conductive sections 34 located at the inlet and outlet of the cavities, these sections being able to be rigid conductive rods sheathed with insulator 37 such as alumina.
  • the flexible connections 35 may be metallic braid sheathed with insulation.
  • the means M allowing the circulation of the counter-current I 'comprise at the two ends of the conductive element 23 connection means C1, C2 intended to be connected to a supply A2 having to deliver the counter-current I'.
  • the tube does not have a central beam as illustrated in FIG. 5c, a single conductive element 23 suffices in the center, if the tube has a central beam as illustrated in FIG. 5b, several are desirable, arranged between the central beam 1 and the beams 2-7 delimiting the inter-beam volume 22.
  • the harmful magnetic field induced at one of the beams by the others appears in the tube only when it operates in continuous mode or with relatively long pulse durations. This is the case for many tubes used in telecommunications, industrial, scientific, and even radar applications.
  • the thickness e of material which the disturbing induced magnetic field can pass through is given by:
  • the repetition frequency F is 17 Hz maximum, which amounts to saying that the pulses can only last 30 to 40 ms without defocusing effect.
  • a multibeam tube according to the invention could also be of the traveling wave tube type as illustrated in FIG. 6.
  • the body 10 is formed by a succession of cavities 30 coupled to each other by irises 21 placed on a common wall 36.
  • the beams 1 to 7 are contained in sliding tubes 13 before penetrating in the first cavity 30, leaving the last cavity 30 and more generally between the cavities 30. But now the sliding tubes 13 occupy less than 50% of the length of the body 10, which means that the correction obtained is less effective but still interesting.
  • the conducting blocks in which the sliding tubes 13 are hollowed are marked with the reference 15 and the common walls 36 are integral with the conducting blocks 15.
  • the first part 201 placed in the conductive blocks 15 has the form of a tubular element, it surrounds the sliding tubes 13.
  • the second part 202 extends from the first part 201 in the thickness of the common wall 36 like a flange.
  • the counter current I ' circulates in the common wall 36 on either side of the second part 202 in opposite directions.
  • an insert 200 has the shape of a T whose leg is the second part 202 and whose transverse bar is the first part 201.
  • the circulation of the counter current I 'which bypasses the insert 200 is seen in detail on the circled zoom in FIG. 6.
  • These inserts 200 can be made, for example from stainless steel, from alumina or even be recesses.
  • the means M allowing the circulation of the counter current I ' comprise two connection means C1, C2 one near the entry E of the body 10 and the other C2 near the exit S of the body, these means of connection C1, C2 being intended to be connected to the terminals e1, e2 of a low-voltage supply A2 having to deliver the counter current I '.
  • the first connection means C1 is located at the input pole piece 19.1 and the second connection means C2 is located at the base of the manifold 11.
  • the first connection means C1 could be on the anode 16 and the second on the output pole piece.
  • the second connection means C2 is brought to ground, but other potentials could be envisaged.
  • a resistor R suitably chosen in series with the low voltage supply A2 makes it possible to adjust the value of the counter current.
  • another supply A1 is shown. It is connected between the cathodes 18 and the collector 11 and is used to create the beams 1 to 7. It is a high voltage supply.
  • the multibeam tubes according to the invention do not have a modified structure compared to existing tubes, it suffices to provide the connections described.

Landscapes

  • Particle Accelerators (AREA)
  • Microwave Tubes (AREA)

Abstract

La présente invention concerne un tube électronique multifaisceau avec plusieurs faisceaux d'électrons (1-7) sensiblement parallèles, traversant un corps (10). Parmi les faisceaux (1-7), certains (2-7) au moins délimitent un volume interfaisceau (22), chaque faisceau (2-7) délimitant le volume interfaisceau (22) est soumis à un champ magnétique azimutal perturbateur (Bυ) induit par tous les autres. Le tube comporte des moyens (M) permettant, dans au moins un élément conducteur (23) situé dans le volume interfaisceau (22), une circulation d'un contre-courant (l') dans un sens opposé à celui du courant (l) des faisceaux (1-7), ce contre-courant (l') générant au niveau des faisceaux (2-7) délimitant l'espace interfaisceau (22), un champ magnétique de correction visant à s'opposer au champ magnétique perturbateur (Bυ). Application notamment aux tubes à ondes progressives ou klystrons multifaisceaux.

Description

TUBE ELECTRONIQUE MULTIFAISCEAU AVEC CHAMP MAGNETIQUE DE CORRECTION DE TRAJECTOIRE DES FAISCEAUX
La présente invention est relative aux tubes électroniques à interaction longitudinale multifaisceaux tels par exemple que les klystrons ou les tubes à ondes progressives. Ces tubes généralement construits autour d'un axe comportent plusieurs faisceaux d'électrons longitudinaux parallèles à cet axe. Ces faisceaux sont souvent produits par un canon à électrons commun, équipé de plusieurs cathodes et sont recueillis en fin de course dans un ou plusieurs collecteurs. Entre le canon et le collecteur, ils traversent un corps qui est une structure hyperfréquence à la sortie de laquelle est extraite de l'énergie hyperfréquence. Cette structure peut être formée d'une succession de cavités résonantes et de tubes de glissement. Les faisceaux d'électrons, pour conserver leur forme longue et fine, sont focalisés par le champ magnétique d'un focalisateur centré sur l'axe principal et qui entoure la structure hyperfréquence.
Les avantages des tubes électroniques multifaisceaux sont les suivants : le courant produit est plus élevé et/ou bien la haute tension et la longueur sont plus faibles.
A performances sensiblement égales, l'encombrement du tube est de façon générale réduit. L'alimentation électrique et le modulateur utilisés sont ainsi simplifiés et plus compacts. Le rendement d'interaction est meilleur en raison de la pervéance généralement plus faible de chacun des faisceaux.
Pour les klystrons, la bande passante est élargie en raison du fait que les cavités sont chargées avec un courant plus important.
Par rapport aux tubes monofaisceaux un des principaux inconvénients est qu'il est difficile de générer un champ magnétique de focalisation optimum qui permette aux faisceaux de circuler dans la structure hyperfréquence sans interception notable par les tubes de glissement.
Dans les klystrons multifaisceaux le courant intercepté, appelé courant corps, est souvent de l'ordre de 4 à 8 % alors qu'il ne dépasse pas 2 à 3 % dans les klystrons monofaisceaux classiques même lorsque le faisceau est fortement modulé en haute fréquence comme c'est le cas des klystrons à fort rendement. Une interception trop importante entraîne non seulement un échauffement prohibitif nécessitant un système de refroidissement complexe et coûteux mais aussi un mauvais fonctionnement du tube car il peut se produire des dilatations, des dégazages, des changements de fréquence, des oscillations, des excitations de modes parasites, des électrons réfléchis, des bombardements ioniques et une interaction perturbée entre le faisceau et la structure hyperfréquence.
Cette interception est due à l'augmentation des forces de charge d'espace sous i'effet de la modulation en densité de plus importante au fur et à mesure que l'on se rapproche du collecteur, ce qui entraîne une augmentation de la section des faisceaux qui en conséquence se rapprochent des parois des tubes de glissement. Elle est aussi due en partie au focalisateur qui inévitablement produit un champ magnétique radial dans les zones où le champ magnétique axial varie, c'est-à-dire à proximité du canon et du collecteur. De plus le focalicateur n'étant jamais parfait, il produit des composantes magnétiques parasites défocalisantes.
Une autre cause importante de défocalisation spécifique aux tubes multifaisceaux est que chaque faisceau crée un champ magnétique azimutal qui selon la configuration du tube et son mode de fonctionnement risque de perturber les autres faisceaux. Ce champ magnétique azimutal se traduit, au niveau des faisceaux désaxés, par une force radiale centrifuge qui les dévie.
On sait qu'il est possible en soignant particulièrement la configuration du focalisateur et de son bobinage de réduire les composantes magnétiques défocalisantes. En utilisant des pièces polaires intermédiaires dans le corps du tube on peut aussi contribuer à réduire le champ magnétique radial.
Des améliorations peuvent aussi être apportées au niveau du canon pour que les lignes de flux magnétique épousent sensiblement la trajectoire des électrons dès leur émission. On peut également agir sur l'inclinaison des tubes de glissement pour qu'ils suivent le mouvement général des faisceaux.
Par contre toutes ces solutions ne combattent pas le champ magnétique azimutal induit, au niveau d'un faisceau désaxé, par tous les autres. La présente invention a donc pour but de réduire voire d'annuler ce champ magnétique azimutal induit sans dégrader les caractéristiques de gain ou de rendement.
Pour y parvenir la présente invention propose un tube électronique multifaisceau comportant plusieurs faisceaux d'électrons sensiblement parallèles traversant un corps. Parmi ces faisceaux certains au moins, délimitent un volume interfaisceau. Chacun des faisceaux délimitant le volume interfaisceau est soumis à un champ magnétique azimutal perturbateur induit par tous les autres. Le tube comporte, au niveau du corps, des moyens permettant, dans au moins un élément conducteur situé dans le volume interfaisceau, une circulation d'un contre-courant dans un sens opposé à celui du courant des faisceaux, ce contre-courant engendrant au niveau des faisceaux délimitant le volume interfaisceau, un champ magnétique de correction qui s'oppose au champ magnétique perturbateur. L'élément conducteur peut être intégré au corps ou au contraire isolé électriquement du corps.
Les moyens permettant la circulation du contre-courant dans l'élément conducteur intégré au corps peuvent comprendre une connexion de masse, à proximité de l'entrée du corps, de sorte que le contre-courant provient du courant des faisceaux qui se referme par cette masse, le collecteur se trouvant à un potentiel intermédiaire entre celui de cathodes produisant les faisceaux et la masse.
De préférence, cette connexion de masse sera reliée à une alimentation haute tension qui délivre le potentiel aux cathodes. Dans ce type de tubes, que ce soit des klystrons ou des tubes à ondes progressives, le corps comporte une succession de cavités et en entrée et sortie des cavités, les faisceaux sont contenus dans des tubes de glissement. Lorsque les tubes de glissement sont creusés au sein d'un même bloc conducteur, ce bloc conducteur sert d'élément conducteur dans lequel circule le contre-courant.
Pour forcer la circulation dans le volume interfaisceau, le bloc conducteur peut avoir une résistance, dans une partie centrale englobant le volume interfaisceau, plus petite que celle possédée par une partie périphérique du bloc, située autour de la partie centrale. Pour obtenir ces différentes résistances, la partie centrale peut être réalisée dans un premier matériau et la partie périphérique dans un second matériau, le second matériau ayant la résistance la plus grande.
On peut aussi préconiser de tailler des chicanes dans le pourtour de la périphérie d'un bloc pour augmenter la résistance à cet endroit.
Lorsque deux cavités successives ont une paroi commune solidaire d'un bloc conducteur, un insert résistif peut être inclus dans le bloc conducteur et la paroi commune, cet insert résistif force le contre-courant à circuler dans le bloc conducteur en boucle autour de l'insert et dans la paroi commune de part et d'autre de l'insert dans des sens opposés.
Les moyens permettant la circulation du contre-courant peuvent comporter un premier moyen de connexion à proximité de l'entrée du corps et un second moyen de connexion à proximité de la sortie du corps, ces moyens de connexion étant destinés à être reliés à une alimentation devant délivrer le contre-courant.
Dans la configuration où l'élément conducteur est intégré au corps, ce dernier et/ou le collecteur doivent être isolés électriquement de divers organes avec lesquels ils sont d'habitude en contact électrique.
Dans les configurations où les tubes de glissement ne sont pas creusés au sein d'un même bloc conducteur, le volume interfaisceau est creux au niveau des tubes de glissement et il est possible d'y loger l'élément conducteur sensiblement parallèlement aux tubes de glissement et sans contact électrique avec le corps.
Cet élément conducteur peut comporter un tronçon rigide en entrée et en sortie d'une cavité et une connexion souple qui enjambe une cavité en reliant deux tronçons rigides situés de part et d'autre de la cavité.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description d'exemples de réalisation de tubes multifaisceaux conformes à l'invention, cette description étant faite en liaison avec les figures annexées qui représentent :
- la figure 1 a, en coupe transversale, le corps d'un tube multifaisceau selon l'invention,
- la figure 1 b, le champ magnétique induit par un faisceau d'électrons, - la figure 2, une coupe longitudinale d'un klystron multifaisceau selon l'invention,
- les figures 3a, 3b, des coupes longitudinale et transversale partielles du corps d'un klystron selon l'invention avec un élément conducteur intégré au corps,
- les figures 4a, 4b, des coupes longitudinale et transversale partielles d'une autre variante d'une autre d'un klystron selon l'invention, avec un élément conducteur intégré au corps,
- les figures 5a, 5b, 5c des coupes longitudinale et transversale partielles du corps de klystron selon l'invention avec des éléments conducteurs isolés du corps,
- la figure 6, une coupe longitudinale d'un tube à ondes progressives multifaisceau selon l'invention.
La figure 1a représente en coupe transversale, les faisceaux d'électrons 1-7 d'un tube multifaisceau. Ces faisceaux sensiblement parallèles sont contenus chacun dans un tube de glissement 13 au niveau de la coupe. Ces tubes de glissement 13 sont creusés dans un même bloc conducteur 15 qui fait partie du corps 10 du tube. L'un de ces faisceaux 1 est centré sur un axe central, perpendiculaire à la feuille, passant au point 0. Les autres faisceaux 2 à 7, disposés sur un cercle centré en 0, sont désaxés. Ils sont de manière classique sensiblement équidistants les uns des autres.
On se réfère à la figure 1 b. Un faisceau i de courant li crée en un point N distant de d de l'axe du faisceau, dans un plan perpendiculaire au faisceau i, un champ magnétique bei sensiblement égal à : bei = Mo ϋ / 2 π d
avec μ0 perméabilité magnétique du milieu.
Au moins un faisceau 7 désaxé du tube de la figure 1a est donc soumis d'une part à son champ propre bg7 qui engendre une force de focalisation centripète non déviante et à la résultante BΘ des champs bel , bθ2, bθ3, bθ4, bθ5, be6 induits par tous les autres faisceaux 1 à 6.
B, bû 1 + bn 2 + b0 3 + bn 4 + α 5 + bo 6 Ce champ BQ résultant engendre une force radiale centrifuge qui dévie le faisceau 7 à l'opposé de l'axe central. En ce qui concerne le faisceau 1 central, s'il existe, pour des raisons de symétrie il n'est pas dévié.
On se réfère à la figure 2 qui montre un tube multifaisceau selon l'invention. Ce tube est un klystron multifaisceau. Il est construit autour d'un axe XX'.
On suppose que le tube possède plusieurs faisceaux numérotés de 1 à 7 agencés comme ceux de la figure 1a à laquelle on se réfère également. Parmi ces sept faisceaux, six référencés de 2 à 7 délimitent un volume interfaisceau 22. Dans l'exemple, ils sont placés sur un cercle de rayon a et le volume interfaisceau 22 est cylindrique. Le dernier faisceau 1 est centré sur l'axe XX', les autres sont désaxés. Les faisceaux 1 à 7 sont produits par un canon 17, ils entrent ensuite dans un corps 10 qu'ils traversent et à sa sortie S sont recueillis dans un collecteur 11. Le canon 17 comporte sept cathodes 18 qui produisent les faisceaux 1 à 7 lorsqu'elles sont portées à un potentiel VK approprié délivré par une alimentation A1 haute tension. Il comporte également une anode 16 qui accélère les électrons vers l'entrée E du corps 10. Elle est portée à un potentiel moins négatif que celui VK des cathodes. Sur la figure 2, seules trois cathodes sont visibles.
Le corps 10 est formé d'une alternance de cavités 20 et de tubes de glissement 13. Les cavités 20 possèdent des parois latérales 27. Les faisceaux 1 à 7 sont contenus dans les tubes de glissement 13 avant de pénétrer dans la première cavité 20, en sortant de la dernière cavité 20 et de manière plus générale entre chaque cavité 20. Le corps 10 est placé dans un focalisateur 12 tubulaire. Le corps 10 commence après une pièce polaire 19.1 d'entrée et se termine avant une pièce polaire 19.2 de sortie.
Chacun des faisceaux 2 à 7 délimitant le volume interfaisceau 22 est soumis à un champ magnétique azimutal défocalisant qui le dévie. Ce champ magnétique azimutal est induit par tous les autres comme on vient de le décrire aux figures 1. Pour tenter d'atténuer, voire de faire disparaître les effets de ce champ magnétique azimutal induit, le tube électronique multifaisceau selon l'invention comporte, au niveau du corps 10, des moyens M permettant, dans au moins un élément conducteur 23 situé dans le volume interfaisceau 22, une circulation d'un contre-courant I' en sens inverse du courant I porté par tous les faisceaux. Ce contre-courant I' génère au niveau des faisceaux 2 à 7 perturbés un champ magnétique azimutal de correction B'Θ qui tend à s'opposer au champ magnétique azimutal induit BQ.
Sur l'exemple de la figure 2, l'élément conducteur 23 est intégré au corps 10 du tube et les moyens M permettant la circulation du contre- courant I' comprennent une connexion P de masse, à proximité de l'entrée E du corps 10, de sorte que le contre-courant I' provient du courant I porté par tous les faisceaux qui se referme par cette masse. Le collecteur 11 se trouve naturellement à un potentiel VQ intermédiaire entre celui V des cathodes 18 et la masse.
En entrée et sortie des cavités 20 sont placés des blocs conducteurs 15 au sein desquels sont creusés autant de tubes de glissement 13 que de faisceaux 1-7 comme décrit à la figure 1a.
Ces blocs conducteurs 15 forment l'élément conducteur 23 à l'intérieur duquel circule le contre-courant I'. Sur la figure 1a, le bloc conducteur 15 représenté est un cylindre de rayon a + g + t avec g rayon d'un tube de glissement et t épaisseur de matière située entre les tubes de glissement 13 et le bord du bloc 15. Cette épaisseur t contribue à assurer l'étanchéité à l'intérieur du corps 10. Dans la configuration représentée à la figure 2, le contre-courant I' circule dans tout le corps 10 en sens inverse du courant I des faisceaux 1-7 mais seule la partie qui circule à l'intérieur de l'espace interfaisceau 22 apporte une correction. La partie circulant à l'extérieur du volume interfaisceau 22, notamment dans les parois latérales 27 des cavités, ne participe pas à la correction mais n'induit pas de perturbation.
Dans l'exemple de la figure 2, la connexion P de masse est située au niveau de l'anode 16 du canon 17. On peut envisager de la mettre au niveau de la pièce polaire 19.1 d'entrée. Cette pièce polaire d'entrée 19.1 empêche que les cathodes 18 ne soient perturbées par le champ magnétique du focalisateur 12.
Dans cette configuration, le potentiel VK des cathodes 18 est délivré par l'alimentation A1 qui est branchée entre les cathodes 18 et la connexion P de masse.
Classiquement, dans ce genre de tube, une connexion de masse était réalisée au niveau du collecteur 11 ou s'il était isolé électriquement du corps 10 au niveau de la pièce polaire 19.2 de sortie qui empêche que les électrons recueillis dans le collecteur 11 ne soient perturbés par le champ magnétique du focalisateur 12.
Le fait de faire circuler le contre-courant I' dans un élément conducteur 23 intégré au corps 10 du tube requiert maintenant une isolation électrique de ce corps 10 et/ou du collecteur 11 vis à vis à d'autres organes du tube avec lesquels ils étaient en contact électrique dans les configurations classiques de l'art antérieur. Il s'agit notamment du focalisateur 12 qui sera isolé électriquement du corps 10 à l'aide de matériau diélectrique 24.1. Dans l'exemple l'isolation se fait par l'intermédiaire des pièces polaires 19.1 , 19.2 d'entrée et de sortie. Ces pièces polaires 19.1 , 19.2 sont dans les tubes classiques en contact avec le corps à son entrée E et à sa sortie S. On utilisera par exemple une feuille 24.1 de téflon insérée entre le focalisateur 12 et les pièces polaires 19.1, 19.2. Il s'agit également des guides de transmission, situés au niveau des cavités 20 extrêmes. Un guide d'onde d'entrée 25.1 est relié à la première cavité 20 il permet d'y injecter un signal à amplifier. Ce guide d'onde 25. lest isolé électriquement du corps 10 à l'aide d'une bride isolante 24.2. La dernière cavité 20 communique avec un guide d'onde de sortie 25.2, destiné à la transmission de l'énergie hyperfréquence produite par le tube vers un organe utilisateur (non représenté). Ce guide d'onde 25.2 est isolé électriquement du corps 10 à l'aide d'une bride isolante 24.2.
Généralement, un dispositif de refroidissement 26 est prévu autour du collecteur 11 et même éventuellement du corps 10. Ce dispositif de refroidissement 26 sera isolé électriquement du collecteur 11 et si nécessaire du corps 10. Cette isolation peut être obtenue en réalisant le dispositif de refroidissement avec des matériaux diélectriques, par exemple au moins un conduit 28 en matière plastique dans lequel un fluide de refroidissement résistant circule. Comme fluide de refroidissement de l'eau désionisée peut être employée.
Les calculs montrent que le contre-courant I' donnant une exacte compensation est tel que I' = ΛA I, I correspondant au courant total de tous les faisceaux 1 à 7 du tube.
Le champ magnétique azimutal induit sur un des faisceaux délimitant l'espace interfaisceau 22, par les autres faisceaux vaut : 051
Bn = μn —1— si les faisceaux délimitant l'espace interfaisceau sont θ u 2πa arrangés sur un cercle de rayon a.
Si on fait circuler le courant total I des faisceaux 1 à 7 dans le bloc conducteur 15, ayant une section de rayon a + g + t, le contre-courant I' vaut 2
et ce contre-courant I' permet bien une exacte compensation si les
2 valeurs de a, g et t sont telles que le vaut 0,5. Des grandeurs telles que a = 21 ,8 mm, g = 6 mm et t = 3 mm permettent d'obtenir le résultat optimum. Les dimensions a, g, t sont illustrées sur la figure 1a mais ne sont pas représentées à l'échelle.
Une manière permettant d'obtenir un contre-courant I' optimum à partir d'une circulation de courant dans tout le corps 10 est de forcer le courant à passer préférentiellement dans le volume interfaisceau. Les figures 3a, 3b, 4a, 4b montrent en coupe longitudinale et transversale une portion du corps 10 d'un klystron multifaisceau conforme à l'invention dans lequel on favorise la circulation de courant dans le volume interfaisceau de deux manières différentes.
Deux cavités successives 20 sont schématisées sur la figure 3a. Elles ne sont pas représentées sur la figure 4a pour simplifier. Les coupes transversales des figures 3b, 4b sont faites selon le plan de coupe aa.
Sur les figures 3a, 3b, les blocs conducteurs 15 sont formés d'une partie centrale 31 entourée d'une partie périphérique 32. Les tubes de glissement 13 sont situés dans la partie centrale 31. La limite du volume interfaisceau 22 correspond sensiblement au cercle, en pointillés sur la figure 3b, passant par le centre des tubes de glissement 13 et la partie centrale 31 englobe le volume interfaisceau 22.
En réalisant pour au moins un des blocs, la partie centrale 31 dans un premier matériau et la partie périphérique 32 dans un second matériau et en choisissant ces matériaux de sorte que la résistivité du premier matériau soit plus petite que celle du second matériau, on obtient bien cette circulation préférentielle dans le volume interfaisceau 22. La partie centrale 31 peut par exemple être réalisée à base de cuivre et la partie périphérique à base d'acier inoxydable. D'autres choix sont possibles. Le choix du matériau de la partie périphérique 32 doit être compatible avec l'étanchéité recherchée. Une autre solution pour augmenter la résistivité à la périphérie d'au moins un bloc 15 par rapport à celle dans le volume interfaisceau est de tailler des chicanes 33 à la périphérie du bloc 15. Ces chicanes 33 sont illustrées aux figures 4a, 4b. Cette configuration avec chicanes peut être combinée avec celle décrite aux figures 3a, 3b comme les figures 4 le montrent mais ce n'est pas nécessaire.
Au lieu que le contre-courant I' provienne du courant I des faisceaux, il est possible que les moyens M permettant la circulation du contre-courant I' comprennent deux moyens de connexion C1 , C2, l'un à proximité de l'entrée E du corps 10 et l'autre à proximité de sa sortie S, ces moyens de connexion étant destinés à être connectés aux bornes d'une alimentation A2 basse tension devant délivrer le contre-courant I'. La figure 6 (décrite ultérieurement) montre cette caractéristique appliquée à un tube à onde progressives multifaisceau. Elle est bien sûr applicable aux klystrons multifaisceaux. Dans les klystrons multifaisceaux décrits, il se produit une compensation de la trajectoire des faisceaux là où le contre-courant circule à l'intérieur du volume interfaisceau, c'est-à-dire au niveau des tubes de glissement 13. Or ces tubes de glissement 13 occupent environ 75 % de la longueur du corps 10 ce qui veut dire que seul 25 % de la longueur des faisceaux ne reçoit pas de correction mais cela n'est pas gênant. Une correction adaptée en entrée et en sortie des cavités 20 peut être envisagée si nécessaire pour réduire cet effet néfaste défocalisant.
Dans les configurations où les tubes de glissement 13 ne sont pas creusés au sein d'un même bloc conducteur 15 et qu'ils sont réalisés par des tubes 13 raccordés aux cavités 30 et désolidarisés les uns des autres, le volume interfaisceau 22 n'est pas plein de matière conductrice.
Les figures 5a, 5b montrent en coupes longitudinale et transversale partielles, un corps de klystron multifaisceau avec cette caractéristique. Maintenant l'élément conducteur 23 dans lequel circule le contre- courant I' est isolé électriquement et distinct du corps 10. Il s'étend dans le volume interfaisceau 22, parallèlement aux tubes de glissement 13, sans contact électrique avec eux ni avec les cavités 20. Il peut être formé de tronçons conducteurs rigides 34 situés en entrée et sortie des cavités, ces tronçons pouvant être des tiges conductrices rigides gainées d'isolant 37 tel que de l'alumine.
Sur toute la longueur du corps, on trouvera une succession de tronçons conducteurs rigides 34, deux tronçons conducteurs rigides 34 situés de part et d'autre d'une cavité 20 étant reliés par une connexion souple 35 qui enjambe la cavité 20. Les connexions souples 35 peuvent être de la tresse métallique gainée d'isolant.
Les moyens M permettant la circulation du contre-courant I' comprennent aux deux extrémités de l'élément conducteur 23 des moyens de connexion C1 , C2 destinés à être reliés à une alimentation A2 devant délivrer le contre-courant I'.
Si le tube ne comporte pas de faisceau central comme l'illustre la figure 5c, un seul élément conducteur 23 suffit au centre, si le tube comporte un faisceau central comme l'illustre la figure 5b, plusieurs sont souhaitables, disposés entre le faisceau central 1 et les faisceaux 2-7 délimitant le volume interfaisceau 22.
Le champ magnétique néfaste induit au niveau d'un des faisceaux par les autres n'apparaît dans le tube que lorsqu'il fonctionne en régime continu ou avec des durées d'impulsions relativement longues. C'est le cas de beaucoup de tubes utilisés dans des applications de télécommunications, des applications industrielles, scientifiques, et même radar.
En effet à chaque fois que les faisceaux sont injectés dans le corps 10, ils induisent, pendant un certain temps, dans les tubes de glissement, des courants de Foucault qui s'opposent au champ magnétique induit perturbateur.
En appelant F la fréquence de répétition du tube, l'épaisseur e de matériau que peut traverser le champ magnétique induit perturbateur est donnée par :
avec p résistivité du matériau en Ω.cm et μr perméabilité relative du matériau. Pour le cuivre p vaut 1 ,72 10 " Ω. cm et μr vaut 1.
Si le tube comporte en couronne six faisceaux séparés par une épaisseur e de cuivre de 16 millimètres, la fréquence F de répétition est de 17 Hz maximum, ce qui revient à dire que les impulsions ne peuvent durer que 30 à 40 ms sans effet défocalisant.
Les problèmes de transmission dans les klystrons multifaisceaux sont d'autant plus gênants que la puissance et les longueurs d'impulsions sont longues. Les tubes qui viennent d'être décrits sont des klystrons. Un tube multifaisceau conforme à l'invention pourrait aussi être de type tube à ondes progressives comme illustré à la figure 6.
Dans ce type de tube, le corps 10 est formé d'une succession de cavités 30 couplées les unes aux autres par des iris 21 placés sur une paroi commune 36. Les faisceaux 1 à 7 sont contenus dans des tubes de glissement 13 avant de pénétrer dans la première cavité 30, en sortant de la dernière cavité 30 et de manière plus générale entre les cavités 30. Mais maintenant les tubes de glissement 13 occupent moins de 50 % de la longueur du corps 10, ce qui signifie que la correction obtenue est moins efficace mais reste quand même intéressante. Les blocs conducteurs dans lesquels sont creusés les tubes de glissement 13 portent la référence 15 et les parois communes 36 sont solidaires des blocs conducteurs 15.
Pour favoriser la circulation du contre-courant I' dans le volume interfaisceau 22 sur la plus grande longueur possible, il est possible d'inclure dans les blocs conducteurs 15 et dans les parois 36 communes, des inserts
200 résistifs que le contre-courant I' va contourner. Ces inserts 200 sont présentés sur la figure 6 en deux parties 201. 202 solidaires l'une de l'autre.
La première partie 201 placée dans les blocs conducteurs 15 a la forme d'un élément tubulaire, elle entoure les tubes de glissement 13. Le contre-courant I' circule dans le bloc conducteur 15 en boucle autour de la première partie
201.
La seconde partie 202 s'étend depuis la première partie 201 dans l'épaisseur de la paroi commune 36 telle une collerette.
Le contre-courant I' circule dans la paroi commune 36 de part et d'autre de la seconde partie 202 dans des sens opposés. En faisant une coupe radiale d'un bloc 15, un insert 200 a la forme d'un T dont la jambe est la seconde partie 202 et dont la barre transversale est la première partie 201. La circulation du contre-courant I' qui contourne l'insert 200 est vue en détail sur le zoom encerclé de la figure 6. Ces inserts 200 peuvent être réalisés, par exemple en acier inoxydable, en alumine ou même être des évidements.
Maintenant les moyens M permettant la circulation du contre- courant I' comprennent deux moyens de connexion C1 , C2 l'un à proximité de l'entrée E du corps 10 et l'autre C2 à proximité de la sortie S du corps, ces moyens de connexion C1 , C2 étant destinés à être connectés aux bornes e1 , e2 d'une alimantation A2 basse tension devant délivrer le contre- courant I'. Sur la figure 6 le premier moyen de connexion C1 se trouve au niveau de la pièce polaire 19.1 d'entrée et le second moyen de connexion C2 se trouve au niveau de la base du collecteur 11. Le premier moyen de connexion C1 pourrait être sur l'anode 16 et le second sur la pièce polaire de sortie. Dans l'exemple décrit le second moyen de connexion C2 est porté à la masse mais d'autres potentiels seraient envisageables.
Une résistance R convenablement choisie en série avec l'alimentation A2 basse tension permet d'ajuster la valeur du contre-courant. Sur la figure 6 de manière classique, une autre alimentation A1 est représentée. Elle est branchée entre les cathodes 18 et le collecteur 11 et sert à la création des faisceaux 1 à 7. C'est une alimentation haute tension.
Les tubes multifaisceaux selon l'invention n'ont pas une structure modifiée par rapport aux tubes existants, il suffit de prévoir les connexions décrites.

Claims

R E V E N D I C A T I O N S
1. Tube électronique multifaisceau comportant plusieurs faisceaux d'électrons (1-7) sensiblement parallèles, traversant un corps (10), parmi les faisceaux (1-7) certains (2-7) au moins délimitent un volume interfaisceau (22), chaque faisceau (2-7) délimitant le volume interfaisceau (22) étant soumis à un champ magnétique azimutal perturbateur (BΘ) induit par tous les autres, caractérisé en ce qu'il comporte des moyens (M) permettant, dans au moins un élément conducteur (23) situé dans le volume interfaisceau (22), une circulation d'un contre-courant (I') dans un sens opposé à celui du courant (I) des faisceaux (1-7), ce contre-courant (I') générant au niveau des faisceaux (2-7) délimitant l'espace interfaisceau (22), un champ magnétique de correction visant à s'opposer au champ magnétique perturbateur (BΘ).
2. Tube électronique multifaisceau selon la revendication 1 , caractérisé en ce que l'élément (23) conducteur est intégré au corps (10) du tube.
3. Tube électronique multifaisceau selon l'une des revendications 1 ou 2, comportant un canon (17) avec une ou plusieurs cathodes (18) qui émettent les électrons des faisceaux (1-7), ces faisceaux traversant le corps (10) depuis une entrée (E) vers une sortie (S) où ils sont recueillis par au moins un collecteur (11), caractérisé en ce que les moyens (M) permettant la circulation du contre-courant (I') comprennent une connexion (P) de masse à proximité de l'entrée (E) du corps (10), de sorte que le contre-courant (I') provient du courant (I) des faisceaux (1-7) qui se referme par cette masse, le collecteur (11 ) possédant un potentiel intermédiaire (VQ) entre la masse et celui (VK) des cathodes (18).
4. Tube électronique selon la revendication 3, caractérisé en ce que la connexion (P) de masse est située au niveau d'une anode (16) dont est doté le canon (17).
5. Tube électronique selon la revendication 3, caractérisé en ce que la connexion (P) de masse est au niveau d'une pièce (19.1 ) polaire d'entrée située en entrée (E) du corps (10).
6. Tube électronique selon l'une des revendications 3 à 5, caractérisé en ce que la connexion (P) de masse est destinée à être reliée à une alimentation (A1) qui délivre le potentiel (VK) aux cathodes (18).
7. Tube électronique selon l'une des revendications 1 ou 2, caractérisé en ce que les moyens (M) permettant la circulation du contre- courant (I') comprennent un premier moyen de connexion (C1 ) à proximité de l'entrée (E) du corps et un second moyen de connexion (C2) à proximité de la sortie (S) du corps, ces moyens de connexion (C1 , C2) étant destinés à être reliés à une alimentation (A2) devant délivrer le contre-courant (I')
8. Tube électronique selon l'une des revendications 1 à 7, caractérisé en ce que le corps (10) comporte une succession de cavités (20, 30), les faisceaux (1-7) étant contenus en entrée et en sortie des cavités (20, 30) dans des tubes de glissement (13) creusés au sein d'un bloc (15) conducteur, ces blocs (15) conducteurs servant d'élément conducteur (23).
9. Tube électronique selon la revendication 8, caractérisé en ce qu'au moins un bloc (15) conducteur a une résistance, dans une partie centrale (31) englobant le volume interfaisceau, inférieure à celle qu'il possède dans une partie périphérique (32) entourant la partie centrale (31 ).
10. Tube électronique selon la revendication 9, caractérisé en ce que la partie centrale (31 ) est réalisée dans un premier matériau et la partie périphérique (32) dans un second matériau, le premier matériau ayant une résistivité plus faible que celle du second matériau.
11. Tube électronique selon l'une des revendications 8 à 10, caractérisé en ce que la périphérie d'au moins un bloc (15) porte sur son pourtour des chicanes (33) afin d'augmenter sa résistivité périphérique.
12. Tube électronique selon la revendication 8, caractérisé en ce que deux cavités (30) successives ont une paroi commune (36) qui prend appui sur un bloc conducteur (15), le bloc conducteur (15) et la paroi commune (36) incluant un insert (200) résistif qui force le contre-courant (I') à circuler dans le bloc conducteur (15) en boucle autour de l'insert et dans la paroi commune (36), de part et d'autre de l'insert (200) dans des sens opposés.
13. Tube électronique selon l'une des revendications 2 à 12, dans lequel les faisceaux (1-7) sont recueillis dans un collecteur (11 ) et qui comporte un ou plusieurs organes (26, 25, 12) qui coopèrent avec le corps (10) et/ou le collecteur (11 ), caractérisé en ce que ces organes (26, 25, 12) sont isolés électriquement du corps (10) et/ou du collecteur (11 ).
14. Tube électronique selon la revendication 13, caractérisé en ce qu'il comporte comme organe isolé électriquement du corps et/ou du collecteur un dispositif de refroidissement (26) entourant le corps et/ou le collecteur, formé à partir d'au moins un conduit (28) en matière isolante dans lequel circule un fluide résistant.
15. Tube électronique selon l'une des revendications 13 ou 14, caractérisé en ce qu'il comporte comme organe isolé électriquement du corps (10), un focalisateur (12) tubulaire dans lequel est placé le corps, un élément diélectrique (24.1 ) étant disposé en entrée (E) et en sortie (S) du corps (10) pour l'isoler du focalisateur. •
16. Tube électronique selon l'une des revendications 13 à 15, caractérisé en ce qu'il comporte comme organe isolé électriquement du corps (10), au moins un guide de transmission (25.1 , 25.2) isolé par une bride (24.2) diélectrique du corps (10).
17. Tube électronique selon la revendication 1 , dont le corps (10) comporte une succession de cavités (20) et dans lequel les faisceaux (1-7) sont contenus, en entrée et en sortie des cavités (30), dans des tubes de glissement (13), désolidarisés les uns des autres, caractérisé en ce que l'élément (23) conducteur est longitudinal et s'étend dans le volume interfaisceau (22) parallèlement aux tubes de glissement (13), sans contact électrique ni avec les tubes de glissement et ni avec les cavités.
18. Tube électronique selon la revendication 17, caractérisé en ce que l'élément conducteur comporte un tronçon conducteur rigide (33) en entrée et en sortie d'une cavité (20), deux tronçons (33) successifs de part et d'autre de la cavité étant reliés par une connexion souple (35) enjambant la cavité (20).
19. Tube électronique selon l'une des revendications 17 ou 18, caractérisé en ce que l'élément conducteur (23) est gainé d'isolant.
20. Tube électronique selon l'une des revendications 17 à 19, caractérisé en ce que les moyens (M) permettant la circulation du contre-courant
(I') comprennent, à chaque extrémité de l'élément conducteur (23), des moyens de connexion (C1, C2) pour les connecter aux bornes d'une alimentation ( A2) devant délivrer le contre-courant (Y).
EP99929381A 1998-07-03 1999-07-02 Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux Expired - Lifetime EP1095390B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9808552A FR2780809B1 (fr) 1998-07-03 1998-07-03 Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR9808552 1998-07-03
PCT/FR1999/001595 WO2000002226A1 (fr) 1998-07-03 1999-07-02 Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux

Publications (2)

Publication Number Publication Date
EP1095390A1 true EP1095390A1 (fr) 2001-05-02
EP1095390B1 EP1095390B1 (fr) 2005-05-04

Family

ID=9528244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99929381A Expired - Lifetime EP1095390B1 (fr) 1998-07-03 1999-07-02 Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux

Country Status (8)

Country Link
US (1) US6486605B1 (fr)
EP (1) EP1095390B1 (fr)
JP (1) JP4405674B2 (fr)
KR (1) KR100593845B1 (fr)
CN (1) CN1308769A (fr)
DE (1) DE69925125D1 (fr)
FR (1) FR2780809B1 (fr)
WO (1) WO2000002226A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803454B1 (fr) * 1999-12-30 2003-05-16 Thomson Tubes Electroniques Generateur d'impulsions hyperfrequences integrant un compresseur d'impulsions
FR2830371B1 (fr) * 2001-09-28 2005-08-26 Thales Sa Generateur d'ondes hyperfrequences a cathode virtuelle
GB2397691B (en) * 2003-01-24 2005-08-10 Leica Microsys Lithography Ltd Cooling of a device for influencing an electron beam
CN1297179C (zh) * 2004-02-18 2007-01-24 谢家麟 速调管同时做为微波源和电子源的高效加速器
US7404883B2 (en) * 2004-04-12 2008-07-29 Robert Bosch Gmbh Insulation bushing assembly for an exhaust gas sensor
JP4653649B2 (ja) 2005-11-30 2011-03-16 株式会社東芝 マルチビームクライストロン装置
JP2007234344A (ja) * 2006-02-28 2007-09-13 Toshiba Corp マイクロ波管
JP4991266B2 (ja) * 2006-12-11 2012-08-01 株式会社東芝 マルチビームクライストロン
WO2008109064A1 (fr) * 2007-03-01 2008-09-12 Communications Power Industries, Inc. Klystron à faisceau plan terahertz
US8547006B1 (en) 2010-02-12 2013-10-01 Calabazas Creek Research, Inc. Electron gun for a multiple beam klystron with magnetic compression of the electron beams
CN102254771B (zh) * 2011-03-10 2013-04-24 安徽华东光电技术研究所 一种耦合腔多注行波管慢波系统
JP5959320B2 (ja) * 2012-05-31 2016-08-02 日本電子株式会社 荷電粒子ビームの軸合わせ方法および荷電粒子ビーム装置
US9013104B1 (en) * 2013-04-22 2015-04-21 Calabazas Creek Research, Inc. Periodic permanent magnet focused klystron
CN104124124B (zh) * 2014-08-06 2016-08-24 中国科学院电子学研究所 线包磁聚焦强流电子注传输过程模拟测量系统
CN105489460B (zh) * 2015-12-16 2017-07-11 中国工程物理研究院应用电子学研究所 一种k波段同轴相对论返波振荡器
CN108400075A (zh) * 2018-01-22 2018-08-14 电子科技大学 平行多束电子枪
JP7070980B2 (ja) * 2018-04-12 2022-05-18 キヤノン電子管デバイス株式会社 クライストロン
CN112578426B (zh) * 2020-11-26 2022-09-20 中国工程物理研究院应用电子学研究所 一种可调节型阵列式法拉第筒
CN117545157B (zh) * 2024-01-09 2024-03-12 西南交通大学 一种用于测量等离子体电势和电场的诊断方法及系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2153585A5 (fr) 1971-09-16 1973-05-04 Thomson Csf
FR2191253B1 (fr) 1972-06-27 1978-03-03 Thomson Csf
FR2363185A1 (fr) 1976-08-27 1978-03-24 Thomson Csf Dispositif de couplage pour tube hyperfrequence et tube hyperfrequence comportant un tel dispositif
FR2430104A1 (fr) 1978-06-29 1980-01-25 Thomson Csf Dispositif de selection de la frequence de resonance de cavites hyperfrequences, klystrons et filtres de frequences comportant un tel dispositif
US4513223A (en) * 1982-06-21 1985-04-23 Varian Associates, Inc. Electron tube with transverse cyclotron interaction
FR2545646B1 (fr) 1983-05-03 1985-12-27 Thomson Csf Klystron amplificateur de puissance apte a alimenter une charge variable
FR2596199B1 (fr) 1986-03-19 1994-03-18 Thomson Csf Circuit de sortie pour klystron et klystron comportant un tel circuit de sortie
FR2599554A1 (fr) 1986-05-30 1987-12-04 Thomson Csf Klystron a faisceaux multiples fonctionnant au mode tm02
FR2599565B1 (fr) 1986-05-30 1989-01-13 Thomson Csf Lasertron a faisceaux multiples.
FR2625836B1 (fr) 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
FR2637122A1 (fr) * 1988-09-23 1990-03-30 Thomson Csf Dispositif correcteur de trajectoires pour tube electronique
FR2641899A1 (fr) 1989-01-17 1990-07-20 Thomson Tubes Electroniques Canon a electrons muni d'un dispositif actif produisant un champ magnetique au voisinage de la cathode
FR2643507A1 (fr) 1989-02-21 1990-08-24 Thomson Tubes Electroniques Canon a electrons a faisceau electronique module par un dispositif optique
FR2666169B1 (fr) 1990-08-24 1992-10-16 Thomson Tubes Electroniques Klystron a bande passante instantanee elargie.
RU2081474C1 (ru) * 1991-07-09 1997-06-10 Гаврилов Олег Юрьевич Многолучевой свч прибор о-типа
FR2708149B1 (fr) 1993-07-23 1995-09-01 Thomson Tubes Electroniques Procédé de fabrication d'une ligne à hélice et ailettes couplées, ligne obtenue par le procédé et tube électronique comportant une telle ligne.
FR2737340B1 (fr) 1995-07-28 1997-08-22 Thomson Tubes Electroniques Tube electronique multifaisceau a couplage cavite/faisceau ameliore
FR2756970B1 (fr) 1996-12-10 2003-03-07 Thomson Tubes Electroniques Tube hyperfrequence a interaction longitudinale a cavite a sortie au dela du collecteur
FR2764730B1 (fr) 1997-06-13 1999-09-17 Thomson Tubes Electroniques Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0002226A1 *

Also Published As

Publication number Publication date
US6486605B1 (en) 2002-11-26
KR100593845B1 (ko) 2006-06-28
WO2000002226A1 (fr) 2000-01-13
JP2002520772A (ja) 2002-07-09
JP4405674B2 (ja) 2010-01-27
DE69925125D1 (de) 2005-06-09
FR2780809A1 (fr) 2000-01-07
EP1095390B1 (fr) 2005-05-04
CN1308769A (zh) 2001-08-15
FR2780809B1 (fr) 2003-11-07
KR20010085278A (ko) 2001-09-07

Similar Documents

Publication Publication Date Title
EP1095390B1 (fr) Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR2691602A1 (fr) Accélérateur linéaire de protons à focalisation améliorée et impédance shunt élevée.
EP0248689A1 (fr) Klystron à faisceaux multiples
FR2527005A1 (fr) Tube electronique de puissance a grille perfectionne
EP0239466B1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0197843B1 (fr) Dispositif pour l'excitation par ondes hyperfréquences d'un plasma dans une colonne de gaz, permettant notamment la réalisation d'un laser ionique
EP0995345B1 (fr) Dispositif d'excitation d'un gaz par plasma d'onde de surface
FR2760127A1 (fr) Canon a electrons et klystron le comportant
FR2764730A1 (fr) Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon
EP0379403A1 (fr) Canon à électrons muni d'un dispositif produisant un champ magnétique au voisinage de la cathode
FR2568057A1 (fr) Tube a hyperfrequences
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP0022016B1 (fr) Ligne à retard à pas variable pour tube à onde progressive, et tube à onde progressive muni d'une telle ligne
EP0387145A1 (fr) Générateur de faisceau d'électrons et dispositifs électroniques utilisant un tel générateur
FR2544128A1 (fr) Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
FR2658001A1 (fr) Tube hyperfrequence multifaisceau a sortie coaxiale.
FR2786022A1 (fr) Tube electronique multifaisceau a interception des electrons minimisee
EP1466343B1 (fr) Tube electronique a collecteur simplifie
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
FR2737042A1 (fr) Collecteur d'electrons multietage supportant des tensions elevees et tube electronique muni d'un tel collecteur
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
EP0482986A1 (fr) Collecteur pour tube hyperfréquence et tube hyperfréquence comportant un tel collecteur
FR2790595A1 (fr) Circuit de ligne a retard en helice
CA2298321A1 (fr) Generateur radiofrequence de tres grande puissance
FR2476908A1 (fr) Tube a ondes progressives pour tres hautes frequences et dispositif amplificateur utilisant un tel tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 69925125

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050805

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100630

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180628

Year of fee payment: 20