EP1094390A1 - Procédé et dispositif de test du fonctionnement d'une unité électronique par simulation et installation de test d'unité à embarquer sur un matériel ferroviaire ou un véhicule électrique - Google Patents

Procédé et dispositif de test du fonctionnement d'une unité électronique par simulation et installation de test d'unité à embarquer sur un matériel ferroviaire ou un véhicule électrique Download PDF

Info

Publication number
EP1094390A1
EP1094390A1 EP00402227A EP00402227A EP1094390A1 EP 1094390 A1 EP1094390 A1 EP 1094390A1 EP 00402227 A EP00402227 A EP 00402227A EP 00402227 A EP00402227 A EP 00402227A EP 1094390 A1 EP1094390 A1 EP 1094390A1
Authority
EP
European Patent Office
Prior art keywords
signals
unit
microprocessor
simulation
logic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00402227A
Other languages
German (de)
English (en)
Other versions
EP1094390B1 (fr
Inventor
Denis Miglianico
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP1094390A1 publication Critical patent/EP1094390A1/fr
Application granted granted Critical
Publication of EP1094390B1 publication Critical patent/EP1094390B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/261Functional testing by simulating additional hardware, e.g. fault simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a method and a device for functional test of an electronic unit by simulation.
  • the invention also relates to a test installation electronic units to be loaded on railway equipment or an electric vehicle.
  • Such a control unit being a complex material
  • a test bench comprising a simulator capable of generating supplied simulation signals as input to the unit and to analyze the control signals generated by such a unit.
  • a simulator works in real time and simulates, for example, the engine, the brakes or the inertia of a railcar, as well as the state of rails or other external parameters.
  • One type of simulator is used for the functional test of different electronic units, the operation of the simulator being adapted by programming according to the type and use of the unit.
  • Such a simulator includes one or several microprocessors intended to process transmitted signals by the unit in order to send it new signals of simulation.
  • Such a simulator is of the hardware in the type. loop "or" hardware in the simulation loop ".
  • the simulation programs work with a cycle time of the order of a few tens of microseconds, this cycle time being much greater at the desired precision, of the order of a micro-second for the electronic unit.
  • the microprocessor or calculator works "blind" for several tens of micro-seconds before generating a new signal simulation.
  • interrupting frequently microprocessor operation for example all microseconds, to acquire a new signal value emitted by the unit, but this would significantly disturb the operation of the computer which could no longer manage the many values acquired.
  • such a solution is not technically usable in the case where seeks precision of the order of a microsecond.
  • the invention relates to a method which consists of processing, as and when they are issued, certain output signals from the electronic unit, by means of at least one programmable logic circuit, to store parameter values corresponding to these processed signals and to have the simulator microprocessor access these values parameters stored at a frequency compatible with its operating speed.
  • the programmable logic circuit allows to acquire with great speed, that is to say in real time, the output signals generated by the unit, which can be GTO or IGBT circuit control orders, while the simulator microprocessor is running perform calculation operations. At the end of these calculation operations, i.e. for example after a 10 millisecond period, the microprocessor can then acquire the values processed by the programmable logic circuit during this period, these values being stored in a buffer memory. So the positioning over time and the value of the signals emitted by the electronic unit can be known precisely without disrupting operation of the simulator microprocessor.
  • the invention also relates to a device for to implement the method as previously described and, more specifically, a device that includes a simulator comprising at least one microprocessor and capable of addressing to the unit of input and receive simulation signals this in response to output signals.
  • the simulator includes at least one programmable logic circuit capable of receive at least some of the output signals generated by unity, this logic circuit being able to generate, in time real, parameter values corresponding to the signals it receives and stores these values, the microprocessor being able to acquire these stored values.
  • the programmable logic circuit allows to capture, in real time, the orders or signals of output sent by the electronic unit during a cycle of work of the microprocessor, the microprocessor using the accumulated values, for example in a buffer, at each of its work cycles.
  • the electronic unit 1 shown in Figure 1 is planned to be on board, for example on a power train train, to control a traction motor. She understands a microprocessor 2 capable of generating control signals or output signals S, depending on input signals E delivered by measuring systems or electronic units of master controls.
  • unit 1 Before its installation in the powerplant considered, unit 1 is connected to a simulator 11 by means of two bundles 12 and 13 of electrical conductors. More precisely, the beam 12 connects the output of the simulator 11 to the input of unit 1 while the beam 13 connects the output from unit 1 to the simulator 11 input (s). 12 therefore makes it possible to convey simulation signals E in unit 1 input while beam 13 allows convey, to simulator 11, output signals S of generated by unit 1 and which constitute ordering of equipment on board the powerplant.
  • Simulator 11 includes a program that runs on a microprocessor 14, for example of the DSP (Digital Signal) type Processor) with a cycle time of the order of a few tens of micro-seconds and which is capable of generating the simulation signals E.
  • These simulation signals can represent low voltage relay status signals, signals emitted by current or voltage sensors, such as as incremental sensors, or setpoints generated by one or more master and transmitted electronic units by a computer network.
  • the microprocessor can be connected to a console 15 for its programming and control, from same as for displaying the test result. A relationship electric 16 is provided for this purpose.
  • the output signals S generated by the unit 1 are broken down into fast signals S 1 , relatively slow signals S 2 and analog signals S 3 .
  • Relatively slow signals are command whose positioning over time must be known with an accuracy of around a millisecond, which is compatible with the cycle time of microprocessor 14. These signals can therefore be transmitted directly to the microprocessor 14 which acquires their value once per cycle time, that is to say every few tens of micro-seconds.
  • the signals S 3 are transmitted to an analog / digital converter 17 (ADC) which transmits a corresponding digital signal S ' 3 to the microprocessor 14.
  • ADC analog / digital converter 17
  • the signals S 1 are liable to evolve several times during a period ⁇ T of a few tens of micro-seconds and their instants of evolution or switching must be known with precision. These signals S 1 may for example be signals for controlling GTO or IGBT circuits or for relays.
  • a signal S 1 can take the logic values 0 or 1 and its evolution during a period ⁇ T can be characterized by its switching instants t 1 , t 2 , t 3 , t 4 and t 5 .
  • Each signal S 1 is transmitted to an input of a programmable logic circuit 18 of the FPGA type which is capable of detecting the instants t 1 to t 5 during a period ⁇ T, as well as the directions of variation of the signal Si at during this period.
  • the circuit 18 reacts with very high precision to the variations of the signal S 1 because it is a circuit made up of AND, OR logic gates and flip-flops, which can have a cycle time less than a microsecond.
  • the values detected by the circuit 18 are transmitted, possibly after logic processing, to a buffer memory 19 to which the microprocessor 14 can access the end of each of its working periods, that is to say every few tens of micro-seconds, to know the evolution of each signal S 1 during the period considered.
  • the values stored in the memory 19 can be the references of the instants t 1 to t 5 during the period ⁇ T considered, or the total value ⁇ 1 of the signal S 1 during this period, which corresponds to the duration during which the signal S 1 had a value equal to 1.
  • the value transmitted to the memory 19 can also be the average M 1 of the value of the signal S 1 during the period ⁇ T or any other value representative of the evolution of the signal S 1 during this period.
  • the value transmitted in S ′ 1 to the microprocessor 14 as representative of the signal S 1 can change as a function of the programming of the circuit 18. In fact, depending on the nature of the parameter S 1 , the type of the unit 1 and its operating configuration , the value to be transmitted to the microprocessor 14 may be different.
  • the circuit 18 functions as a "asynchronous sampler" for microprocessor 14 and allows interrogation of certain outputs of unit 1 in real time, while the operation of the microprocessor 14 is not disturbed and that the computing power required for the microprocessor 14 is not too large.
  • This embodiment differs from the previous one essentially in that the input signals E of unit 1 are divided into fast signals E 1 , into relatively slow signals E 2 and into analog signals E 3 .
  • the signals E 2 are generated directly by the microprocessor 14 at the end of each operating cycle and transmitted to the unit 1.
  • the signals E 3 are generated by a digital analog converter (DAC) 27 from digital signals E ' 3 supplied by the microprocessor 14.
  • DAC digital analog converter
  • the fast signals E 1 are generated by a second programmable logic circuit 28, of the type of circuit 18 and which is associated with a buffer memory 29.
  • the microprocessor 14 sends to the memory 29 signals E ′ 1 representative of the different values that the signals E 1 must take during the following period ⁇ T. From these values, and while the microprocessor 14 calculates the following values and is not in communication with the unit 1 or the memory 29, the circuit 28 generates the signals E 1 of simulation of the unit 1. In in other words, the circuit 28 makes it possible to simulate, with great precision over time, the variations of the signals E 1 during a period ⁇ T during which the microprocessor 14 is dedicated to the calculation operations.
  • circuit 28 can generate pulses simulating an incremental speed sensor which, in the reality can be a succession of niches with a period of the order of a few micro-seconds.
  • the circuits 18 and 28 are directly connected by a link 38 which allows direct transmission of certain signals S 1 from the circuit 18 to the circuit 28, these signals being processed by the circuits 18 and 28 for generating certain output signals E 1 without intervention by the microprocessor 14.
  • Circuits 18 and 28 are represented as two entities separated in Figure 3. It is possible and advantageous to integrate into a single electronic circuit.
  • the one or more programmable logic circuits 18 or 28 can be configured, for example by means of the console 15 to which they are connected by links 20 and 30, depending on the type unit 1 to be checked and / or its subsequent environment, for example of the type of railway material on which it must be shipped.
  • FPGA type circuits are advantageous economically because such circuits are fast, well technologically controlled, therefore reliable, and of a affordable cost.
  • the invention makes it possible to simulate, in real time, faults, such as a short circuit in one of the arms of an inverter high voltage and check, in real time the chronology control pulses generated by a unit 1 for the simulated power semiconductors such as circuits GTO or IGBT.
  • the minimum ignition time or the minimum non-ignition time can be effectively checked.
  • the invention has been represented with a single FPGA circuit at the input and, in the embodiment of FIG. 3, a single FPGA output circuit.
  • a single FPGA circuit at the input and, in the embodiment of FIG. 3, a single FPGA output circuit.
  • several such circuits can be used, input and / or output, depending on the nature of the signals to be processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

Un simulateur (11) équipé d'au moins un microprocesseur (14) adresse à l'unité à tester (1) des signaux de simulation en entrée (E) et reçoit de celle-ci des signaux de sortie (S) en réaction. Le procédé consiste à traiter, au fur et à mesure de leur émission, certains (S1) signaux de sortie de l'unité au moyen d'au moins un circuit logique programmable (18), à stocker des valeurs de paramètres correspondant à ces signaux traités et à faire accéder le microprocesseur (14) aux valeurs de paramètres stockées, à une fréquence compatible avec sa vitesse de fonctionnement. Le dispositif permet de mettre en oeuvre le procédé. Le simulateur (11) comprend au moins un circuit logique programmable (18), par exemple de type FPGA, apte à recevoir certains (S1) au moins des signaux de sortie (S) de l'unité électronique (1). <IMAGE>

Description

L'invention a trait à un procédé et à un dispositif de test du fonctionnement d'une unité électronique par simulation. L'invention a également trait à une installation de test d'unités électroniques à embarquer sur un matériel ferroviaire ou un véhicule électrique.
Dans le domaine de la commande électronique de systèmes de traction pour matériel ferroviaire, il est connu d'utiliser des unités électroniques fonctionnant en temps réel et prévues pour commander des circuits électroniques tels que des circuits GTO (Gate Turn-Off thyristor) ou IGBT (Insulated Gate Bipolar Transistor), des relais basse tension ou des afficheurs numériques ou analogiques. Ces unités incluent un calculateur apte à générer des signaux de commande en fonction de signaux reçus en entrée par l'unité, ces signaux d'entrée pouvant être une consigne, des signaux représentatifs d'état de relais basse tension, des signaux représentatifs de courant, de tension ou de puissance consommée et/ou des signaux émis par un réseau informatique embarqué. Pour la commande efficace des circuits électroniques du genre GTO ou IGBT, les signaux de commande émis par une telle unité électronique doivent être positionnés dans le temps avec une précision de l'ordre de la micro-seconde.
Une telle unité de commande étant un matériel complexe, il est connu de réaliser un banc de test comprenant un simulateur apte à générer des signaux de simulation fournis en entrée à l'unité et à analyser les signaux de commande générés par une telle unité. Un tel simulateur fonctionne en temps réel et simule, par exemple, le moteur, les freins ou l'inertie d'une motrice ferroviaire, de même que l'état des rails ou d'autres paramètres extérieurs. Un seul type de simulateur est utilisé pour le test du fonctionnement de différentes unités électroniques, le fonctionnement du simulateur étant adapté par programmation selon le type et l'utilisation de l'unité. Un tel simulateur comprend un ou plusieurs microprocesseurs destinés à traiter des signaux émis par l'unité afin de lui adresser de nouveaux signaux de simulation. Un tel simulateur est de type "hardware in the loop" ou "matériel dans la boucle de simulation".
Or, compte tenu des traitements informatiques qu'ils doivent effectuer, les programmes de simulation fonctionnent avec un temps de cycle de l'ordre de quelques dizaines de micro-secondes, ce temps de cycle étant largement supérieur à la précision recherchée, de l'ordre d'une micro-seconde pour l'unité électronique. En d'autres termes, lorsqu'il a acquis un signal généré par l'unité à contrôler, le microprocesseur ou calculateur travaille "en aveugle" pendant plusieurs dizaines de micro-secondes avant de générer un nouveau signal de simulation. On pourrait envisager d'interrompre fréquemment le fonctionnement du microprocesseur, par exemple toutes les micro-secondes, pour acquérir une nouvelle valeur de signal émis par l'unité, mais ceci perturberait de façon importante le fonctionnement du calculateur qui ne pourrait plus gérer les nombreuses valeurs acquises. En outre, une telle solution n'est pas techniquement utilisable dans le cas où l'on recherche une précision de l'ordre de la micro-seconde.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un procédé qui permet de simuler une unité électronique en temps réel avec une grande précision, une grande stabilité des signaux simulés et un contrôle efficace des signaux émis par cette unité.
Dans cet esprit, l'invention concerne un procédé qui consiste à traiter, au fur et à mesure de leur émission, certains signaux de sortie de l'unité électronique, au moyen d'au moins un circuit logique programmable, à stocker des valeurs de paramètre correspondant à ces signaux traités et à faire accéder le microprocesseur du simulateur à ces valeurs de paramètres stockées à une fréquence compatible avec sa vitesse de fonctionnement.
Grâce à l'invention, le circuit logique programmable permet d'acquérir avec une grande rapidité, c'est-à-dire en temps réel, les signaux de sortie générés par l'unité, qui peuvent être des ordres de commande de circuit GTO ou IGBT, et ce alors que le microprocesseur du simulateur est en train d'effectuer des opérations de calcul. Au terme de ces opérations de calcul, c'est-à-dire par exemple après une période de 10 milli-secondes, le microprocesseur peut alors acquérir les valeurs traitées par le circuit logique programmable pendant cette période, ces valeurs étant stockées dans une mémoire tampon. Ainsi, le positionnement dans le temps et la valeur des signaux émis par l'unité électronique peuvent être connus avec précision sans perturber le fonctionnement du microprocesseur du simulateur.
Selon des aspects avantageux de l'invention, le procédé incorpore une ou plusieurs des caractéristiques suivantes :
  • Les valeurs de paramètre stockées sont représentatives des instants de commutation de signaux logiques générés par l'unité. En particulier, ces valeurs peuvent être une image des instants de commutation, de la durée pendant laquelle une variable logique a une valeur prédéterminée et/ou de la moyenne de la valeur d'une variable logique sur une période prédéterminée. Ainsi, en fonction du type de variable contrôlée par le simulateur, celui-ci peut acquérir en une fois et rapidement, des informations représentatives des différentes valeurs instantanées des signaux au cours de la période considérée.
  • Il consiste à adresser certains au moins des signaux générés par le microprocesseur à au moins un second circuit logique programmable et à adresser à l'unité électronique des signaux de simulation générés par ce second circuit logique programmable, alors que le microprocesseur n'est pas en communication avec l'unité. En d'autres termes, les ordres générés par le microprocesseur sont délivrés à l'unité électronique par le second circuit logique programmable pendant une période dans lequel le microprocesseur est occupé, par exemple pour le calcul des prochains paramètres de commande. Grâce à cet aspect de l'invention, il est possible de commander l'unité avec des signaux émis avec une très grande précision, de l'ordre de la micro-seconde, ce qui est représentatif de certains capteurs, tels qu'un capteur de vitesse incrémental, qui peut détecter la position d'encoches sur un disque avec une précision largement inférieure à quelques dizaines de micro-secondes.
L'invention concerne également un dispositif permettant de mettre en oeuvre le procédé tel que précédemment décrit et, plus spécifiquement, un dispositif qui inclut un simulateur comprenant au moins un microprocesseur et apte à adresser à l'unité des signaux de simulation en entrée et à recevoir de celle-ci des signaux de sortie en réaction. Le simulateur comprend au moins un circuit logique programmable apte à recevoir certains au moins des signaux de sortie générés par l'unité, ce circuit logique étant apte à générer, en temps réel, des valeurs de paramètre correspondant aux signaux qu'il reçoit et à stocker ces valeurs, le micro-processeur étant apte à acquérir ces valeurs stockées.
Grâce à l'invention, le circuit logique programmable permet de capturer, en temps réel, les ordres ou signaux de sortie envoyés par l'unité électronique pendant un cycle de travail du microprocesseur, le microprocesseur utilisant les valeurs accumulées, par exemple dans une mémoire tampon, à chacun de ses cycles de travail.
Selon des aspects avantageux de l'invention, le dispositif comprend une ou plusieurs des caractéristiques suivantes :
  • Au moins un second circuit logique programmable du simulateur est apte à adresser, en temps réel, des signaux de simulation à l'unité, à partir de signaux de consigne préalablement émis par le microprocesseur. Grâce à cet aspect de l'invention, le découplage entre le fonctionnement du programme du microprocesseur, avec un temps de cycle de l'ordre de quelques dizaines de micro-secondes, et celui de l'unité, qui doit pouvoir réagir, avec une précision de l'ordre de la micro-seconde, voire moins en fonction des évolutions technologiques, à des signaux émis à n'importe quel instant, est utilisé à la fois en entrée et en sortie de l'unité électronique. Dans ce cas, les premier et second circuits logiques précités sont avantageusement réalisés physiquement dans un même circuit électronique.
  • Le ou les circuits logiques programmables est ou sont de type FPGA (Field Programmable Gate Array - Réseau de Portes Programmables par l'utilisateur). Un circuit FPGA est, comme un microprocesseur, un composant programmable par logiciel. L'utilisation de ce type de composant rapide, en association avec un processeur programmable, permet de concevoir des simulateurs de processus en temps réel génériques, adaptables à tout type de processus, c'est-à-dire à tout type d'unités électroniques et à leurs conditions d'utilisation.
  • Le simulateur comprend en outre un convertisseur analogique/numérique, permettant de transmettre au microprocesseur des signaux numériques représentatifs de signaux analogiques générés par l'unité, et/ou un convertisseur numérique analogique, permettant de transmettre à l'unité des signaux analogiques de simulation à partir de signaux numériques générés par le microprocesseur.
  • Le ou les circuits logiques sont programmés en fonction du type et/ou de l'utilisation prévue de l'unité. L'invention concerne enfin une installation de test d'unités électroniques, à embarquer sur un matériel ferroviaire ou un véhicule électrique, tel qu'un bus ou analogue, qui comprend au moins un dispositif tel que précédemment décrit. Une telle installation fonctionne de façon précise et peut être configurée en fonction des unités électroniques à contrôler et de leur environnement, par exemple du type de matériel sur lequel elles doivent être embarquées, tel qu'un train, un train à grande vitesse, un tramway, un bus, etc...
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaítront plus clairement à la lumière de la description qui va suivre de deux modes de réalisation d'un dispositif de test du fonctionnement d'une unité électronique conforme à son principe et de son mode de fonctionnement, donnée uniquement à titre d'exemple et faite en référence aux dessins annexés dans lesquels :
  • la figure 1 est une représentation schématique de principe d'un dispositif de test du fonctionnement d'une unité électronique conforme à l'invention ;
  • la figure 2 est une représentation schématique de principe de l'évolution des valeurs d'un paramètre généré par l'unité électronique de la figure 1 sur une période ΔT et
  • la figure 3 est une représentation analogue à la figure 1 pour un dispositif conforme à un second mode de réalisation de l'invention.
L'unité électronique 1 représentée à la figure 1 est prévue pour être embarquée, par exemple sur une motrice de train, afin de commander un moteur de traction. Elle comprend un microprocesseur 2 apte à générer des signaux de commande ou signaux de sortie S, en fonction de signaux d'entrée E délivrés par des systèmes de mesure ou des unités électroniques de commande maítres.
Avant son installation dans la motrice considérée, l'unité 1 est connectée à un simulateur 11 au moyen de deux faisceaux 12 et 13 de conducteurs électriques. Plus précisément, le faisceau 12 relie la sortie du simulateur 11 à l'entrée de l'unité 1 alors que le faisceau 13 relie la sortie de l'unité 1 à la ou aux entrées du simulateur 11. Le faisceau 12 permet donc de véhiculer des signaux E de simulation en entrée de l'unité 1 alors que le faisceau 13 permet de véhiculer, jusqu'au simulateur 11, des signaux de sortie S de générés par l'unité 1 et qui constituent des signaux de commande de matériel embarqués sur la motrice.
Le simulateur 11 inclut un programme qui s'exécute sur un microprocesseur 14, par exemple du type DSP (Digital Signal Processor) avec un temps de cycle de l'ordre de quelques dizaines de micro-secondes et qui est apte à générer les signaux de simulation E. Ces signaux de simulation peuvent représenter des signaux d'état de relais basse tension, des signaux émis par des capteurs en courant ou en tension, tels que des capteurs incrémentaux, ou des consignes générées par une ou plusieurs unités électroniques maítres et transmises par un réseau informatique. Le microprocesseur peut être relié à une console 15 pour sa programmation et son contrôle, de même que pour l'affichage du résultat du test. Une liaison électrique 16 est prévue à cet effet.
Les signaux de sortie S générés par l'unité 1 se décomposent en signaux rapides S1, en signaux relativement lents S2 et en signaux analogiques S3.
Les signaux relativement lents sont des signaux de commande dont le positionnement dans le temps doit être connu avec une précision de l'ordre de la milli-seconde, ce qui est compatible avec le temps de cycle du microprocesseur 14. Ces signaux peuvent donc être transmis directement au microprocesseur 14 qui acquiert leur valeur une fois par temps de cycle, c'est-à-dire toutes les quelques dizaines de micro-secondes.
Les signaux S3 sont transmis à un convertisseur analogique/numérique 17 (ADC) qui transmet un signal numérique correspondant S'3 au microprocesseur 14.
Les signaux S1 sont susceptibles d'évoluer plusieurs fois au cours d'une période ΔT de quelques dizaines de micro-secondes et leurs instants d'évolution ou de commutation doivent être connus avec précision. Ces signaux S1 peuvent être par exemple des signaux de commande de circuits GTO ou IGBT ou de relais.
Comme il ressort de la figure 2, un signal S1 peut prendre les valeurs logiques 0 ou 1 et son évolution au cours d'une période ΔT peut être caractérisée par ses instants de commutation t1, t2, t3, t4 et t5. Chaque signal S1 est transmis à une entrée d'un circuit logique programmable 18 de type FPGA qui est capable de détecter les instants t1 à t5 au cours d'une période ΔT, de même que les sens de variation du signal Si au cours de cette période. Le circuit 18 réagit avec une très grande précision aux variations du signal S1 car il s'agit d'un circuit constitué de portes logiques ET, OU et de bascules, qui peut avoir un temps de cycle inférieur à la micro-seconde.
Les valeurs détectées par le circuit 18 sont transmises, éventuellement après un traitement logique, à une mémoire tampon 19 à laquelle le microprocesseur 14 peut accéder au terme de chacune de ses périodes de travail, soit toutes les quelques dizaines de micro-secondes, pour connaítre l'évolution de chaque signal S1 au cours de la période considérée.
Les valeurs stockées dans la mémoire 19 peuvent être les références des instants t1 à t5 au cours de la période ΔT considérée, ou la valeur totale Σ1 du signal S1 au cours de cette période, qui correspond à la durée pendant laquelle le signal S1 a eu une valeur égale à 1. Cette valeur Σ1 est égale à la somme des intervalles de temps où S1 est égal à 1 soit, dans l'exemple représenté, Σ1 = ΔT - t5 + t4 - t3 + t2 - t1.
La valeur transmise à la mémoire 19 peut également être la moyenne M1 de la valeur du signal S1 au cours de la période ΔT ou tout autre valeur représentative de l'évolution du signal S1 au cours de cette période.
La valeur transmise en S'1 au microprocesseur 14 comme représentative du signal S1 peut évoluer en fonction de la programmation du circuit 18. En effet, selon la nature du paramètre S1, le type de l'unité 1 et sa configuration de fonctionnement, la valeur à transmettre au microprocesseur 14 peut être différente.
Grâce à l'invention, le circuit 18 fonctionne comme un "échantillonneur asynchrone" pour le microprocesseur 14 et permet une interrogation de certaines sorties de l'unité 1 en temps réel, alors que le fonctionnement du microprocesseur 14 n'est pas perturbé et que la puissance de calcul requise pour le microprocesseur 14 n'est pas trop importante.
Dans le second mode de réalisation de l'invention représenté à la figure 3, les éléments analogues à ceux du mode de réalisation de la figure 1 portent des références identiques.
Ce mode de réalisation diffère du précédent essentiellement en ce que les signaux d'entrée E de l'unité 1 sont divisés en des signaux rapides E1, en des signaux relativement lents E2 et en des signaux analogiques E3.
Les signaux E2 sont générés directement par le microprocesseur 14 à la fin de chaque cycle de fonctionnement et transmis à l'unité 1. Les signaux E3 sont générés par un convertisseur numérique analogique (DAC) 27 à partir de signaux numériques E'3 fournis par le microprocesseur 14.
Les signaux rapides E1 sont générés par un second circuit logique programmable 28, du type du circuit 18 et qui est associé à une mémoire tampon 29.
Le fonctionnement est le suivant : Au terme d'un cycle de calcul, le microprocesseur 14 adresse à la mémoire 29 des signaux E'1 représentatifs des différentes valeurs que doivent prendre les signaux E1 au cours de la période suivante ΔT. A partir de ces valeurs, et alors que le microprocesseur 14 calcule des valeurs suivantes et n'est pas en communication avec l'unité 1 ou la mémoire 29, le circuit 28 génère les signaux E1 de simulation de l'unité 1. En d'autres termes, le circuit 28 permet de simuler, avec une grande précision dans le temps, les variations des signaux E1 au cours d'une période ΔT pendant laquelle le microprocesseur 14 est dédié aux opérations de calcul.
Par exemple, le circuit 28 peut générer des impulsions simulant un capteur de vitesse incrémental qui, dans la réalité, peuvent être une succession de créneaux avec une période de l'ordre de quelques micro-secondes.
Selon un aspect avantageux mais non obligatoire de l'invention, les circuits 18 et 28 sont reliés directement par une liaison 38 qui permet une transmission directe de certains signaux S1 du circuit 18 vers le circuit 28, ces signaux étant traités par les circuits 18 et 28 pour générer certains signaux de sortie E1 sans intervention du micro-processeur 14.
Les circuits 18 et 28 sont représentés comme deux entités séparées à la figure 3. Il est possible et avantageux de les intégrer dans un unique circuit électronique.
Quel que soit le mode de réalisation utilisé, le ou les circuits logiques programmables 18 ou 28 peuvent être configurés, par exemple au moyen de la console 15 à laquelle ils sont reliés par des liaisons 20 et 30, en fonction du type de l'unité 1 à contrôler et/ou de son environnement ultérieur, par exemple du type de matériel ferroviaire sur lequel elle doit être embarquée.
L'utilisation de circuits de type FPGA est avantageuse sur le plan économique car de tels circuits sont rapides, bien maítrisés sur le plan technologique, donc fiables, et d'un coût abordable.
L'invention permet de simuler, en temps réel, des défauts, tels qu'un court-circuit d'un des bras d'un onduleur à haute tension et de vérifier, en temps réel la chronologie des impulsions de commande générées par une unité 1 pour les semi conducteurs de puissance simulés tels que des circuits GTO ou IGBT. En particulier, le temps minimum d'allumage ou le temps minimal de non allumage peuvent être efficacement contrôlés.
L'invention a été représentée avec un unique circuit FPGA en entrée et, dans le mode de réalisation de la figure 3, un unique circuit FPGA en sortie. Bien entendu, plusieurs tels circuits peuvent être utilisés, en entrée et/ou en sortie, selon la nature des signaux à traiter.

Claims (11)

  1. Procédé de test du fonctionnement d'une unité électronique (1) par simulation, ladite unité étant apte à générer des signaux logiques (S) à des instants spécifiques alors que la simulation est réalisée par un simulateur (11) équipé d'au moins un microprocesseur (14), ledit simulateur adressant à ladite unité des signaux de simulation en entrée (E) et recevant de celle-ci des signaux de sortie (S) en réaction, caractérisé en ce qu'il consiste à traiter, au fur et à mesure de leur émission, certains signaux de sortie (S1) de ladite unité au moyen d'au moins un circuit logique programmable (18), à stocker des valeurs (t1 - t5, Σ1, M1) de paramètres correspondant auxdits signaux traités et à faire accéder ledit microprocesseur (14) auxdites valeurs de paramètres stockées, à une fréquence compatible avec sa vitesse de fonctionnement.
  2. Procédé selon la revendication 1, caractérisé en ce que lesdites valeurs de paramètres sont représentatives des instants de commutation (t1 - t5) de signaux logiques (S1) générés par ladite unité.
  3. Procédé selon la revendication 2, caractérisé en ce que lesdites valeurs de paramètres sont une image desdits instants de commutation (t1 - t5), de la durée (Σ1) pendant laquelle une variable logique a une valeur prédéterminée et/ou de la moyenne (M1) de la valeur d'une variable logique sur une période prédéterminée.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il consiste à adresser certains au moins des signaux (E'1) générés par ledit microprocesseur (14) à au moins un second circuit logique programmable (28) et à adresser à ladite unité (1) des signaux de simulation (E1) générés par ledit second circuit logique programmable alors que ledit microprocesseur n'est pas en communication avec ladite unité.
  5. Dispositif de test du fonctionnement d'une unité électronique (1) par simulation, ladite unité étant apte à générer des signaux logiques (S) à des instants spécifiques, ledit dispositif incluant un simulateur (11) qui comprend au moins un microprocesseur (14) et qui est apte à adresser à ladite unité des signaux de simulation en entrée (E) et à recevoir de celle-ci des signaux de sortie (S) en réaction, caractérisé en ce que ledit simulateur comprend au moins un circuit logique programmable (18) apte à recevoir certains au moins (S1) desdits signaux de sortie, ledit circuit logique étant apte à générer, en temps réel, des valeurs (t1-t5, Σ1, M1) de paramètres correspondant aux signaux (S1) qu'il reçoit et à stocker lesdites valeurs de paramètres, ledit microprocesseur (14) étant apte à acquérir lesdites valeurs de paramètres stockées.
  6. Dispositif selon la revendication 5, caractérisé en ce que ledit simulateur (11) comprend au moins un second circuit logique programmable (28) apte à adresser, en temps réel, des signaux de simulation (E1) à ladite unité, à partir de signaux de consigne (E'1) préalablement émis par ledit microprocesseur (14).
  7. Dispositif selon la revendication 6, caractérisé en ce que ledit circuit logique programmable (18) apte à recevoir certains signaux de sortie (S1) et ledit second circuit logique programmable (28) apte à adresser des signaux de simulation (E1) à ladite unité (1) sont réalisés dans un même circuit électronique.
  8. Dispositif selon l'une des revendications 5 à 7, caractérisé en ce que ledit ou lesdits circuits logiques programmables (18, 28) est ou sont de type FPGA (Field Programmable Gate Array - Réseau de Portes Programmables par l'utilisateur.
  9. Dispositif selon l'une des revendications 5 à 8, caractérisé en ce que ledit simulateur (11) comprend en outre un convertisseur analogique/numérique (17), permettant de transmettre audit microprocesseur (14) des signaux numériques (S'3) représentatifs de signaux analogiques (S3) générés par ladite unité (1), et/ou un convertisseur numérique/analogique (27), permettant de transmettre à ladite unité (1) des signaux analogiques de simulation (E3) à partir de signaux numériques (E'3) générés par ledit microprocesseur.
  10. Dispositif selon l'une des revendications 5 à 9, caractérisé en ce que ledit ou lesdits circuits logiques (18, 28) sont programmés en fonction du type et/ou de l'utilisateur prévue de ladite unité (1).
  11. Installation de test d'unités électroniques à embarquer sur un matériel ferroviaire ou un véhicule électrique, caractérisée en ce qu'elle comprend au moins un dispositif (11 - 23) selon l'une des revendications 5 à 10.
EP00402227A 1999-08-31 2000-08-04 Procédé et dispositif de test du fonctionnement d'une unité électronique par simulation et installation de test d'unité à embarquer sur un matériel ferroviaire ou un véhicule électrique Expired - Lifetime EP1094390B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911034 1999-08-31
FR9911034A FR2797958B1 (fr) 1999-08-31 1999-08-31 Procede et dispositif de test du fonctionnement d'une unite electronique par simulation et installation de test d'unite a embarquer sur un materiel ferroviaire ou un vehicule electrique

Publications (2)

Publication Number Publication Date
EP1094390A1 true EP1094390A1 (fr) 2001-04-25
EP1094390B1 EP1094390B1 (fr) 2003-05-14

Family

ID=9549511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00402227A Expired - Lifetime EP1094390B1 (fr) 1999-08-31 2000-08-04 Procédé et dispositif de test du fonctionnement d'une unité électronique par simulation et installation de test d'unité à embarquer sur un matériel ferroviaire ou un véhicule électrique

Country Status (12)

Country Link
US (1) US7177789B1 (fr)
EP (1) EP1094390B1 (fr)
JP (1) JP2001154724A (fr)
AT (1) ATE240555T1 (fr)
AU (1) AU761669B2 (fr)
CA (1) CA2316937C (fr)
DE (1) DE60002648T2 (fr)
DK (1) DK1094390T3 (fr)
ES (1) ES2194688T3 (fr)
FR (1) FR2797958B1 (fr)
HK (1) HK1039184A1 (fr)
PT (1) PT1094390E (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645723A (zh) * 2013-12-23 2014-03-19 中国北车集团大连机车研究所有限公司 机车牵引控制单元硬件平台
CN104792547A (zh) * 2015-04-30 2015-07-22 大连楼兰科技股份有限公司 一种辅助测试obd设备的系统及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395139B2 (en) * 2001-05-08 2008-07-01 Westinghouse Rail Systems Limited Condition monitoring system
US8849642B2 (en) * 2004-12-14 2014-09-30 The Mathworks, Inc. Signal definitions or descriptions in graphical modeling environments
JP4645242B2 (ja) * 2005-03-14 2011-03-09 富士ゼロックス株式会社 質問応答システム、およびデータ検索方法、並びにコンピュータ・プログラム
JP2008175617A (ja) * 2007-01-17 2008-07-31 Mitsubishi Electric Corp 試験装置
JP4657229B2 (ja) * 2007-03-01 2011-03-23 富士通テン株式会社 シミュレーション装置
JP4663689B2 (ja) * 2007-06-27 2011-04-06 富士通テン株式会社 シミュレーション装置及び方法
JP5571554B2 (ja) * 2007-08-16 2014-08-13 ルノー・トラックス 自動車の車載制御装置の制御パラメータを調節するシステムおよび方法
DE102011113024B4 (de) * 2011-09-09 2013-04-11 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Werkzeug zur Bremsanlagenentwicklung für Schienenfahrzeuge
CN103605356B (zh) * 2013-11-18 2016-07-06 上海工程技术大学 一种纯电动车驱动控制器的耐久性测试装置
CN104897385B (zh) * 2015-06-03 2018-05-08 宿迁学院 电子油门踏板专用测试电路系统
CN105182850A (zh) * 2015-09-08 2015-12-23 苏州宏展信息科技有限公司 一种基于电源控制器的发动机转速模拟器
DE102016203676A1 (de) 2016-03-07 2017-09-07 Siemens Aktiengesellschaft Transporteinheit mit zumindest einer Anlage
EP3726394A1 (fr) * 2019-04-17 2020-10-21 Volkswagen Aktiengesellschaft Système sur puce reconfigurable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859238A2 (fr) * 1997-02-14 1998-08-19 Schlumberger Industries Limited Système de test pour systèmes de gestion des moteurs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385278A (en) * 1981-05-26 1983-05-24 Auto-Equip, Inc. Testing apparatus for an electronic ignition system for an internal combustion engine
US4777618A (en) * 1984-07-19 1988-10-11 Nippondenso Co., Ltd. Method of storing, indicating or producing signals and apparatus for recording or producing signals
JP3594366B2 (ja) * 1995-06-30 2004-11-24 三菱自動車工業株式会社 エンジンの燃料噴射時期制御装置
US5808921A (en) * 1996-01-12 1998-09-15 Hughes Aircraft Company Interface emulation system and method for applications utilizing embedded processors
US6269020B1 (en) * 1998-02-26 2001-07-31 Altera Corporation FIFO configuration cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859238A2 (fr) * 1997-02-14 1998-08-19 Schlumberger Industries Limited Système de test pour systèmes de gestion des moteurs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANSELMANN H: "REAL-TIME SIMULATION REPLACES TEST DRIVES", TEST AND MEASUREMENT WORLD. (INC. ELECTRONICS TEST ),US,CAHNERS PUBLISHING, DENVER, vol. 16, no. 3, 15 February 1996 (1996-02-15), pages 35 - 36,38,40, XP000559454, ISSN: 0744-1657 *
WAGNER J R: "FAILURE MODE TESTING TOOL SET FOR AUTOMOTIVE ELECTRONIC CONTROLLERS", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,US,IEEE INC. NEW YORK, vol. 43, no. 1, February 1994 (1994-02-01), pages 156 - 163-163, XP000450957, ISSN: 0018-9545 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645723A (zh) * 2013-12-23 2014-03-19 中国北车集团大连机车研究所有限公司 机车牵引控制单元硬件平台
CN103645723B (zh) * 2013-12-23 2016-01-27 中国北车集团大连机车研究所有限公司 机车牵引控制单元硬件平台
CN104792547A (zh) * 2015-04-30 2015-07-22 大连楼兰科技股份有限公司 一种辅助测试obd设备的系统及方法
CN104792547B (zh) * 2015-04-30 2017-06-13 大连楼兰科技股份有限公司 一种辅助测试obd设备的系统及方法

Also Published As

Publication number Publication date
JP2001154724A (ja) 2001-06-08
CA2316937C (fr) 2009-02-10
ATE240555T1 (de) 2003-05-15
US7177789B1 (en) 2007-02-13
AU5369600A (en) 2001-03-08
HK1039184A1 (en) 2002-04-12
PT1094390E (pt) 2003-08-29
FR2797958A1 (fr) 2001-03-02
ES2194688T3 (es) 2003-12-01
AU761669B2 (en) 2003-06-05
CA2316937A1 (fr) 2001-02-28
DE60002648T2 (de) 2004-03-04
DE60002648D1 (de) 2003-06-18
FR2797958B1 (fr) 2001-10-26
EP1094390B1 (fr) 2003-05-14
DK1094390T3 (da) 2003-09-15

Similar Documents

Publication Publication Date Title
EP1094390B1 (fr) Procédé et dispositif de test du fonctionnement d&#39;une unité électronique par simulation et installation de test d&#39;unité à embarquer sur un matériel ferroviaire ou un véhicule électrique
EP0699997B1 (fr) Procédé et dispositif pour l&#39;identification de pannes dans un système complexe
CA2802577C (fr) Systeme de simulation temps reel de l&#39;environnement d&#39;un moteur d&#39;aeronef
FR2507357A1 (fr) Analyseur logique pour circuit numerique commun multiplexe
CN110688732B (zh) 用于测速测距系统的仿真测试平台及方法
EP2864083B1 (fr) Plateforme de simulation pour la validation d&#39;une architecture logicielle et matérielle d&#39;un robot
EP3073280B1 (fr) Testeur de circuits intégrés sur une galette de silicium et circuit intégré
EP0043747B1 (fr) Dispositif de contrôle acoustique à distance testable par variation de la tension d&#39;alimentation
EP0223682B1 (fr) Dispositif de cartographie sonore
EP1107011A1 (fr) Procédé et dispositif de mesure de la température de composants hyperfréquence
FR2505066A1 (fr) Procede et dispositif pour la verification d&#39;enregistreurs de route
EP0208673B1 (fr) Equipement de test automatique
EP0586281B1 (fr) Procédé et dispositif de test en temps réel avec simulation d&#39;environnement par étapes successives
FR2604528A1 (fr) Procede et dispositif de determination numerique de l&#39;amplitude de la fonction de transfert entree-sortie d&#39;un quadripole
FR2750230A1 (fr) Protocole de transmission de donnees enregistrees par un chronotachygraphe et son utilisation
FR2700863A1 (fr) Procédé et dispositif de commande d&#39;un automoteur.
FR3046246A1 (fr) Dispositif et procede de test d&#39;un systeme electronique
FR2852103A1 (fr) Procede et dispositif de test de l&#39;etalonnage d&#39;un taximetre
FR2513795A1 (fr) Procede d&#39;enregistrement de signaux numeriques et systeme enregistreur pour la mise en oeuvre de ce procede
FR2972585A1 (fr) Baie de tests d&#39;equipements aeronautiques a liaisons optiques
FR3039907A1 (fr) Dispositif d&#39;acquisition de donnees optimise pour vehicule ferroviaire comprenant au moins deux modules d&#39;acquisition et un voteur
EP3352318A1 (fr) Architecture de communication de puissance pour un aéronef
EP0115736A1 (fr) Automate d&#39;essai de chronotachygraphe
FR2617597A1 (fr) Dispositif et ensemble de test et d&#39;aide au diagnostic d&#39;une fonction remplie par un systeme electronique embarque a bord d&#39;un vehicule automobile et son procede de mise en oeuvre
CA2219585A1 (fr) Procede et dispositif pour la transmission de signaux analogiques au moyen d&#39;un systeme de transmission utilisant des lignes de transmission optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011025

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60002648

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CRONIN INTELLECTUAL PROPERTY

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030804

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030804

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030402935

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20080821

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090821

Year of fee payment: 10

Ref country code: DK

Payment date: 20090811

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090825

Year of fee payment: 10

Ref country code: PT

Payment date: 20090729

Year of fee payment: 10

Ref country code: SE

Payment date: 20090813

Year of fee payment: 10

Ref country code: NL

Payment date: 20090814

Year of fee payment: 10

Ref country code: GB

Payment date: 20090827

Year of fee payment: 10

Ref country code: FI

Payment date: 20090814

Year of fee payment: 10

Ref country code: AT

Payment date: 20090814

Year of fee payment: 10

Ref country code: DE

Payment date: 20090821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090820

Year of fee payment: 10

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20090825

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110204

BERE Be: lapsed

Owner name: *ALSTOM

Effective date: 20100831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110301

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110204

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60002648

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090914

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100805