EP1088385A1 - Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor - Google Patents

Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor

Info

Publication number
EP1088385A1
EP1088385A1 EP00922532A EP00922532A EP1088385A1 EP 1088385 A1 EP1088385 A1 EP 1088385A1 EP 00922532 A EP00922532 A EP 00922532A EP 00922532 A EP00922532 A EP 00922532A EP 1088385 A1 EP1088385 A1 EP 1088385A1
Authority
EP
European Patent Office
Prior art keywords
electric motor
rotor
motor according
electrical conductor
position sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00922532A
Other languages
English (en)
French (fr)
Inventor
Frank Kuehnel
Wolfgang Warnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Mannesmann VDO AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann VDO AG, Siemens AG filed Critical Mannesmann VDO AG
Publication of EP1088385A1 publication Critical patent/EP1088385A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors

Definitions

  • Electronically controlled electric motor intended for use in an environment containing solvents
  • the invention relates to an electronically controlled electric motor intended for use in a solvent-containing environment and having at least one rotor carrying permanent magnets and a stator having coils, in which position sensors are arranged in the stator for determining a commutation time.
  • Such electric motors are often referred to as electronically commutated direct current motors and are used, for example, in fuel tanks to drive a fuel pump. If the coils are arranged in the stator, the electric motor does not require carbon brushes for the transmission of electrical energy.
  • the electric motor is characterized as an inexpensive drive with a long service life in the lower and medium power range.
  • Hall sensors are generally used as position sensors.
  • the Hall sensors have semiconductor chips with connection contacts.
  • the semiconductor chips and the connection contacts are usually coated with plastic.
  • a disadvantage of the known position sensors is that the semiconductor wafers are constructed in a very complex manner due to their sheathing. Furthermore, the semiconductor chips, solder joints of the connection contacts are not resistant to solvents in the long run.
  • Plastic sheathing also does not offer adequate protection against the diffusion of solvents, so that despite the sheathing, the semiconductor chips are attacked by the solvents. As a result of this damage to the semiconductor wafers, the position of the rotor can no longer be reliably detected with the position sensor.
  • the invention is based on the problem of designing an electric motor of the type mentioned at the outset in such a way that it can be produced as inexpensively as possible and has a very high resistance to solvents.
  • the position sensors have an electrical conductor which generates a signal when the magnetic field is movable, and in that the electrical conductor is made in one piece with connecting lines.
  • the position sensor of the electric motor according to the invention does not require a sheathing, since an electrical conductor, such as a copper wire, is not attacked by solvents.
  • an electrical conductor such as a copper wire
  • particularly inexpensive position sensors can be used in the electric motor according to the invention. Due to the one-piece manufacture of the electrical conductor with the connecting lines, the position sensor can also be installed very easily and does not require soldering points which are not solvent-resistant. The electric motor according to the invention can thus be manufactured particularly cost-effectively and has a very high resistance to the solvents.
  • Another advantage of this design is that the position sensor can be arranged very close to the magnet of the rotor, so that the position of the rotor can be determined particularly precisely.
  • connection lines of the position sensor could, for example, be screwed to further lines in order to avoid non-solvent-resistant solder joints.
  • it helps if the connecting lines of the position sensor are led to a solvent-free space.
  • the connecting lines can thus be led to outside of the fuel tank.
  • the position of the rotor can be determined particularly precisely if the electrical conductor is designed as a coil.
  • the coil can be arranged between the winding strands of the stator.
  • the position of the rotor can be easily determined according to another advantageous development of the invention if the electrical conductor is designed as a pulse wire arranged transversely to the movement of the magnetic poles of the rotor.
  • the position sensor can be arranged at a position distant from the permanent magnets of the rotor if the rotor has position magnets arranged opposite to the position sensor and situated away from its permanent magnets. This also prevents the signals from the position sensor from being falsified by electrical currents flowing in the coils of the stator. Furthermore, more position magnets can be arranged in the electric motor according to the invention than the rotor has permanent magnets. This enables the position of the rotor to be determined particularly precisely.
  • a disk is arranged, which is divided into several areas, the areas being magnetized differently.
  • the invention allows numerous embodiments. To further clarify its basic principle, four of them are shown in the drawing and are described below. This shows in
  • FIG. 1 shows a schematic illustration of an electric motor according to the invention
  • FIGS 2 to 4 further embodiments of the electric motor according to the invention in schematic representations.
  • FIG. 1 schematically shows an electric motor with a housing 1 and a cylindrical rotor 3 arranged on a rotatably mounted shaft 2.
  • the rotor 3 has several permanent magnets 4 of the rotor 3 opposite coils 5.
  • the coils 5 are fastened in the housing 1.
  • Position sensors 6 for detecting the position of the rotor 3 are arranged between the coils 5.
  • the electrical current supplied to the coils 5 is regulated on the basis of the signals from the position sensors 6.
  • the electric motor is often referred to as an electronically commutated DC motor.
  • the position sensors 6 each have electrical conductors 8 made in one piece with connecting lines 7 which extend outside the housing 1.
  • the connecting lines 7 are connected to connecting contacts 9 on the outside of the housing 1. Control electronics (not shown) of the electric motor can be connected to these connection contacts 9.
  • FIG. 2 schematically shows a further embodiment of the electric motor, in which the position sensors 6 have electrical conductors 10 designed as pulse wires.
  • the electrical conductors 10 are arranged parallel to the outer surface of the rotor 3 and are made in one piece with connecting lines 11. As with the electric motor from FIG. 1, the position sensors 6 are arranged between the coils 5.
  • FIG. 3 schematically shows a further embodiment of the electric motor, in which a disk 13 having position magnets 12 is attached to the shaft 2 at a distance from the permanent magnets 4 of the rotor 3.
  • the position sensors 6 face the disk 13 with the position magnets 12 and are therefore in a position remote from the coils 5.
  • the position sensors 6 have electrical conductors 14 wound into a coil.
  • FIG. 4 schematically shows a further embodiment of the electric motor, in which the position sensors 6 of the disk 13 with the position magnets 12 have opposite electrical conductors 15 which are designed as pulse wires.

Abstract

Ein elektronisch gesteuerter Elektromotor hat in einem Stator (2) angeordnete, Permanentmagneten (4) eines Rotors (3) gegenüberstehende Spulen (5) als Positionssensoren (6). Die Spulen (5) sind einteilig mit Anschlussleitungen (7) gefertigt. Hierdurch kann der Elektromotor in einer Lösungsmittel aufweisenden Umgebung eingesetzt werden. Weiterhin gestaltet sich der Elektromotor besonders kostengünstig.

Description

Beschreibung
Für einen Einsatz in einer Lösungsmittel aufweisenden Umgebung vorgesehener, elektronisch gesteuerter Elektromotor
Die Erfindung betrifft einen für einen Einsatz in einer Lösungsmittel aufweisenden Umgebung vorgesehenen, elektronisch gesteuerten Elektromotor mit zumindest einem Permanentmagnete tragenden Rotor und mit einem Spulen aufweisenden Stator, bei dem im Stator Positionssensoren zur Ermittlung eines Kommutierungszeitpunktes angeordnet sind.
Solche Elektromotoren werden häufig als elektronisch kommutierte Gleichstrommotoren bezeichnet und beispielsweise in Kraftstoffbehältern zum Antrieb einer Kraftstoffpumpe eingesetzt. Sind die Spulen im Stator angeordnet, benötigt der Elektromotor keine Kohlebürsten zur Übertragung von elektrischer Energie. Der Elektromotor zeichnet sich damit als preisgünstiger Antrieb mit einer langen Lebensdauer im unteren und mittleren Leistungsbereich aus. Als Positionssensoren werden in der Regel Hallsensoren eingesetzt. Die Hallsensoren weisen Halbleiterplättchen mit Anschlußkontakten auf. Die Halbleiterplättchen und die Anschlußkontakte sind meist mit Kunststoff ummantelt. Nachteilig bei den bekannten Positionssensoren ist, daß die Halbleiterplättchen durch ihre Ummantelung sehr aufwendig aufgebaut sind. Weiterhin sind die Halbleiterplättchen, Lötstellen der Anschlußkontakte auf Dauer nicht lösungsmittelbeständig. Auch Kunststoffummantelungen bieten keinen ausreichenden Schutz gegen die Diffusion von Lösungsmitteln, so daß trotz Ummantelung die Halbleiterplättchen von den Lösungsmitteln angegriffen werden. Durch diese Schädigungen der Halbleiterplättchen kann die Position des Rotors mit dem Positionssensor nicht mehr zuverlässig erfaßt werden kann. Der Erfindung liegt das Problem zugrunde, einen Elektromotor der eingangs genannten Art so zu gestalten, daß er möglichst kostengünstig herstellbar ist und eine sehr hohe Beständigkeit gegen Lösungsmittel hat.
Dieses Problem wird erfindungsgemäß dadurch gelöst, daß die Positionssensoren einen bei einem beweglichen Magnetfeld ein Signal erzeugenden, elektrischen Leiter aufweisen und daß der elektrische Leiter einteilig mit Anschlußleitungen gefertigt ist.
Durch diese Gestaltung benötigt der Positionssensor des erfindungsgemäßen Elektromotors keine Ummantelung, da ein elektrischer Leiter, wie beispielsweise ein Kupferdraht, von Lösungsmitteln nicht angegriffen wird. Hierdurch lassen sich in dem erfindungsgemäßen Elektromotor besonders kostengünstige Positionssensoren einsetzen. Durch die einteilige Fertigung des elektrischen Leiters mit den Anschlußleitungen läßt sich der Positionssensor zudem sehr einfach montieren und benötigt keine nicht lösungsmittelbeständigen Lötstellen. Der erfindungsgemäße Elektromotor läßt sich damit besonders kostengünstig herstellen und weist eine sehr hohe Resistenz gegen die Lösungsmittel auf. Ein weiterer Vorteil dieser Gestaltung besteht darin, daß der Positionssensor sehr nahe an dem Magneten des Rotors angeordnet werden kann, so daß sich die Position des Rotors besonders exakt bestimmen läßt.
Die Anschlußleitungen des Positionssensors könnten beispielsweise zur Vermeidung von nicht lösungsmittelbeständigen Lötstellen mit weiterführenden Leitungen verschraubt sein. Zur weiteren Vereinfachung der Montage des erfindungsgemäßen Elektromotors trägt es jedoch bei, wenn die Anschlußleitungen des Positionssensors bis zu einem lösungsmittelfreien Raum geführt sind. Bei dem zum Antrieb der im Kraftstoffbehälter eines Kraftfahrzeuges angeordneten Kraftstoffpumpe vorgesehenen Elektromotor können die Anschlußleitungen damit bis außerhalb des Kraftstoffbehälters geführt sein.
Die Position des Rotors läßt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung besonders genau bestimmen, wenn der elektrische Leiter als Spule ausgebildet ist. Die Spule kann hierfür zwischen den Wicklungssträngen des Stators angeordnet werden.
Bei besonders niedrigen Drehgeschwindigkeiten des Rotors läßt sich die Position des Rotors gemäß einer anderen vorteilhaften Weiterbildung der Erfindung einfach bestimmen, wenn der elektrische Leiter als quer zu der Bewegung der Magnetpole des Rotors angeordneter Impulsdraht ausgebildet ist.
Häufig ist es aus Platzgründen nicht möglich, den Positionssensor innerhalb der Spulen des Stators anzuordnen. Der Positionssensor läßt sich gemäß einer anderen vorteilhaften Weiterbildung der Erfindung an einer von den Permanentmagneten des Rotors entfernten Stellung anordnen, wenn der Rotor von seinen Permanentmagneten entfernt angeordnete, dem Positionssensor gegenüberstehende Positionsmagnete aufweist. Hierdurch läßt sich zudem eine Verfälschung der Signale des Positionssensors durch in den Spulen des Stators fließenden elektrischen Strömen vermeiden. Weiterhin kann man in dem erfindungsgemäßen Elektromotor mehr Positionsmagnete anordnen, als der Rotor Permanentmagnete hat. Hierdurch läßt sich die Position des Rotors besonders genau bestimmen.
In einer weiteren Ausgestaltung ist statt der Positionsmagnete eine Scheibe angeordnet, die in mehrere Bereiche unterteilt ist, wobei die Bereiche unterschiedlich magnetisiert sind. Die Erfindung läßt zahlreiche Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips sind vier davon in der Zeichnung dargestellt und werden nachfolgend beschrieben. Diese zeigt in
Figur 1 eine schematische Darstellung eines erfindungsgemäßen Elektromotors,
Figuren 2 bis 4 weitere Ausführungsformen des erfindungsgemäßen Elektromotors in schematischen Darstellungen.
Die Figur 1 zeigt schematisch einen Elektromotor mit einem ein Gehäuse 1 und einem zylinderförmigen, auf einer drehbar gelagerten Welle 2 angeordneten Rotor 3. Der Rotor 3 hat mehrere Permanentmagneten 4 des Rotors 3 gegenüberstehende Spulen 5. Die Spulen 5 sind in dem Gehäuse 1 befestigt. Zwischen den Spulen 5 sind Positionssensoren 6 zur Erfassung der Position des Rotors 3 angeordnet. Anhand der Signale der Positionssensoren 6 wird den Spulen 5 zugeführter elektrischer Strom geregelt. Der Elektromotor wird häufig als elektronisch kommutierter Gleichstrommotor bezeichnet. Die Positionssensoren 6 haben jeweils einteilig mit bis außerhalb des Gehäuses 1 geführten Anschlußleitungen 7 gefertigte elektrische Leiter 8. An der Außenseite des Gehäuses 1 sind die Anschlußleitungen 7 mit Anschlußkontakten 9 verbunden. An diesen Anschlußkontakten 9 läßt sich eine nicht dargestellte Steuerelektronik des Elektromotors anschließen. Die elektrischen Leiter 8 sind zu einer Spule gewickelt. Die Permanentmagnete 4 erzeugen bei einer Drehung des Rotors 3 Induktionsströme innerhalb der zu der Spule gewickelten elektrischen Leiter 8. Die elektrischen Leiter 9 sind beispielsweise aus Kupferdraht gefertigt. Figur 2 zeigt schematisch eine weitere Ausführungsform des Elektromotors, bei dem die Positionssensoren 6 als Impulsdrähte ausgebildete elektrische Leiter 10 haben. Die elektrischen Leiter 10 sind parallel zu der Mantelfläche des Rotors 3 angeordnet und einteilig mit Anschlußleitungen 11 gefertigt. Wie bei dem Elektromotor aus Figur 1 sind die Positionssensoren 6 zwischen den Spulen 5 angeordnet.
Figur 3 zeigt schematisch eine weitere Ausführungsform des Elektromotors, bei dem von den Permanentmagneten 4 des Rotors 3 entfernt eine Positionsmagnete 12 aufweisende Scheibe 13 auf der Welle 2 befestigt ist. Die Positionssensoren 6 stehen der Scheibe 13 mit den Positionsmagneten 12 gegenüber und befinden sich damit in einer von den Spulen 5 entfernten Position. Die Positionssensoren 6 haben zu einer Spule gewik- kelte elektrische Leiter 14.
Figur 4 zeigt schematisch eine weitere Ausführungsform des Elektromotors, bei dem die Positionssensoren 6 der Scheibe 13 mit den Positionsmagneten 12 gegenüberstehende, als Impulsdrähte ausgebildete elektrische Leiter 15 aufweisen.

Claims

Patentansprüche
1. Für einen Einsatz in einer Lösungsmittel aufweisenden Umgebung vorgesehener, elektronisch gesteuerter Elektromotor mit zumindest einem Permanentmagnete tragenden Rotor und mit einem Spulen aufweisenden Stator, bei dem im Stator Positionssensoren zur Ermittlung eines Kommutierungszeitpunktes angeordnet sind, dadurch gekennzeichnet, daß die Positionssensoren (6) einen bei einem beweglichen Magnetfeld ein Signal erzeugenden elektrischen Leiter (8, 10, 14, 15) aufweisen und daß der elektrische Leiter (8, 10, 14, 15) einteilig mit Anschlußleitungen (7, 11 ) gefertigt ist.
2. Elektromotor nach Anspruch 1 , dadurch gekennzeichnet, daß die Anschlußleitungen (7, 11 ) des Positionssensors (6) bis zu einem lösungsmittelfreien Raum geführt sind.
3. Elektromotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der elektrische Leiter (8, 14) als Spule ausgebildet ist.
4. Elektromotor nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der elektrische Leiter (10, 15) als quer zu der Bewegung der Magnetpole des Rotors (4) angeordneter Impulsdraht ausgebildet ist.
5. Elektromotor nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Rotor (3) von seinen Permanentmagneten (4) entfernt angeordnete, dem Positionssensor (6) gegenüberstehende Positionsmagnete (12) aufweist. Elektromotor nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Rotor (3) eine von seinen Permanentmagneten (4) entfernt angeordnete Scheibe (13) besitzt, die im Wirkverbindung zu dem Positionssensor (6) steht und die unterschiedlich magnetisierte Bereiche aufweist.
EP00922532A 1999-04-13 2000-03-22 Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor Withdrawn EP1088385A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19916528 1999-04-13
DE19916528A DE19916528A1 (de) 1999-04-13 1999-04-13 Für den Einsatz in einer Lösungsmittel aufweisenden Umgebung vorgesehener, elektronisch gesteuerter Elektromotor
PCT/EP2000/002509 WO2000062405A1 (de) 1999-04-13 2000-03-22 Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor

Publications (1)

Publication Number Publication Date
EP1088385A1 true EP1088385A1 (de) 2001-04-04

Family

ID=7904322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00922532A Withdrawn EP1088385A1 (de) 1999-04-13 2000-03-22 Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor

Country Status (9)

Country Link
US (1) US6759773B1 (de)
EP (1) EP1088385A1 (de)
JP (1) JP2002542750A (de)
KR (1) KR20010052822A (de)
CN (1) CN1197224C (de)
AU (1) AU760607B2 (de)
BR (1) BR0006027A (de)
DE (1) DE19916528A1 (de)
WO (1) WO2000062405A1 (de)

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2545422A (en) * 1945-02-13 1951-03-13 Byron Jackson Co Motor pump
BE638291A (de) * 1962-10-10
US3764233A (en) * 1971-11-15 1973-10-09 Us Navy Submersible motor-pump assembly
US3761750A (en) * 1972-01-24 1973-09-25 Red Jacket Manuf Co Submersible electric motor
US3770635A (en) * 1972-01-24 1973-11-06 Minnesota Mining & Mfg Submersible motor seal fluid and section
JPS51129605A (en) * 1975-04-04 1976-11-11 Tasuku Eng Kk No-commutator d-c motor
DE2527041C3 (de) * 1975-06-18 1979-07-05 Danfoss A/S, Nordborg (Daenemark) Selbständig anlaufender, kollektorloser Gleichstrommotor
DE2654755A1 (de) * 1976-12-03 1978-06-08 Bosch Gmbh Robert Induktiver impulsgeber mit drehzahlunabhaengiger impulsamplitude
CA1103298A (en) * 1977-02-25 1981-06-16 Masami Uchiyama Electric motor with discrete rotor position and speed sensors
JPS5445712A (en) * 1977-09-19 1979-04-11 Hitachi Ltd Motor
US5361010A (en) * 1980-07-09 1994-11-01 Papst Licensing Gmbh Tachogenerator for speed control of electric motors
US4473259A (en) * 1980-12-24 1984-09-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Linear magnetic bearings
US4607181A (en) * 1984-12-06 1986-08-19 Hayward Tyler Inc. High temperature submersible electric motor
US4806813A (en) * 1986-03-20 1989-02-21 Canon Kabushiki Kaisha Motor
JPS62268346A (ja) * 1986-05-13 1987-11-20 Matsushita Electric Ind Co Ltd ブラシレスモ−タ
JPH07112335B2 (ja) * 1986-07-11 1995-11-29 株式会社豊田自動織機製作所 圧縮機における回転検出装置
US5325006A (en) * 1990-04-27 1994-06-28 Hitachi, Ltd. Sealed magnetic fluid bearing for polygon mirror drive motor
US5514923A (en) * 1990-05-03 1996-05-07 Gossler; Scott E. High efficiency DC motor with generator and flywheel characteristics
US5204572A (en) * 1990-09-13 1993-04-20 Sundstrand Corporation Radial magnetic coupling
US5220232A (en) * 1991-09-03 1993-06-15 Allied Signal Aerospace Stacked magnet superconducting bearing
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
US5440185A (en) * 1991-10-28 1995-08-08 Allwine, Jr.; Elmer C. Composite magnet brushless DC motor
US5436518A (en) * 1992-01-03 1995-07-25 Nihon Riken Co., Ltd. Motive power generating device
US5490319A (en) * 1992-01-29 1996-02-13 Ebara Corporation Thermotropic liquid crystal polymer composition and insulator
US5237229A (en) * 1992-04-16 1993-08-17 Shinko Electric Co., Ltd. Magnetic bearing device with a rotating magnetic field
US5625239A (en) 1992-06-03 1997-04-29 Trw Inc. Method and apparatus for sensing relative position between two relatively rotatable members using concentric rings
DE69331195T2 (de) * 1992-07-09 2002-08-22 Seiko Epson Corp Bürstenloser motor
DE4309382A1 (de) * 1993-03-23 1994-09-29 Bosch Gmbh Robert Elektronisch kommutierter Elektromotor
EP0678967A1 (de) * 1994-04-18 1995-10-25 General Electric Company Läufer für einen Permanentmagnetmotor
GB2293281A (en) * 1994-08-08 1996-03-20 British Nuclear Fuels Plc An energy storage and conversion apparatus
US5736800A (en) * 1994-10-18 1998-04-07 Iannello; Victor Light weight, high performance radial actuator for magnetic bearing systems
US5532301A (en) * 1994-12-12 1996-07-02 Caterpillar Inc. Protectively coated position sensor, the coating, and process for coating
JPH08331784A (ja) * 1995-03-24 1996-12-13 Hitachi Metals Ltd 永久磁石界磁方式回転機
DE69636505T2 (de) * 1995-06-07 2007-05-24 General Electric Co. Dynamoelektrische Maschine und deren Rotorkonstruktion
US6114788A (en) * 1996-12-10 2000-09-05 Seagate Technology L.L.C. Motor/active magnetic bearing combination structure
GB9701538D0 (en) * 1997-01-24 1997-03-12 Johnson Electric Sa Rotation detector
US6037692A (en) * 1997-12-16 2000-03-14 Miekka; Fred N. High power low RPM D.C. motor
JP2000156947A (ja) * 1998-11-17 2000-06-06 Yukio Kinoshita 磁石式電動機及び発電機
JP2001190043A (ja) * 2000-01-05 2001-07-10 Sankyo Seiki Mfg Co Ltd 磁気浮上モータ
US6392370B1 (en) * 2000-01-13 2002-05-21 Bedini Technology, Inc. Device and method of a back EMF permanent electromagnetic motor generator
JP2002112475A (ja) * 2000-09-26 2002-04-12 Hitachi Ltd 永久磁石式回転電機、これを用いた空気圧縮機および発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0062405A1 *

Also Published As

Publication number Publication date
AU4289500A (en) 2000-11-14
KR20010052822A (ko) 2001-06-25
WO2000062405A1 (de) 2000-10-19
US6759773B1 (en) 2004-07-06
CN1300462A (zh) 2001-06-20
BR0006027A (pt) 2001-03-13
AU760607B2 (en) 2003-05-15
JP2002542750A (ja) 2002-12-10
DE19916528A1 (de) 2000-10-19
CN1197224C (zh) 2005-04-13

Similar Documents

Publication Publication Date Title
EP3411940B1 (de) Elektromotor für eine fluidpumpe, modulare motorfamilie zur bildung unterschiedlicher fluidpumpen mit mehreren solcher elektromotoren und herstellungsverfahren
EP1865202B1 (de) Wasserpumpe für Teiche, Aquarien, Springbrunnen und dergleichen
EP3078099B1 (de) Stator für einen elektronisch kommutierten gleichstrommotor
EP3223395B1 (de) Elektromagnetenstruktur einer elektrischen maschine
EP0987811A2 (de) Kontaktierung von Motorwicklungen
DE202010013455U1 (de) Elektrische Maschine
EP3939148B1 (de) Antriebsvorrichtung mit einem bürstenlosen elektromotor
EP3928419B1 (de) Antriebsvorrichtung mit einem bürstenlosen elektromotor
EP3701624A1 (de) Elektrische kfz-fluidpumpe
DE102014103607A1 (de) Redundantes bürstenloses Antriebssystem
WO2020083559A1 (de) Pumpe aufweisend einen elektromotor mit kompakter sammel-schieneneinheit
DE69917732T2 (de) Generator
EP1088385A1 (de) Für einen einsatz in einer lösungsmittel aufweisenden umgebung vorgesehener, elektronisch gesteuerter elektromotor
DE3433695C1 (de) Elektronisch kommutierte Gleichstrommaschine und deren Verwendung
EP2738391A1 (de) Elektrische Kühlmittelpumpe
EP2342799B1 (de) Elektrische maschine mit einem kontaktelement zur elektrischen verbindung elektrischer bauteile
DE102018126776A1 (de) Elektromotor mit kompakter Sammelschieneneinheit
DE10136482B4 (de) Elektronisch kommutierter Gleichstrommotor
DE102019101713B4 (de) Pumpe aufweisend einen Elektromotor mit Steckeranbindung in Form eines Zwischensteckers
DE102020212198A1 (de) Kontaktvorrichtung eines Stators
EP3198707B1 (de) Elektrodynamischer wandler
DE102021204545A1 (de) Antriebsvorrichtung mit einem bürstenlosen Elektromotor
DE102010062790A1 (de) Elektromotor zum Betreiben einer Pumpe für flüssige Medien
DE102017124408A1 (de) Elektromotor
DE102015214118A1 (de) Elektrischer Zentralausrücker und Kupplung für ein Fahrzeug mit dem elektrischen Zentralausrücker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE ES FR GB IT LI SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060810