EP1090208B1 - Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur - Google Patents

Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur Download PDF

Info

Publication number
EP1090208B1
EP1090208B1 EP99936273A EP99936273A EP1090208B1 EP 1090208 B1 EP1090208 B1 EP 1090208B1 EP 99936273 A EP99936273 A EP 99936273A EP 99936273 A EP99936273 A EP 99936273A EP 1090208 B1 EP1090208 B1 EP 1090208B1
Authority
EP
European Patent Office
Prior art keywords
steam
low
pressure
pressure stage
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99936273A
Other languages
German (de)
English (en)
Other versions
EP1090208A2 (fr
Inventor
Udo Gande
Dieter Mrosek
Hans-Joachim Endries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1090208A2 publication Critical patent/EP1090208A2/fr
Application granted granted Critical
Publication of EP1090208B1 publication Critical patent/EP1090208B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines

Definitions

  • the invention relates to a method and an apparatus for Cooling at least one low pressure stage of a steam turbine with a steam inlet and a steam outlet area, wherein the steam turbine is connected to at least one condenser or is designed as a counter-pressure turbine and wherein as Cooling medium condensate and / or steam from a cooling system a metering device is injected into the low pressure stage become.
  • the cooling effect is often limited on parts of the turbine near the steam outlet; he follows the injection in the steam inlet area can condensate agglomerates in the area of the steam inlet Splashing endangers the blading of the turbine.
  • Cooling of a low pressure steam turbine in ventilation mode is therefore a between the steam outlet and the Steam inlet of the steam turbine tapping steam into the Steam turbine fed. This is how cooling comes in the turbine, the radially outer ends of the Blades benefit from the friction on the in the turbine steam is at its highest load. The cooling effect is therefore largely limited to the areas of the turbine, in which it is desired. The cooling of other components the turbine, for example the turbine shaft, is avoided.
  • a tapping line connected to the tapping is
  • condensate is also added, especially by through a condensate transfer condensate into the steam transfer line and / or is injected into the bleed line.
  • the condensate is preferably mixed with the steam in an atomizing nozzle mixed and from this atomizer nozzle into the bleed line injected. By a distributed in fine droplets Condensate has a particularly high cooling effect.
  • the amount of steam or steam-condensate mixture supplied to the tap is approximately in accordance with EP 0 602 040 B1
  • the steam used for cooling comes from a condensate tank, which the collection, warming up and Degassing the condensate is used.
  • Steam from the condensate container, usually for the purpose of degassing the condensate Heating steam is supplied due to the coexistence of Steam and condensate saturated, possibly even with finely divided Condensate added, and is therefore particularly suitable for injection into the ventilating turbine.
  • Steam can be taken from a steam discharge through which the Ventilation operation of the steam past the low pressure turbine is directed.
  • Such a steam discharge leads, for example the steam from one of the low pressure steam turbines upstream high pressure steam turbine or from an arrangement of a high pressure steam turbine and one Medium pressure steam turbine and the low pressure steam turbine around to a heater or the like where possible the steam is cooled and condensed.
  • To receive of a steam-condensate mixture can be that of tapping steam to be supplied removed from such a heating device become.
  • the steam can also be one of the low pressure steam turbines upstream high-pressure or medium-pressure steam turbine directly or indirectly, for example one of them fed preheater or the like can be removed.
  • On such steam usually has a sufficiently high intrinsic pressure, so that one without separate pumps or the like Feed into the ventilating steam turbine can take place.
  • a control of the cooling method known from EP 0 602 040 B1 takes place between the tapping and the Steam outlet area lying temperature measuring point, depending from the measured temperature the delivery of the Steam, or the delivery of the steam-condensate mixture is regulated for tapping.
  • EP 0 083 109 A2 relates to a combined gas and Steam turbine plant with a gas turbine and a steam turbine in single shaft arrangement.
  • a heat recovery steam generator will acted upon by the hot exhaust gases from the gas turbine, whereby superheated steam to operate the steam turbine after the Heat exchanger principle is generated.
  • the facility also shows an auxiliary steam source that is spatially separated and is designed independently of the heat recovery steam generator. While When the gas and steam turbine system starts up, auxiliary steam becomes available taken from the auxiliary steam source and the steam turbine fed. This will overheat the steam turbine opposed due to ventilation losses (friction), the evaporation temperature being kept below a maximum value becomes.
  • this is the valve position a supply valve for the auxiliary steam with the help a control signal set.
  • the control signal is off a temperature measurement signal from a temperature sensor in Exhaust steam duct of the steam turbine and from a rotational speed signal (Speed) of a tachometer on the Wave of the gas and steam turbine plant determined.
  • the invention is based on the knowledge that the Temperature value for the control and / or regulation of such Cooling is too slow to deal with it an amount of coolant, particularly near a predetermined one Temperature value, neither dose satisfactorily, timely deactivation of the injection Reach steam or steam / condensate mixture lets, so that in particular by even after sufficient Cooling introduced quantities of condensate in particular the turbine blades of another hazard, in particular due to the drop impact erosion described at the beginning, are exposed.
  • a low pressure stage of a single or multi-flow steam turbine with a steam inlet area and with a steam outlet area the steam turbine having at least one condenser connected, or works as a back pressure turbine, condensate and / or steam from a cooling system is used as the cooling medium via a dosing device in the low pressure stage injected depending on one in the low pressure stage measured temperature value and from a direct or indirectly with the mass flow through the low pressure stage correlating parameters.
  • the device includes at least one in the area of the low pressure stage arranged temperature sensor, at least one device for measuring and / or determining a directly or indirectly correlating with the mass flow through the low pressure stage Parameters and a control unit for control and / or Control of the cooling system and the dosing device depending on that measured in the low pressure stage Temperature value and depending on that with mass flow correlating parameters.
  • the device for determining the correlating comprises Parameters at least two sensors, in particular Pressure sensors, which before and after the low pressure stage, in particular in the steam inlet area and in the steam outlet area Steam turbine, are arranged.
  • Pressure sensors have the advantage that they are direct or indirect correlating with the mass flow through the low pressure stage Parameters from pressure values measurable with the pressure sensors can be determined, in particular from the pressure ratio between the pressure before the low pressure stage to the pressure behind the low pressure stage.
  • the cooling medium when a specified limit value is exceeded the temperature and / or the parameter to inject.
  • the cooling medium when falling below a predetermined Limit value of the parameter no longer injected.
  • the injection of the Coolant is activated and deactivated for the injection preferably automatically.
  • the at least one temperature sensor and the pressure sensors via at least one electrical connection are connected to the control unit and at least one Part of your data and measurements to the electronic Transmit control unit. This is characterized by preference from that in it to control and / or regulate the Steam turbine existing and / or incoming data and measured values also the parameter correlating with the mass flow is determined.
  • the electronic Control unit preferably also signals for automatic Control and / or regulation of the cooling system and the metering device generated and via at least one control line transfer.
  • the electronic Control unit also signals for automatic control of the Coolant amount generated.
  • the automatic Control and / or regulation is at least the amount of coolant can be automatically regulated by means of a map, wherein the map is preferably stored in the control unit is.
  • the metering device Transported to improve the cooling effect preferably the steam at least in the area of the injection of the cooling medium also the condensate at the same time, the metering device, which in particular has at least one metering valve, preferably adjacent to the low-pressure stage to be cooled is arranged.
  • the drawing shows a schematic section of a Power plant with a low pressure steam turbine 1, one Condenser 5, a condensate container downstream of the condenser 5 18, a cooling system 6, a metering device 7 and a control unit 10; further components of the power plant, for example a generator and one with the Low pressure steam turbine rigidly coupled high pressure steam turbine, are not shown for the sake of clarity.
  • the illustrated Components of the power plant are among each other through steam connection lines 14 or condensate lines 15 connected.
  • the low-pressure steam turbine 1 is located in the steam connection line 14a a changeover switch 16, usually with Flap is formed, with the help of the high pressure steam turbine outflowing hot action steam through a another steam connection line 14b to a heat exchanger 17 can be derived.
  • the low-pressure steam turbine 1 will not be called Action steam applied.
  • the one on the low-pressure steam turbine 1 passed action steam is in the heat exchanger 17 condenses and flows as condensate to the condensate tank 18 to.
  • the low pressure steam turbine 1 is with the high pressure steam turbine rigidly coupled, so that the also not shown
  • the rotors of both steam turbines run synchronously. Becomes the action steam flowing out of the high pressure steam turbine passed the low pressure steam turbine 1, i.e. this rotates at idle, so occurs in the low pressure steam turbine 1 due to the static pressure prevailing in it, which Pressure of the steam in the downstream of the condenser 5 Condensate tank 18 corresponds to friction.
  • a cooling medium preferably condensate and / or steam
  • Steam turbine 1 is between a steam inlet area 2, the serves the application of action steam, and a steam outlet area 3, through which in the low pressure steam turbine 1 expanded steam is led to the condenser 5, a metering valve 13 arranged with a metering device 7 and the cooling system 6 is connected.
  • the condensate container 18 the condensate is heated by steam, the through a heating steam line 14c from that not shown High pressure steam turbine is fed.
  • Above the condensate level is in the condensate container 18 with Steam-filled steam space 19. This steam space 19 becomes steam removed and through a steam transfer 20 of the metering device 7 fed.
  • the metering device 7 through a condensate transfer 21 condensate from the condensate container 18 fed by means of a condensate pump 23.
  • Steam and condensate become one in the metering device 7 Steam-condensate mixture processed and then over the metering valve 13, which is adjacent to that to be cooled
  • Low pressure stage 4 is arranged, preferably injected as a function of a temperature sensor 11 temperature value measured in low pressure stage 4 and of one of each in the steam inlet area 2 and steam outlet area 3 arranged pressure sensors 8 and 9 determined measured pressure values with the mass flow through the low pressure stage 4 correlating parameters. Activation of injection of the cooling medium takes place when a predetermined one is exceeded Limit value of the temperature and / or the parameter.
  • the deactivation the cooling medium is injected when the temperature falls below a predetermined limit value of the parameter.
  • metering 7 and metering valve 13 are via control lines 12, the temperature sensor 11 and the pressure sensors 8 and 9 via at least one electrical connection 22 with the electronic one Control unit 10 connected.
  • This is preferred characterized in that for control and / or regulation the steam turbine 1 existing and / or incoming data and Measured values also the parameter correlating with the mass flow is determined and / or signals for automatic Control and / or regulation of the cooling system 6 and the metering device 7 and for the automatic control of a coolant quantity be generated.
  • This can be advantageous Automate and regulate the feed, whereby especially with regard to the amount of steam-condensate mixture fed this preferably by means of a Control unit 10 stored map takes place.
  • the cooling of a low pressure stage 4 of a steam turbine 1 according to the invention advantageously prevents in particular a danger to the blading of the steam turbine 1 due to drop erosion and is easier to control than just temperature-dependent control systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (18)

  1. Procédé de refroidissement d'au moins un étage (4) basse pression d'une turbine (1) à vapeur comprenant une partie (2) d'entrée de la vapeur et une partie (3) de sortie de la vapeur, la turbine (1) à vapeur communiquant avec au moins un condenseur (5) ou étant constituée en turbine à contre-pression, caractérisé en ce qu'il consiste à injecter comme fluide de refroidissement dans l'étage (4) basse pression par un dispositif (7) d'addition dosée du produit condensé et/ou de la vapeur provenant d'un système (6) de refroidissement et cela en fonction d'une valeur de température mesurée dans l'étage (4) basse pression et d'un paramètre corrélé directement ou indirectement au débit massique dans l'étage (4) basse pression.
  2. Procédé suivant la revendication 1,
       caractérisé en ce que l'on détermine le paramètre corrélé au débit massique au moyen d'au moins un capteur (8) monté en amont et d'au moins un capteur (9) monté en aval de l'étage (4) basse pression, notamment de capteurs de pression.
  3. Procédé suivant la revendication 2,
       caractérisé en ce que l'on détermine le paramètre de corrélation à partir de valeurs de pression mesurées par les capteurs (8, 9) de pression, notamment à partir du rapport de pression entre la pression en amont de l'étage (4) basse pression et la pression en aval de l'étage (4) basse pression.
  4. Procédé suivant l'une des revendications précédentes,
       caractérisé en ce que l'on effectue l'activation de l'injection du fluide de refroidissement lorsqu'une valeur limite prescrite de la température et/ou du paramètre est dépassée.
  5. Procédé suivant l'une des revendications précédentes,
       caractérisé en ce que l'on effectue la désactivation de l'injection du fluide de refroidissement lorsque l'on passe en-dessous d'une valeur limite prescrite du paramètre.
  6. Procédé suivant la revendication 4 ou 5,
       caractérisé en ce que l'on effectue automatiquement l'activation et la désactivation de l'injection du fluide de refroidissement.
  7. Procédé suivant l'une des revendications précédentes, dans lequel la turbine (1) à vapeur a une unité (10) électronique de commande, caractérisé en ce que l'on détermine sur l'unité (10) électronique de commande au moins une partie des données des valeurs de mesure provenant d'au moins un capteur (11) de température et des capteurs (8, 9) de pression.
  8. Procédé suivant l'une des revendications précédentes,
       caractérisé en ce que l'on détermine dans l'unité (10) de commande, à partir de données de valeur de mesure présentes et/ou arrivant pour la commande et/ou la régulation de la turbine (1) à vapeur, également le paramètre corrélé au débit massique et/ou on produit des signaux de commande automatiques et/ou de régulation automatique du système (6) de refroidissement et du dispositif (7) d'addition dosée ainsi que de régulation automatique d'une quantité du fluide de refroidissement.
  9. Procédé suivant la revendication 8,
       caractérisé en ce que l'on effectue au moins la régulation automatique de la quantité du fluide de refroidissement au moyen d'une famille de courbes caractéristiques mémorisées dans l'unité (10) de commande.
  10. Procédé suivant l'une des revendications précédentes,
       caractérisé en ce qu'au moins dans la zone de l'injection du fluide de refroidissement on transporte la vapeur en même temps que le produit condensé.
  11. Dispositif de refroidissement d'au moins un étage (4) basse pression d'une turbine (1) à vapeur ayant une partie (2) d'entrée de la vapeur et une partie (3) de sortie de la vapeur, la turbine à vapeur communiquant avec au moins un condenseur (5) ou étant constituée en turbine à contre-pression et du produit condensé et/ou de la vapeur provenant d'un système (6) de refroidissement pouvant être injecté en tant que fluide de refroidissement par l'intermédiaire d'un dispositif (7) d'addition dosée dans l'étage (4) basse pression, comprenant
    au moins un capteur (11) de température disposé dans la zone de l'étage (4) basse pression,
    au moins un dispositif (8, 9) de détermination d'un paramètre corrélé directement où indirectement au débit massique dans l'étage (4) basse pression ainsi que
    une unité (10) de commande destinée à commander et/ou à commander le système (6) de refroidissement et le dispositif (7) d'addition dosée en fonction de la valeur de température mesurée par le capteur (11) de température et en fonction du paramètre corrélé au débit massique.
  12. Dispositif suivant la revendication 11,
       caractérisé en ce que le dispositif de détermination du paramètre corrélé comprend au moins deux capteurs (8, 9) qui sont disposés en amont et en aval de l'étage (4) basse pression.
  13. Dispositif suivant la revendication 11 ou 12,
       caractérise en ce que le au moins un capteur (8) disposé en amont de l'étage (4) basse pression est disposé dans la partie (2) d'entrée de la vapeur de la turbine (1) à vapeur.
  14. Dispositif suivant l'une des revendications 11 à 13,
       caractérisé en ce que le au moins un capteur (8) disposé en aval de l'étage (4) basse pression est disposé dans la partie (2) de sortie de la vapeur de la turbine (1) à vapeur, notamment dans le condenseur (5) communiquant avec la turbine (1) à vapeur.
  15. Dispositif suivant l'une des revendications 11 à 14,
       caractérisé en ce que les capteurs (8, 9) sont des capteurs de pression.
  16. Dispositif suivant l'une des revendications 11 à 15,
       caractérisé en ce que le au moins un capteur (11) de température et les capteurs (8, 9) de pression sont reliés à l'unité (10) de commande par au moins une ligne (22) électrique.
  17. Dispositif suivant l'une des revendications 11 à 16,
       caractérisé en ce qu'il est mémorisé dans l'unité (10) de commande une famille de courbes caractéristiques, notamment pour la régulation automatique d'une quantité de fluide de refroidissement.
  18. Dispositif suivant l'une des revendications 11 à 17,
       caractérisé en ce que le dispositif (7) d'addition dosée, qui a notamment au moins une vanne (13) de dosage, est disposé au voisinage de l'étage (4) basse pression à refroidir.
EP99936273A 1998-05-26 1999-05-19 Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur Expired - Lifetime EP1090208B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19823251A DE19823251C1 (de) 1998-05-26 1998-05-26 Verfahren und Vorrichtung zur Kühlung einer Niederdruckstufe einer Dampfturbine
DE19823251 1998-05-26
PCT/DE1999/001493 WO1999061758A2 (fr) 1998-05-26 1999-05-19 Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur

Publications (2)

Publication Number Publication Date
EP1090208A2 EP1090208A2 (fr) 2001-04-11
EP1090208B1 true EP1090208B1 (fr) 2003-05-02

Family

ID=7868810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936273A Expired - Lifetime EP1090208B1 (fr) 1998-05-26 1999-05-19 Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur

Country Status (5)

Country Link
EP (1) EP1090208B1 (fr)
JP (1) JP4253128B2 (fr)
CN (1) CN1119506C (fr)
DE (2) DE19823251C1 (fr)
WO (1) WO1999061758A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301965B2 (en) 2014-09-26 2019-05-28 Kabushiki Kaisha Toshiba Steam turbine

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152125A1 (fr) * 2000-05-05 2001-11-07 Siemens Aktiengesellschaft Méthode et dispositif pour le refroidissement de la partie antérieure de l'arbre d'une turbine à vapeur
EP1154123A1 (fr) 2000-05-10 2001-11-14 Siemens Aktiengesellschaft Procédé de refroidissement pour l'arbre d'une turbine à vapeur à haute pression
EP1630362A1 (fr) * 2004-08-23 2006-03-01 Siemens Aktiengesellschaft Turbine à vapeur comportant des aubes creuses statoriques pour le prélèvement de vapeur
ITTO20050281A1 (it) * 2005-04-27 2006-10-28 Ansaldo Energia Spa Impianto a turbina provvisto di un prelievo di vapore e di un sistema per raffreddare una sezione di turbina disposta a valle di tale prelievo
EP1998014A3 (fr) * 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'une turbine à vapeur multiple
DE102008033402A1 (de) * 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Dampfturbinenanlage sowie Verfahren zum Betreiben einer Dampfturbine
JP5866819B2 (ja) * 2011-06-27 2016-02-24 株式会社Ihi 廃熱発電装置
EP2620604A1 (fr) 2012-01-25 2013-07-31 Siemens Aktiengesellschaft Procédé pour contrôler un processus de refroidissement de composants de turbine
EP2657467A1 (fr) * 2012-04-27 2013-10-30 Siemens Aktiengesellschaft Refroidissement forcé pour installations de turbines à vapeur
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
EP2918788A1 (fr) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Procédé de refroidissement d'une turbine à vapeur
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
KR101907741B1 (ko) * 2016-06-27 2018-10-12 두산중공업 주식회사 스팀터빈의 윈디지 로스 방지 장치
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
CN107035439B (zh) * 2017-06-27 2023-09-12 中国船舶重工集团公司第七�三研究所 一种凝汽式汽轮机后汽缸冷却系统
CN107524478B (zh) * 2017-07-18 2024-05-28 华电电力科学研究院有限公司 用于抽凝背系统的低压缸冷却装置及其应用
CN108952844A (zh) * 2018-07-13 2018-12-07 哈尔滨汽轮机厂有限责任公司 一种200mw超高压背压式汽轮机
CN109736904B (zh) * 2019-03-08 2024-02-27 张黎明 一种消除低压缸胀差、变形的温度控制系统及方法
CN110439635A (zh) * 2019-06-05 2019-11-12 上海发电设备成套设计研究院有限责任公司 针对汽轮机切缸运行下的长叶片冷却系统及方法
CN111677569B (zh) * 2020-05-30 2024-10-01 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种汽轮机低压缸进汽全切后低压缸冷却系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
JPS58117306A (ja) * 1981-12-29 1983-07-12 Hitachi Ltd コンバインドプラント
DE4129518A1 (de) * 1991-09-06 1993-03-11 Siemens Ag Kuehlung einer niederbruck-dampfturbine im ventilationsbetrieb
JP2990985B2 (ja) * 1992-12-16 1999-12-13 富士電機株式会社 蒸気タービンの翼温度上昇防止装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301965B2 (en) 2014-09-26 2019-05-28 Kabushiki Kaisha Toshiba Steam turbine

Also Published As

Publication number Publication date
EP1090208A2 (fr) 2001-04-11
WO1999061758A2 (fr) 1999-12-02
JP2002516946A (ja) 2002-06-11
WO1999061758A3 (fr) 2000-01-13
DE19823251C1 (de) 1999-07-08
CN1119506C (zh) 2003-08-27
DE59905336D1 (de) 2003-06-05
CN1306600A (zh) 2001-08-01
JP4253128B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
EP1090208B1 (fr) Procede et dispositif pour le refroidissement d'un etage basse pression d'une turbine a vapeur
EP0602040B1 (fr) Refroidissement d'une turbine a vapeur basse pression en mode ventilation
DE102011000347B4 (de) Gas- und Dampfturbinenkraftwerk mit einem Heiß- und Warmwasserzufuhren enthaltenden Brennstoffheizsystem
DE69630359T2 (de) Gasturbine mit Wassereinspritzung
DE69828337T2 (de) Gasturbine
DE69504240T2 (de) Dampfkühlung mit Reservekühlung durch Luft für eine Gasturbine
EP0929736B1 (fr) Turbine a vapeur et procede pour le refroidissement d'une turbine a vapeur fonctionnant en mode ventilation
EP1442203A1 (fr) Procede de regulation des debits massiques d'air de refroidissement d'un ensemble turbine a gaz
CH702739A2 (de) Brennstoffzufuhrsystem für eine Gasturbine.
DE102010036487A1 (de) System und Verfahren zum Liefern von Brennstoff an eine Gasturbine
DE102011008649A1 (de) Turbinenreinigung
DE10123489A1 (de) Vorrichtung zum Kühlen einer Materialbahn
DE68903746T2 (de) Startmethode und -vorrichtung fuer eine gasturbine.
EP1956294A1 (fr) Installation de combustion et procédé de fonctionnement d'une installation de combustion
WO2010009839A2 (fr) Dispositif à cycle à vapeur et procédé de commande de ce dispositif
EP2781698A1 (fr) Turbine à gaz et procédé de fonctionnement de la turbine à gaz
EP2828507B1 (fr) Procédé de détermination d'au moins une température de combustion pour le réglage d'une turbine à gaz
DE69524900T2 (de) Kraftstoffregelsystem für eine Gasturbine
DE2938631B1 (de) Dampfkraftanlage mit luftgekuehltem Dampfkondensator
WO2012143272A1 (fr) Système de transfert de chaleur et procédé pour chauffer un gaz de travail
DE704134C (de) Regelverfahren fuer Anlagen zur Erzeugung von heissen Gasen unter Druck, vornehmlich von heisser Druckluft
EP2837896B1 (fr) Système d'humidification de l'air et procédé destiné à humidifier un flux d'air
DE1035158B (de) Verfahren zum Betrieb einer Dampfkraft-anlage mit einem nach dem Einrohrsystem und vorzugsweise mit ueberkritischem Druck arbeitenden Zwangdurchlauf-Dampferzeuger und Vorrichtung zur Ausfuehrung des Verfahrens
WO2015121035A1 (fr) Procédé de fonctionnement d'un train de compresseurs et train de compresseurs
EP3023582A1 (fr) Installation de turbine à gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59905336

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160512

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160512

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160802

Year of fee payment: 18

Ref country code: DE

Payment date: 20160720

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59905336

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531