EP1086339B1 - Fossil fuel fired steam generator - Google Patents

Fossil fuel fired steam generator Download PDF

Info

Publication number
EP1086339B1
EP1086339B1 EP99936322A EP99936322A EP1086339B1 EP 1086339 B1 EP1086339 B1 EP 1086339B1 EP 99936322 A EP99936322 A EP 99936322A EP 99936322 A EP99936322 A EP 99936322A EP 1086339 B1 EP1086339 B1 EP 1086339B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
steam generator
once
tubes
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99936322A
Other languages
German (de)
French (fr)
Other versions
EP1086339A1 (en
Inventor
Joachim Franke
Rudolf Kral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1998125800 external-priority patent/DE19825800A1/en
Priority claimed from DE1998151809 external-priority patent/DE19851809A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1086339A1 publication Critical patent/EP1086339A1/en
Application granted granted Critical
Publication of EP1086339B1 publication Critical patent/EP1086339B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/346Horizontal radiation boilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S122/00Liquid heaters and vaporizers
    • Y10S122/04Once through boilers

Definitions

  • the invention relates to a once-through steam generator with a Combustion chamber for a fossil fuel that is on the hot gas side a horizontal throttle cable is followed by a vertical throttle cable.
  • a steam generator usually serves to a flow medium carried in an evaporator circuit, for example, a water-water / steam mixture to evaporate.
  • the steam generator has evaporator tubes whose Heating to evaporation of the flow medium contained therein leads.
  • Steam generators are usually used with a combustion chamber standing construction.
  • This means that the combustion chamber for a flow through the heating medium or Heating gas is designed in an approximately vertical direction.
  • the combustion chamber can use a horizontal gas flue be connected downstream, with the transition from the combustion chamber a diversion of the heating gas flow into the horizontal gas flue there is an approximately horizontal flow direction.
  • This standing design of the combustion chamber requires due to the temperature-related changes in length of the combustion chamber Framework on which the combustion chamber is suspended. This requires a considerable technical effort in the production and Assembly of the steam generator, the bigger the bigger is the height of the steam generator.
  • the invention has for its object a fossil-fired Pass-through steam generator of the type mentioned above, the one requires particularly low manufacturing and assembly costs.
  • combustion chamber has a number of burners in the amount of Horizontal throttle cable are arranged.
  • the invention is based on the consideration that one with special low manufacturing and assembly costs Continuous steam generator a holding construction that can be carried out with simple means should have.
  • the combustion chamber can be accompanied by a special one low overall height of the once-through steam generator.
  • a special one low overall height of the once-through steam generator can be achieved by the Combustion chamber is constructed in a horizontal position. For this are the burners at the level of the horizontal gas flue in the combustion chamber wall arranged.
  • the combustion chamber is in operation of the continuous steam generator in an approximately horizontal direction flowed through by the heating gas.
  • the burners are advantageously arranged on the end face of the combustion chamber, that is to say on the side wall of the combustion chamber which lies opposite the outflow opening to the horizontal gas flue.
  • a steam generator designed in this way can be adapted in a particularly simple manner to the burnout length of the fuel.
  • the burnout length of the fuel is understood to mean the flue gas velocity in the horizontal direction at a specific mean flue gas temperature multiplied by the burnout time t A of the fuel.
  • the maximum burnout length for the respective steam generator is obtained when the steam generator is operating at full load.
  • the burnout time t A is the time that, for example, a medium-sized coal dust particle takes to completely burn out at a certain average flue gas temperature.
  • the distance from the Front side to the entry area of the horizontal throttle cable defined Length of the combustion chamber advantageously at least equal to the burnout length of the fuel at full load of the continuous steam generator.
  • the length L (specified in m) of the combustion chamber is a function of the BMCR value W (specified in kg / s) of the combustion chamber, the burnout time t A (specified in s) of the fuel and the outlet temperature T BRK (specified in ° C) of the working medium selected from the combustion chamber.
  • BMCR stands for Boiler maximum continuous rating and BMCR value is the internationally used term for the highest continuous output of a steam generator. This also corresponds to the design power, i.e. the power at full load operation of the steam generator.
  • the front of the combustion chamber and the side walls of the combustion chamber, the horizontal throttle cable and / or the vertical throttle cable are advantageously made of gas-tight welded together, vertically arranged, each parallel to the flow medium actable evaporator or steam generator tubes educated.
  • evaporator tubes For a particularly good heat transfer from the heat of the Combustion chamber on the flow medium in the evaporator tubes advantageously has a number of evaporator tubes a multi-start thread on the inside forming ribs. This is advantageously a Pitch angle ⁇ between a perpendicular to the pipe axis Level and the flanks of those arranged on the inside of the pipe Ribs less than 60 °, preferably less than 55 °.
  • evaporator tube can namely from a certain steam content to the wetting of the Pipe wall can no longer be maintained. If there is no Wetting can be a dry pipe wall in places.
  • Adjacent evaporator or steam generator tubes are advantageous gas-tight via metal strips, so-called fins welded together.
  • the fin width affects the Heat input into the steam generator tubes.
  • the fin width preferably depending on the position of each Evaporator or steam generator tubes in the steam generator a temperature profile that can be predetermined on the gas side is adapted.
  • a temperature profile can be determined from empirical values typical temperature profile or a rough estimate, such as a step profile.
  • By the suitably chosen fin widths is also very strongly inhomogeneous Heating various evaporator or steam generator tubes a heat input into all evaporator or steam generator tubes so accessible that temperature differences especially at the outlet of the evaporator or steam generator tubes are kept low. In this way, premature material fatigue reliably prevented. As a result, the steam generator points a particularly long lifespan.
  • a further advantageous embodiment of the invention is the inside diameter of the evaporator tubes of the combustion chamber depending on the respective position of the evaporator tubes selected in the combustion chamber. That way they are Evaporator tubes in the combustion chamber on a gas-definable Adaptable temperature profile. With the resultant Influence on the flow through the evaporator tubes is particularly significant reliable temperature differences at the outlet of the evaporator tubes the combustion chamber kept low.
  • the evaporator tubes of the combustion chamber are advantageous a common inlet header system for the flow medium upstream and a common exit collector system downstream.
  • One designed in this configuration Steam generator enables reliable pressure equalization between the parallel evaporator tubes and thus a particularly even flow through the same.
  • the evaporator tubes on the front side of the combustion chamber are advantageous the evaporator tubes of the side walls of the Combustion chamber upstream of the flow medium. This is ensures a particularly favorable utilization of the heat of the burners.
  • the vertical throttle cable advantageously has a number of Convection heating surfaces, which are approximately perpendicular to the Main flow direction of the heating gas arranged tubes formed are. These pipes are for a flow through the Flow medium connected in parallel. These convection heating surfaces too are mainly heated by convection.
  • the vertical throttle cable advantageously has an economizer or high pressure preheater.
  • the advantages achieved with the invention are in particular in that by arranging the burner at the level of Horizontal throttle cable has a particularly low overall height for the steam generator is achievable. This also enables integration of the steam generator in a steam turbine system particularly short connecting pipes from the steam generator to the steam turbine.
  • the combustion chamber for a flow of the heating gas in an approximately horizontal direction a particularly compact design of the steam generator.
  • the length of the combustion chamber is designed so that a particularly favorable use of the heat of the fossil Fuel is guaranteed.
  • the fossil-heated steam generator 2 according to FIG. 1 is in a horizontal position Construction and advantageously as a continuous steam generator executed. It comprises a combustion chamber 4 on the hot gas side a vertical throttle cable 8 via a horizontal throttle cable 6 is connected downstream.
  • the end face 9 and the side walls 10a the combustion chamber 4 are welded together in a gastight manner, vertically arranged, parallel with flow medium S acted upon evaporator tubes 11 formed.
  • the side walls 10b of the horizontal throttle cable 6 or 10c of the vertical throttle cable 8 made of gas-tightly welded together, vertically arranged steam generator tubes 12a or 12b.
  • the steam generator pipes 12a, 12b also in parallel with the flow medium S acted upon.
  • the evaporator tubes 11 have - as shown in Figure 2 - ribs 40 on its inside, which are a kind of multi-course Form threads and have a rib height R.
  • the Pitch angle ⁇ between a perpendicular to the pipe axis Level 41 and the flanks 42 arranged on the inside of the tube Ribs 40 smaller than 55 °. This makes it special high heat transfer from the heat of the combustion chamber 4 the flow medium S guided in the evaporator tubes 11 at the same time particularly low temperatures of the pipe wall reached.
  • Adjacent evaporator or steam generator tubes 11, 12a, 12b are in a manner not shown in Figure 1 on fins welded together gastight.
  • the choice of fin width can be used to heat the evaporator or steam generator tubes 11, 12a, 12b are influenced. Therefore the respective fin width depends on the Position of the respective evaporator or steam generator tubes 11, 12a, 12b in the steam generator to a gas-presettable Temperature profile adjusted.
  • the temperature profile can a typical temperature profile determined from experience or a rough estimate. Thereby Temperature differences at the outlet of the evaporator or steam generator tubes 11, 12a, 12b even with very different ones Heating the evaporator or steam generator tubes 11, 12a, 12b especially kept Bering. In this way, material fatigue reliably prevents what a long life of the steam generator 2 guaranteed.
  • the inner tube diameter D of the evaporator tubes 11 of the combustion chamber 4 depends on the respective position of the evaporator tubes 11 selected in the combustion chamber 4. In this way is the steam generator 2 in addition to the different strong heating of the evaporator tubes 11 adapted. This interpretation the evaporator tubes 11 ensures the combustion chamber 4 a particularly reliable flow through the evaporator tubes 11 in such a way that temperature differences at the outlet the evaporator tubes 11 are kept particularly low.
  • the evaporator tubes 11 of the combustion chamber 4 is on the flow medium side an inlet header system 16 for flow medium S upstream and an outlet collector system 18 connected downstream. This is a pressure equalization of the parallel Evaporator tubes 11 possible, the uniform Flow through the same causes.
  • the horizontal throttle cable 6 has a number of bulkhead heating surfaces trained superheater heating surfaces 22, which in hanging construction approximately perpendicular to the main flow direction 24 of the heating gas H arranged and their tubes for a flow through the flow medium S connected in parallel are.
  • the superheater heating surfaces 22 become predominantly convective heated and are on the flow medium side of the evaporator tubes 11 downstream of the combustion chamber 4.
  • the vertical throttle cable 8 has a number of predominantly convective heatable convection heating surfaces 26 which come from approximately perpendicular to the main flow direction of the heating gas H arranged tubes are formed. These tubes are for one Flow through the flow medium S connected in parallel. Moreover is a high pressure preheater in the vertical throttle cable 8 or economizer 28 arranged.
  • the vertical throttle cable opens on the output side 8 into a flue gas not shown or heat exchanger and from there via a dust filter into one Stack.
  • the steam generator 2 is special in a horizontal design low overall height and therefore particularly low Manufacturing and assembly costs can be set up.
  • the combustion chamber 4 of the steam generator 2 has a number of Burners 30 for fossil fuel B on the front 9 of the combustion chamber 4 at the level of the horizontal gas flue 6 are arranged.
  • the length L of the combustion chamber 4 is selected so that the fossil fuel B burns out particularly completely to achieve a particularly high efficiency and material damage to the first superheater heating surface of the horizontal gas flue 6, as seen on the heating gas side, and contamination thereof, for example by the entry of ash, is selected in such a way that it the burnout length of the fuel B exceeds when the steam generator 2 is operating at full load.
  • the length L is the distance from the end face 9 of the combustion chamber 4 to the inlet area 32 of the horizontal gas flue 6.
  • the burnout length of the fuel B is defined as the heating gas speed in the horizontal direction at a specific mean flue gas temperature multiplied by the burnout time t A of the fuel B.
  • the maximum burn-out length for the respective steam generator 2 results when the steam generator 2 is operating at full load.
  • the burn-out time t A of the fuel B is in turn the time which, for example, a medium-sized coal dust particle takes to completely burn out at a certain average smoke gas temperature.
  • the length L (specified in m) of the combustion chamber 4 is the burnout time t A (specified in s) of the fuel B and the BMCR value W (specified in kg / s) of the combustion chamber 4 are selected appropriately.
  • BMCR stands for Boiler maximum continuous rating.
  • the BMCR value W is an internationally used term for the highest continuous output of a steam generator. This also corresponds to the design power, i.e. the power at full load operation of the steam generator.
  • the burners 30 When the steam generator 2 is operating, the burners 30 become more fossil Fuel B supplied. The flames F of the burners 30 are aligned horizontally. Due to the design of the combustion chamber 4 becomes a flow of the resulting from the combustion Heating gas H in approximately horizontal main flow direction 24 generated. This passes through the horizontal throttle cable 6 in the vertical throttle cable aligned approximately towards the floor 8 and leaves this in the direction of not shown Chimneys.
  • Flow medium S entering the economizer 28 arrives via the convection heating surfaces arranged in the vertical gas flue 8 into the intake manifold system 16 of the combustion chamber 4 of the steam generator 2.
  • Combustion chamber 4 of the steam generator 2 finds the evaporation and possibly a partial overheating of the flow medium S instead.
  • the resulting steam or a water-steam mixture is in the exit collector system 18 for Flow medium S collected. From there the steam or the water-steam mixture in the walls of the horizontal throttle cable 6 and the vertical throttle cable 8 and from there again in the Superheater heating surfaces 22 of the horizontal throttle cable 6.
  • the Superheater heating surfaces 22 further overheat the Steam, which is subsequently used, for example by the Drive a steam turbine, is supplied.

Description

Die Erfindung bezieht sich auf einen Durchlaufdampferzeuger mit einer Brennkammer für einen fossilen Brennstoff, der heizgasseitig über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist.The invention relates to a once-through steam generator with a Combustion chamber for a fossil fuel that is on the hot gas side a horizontal throttle cable is followed by a vertical throttle cable.

Der Einsatz eines Dampferzeugers dient üblicherweise dazu, ein in einem Verdampferkreislauf geführtes Strömungsmedium, beispielsweise ein Wasser-Wasser/Dampf-Gemisch, zu verdampfen. Hierzu weist der Dampferzeuger Verdampferrohre auf, deren Beheizung zu einer Verdampfung des darin geführten Strömungsmediums führt.The use of a steam generator usually serves to a flow medium carried in an evaporator circuit, for example, a water-water / steam mixture to evaporate. For this purpose, the steam generator has evaporator tubes whose Heating to evaporation of the flow medium contained therein leads.

Dokument US-A-3 527 261 offenbart einen Naturum laufdampferzeuger mit einer Brennkammer, der heizgasseitig über einen Horizontalgaszug ein Vertikalgaszug nachgeschaltet ist.Document US-A-3 527 261 discloses a natural circulation steam generator with a combustion chamber, the heating gas side via a horizontal gas flue a vertical gas flue is connected downstream.

Dampferzeuger werden üblicherweise mit einer Brennkammer in stehender Bauweise ausgeführt. Dies bedeutet, daß die Brennkammer für eine Durchströmung des beheizenden Mediums oder Heizgases in annähernd vertikaler Richtung ausgelegt ist. Heizgasseitig kann der Brennkammer dabei ein Horizontalgaszug nachgeschaltet sein, wobei beim Üergang von der Brennkammer in den Horizontalgaszug eine Umlenkung des Heizgasstromes in eine annähernd horizontale Strömungsrichtung erfolgt. Diese stehende Bauweise der Brennkammer erfordert jedoch aufgrund der temperaturbedingten Längenänderungen der Brennkammer ein Gerüst, an dem die Brennkammer aufgehängt wird. Dies bedingt einen erheblichen technischen Aufwand bei der Herstellung und Montage des Dampferzeugers, der um so größer ist, je größer die Bauhöhe des Dampferzeugers ist.Steam generators are usually used with a combustion chamber standing construction. This means that the combustion chamber for a flow through the heating medium or Heating gas is designed in an approximately vertical direction. On the heating gas side, the combustion chamber can use a horizontal gas flue be connected downstream, with the transition from the combustion chamber a diversion of the heating gas flow into the horizontal gas flue there is an approximately horizontal flow direction. This standing design of the combustion chamber requires due to the temperature-related changes in length of the combustion chamber Framework on which the combustion chamber is suspended. This requires a considerable technical effort in the production and Assembly of the steam generator, the bigger the bigger is the height of the steam generator.

Der Erfindung liegt die Aufgabe zugrunde, einen fossilbeheizten Durchlaufdampferzeuger der oben genannten Art anzugeben, der einen besonders geringen Herstellungs- und Montageaufwand erfordert. The invention has for its object a fossil-fired Pass-through steam generator of the type mentioned above, the one requires particularly low manufacturing and assembly costs.

Diese Aufgabe wird erfindungsgemäß gelöst, indem die Brennkammer eine Anzahl von Brennern aufweist, die in der Höhe des Horizontalgaszuges angeordnet sind.This object is achieved by the combustion chamber has a number of burners in the amount of Horizontal throttle cable are arranged.

Die Erfindung geht von der Überlegung aus, daß ein mit besonders geringem Herstellungs- und Montageaufwand erstellbarer Durchlaufdampferzeuger eine mit einfachen Mitteln ausführbare Haltekonstruktion aufweisen sollte. Ein mit vergleichsweise geringem technischem Aufwand zu erstellendes Gerüst für die Aufhängung der Brennkammer kann dabei einhergehen mit einer besonders geringen Bauhöhe des Durchlaufdampferzeugers. Eine besonders geringe Bauhöhe des Durchlaufdampferzeugers ist erzielbar, indem die Brennkammer in liegender Bauweise ausgeführt ist. Hierzu sind die Brenner in der Höhe des Horizontalgaszugs in der Brennkammerwand angeordnet. Somit wird die Brennkammer beim Betrieb des Durchlaufdampferzeugers in annähernd horizontaler Richtung von dem Heizgas durchströmt.The invention is based on the consideration that one with special low manufacturing and assembly costs Continuous steam generator a holding construction that can be carried out with simple means should have. One with comparatively little technical effort to create scaffolding for the suspension the combustion chamber can be accompanied by a special one low overall height of the once-through steam generator. A special one low overall height of the once-through steam generator can be achieved by the Combustion chamber is constructed in a horizontal position. For this are the burners at the level of the horizontal gas flue in the combustion chamber wall arranged. Thus the combustion chamber is in operation of the continuous steam generator in an approximately horizontal direction flowed through by the heating gas.

Vorteilhafterweise sind die Brenner an der Stirnseite der Brennkammer angeordnet, also an derjenigen Seitenwand der Brennkammer, die der Abströmöffnung zum Horizontalgaszug gegenüberliegt. Ein derartig ausgebildeter Dampferzeuger ist auf besonders einfache Weise an die Ausbrandlänge des Brennstoffs anpaßbar. Unter Ausbrandlänge des Brennstoffs ist dabei die Rauchgasgeschwindigkeit in horizontaler Richtung bei einer bestimmten mittleren Rauchgastemperatur multipliziert mit der Ausbrandzeit tA des Brennstoffs zu verstehen. Die für den jeweiligen Dampferzeuger maximale Ausbrandlänge ergibt sich dabei beim Vollastbetrieb des Dampferzeugers. Die Ausbrandzeit tA wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe benötigt, um bei einer bestimmten mittleren Rauchgastemperatur vollständig auszubrennen.The burners are advantageously arranged on the end face of the combustion chamber, that is to say on the side wall of the combustion chamber which lies opposite the outflow opening to the horizontal gas flue. A steam generator designed in this way can be adapted in a particularly simple manner to the burnout length of the fuel. The burnout length of the fuel is understood to mean the flue gas velocity in the horizontal direction at a specific mean flue gas temperature multiplied by the burnout time t A of the fuel. The maximum burnout length for the respective steam generator is obtained when the steam generator is operating at full load. The burnout time t A, in turn, is the time that, for example, a medium-sized coal dust particle takes to completely burn out at a certain average flue gas temperature.

Um Materialschäden und eine unerwünschte Verschmutzung des Horizontalgaszuges, beispielsweise aufgrund von Ascheansatz, besonders gering zu halten, ist die durch den Abstand von der Stirnseite zum Eintrittsbereich des Horizontalgaszuges definierte Länge der Brennkammer vorteilhafterweise mindestens gleich der Ausbrandlänge des Brennstoffs beim Vollastbetrieb des Durchlaufdampferzeugers.To material damage and unwanted pollution of the Horizontal throttle flue, for example due to ash deposits, to keep particularly low is the distance from the Front side to the entry area of the horizontal throttle cable defined Length of the combustion chamber advantageously at least equal to the burnout length of the fuel at full load of the continuous steam generator.

Die Länge L (angegeben in m) der Brennkammer ist in einer vorteilhaften Ausgestaltung der Erfindung als Funktion des BMCR-Wertes W (angegeben in kg/s) der Brennkammer, der Ausbrandzeit tA (angegeben in s) des Brennstoffs und der Austrittstemperatur TBRK (angegeben in °C) des Arbeitsmediums aus der Brennkammer gewählt. BMCR steht für Boiler maximum continuous rating und BMCR-Wert ist der international üblicherweise verwendete Begriff für die höchste Dauerleistung eines Dampferzeugers. Diese entspricht auch der Auslegungsleistung, also der Leistung bei Vollastbetrieb des Dampferzeugers. Dabei gilt bei gegebenem BMCR-Wert W für die Länge L der Brennkammer näherungsweise der größere Wert der Funktionen: L (W, tA) = (C1 + C2 · W) · tA und L (W, TBRK) = (C3 · TBRK + C4)W + C5(TBRK)2 + C6 · TBRK + C7 mit C1 = 8 m/s und C2 = 0,0057 m/kg und C3 = -1,905 · 10-4 (m · s)/(kg°C) und C4 = 0,2857 (s · m)/kg und C5 = 3 · 10-4 m/(°C)2 und C6 = -0,8421 m/°C und C7 = 603,4125 m. In an advantageous embodiment of the invention, the length L (specified in m) of the combustion chamber is a function of the BMCR value W (specified in kg / s) of the combustion chamber, the burnout time t A (specified in s) of the fuel and the outlet temperature T BRK (specified in ° C) of the working medium selected from the combustion chamber. BMCR stands for Boiler maximum continuous rating and BMCR value is the internationally used term for the highest continuous output of a steam generator. This also corresponds to the design power, i.e. the power at full load operation of the steam generator. Given the given BMCR value W, the greater the value of the functions approximately applies to the length L of the combustion chamber: L (W, t A ) = (C 1 + C 2 · W) · t A and L (W, T BRK ) = (C 3rd · T BRK + C 4th ) W + C 5 (T BRK ) 2 + C 6 · T BRK + C 7 With C. 1 = 8 m / s and C. 2 = 0.0057 m / kg and C. 3rd = -1.905.10 -4 (ms) / (kg ° C) and C. 4th = 0.2857 (s · m) / kg and C. 5 = 3 · 10 -4 m / (° C) 2 and C. 6 = -0.8421 m / ° C and C. 7 = 603.4125 m.

Unter "näherungsweise" ist hierbei eine zulässige Abweichung vom durch die jeweilige Funktion definierten Wert um +20%/ -10% zu verstehen.Under "approximate" is a permissible deviation of the value defined by the respective function by + 20% / -10% to understand.

Die Stirnseite der Brennkammer und die Seitenwände der Brennkammer, des Horizontalgaszuges und/oder des Vertikalgaszuges sind vorteilhafterweise aus gasdicht miteinander verschweißten, vertikal angeordneten, jeweils parallel mit Strömungsmedium beaufschlagbaren Verdampfer- bzw. Dampferzeugerrohren gebildet.The front of the combustion chamber and the side walls of the combustion chamber, the horizontal throttle cable and / or the vertical throttle cable are advantageously made of gas-tight welded together, vertically arranged, each parallel to the flow medium actable evaporator or steam generator tubes educated.

Für eine besonders gute Wärmeübertragung von der Wärme der Brennkammer auf das in den Verdampferrohren geführte Strömungsmedium weist vorteilhafterweise eine Anzahl der Verdampferrohre auf ihrer Innenseite jeweils ein mehrgängiges Gewinde bildende Rippen auf. Dabei ist vorteilhafterweise ein Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene und den Flanken der auf der Rohrinnenseite angeordneten Rippen kleiner als 60°, vorzugsweise kleiner als 55°. In einem beheizten, als Verdampferrohr ohne Innenberippung, einem sogenannten Glattrohr, ausgeführten Verdampferrohr kann nämlich von einem bestimmten Dampfgehalt an die Benetzung der Rohrwand nicht mehr aufrechterhalten werden. Bei fehlender Benetzung kann eine stellenweise trockene Rohrwand vorliegen. Der Übergang zu einer derartigen trockenen Rohrwand resultiert in der Art einer Krise des Wärmeübergangs in einem besonders eingeschränkten Wärmeübergangsverhalten, so daß im allgemeinen die Rohrwandtemperaturen an dieser Stelle besonders stark ansteigen. In einem innenberippten Rohr tritt aber nun im Vergleich zu einem Glattrohr diese Krise des Wärmeübergangs erst bei einem Dampfmassengehalt > 0,9, also kurz vor dem Ende der Verdampfung, auf. Das ist auf den Drall zurückzuführen, den die Strömung durch die spiralförmigen Rippen erfährt. Aufgrund der unterschiedlichen Zentrifugalkraft wird der Wasser- vom Dampfanteil separiert und an die Rohrwand gedrückt. Dadurch wird die Benetzung der Rohrwand bis zu hohen Dampfgehalten aufrechterhalten, so daß am Ort der Wärmeübergangskrise bereits hohe Strömungsgeschwindigkeiten vorliegen. Das bewirkt einen besonders guten Wärmeübergang und als Folge niedrige Rohrwandtemperaturen.For a particularly good heat transfer from the heat of the Combustion chamber on the flow medium in the evaporator tubes advantageously has a number of evaporator tubes a multi-start thread on the inside forming ribs. This is advantageously a Pitch angle α between a perpendicular to the pipe axis Level and the flanks of those arranged on the inside of the pipe Ribs less than 60 °, preferably less than 55 °. In one heated, as an evaporator tube without internal fins, one so-called smooth tube, executed evaporator tube can namely from a certain steam content to the wetting of the Pipe wall can no longer be maintained. If there is no Wetting can be a dry pipe wall in places. The transition to such a dry pipe wall results in the way of a heat transfer crisis in one particular restricted heat transfer behavior, so that in general the pipe wall temperatures at this point in particular solid rising. But in an internally finned tube now in comparison to a smooth pipe this crisis of heat transfer only with a steam mass content> 0.9, i.e. short before the end of evaporation. This is due to the twist the flow through the spiral ribs experiences. Due to the different centrifugal force the water and steam are separated and sent to the pipe wall pressed. This will wetting the pipe wall up to maintain high steam levels so that at the location of the heat transfer crisis there are already high flow velocities. This causes a particularly good heat transfer and as a result, low pipe wall temperatures.

Benachbarte Verdampfer- bzw. Dampferzeugerrohre sind vorteilhafterweise über Metallbänder, sogenannte Flossen, gasdicht miteinander verschweißt. Die Flossenbreite beeinflußt den Wärmeeintrag in die Dampferzeugerrohre. Daher ist die Flossenbreite vorzugsweise abhängig von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre im Dampferzeuger an ein gasseitig vorgebbares Temperaturprofil angepaßt. Als Temperaturprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Temperaturprofil oder auch eine grobe Abschätzung, wie beispielsweise ein Stufenprofil, vorgegeben sein. Durch die geeignet gewählten Flossenbreiten ist auch bei stark inhomogener Beheizung verschiedener Verdampfer- bzw. Dampferzeugerrohre ein Wärmeeintrag in alle Verdampfer- bzw. Dampferzeugerrohre derart erreichbar, daß Temperaturunterschiede am Auslaß der Verdampfer- bzw. Dampferzeugerrohre besonders gering gehalten sind. Auf diese Weise sind vorzeitige Materialermüdungen zuverlässig verhindert. Dadurch weist der Dampferzeuger eine besonders lange Lebensdauer auf.Adjacent evaporator or steam generator tubes are advantageous gas-tight via metal strips, so-called fins welded together. The fin width affects the Heat input into the steam generator tubes. Hence the fin width preferably depending on the position of each Evaporator or steam generator tubes in the steam generator a temperature profile that can be predetermined on the gas side is adapted. As a temperature profile can be determined from empirical values typical temperature profile or a rough estimate, such as a step profile. By the suitably chosen fin widths is also very strongly inhomogeneous Heating various evaporator or steam generator tubes a heat input into all evaporator or steam generator tubes so accessible that temperature differences especially at the outlet of the evaporator or steam generator tubes are kept low. In this way, premature material fatigue reliably prevented. As a result, the steam generator points a particularly long lifespan.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Rohrinnendurchmesser der Verdampferrohre der Brennkammer abhängig von der jeweiligen Position der Verdampferrohre in der Brennkammer gewählt. Auf diese Weise sind die Verdampferrohre in der Brennkammer an ein gasseitig vorgebbares Temperaturprofil anpaßbar. Mit dem hierdurch bewirkten Einfluß auf die Durchströmung der Verdampferrohre sind besonders zuverlässig Temperaturunterschiede am Auslaß der Verdampferrohre der Brennkammer gering gehalten.In a further advantageous embodiment of the invention is the inside diameter of the evaporator tubes of the combustion chamber depending on the respective position of the evaporator tubes selected in the combustion chamber. That way they are Evaporator tubes in the combustion chamber on a gas-definable Adaptable temperature profile. With the resultant Influence on the flow through the evaporator tubes is particularly significant reliable temperature differences at the outlet of the evaporator tubes the combustion chamber kept low.

Vorteilhafterweise ist den Verdampferrohren der Brennkammer für das Strömungsmedium ein gemeinsames Eintrittssammler-System vorgeschaltet und ein gemeinsames Austrittssammler-System nachgeschaltet. Ein in dieser Ausgestaltung ausgeführter Dampferzeuger ermöglicht einen zuverlässigen Druckausgleich zwischen den parallel geschalteten Verdampferrohren und somit eine besonders gleichmäßige Durchströmung derselben.The evaporator tubes of the combustion chamber are advantageous a common inlet header system for the flow medium upstream and a common exit collector system downstream. One designed in this configuration Steam generator enables reliable pressure equalization between the parallel evaporator tubes and thus a particularly even flow through the same.

Die Verdampferrohre der Stirnseite der Brennkammer sind vorteilhafterweise den Verdampferrohren der Seitenwände der Brennkammer strömungsmediumsseitig vorgeschaltet. Dadurch ist eine besonders günstige Ausnutzung der Wärme der Brenner gewährleistet.The evaporator tubes on the front side of the combustion chamber are advantageous the evaporator tubes of the side walls of the Combustion chamber upstream of the flow medium. This is ensures a particularly favorable utilization of the heat of the burners.

In dem Horizontalgaszug sind vorteilhafterweise eine Anzahl von Überhitzerheizflächen angeordnet, die annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums parallel geschaltet sind. Diese in hängender Bauweise angeordneten, auch als Schottheizflächen bezeichneten, Überhitzerheizflächen werden überwiegend konvektiv beheizt und sind strömungsmediumsseitig den Verdampferrohren der Brennkammer nachgeschaltet. Hierdurch ist eine besonders günstige Ausnutzung der Brennerwärme gewährleistet.There are advantageously a number in the horizontal throttle cable arranged by superheater heating surfaces that are approximately vertical arranged to the main flow direction of the heating gas and their Pipes for a flow of the flow medium in parallel are switched. These are arranged in a hanging construction, also referred to as bulkhead heating surfaces, superheater heating surfaces are predominantly heated by convection and are on the flow medium side downstream of the evaporator tubes of the combustion chamber. This is a particularly favorable exploitation the burner heat guaranteed.

Vorteilhafterweise weist der Vertikalgaszug eine Anzahl von Konvektionsheizflächen auf, die aus annähernd senkrecht zur Hauptströmungsrichtung des Heizgases angeordneten Rohren gebildet sind. Diese Rohre sind für eine Durchströmung des Strömungsmediums parallel geschaltet. Auch diese Konvektionsheizflächen werden überwiegend konvektiv beheizt.The vertical throttle cable advantageously has a number of Convection heating surfaces, which are approximately perpendicular to the Main flow direction of the heating gas arranged tubes formed are. These pipes are for a flow through the Flow medium connected in parallel. These convection heating surfaces too are mainly heated by convection.

Um weiterhin eine besonders vollständige Ausnutzung der Wärme des Heizgases zu gewährleisten, weist der Vertikalgaszug vorteilhafterweise einen Economizer oder Hochdruckvorwärmer auf.To continue to make full use of the heat To ensure the heating gas, the vertical throttle cable advantageously has an economizer or high pressure preheater.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Anordnung der Brenner in Höhe des Horizontalgaszugs eine besonders niedrige Bauhöhe des Dampferzeugers erreichbar ist. Damit ermöglicht auch die Einbindung des Dampferzeugers in eine Dampfturbinenanlage besonders kurze Verbindungsrohre von dem Dampferzeuger zu der Dampfturbine. Durch die Auslegung der Brennkammer für eine Durchströmung des Heizgases in annähernd horizontaler Richtung ist somit eine besonders kompakte Bauweise des Dampferzeugers gegeben. Dabei ist die Länge der Brennkammer so ausgelegt, daß eine besonders günstige Ausnutzung der Wärme des fossilen Brennstoffs gewährleistet ist. The advantages achieved with the invention are in particular in that by arranging the burner at the level of Horizontal throttle cable has a particularly low overall height for the steam generator is achievable. This also enables integration of the steam generator in a steam turbine system particularly short connecting pipes from the steam generator to the steam turbine. By designing the combustion chamber for a flow of the heating gas in an approximately horizontal direction a particularly compact design of the steam generator. The length of the combustion chamber is designed so that a particularly favorable use of the heat of the fossil Fuel is guaranteed.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

FIG 1
schematisch einen fossil beheizten Dampferzeuger in Zweizugbauart in Seitenansicht und
FIG 2
schematisch einen Längsschnitt durch ein einzelnes Verdampfer- bzw. Dampferzeugerrohr und
FIG 3
ein Koordinatensystem mit den Kurven K1 bis K6.
An embodiment of the invention is explained in more detail with reference to a drawing. In it show:
FIG. 1
schematically a fossil-heated steam generator in two-pass design in side view and
FIG 2
schematically shows a longitudinal section through a single evaporator or steam generator tube and
FIG 3
a coordinate system with the curves K 1 to K 6 .

Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are in all figures with the provided with the same reference numerals.

Der fossil beheizte Dampferzeuger 2 gemäß Figur 1 ist in liegender Bauweise und vorteilhafterweise als Durchlaufdampferzeuger ausgeführt. Er umfaßt eine Brennkammer 4, der heizgasseitig über einen Horizontalgaszug 6 ein Vertikalgaszug 8 nachgeschaltet ist. Die Stirnseite 9 und die Seitenwände 10a der Brennkammer 4 sind aus gasdicht miteinander verschweißten, vertikal angeordneten, parallel mit Strömungsmedium S beaufschlagbaren Verdampferrohren 11 gebildet. Zusätzlich können auch die Seitenwände 10b des Horizontalgaszuges 6 bzw. 10c des Vertikalgaszuges 8 aus gasdicht miteinander verschweißten, vertikal angeordneten Dampferzeugerrohren 12a bzw. 12b gebildet sein. In diesem Fall sind die Dampferzeugerrohre 12a, 12b ebenfalls jeweils parallel mit Strömungsmedium S beaufschlagbar.The fossil-heated steam generator 2 according to FIG. 1 is in a horizontal position Construction and advantageously as a continuous steam generator executed. It comprises a combustion chamber 4 on the hot gas side a vertical throttle cable 8 via a horizontal throttle cable 6 is connected downstream. The end face 9 and the side walls 10a the combustion chamber 4 are welded together in a gastight manner, vertically arranged, parallel with flow medium S acted upon evaporator tubes 11 formed. In addition can also the side walls 10b of the horizontal throttle cable 6 or 10c of the vertical throttle cable 8 made of gas-tightly welded together, vertically arranged steam generator tubes 12a or 12b. In this case, the steam generator pipes 12a, 12b also in parallel with the flow medium S acted upon.

Die Verdampferrohre 11 weisen - wie in Figur 2 dargestellt - auf ihrer Innenseite Rippen 40 auf, die eine Art mehrgängiges Gewinde bilden und eine Rippenhöhe R haben. Dabei ist der Steigungswinkel α zwischen einer zur Rohrachse senkrechten Ebene 41 und den Flanken 42 der auf der Rohrinnenseite angeordneten Rippen 40 kleiner als 55°. Dadurch wird ein besonders hoher Wärmeübergang von der Wärme der Brennkammer 4 auf das in den Verdampferrohren 11 geführte Strömungsmedium S bei gleichzeitig besonders niedrigen Temperaturen der Rohrwand erreicht.The evaporator tubes 11 have - as shown in Figure 2 - ribs 40 on its inside, which are a kind of multi-course Form threads and have a rib height R. Here is the Pitch angle α between a perpendicular to the pipe axis Level 41 and the flanks 42 arranged on the inside of the tube Ribs 40 smaller than 55 °. This makes it special high heat transfer from the heat of the combustion chamber 4 the flow medium S guided in the evaporator tubes 11 at the same time particularly low temperatures of the pipe wall reached.

Benachbarte Verdampfer- bzw. Dampferzeugerrohre 11, 12a, 12b sind in in Figur 1 nicht näher dargestellter Weise über Flossen gasdicht miteinander verschweißt. Durch eine geeignete Wahl der Flossenbreite kann nämlich die Beheizung der Verdampfer- bzw. Dampferzeugerrohre 11, 12a, 12b beeinflußt werden. Daher ist die jeweilige Flossenbreite abhängig von der Position der jeweiligen Verdampfer- bzw. Dampferzeugerrohre 11, 12a, 12b im Dampferzeuger an ein gasseitig vorgebbares Temperaturprofil angepaßt. Das Temperaturprofil kann dabei ein aus Erfahrungswerten ermitteltes typisches Temperaturprofil oder auch eine grobe Abschätzung sein. Dadurch sind Temperaturunterschiede am Auslaß der Verdampfer- bzw. Dampferzeugerrohre 11, 12a, 12b auch bei stark unterschiedlicher Beheizung der Verdampfer- bzw. Dampferzeugerrohre 11, 12a, 12b besonders Bering gehalten. Auf diese Weise sind Materialermüdungen zuverlässig verhindert, was eine lange Lebensdauer des Dampferzeugers 2 gewährleistet.Adjacent evaporator or steam generator tubes 11, 12a, 12b are in a manner not shown in Figure 1 on fins welded together gastight. By a suitable one The choice of fin width can be used to heat the evaporator or steam generator tubes 11, 12a, 12b are influenced. Therefore the respective fin width depends on the Position of the respective evaporator or steam generator tubes 11, 12a, 12b in the steam generator to a gas-presettable Temperature profile adjusted. The temperature profile can a typical temperature profile determined from experience or a rough estimate. Thereby Temperature differences at the outlet of the evaporator or steam generator tubes 11, 12a, 12b even with very different ones Heating the evaporator or steam generator tubes 11, 12a, 12b especially kept Bering. In this way, material fatigue reliably prevents what a long life of the steam generator 2 guaranteed.

Der Rohrinnendurchmesser D der Verdampferrohre 11 der Brennkammer 4 ist abhängig von der jeweiligen Position der Verdampferrohre 11 in der Brennkammer 4 gewählt. Auf diese Weise ist der Dampferzeuger 2 zusätzlich an die unterschiedlich starke Beheizung der Verdampferrohre 11 angepaßt. Diese Auslegung der Verdampferrohre 11 der Brennkammer 4 gewährleistet besonders zuverlässig eine Durchströmung der Verdampferrohre 11 in der Weise, daß Temperaturunterschiede am Ausiaß der Verdampferrohre 11 besonders gering gehalten sind.The inner tube diameter D of the evaporator tubes 11 of the combustion chamber 4 depends on the respective position of the evaporator tubes 11 selected in the combustion chamber 4. In this way is the steam generator 2 in addition to the different strong heating of the evaporator tubes 11 adapted. This interpretation the evaporator tubes 11 ensures the combustion chamber 4 a particularly reliable flow through the evaporator tubes 11 in such a way that temperature differences at the outlet the evaporator tubes 11 are kept particularly low.

Bei der Berohrung der Brennkammer ist zu berücksichtigen, daß die Beheizung der einzelnen, miteinander gasdicht verschweißten Verdampferrohre 11 beim Betrieb des Dampferzeugers 2 sehr unterschiedlich ist. Deswegen wird die Auslegung der Verdampferrohre 11 hinsichtlich ihrer Innenberippung, Flossenverbindung zu benachbarten Verdampferrohren 11 und ihres Rohrinnendurchmessers D so gewählt, daß alle Verdampferrohre 11 trotz unterschiedlicher Beheizung annähernd gleiche Austrittstemperaturen aufweisen und eine ausreichende Kühlung der Verdampferrohre 11 für alle Betriebszustände des Dampferzeugers 2 gewährleistet ist. Dies ist insbesondere dadurch gewährleistet, daß der Dampferzeuger 2 für eine vergleichsweise niedrige Massenstromdichte des die Verdampferrohre 11 durchströmenden Strömungsmediums S ausgelegt ist. Durch eine geeignete Wahl der Flossenverbindungen und der Rohrinnendurchmesser D ist zudem erreicht, daß der Anteil des Reibungsdruckverlustes am Gesamtdruckverlust so gering ist, daß sich ein Naturumlaufverhalten einstellt: Stärker beheizte Verdampferrohre 11 werden stärker durchströmt als schwächer beheizte Verdampferrohre 11. Damit wird erreicht, daß die vergleichsweise stark beheizten Verdampferrohre 11 in Brennernähe spezifisch - bezogen auf den Massenstrom - annähernd ebensoviel Wärme aufnehmen wie die vergleichsweise schwach beheizten Verdampferrohre 11 am Brennkammerende. Die Innenberippung ist dabei derart ausgelegt, daß eine ausreichende Kühlung der Verdampferrohrwände sichergestellt ist. Somit weisen mit den oben genannten Maßnahmen alle Verdampferrohre 11 annähernd gleiche Austrittstemperaturen auf. Für einen Dampferzeuger mit vertikalem Gaszug ist ein solches Verdampferkonzept beispielsweise aus VGB-Kraftwerkstechnik 75 (1995), Heft 4, Seiten 353 - 359, bekannt.When piping the combustion chamber, it must be taken into account that the heating of the individual, welded together gastight Evaporator tubes 11 during the operation of the steam generator 2 very much is different. That is why the design of the evaporator tubes 11 with regard to their internal ribbing, fin connection to neighboring evaporator tubes 11 and their inner tube diameter D chosen so that all the evaporator tubes 11 despite different heating approximately the same outlet temperatures have and sufficient cooling of the evaporator tubes 11 for all operating states of the steam generator 2 is guaranteed. This is ensured in particular by that the steam generator 2 for a comparatively low Mass flow density of the flow through the evaporator tubes 11 Flow medium S is designed. By a suitable one Choice of fin connections and inner tube diameter D is also achieved that the proportion of the loss of friction pressure of the total pressure loss is so low that there is a natural circulation behavior adjusts: More heated evaporator tubes 11 flows through more strongly than weakly heated evaporator tubes 11. This ensures that the comparatively strong heated evaporator tubes 11 in the vicinity of the burner specifically - related on the mass flow - absorb almost as much heat like the comparatively weakly heated evaporator tubes 11 at the end of the combustion chamber. The internal ribbing is included designed such that adequate cooling of the evaporator tube walls is ensured. Thus point to the above measures mentioned all evaporator tubes 11 approximately the same Outlet temperatures. For a steam generator with vertical Throttle cable is one such evaporator concept, for example from VGB-Kraftwerkstechnik 75 (1995), number 4, pages 353 - 359, known.

Den Verdampferrohren 11 der Brennkammer 4 ist strömungsmediumsseitig ein Eintrittssammler-System 16 für Strömungsmedium S vorgeschaltet und ein Austrittssammler-System 18 nachgeschaltet. Dadurch ist ein Druckausgleich der parallel geschalteten Verdampferrohre 11 möglich, der eine gleichmäßige Durchströmung derselben bewirkt.The evaporator tubes 11 of the combustion chamber 4 is on the flow medium side an inlet header system 16 for flow medium S upstream and an outlet collector system 18 connected downstream. This is a pressure equalization of the parallel Evaporator tubes 11 possible, the uniform Flow through the same causes.

Um eine besonders gute Ausnutzung der Verbrennungswärme des fossilen Brennstoffs B zu erreichen, sind die Verdampferrohre 11 der Stirnseite 9 der Brennkammer 4 den Verdampferrohren 11 der Seitenwände 10a der Brennkammer 4 strömungsmediumsseitig vorgeschaltet.To make particularly good use of the heat of combustion To reach fossil fuel B are the evaporator tubes 11 of the front 9 of the combustion chamber 4 the evaporator tubes 11 of the side walls 10a of the combustion chamber 4 on the flow medium side upstream.

Der Horizontalgaszug 6 weist eine Anzahl von als Schottheizflächen ausgebildeten Überhitzerheizflächen 22 auf, die in hängender Bauweise annähernd senkrecht zur Hauptströmungsrichtung 24 des Heizgases H angeordnet und deren Rohre für eine Durchströmung des Strömungsmediums S parallel geschaltet sind. Die Überhitzerheizflächen 22 werden überwiegend konvektiv beheizt und sind strömungsmediumsseitig den Verdampferrohren 11 der Brennkammer 4 nachgeschaltet.The horizontal throttle cable 6 has a number of bulkhead heating surfaces trained superheater heating surfaces 22, which in hanging construction approximately perpendicular to the main flow direction 24 of the heating gas H arranged and their tubes for a flow through the flow medium S connected in parallel are. The superheater heating surfaces 22 become predominantly convective heated and are on the flow medium side of the evaporator tubes 11 downstream of the combustion chamber 4.

Der Vertikalgaszug 8 weist eine Anzahl von überwiegend konvektiv beheizbaren Konvektionsheizflächen 26 auf, die aus annähernd senkrecht zur Hauptströmungsrichtung des Heizgases H angeordneten Rohren gebildet sind. Diese Rohre sind für eine Durchströmung des Strömungsmediums S parallel geschaltet. Außerdem ist in dem Vertikalgaszug 8 ein Hochdruckvorwärmer oder Economizer 28 angeordnet. Ausgangsseitig mündet der Vertikalgaszug 8 in einen nicht näher dargestellten Rauchgas- bzw. Wärmetauscher und von dort über einen Staubfilter in einen Kamin.The vertical throttle cable 8 has a number of predominantly convective heatable convection heating surfaces 26 which come from approximately perpendicular to the main flow direction of the heating gas H arranged tubes are formed. These tubes are for one Flow through the flow medium S connected in parallel. Moreover is a high pressure preheater in the vertical throttle cable 8 or economizer 28 arranged. The vertical throttle cable opens on the output side 8 into a flue gas not shown or heat exchanger and from there via a dust filter into one Stack.

Der Dampferzeuger 2 ist in horizontaler Bauweise mit besonders niedriger Bauhöhe ausgeführt und somit mit besonders geringem Herstellungs- und Montageaufwand errichtbar. Hierzu weist die Brennkammer 4 des Dampferzeugers 2 eine Anzahl von Brennern 30 für fossilen Brennstoff B auf, die an der Stirnseite 9 der Brennkammer 4 in der Höhe des Horizontalgaszuges 6 angeordnet sind.The steam generator 2 is special in a horizontal design low overall height and therefore particularly low Manufacturing and assembly costs can be set up. For this the combustion chamber 4 of the steam generator 2 has a number of Burners 30 for fossil fuel B on the front 9 of the combustion chamber 4 at the level of the horizontal gas flue 6 are arranged.

Damit der fossile Brennstoff B zur Erzielung eines besonders hohen Wirkungsgrads besonders vollständig ausbrennt und Materialschäden der heizgasseitig gesehen ersten Überhitzerheizfläche des Horizontalgaszuges 6 und eine Verschmutzung derselben, beispielsweise durch Ascheeintrag, besonders zuverlässig verhindert sind, ist die Länge L der Brennkammer 4 derart gewählt, daß sie die Ausbrandlänge des Brennstoffs B beim Vollastbetrieb des Dampferzeugers 2 übersteigt. Die Länge L ist dabei der Abstand von der Stirnseite 9 der Brennkammer 4 zum Eintrittsbereich 32 des Horizontalgaszugs 6. Die Ausbrandlänge des Brennstoffs B ist dabei definiert als die Heizgasgeschwindigkeit in horizontaler Richtung bei einer bestimmten mittleren Rauchgastemperatur multipliziert mit der Ausbrandzeit tA des Brennstoffs B. Die für den jeweiligen Dampferzeuger 2 maximale Ausbrandlänge ergibt sich beim Vollastbetrieb des Dampferzeugers 2. Die Ausbrandzeit tA des Brennstoffs B wiederum ist die Zeit, die beispielsweise ein Kohlenstaubkorn mittlerer Größe zum vollständigen Ausbrennen bei einer bestimmten mittleren Rauchgastemperatur benötigt.The length L of the combustion chamber 4 is selected so that the fossil fuel B burns out particularly completely to achieve a particularly high efficiency and material damage to the first superheater heating surface of the horizontal gas flue 6, as seen on the heating gas side, and contamination thereof, for example by the entry of ash, is selected in such a way that it the burnout length of the fuel B exceeds when the steam generator 2 is operating at full load. The length L is the distance from the end face 9 of the combustion chamber 4 to the inlet area 32 of the horizontal gas flue 6. The burnout length of the fuel B is defined as the heating gas speed in the horizontal direction at a specific mean flue gas temperature multiplied by the burnout time t A of the fuel B. The maximum burn-out length for the respective steam generator 2 results when the steam generator 2 is operating at full load. The burn-out time t A of the fuel B is in turn the time which, for example, a medium-sized coal dust particle takes to completely burn out at a certain average smoke gas temperature.

Um eine besonders günstige Ausnutzung der Verbrennungswärme des fossilen Brennstoffs B zu gewährleisten, ist die Länge L (angegeben in m) der Brennkammer 4 in Abhängigkeit von der Austrittstemperatur des Arbeitsmediums aus der Brennkammer 4 TBRK (angegeben in °C), der Ausbrandzeit tA (angegeben in s) des Brennstoffs B und dem BMCR-Wert W (angegeben in kg/s) der Brennkammer 4 geeignet gewählt. Dabei steht BMCR für Boiler maximum continuous rating. Der BMCR-Wert W ist ein international üblicherweise verwendeter Begriff für die höchste Dauerleistung eines Dampferzeugers. Diese entspricht auch der Auslegungsleistung, also der Leistung bei Vollastbetrieb des Dampferzeugers. Dabei bestimmt sich die Länge L der Brennkammer 4 näherungsweise über die Funktionen L (W, tA) = (C1 + C2 · W) · tA L (W, TBRK) = (C3 · TBRK + C4)W + C5(TBRK)2 + C6 · TBRK + C7 mit C1 = 8 m/s und C2 = 0,0057 m/kg und C3 = -1,905 · 10-4 (m · s)/(kg°C) und C4 = 0,2857 (s · m)/kg und C5 = 3 · 10-4 m/(°C)2 und C6 = -0,8421 m/°C und C7 = 603,4125 m. In order to ensure a particularly favorable utilization of the heat of combustion of the fossil fuel B, the length L (specified in m) of the combustion chamber 4, depending on the outlet temperature of the working medium from the combustion chamber 4 T BRK (specified in ° C), is the burnout time t A (specified in s) of the fuel B and the BMCR value W (specified in kg / s) of the combustion chamber 4 are selected appropriately. BMCR stands for Boiler maximum continuous rating. The BMCR value W is an internationally used term for the highest continuous output of a steam generator. This also corresponds to the design power, i.e. the power at full load operation of the steam generator. The length L of the combustion chamber 4 is approximately determined by the functions L (W, t A ) = (C 1 + C 2 · W) · t A L (W, T BRK ) = (C 3rd · T BRK + C 4th ) W + C 5 (T BRK ) 2 + C 6 · T BRK + C 7 With C. 1 = 8 m / s and C. 2 = 0.0057 m / kg and C. 3rd = -1.905.10 -4 (ms) / (kg ° C) and C. 4th = 0.2857 (s · m) / kg and C. 5 = 3 · 10 -4 m / (° C) 2 and C. 6 = -0.8421 m / ° C and C. 7 = 603.4125 m.

Näherungsweise ist hierbei als eine zulässige Abweichung um +20%/-10% vom durch die jeweilige Funktion definierten Wert zu verstehen. Dabei gilt stets bei einem beliebig aber festen BMCR-Wert der Brennkammer 4 der größere Wert der Werte L der Länge L der Brennkammer 4.Approximately this is a permissible deviation +20% / - 10% of the value defined by the respective function to understand. It always applies to any but firm BMCR value of the combustion chamber 4 the larger value of the values L the Length L of the combustion chamber 4.

Als Beispiel für eine Berechnung der Länge L der Brennkammer 4 in Abhängigkeit vom BMCR-Wert W sind in das Koordinatensystem gemäß Figur 3 sechs Kurven K1 bis K6 eingezeichnet. Dabei sind den Kurven jeweils folgende Parameter zugeordnet:

  • K1: tA = 3s   gemäß (1),
  • K2: tA = 2,5s   gemäß (1),
  • K3: tA = 2s   gemäß (1),
  • K4: tBRK = 1200°C   gemäß (2),
  • K5 : tBRK = 1300°C   gemäß (2) und
  • K6: tBRK = 1400°C   gemäß (2).
  • As an example of a calculation of the length L of the combustion chamber 4 as a function of the BMCR value W, six curves K 1 to K 6 are drawn into the coordinate system according to FIG. The following parameters are assigned to the curves:
  • K 1 : t A = 3s according to (1),
  • K 2 : t A = 2.5 s according to (1),
  • K 3 : t A = 2s according to (1),
  • K 4 : t BRK = 1200 ° C according to (2),
  • K 5 : t BRK = 1300 ° C according to (2) and
  • K 6 : t BRK = 1400 ° C according to (2).
  • Zur Bestimmung der Länge L der Brennkammer 4 sind somit beispielsweise für eine Ausbrandzeit tA = 3s und eine Austrittstemperatur TBRK = 1200°C des Arbeitsmediums aus der Brennkammer 4 die Kurven K1 und K4 heranzuziehen. Daraus ergibt sich bei einem vorgegebenen BMCR-Wert W der Brennkammer 4

  • von W = 80 kg/s eine Länge von L = 29 m gemäß K4,
  • von W = 160 kg/s eine Länge von L = 34 m gemäß K4,
  • von W = 560 kg/s eine Länge von L = 57 m gemäß K4.
  • To determine the length L of the combustion chamber 4, the curves K 1 and K 4 are thus to be used, for example, for a burnout time t A = 3 s and an outlet temperature T BRK = 1200 ° C. of the working medium from the combustion chamber 4. This results in the combustion chamber 4 at a predetermined BMCR value W
  • from W = 80 kg / s a length of L = 29 m according to K 4 ,
  • from W = 160 kg / s a length of L = 34 m according to K 4 ,
  • from W = 560 kg / s a length of L = 57 m according to K 4 .
  • Für die Ausbrandzeit tA = 2,5s und die Austrittstemperatur des Arbeitsmediums aus der Brennkammer TBRK = 1300°C sind beispielsweise die Kurven K2 und K5 heranzuziehen. Daraus ergibt sich bei einem vorgegebenen BMCR-Wert W der Brennkammer 4

  • von W = 80 kg/s eine Länge von L = 21 m gemäß K2,
  • von W = 180 kg/s eine Länge von L = 23 m gemäß K2 und K5,
  • von W = 560 kg/s eine Länge von L = 37 m gemäß K5.
  • For the burnout time t A = 2.5 s and the outlet temperature of the working medium from the combustion chamber T BRK = 1300 ° C, curves K 2 and K 5 are to be used, for example. This results in the combustion chamber 4 at a predetermined BMCR value W
  • from W = 80 kg / s a length of L = 21 m according to K 2 ,
  • from W = 180 kg / s a length of L = 23 m according to K 2 and K 5 ,
  • from W = 560 kg / s a length of L = 37 m according to K 5 .
  • Der Ausbrandzeit tA = 2s und der Austrittstemperatur des Arbeitsmediums aus der Brennkammer tBRK = 1400°C sind beispielsweise die Kurven K3 und K6 zugeordnet. Daraus ergibt sich bei einem vorgegebenen BMCR-Wert W der Brennkammer 4

  • von W = 80 kg/s eine Länge von L = 18 m gemäß K3,
  • von W = 465 kg/s eine Länge von L = 21 m gemäß K3 und K6,
  • von W = 560 kg/s eine Länge von L = 23 m gemäß K6.
  • The burnout time t A = 2s and the outlet temperature of the working medium from the combustion chamber t BRK = 1400 ° C are assigned to curves K 3 and K 6 , for example. This results in the combustion chamber 4 at a predetermined BMCR value W
  • from W = 80 kg / s a length of L = 18 m according to K 3 ,
  • from W = 465 kg / s a length of L = 21 m according to K 3 and K 6 ,
  • from W = 560 kg / s a length of L = 23 m according to K 6 .
  • Beim Betrieb des Dampferzeugers 2 wird den Brennern 30 fossiler Brennstoff B zugeführt. Die Flammen F der Brenner 30 sind dabei horizontal ausgerichtet. Durch die Bauweise der Brennkammer 4 wird eine Strömung des bei der Verbrennung entstehenden Heizgases H in annähernd horizontaler Hauptströmungsrichtung 24 erzeugt. Dieses gelangt über den Horizontalgaszug 6 in den annähernd zum Boden hin ausgerichteten Vertikalgaszug 8 und verläßt diesen in Richtung des nicht näher dargestellten Kamins.When the steam generator 2 is operating, the burners 30 become more fossil Fuel B supplied. The flames F of the burners 30 are aligned horizontally. Due to the design of the combustion chamber 4 becomes a flow of the resulting from the combustion Heating gas H in approximately horizontal main flow direction 24 generated. This passes through the horizontal throttle cable 6 in the vertical throttle cable aligned approximately towards the floor 8 and leaves this in the direction of not shown Chimneys.

    In den Economizer 28 eintretendes Strömungsmedium S gelangt über die in dem Vertikalgaszug 8 angeordneten Konvektionsheizflächen in das Eintrittssammler-System 16 der Brennkammer 4 des Dampferzeugers 2. In den vertikal angeordneten, gasdicht miteinander verschweißten Verdampferrohren 11 der Brennkammer 4 des Dampferzeugers 2 findet die Verdampfung und gegebenenfalls eine teilweise Überhitzung des Strömungsmediums S statt. Der dabei entstehende Dampf bzw. ein Wasser-Dampf-Gemisch wird in dem Austrittssammler-System 18 für Strömungsmedium S gesammelt. Von dort gelangt der Dampf bzw. das Wasser-Dampf-Gemisch in die Wände des Horizontalgaszuges 6 und des Vertikalgaszuges 8 und von dort wiederum in die Überhitzerheizflächen 22 des Horizontalgaszuges 6. In den Überhitzerheizflächen 22 erfolgt eine weitere Überhitzung des Dampfs, der anschließend einer Nutzung, beispielsweise dem Antrieb einer Dampfturbine, zugeführt wird.Flow medium S entering the economizer 28 arrives via the convection heating surfaces arranged in the vertical gas flue 8 into the intake manifold system 16 of the combustion chamber 4 of the steam generator 2. In the vertically arranged, gas-tight evaporator tubes 11 welded together Combustion chamber 4 of the steam generator 2 finds the evaporation and possibly a partial overheating of the flow medium S instead. The resulting steam or a water-steam mixture is in the exit collector system 18 for Flow medium S collected. From there the steam or the water-steam mixture in the walls of the horizontal throttle cable 6 and the vertical throttle cable 8 and from there again in the Superheater heating surfaces 22 of the horizontal throttle cable 6. In the Superheater heating surfaces 22 further overheat the Steam, which is subsequently used, for example by the Drive a steam turbine, is supplied.

    Durch die besonders geringe Bauhöhe und kompakte Bauweise des Durchlaufdampferzeugers 2 ist ein besonders geringer Herstellungs- und Montageaufwand desselben gewährleistet. Ein mit vergleichsweise geringem technischen Aufwand erstellbares Gerüst ist insbesondere durch die in Höhe des Horizontalgaszuges 6 angeordneten Brenner 30 der Brennkammer 4 gewährleistet, die eine Durchströmung der Brennkammer 4 in annähernd horizontaler Hauptströmungsrichtung 24 des Heizgases H bewirken. Dabei ist durch eine Wahl der Länge L der Brennkammer 4 in Abhängigkeit vom BMCR-Wert W der Brennkammer 4 sichergestellt, daß die Verbrennungswärme des fossilen Brennstoffs B besonders zuverlässig ausgenutzt wird. Bei einer Dampfturbinenanlage mit dem eine derart geringe Bauhöhe aufweisenden Durchlaufdampferzeuger 2 können außerdem die Verbindungsrohre von dem Durchlaufdampferzeuger 2 zu der Dampfturbine in besonders kurzer Weise ausgelegt sein.Due to the particularly low height and compact design of the Pass-through steam generator 2 is a particularly low manufacturing and Assurance of the same guaranteed. One with comparative scaffolding can be created with little technical effort in particular by the level of the horizontal throttle cable 6 Burner 30 ensures the combustion chamber 4, the one Flow through the combustion chamber 4 in approximately horizontal Main flow direction 24 of the heating gas H. It is by a choice of the length L of the combustion chamber 4 in dependence from the BMCR value W of the combustion chamber 4 ensures that the The heat of combustion of the fossil fuel B is particularly reliable is exploited. In a steam turbine plant with the such a low-profile continuous steam generator 2 can also the connecting pipes from the continuous steam generator 2 the steam turbine can be designed in a particularly short manner.

    Claims (16)

    1. Once-through steam generator (2) having a combustion chamber (4) for a fossil fuel (B), downstream of which a vertical gas flue (8) is arranged on the heating-gas side via a horizontal gas flue (6), the combustion chamber (4) having a number of burners (30) which are arranged at the level of the horizontal gas flue (6).
    2. Once-through steam generator (2) according to Claim 1, in which the burners (30) are arranged on the end face (9) of the combustion chamber (4).
    3. Once-through steam generator (2) according to Claim 1 or 2, in which the length (L) of the combustion chamber (32), which is defined by the distance from the end face (9) of the combustion chamber (4) to the inlet region (32) of the horizontal gas flue (6), is at least equal to the burn-out length of the fuel (B) during full-load operation of the once-through steam generator (2).
    4. Once-through steam generator according to one of Claims 1 to 3, in which the length (L) of the combustion chamber (4) (specified in m) is selected as a function of the BMCR value (W) of the combustion chamber (4) (specified in kg/s), the burn-out time (tA) of the fuel (specified in s) and/or the outlet temperature (TBRK) of the working medium from the combustion chamber (4) (specified in °C) approximately according to the equations L (W, tA) = (C1 + C2 · W) · tA    and L (W, TBRK) = (C3 · TBRK + C4) W + C5 (TBRK)2 + C6 · TBRK + C7    where C1 = 8 m/s    and C2 = 0.0057 m/kg    and C3 = -1.905 · 10-4 (m · s)/(kg°C)    and C4 = 0.2857 (s · m)/kg    and C5 = 3 · 10-4 m/(°C)2    and C6 = -0.8421 m/°C    and C7 = 603.4125 m in which case, for a BMCR value (W) of the combustion chamber (4), the respectively larger value of the length (L) of the combustion chamber (4) applies.
    5. Once-through steam generator (2) according to one of Claims 1 to 4, in which the end face (9) of the combustion chamber (4) is formed from vertically arranged evaporator tubes (11) which are welded to one another in a gastight manner and to which flow medium (S) can be admitted in a parallel manner.
    6. Once-through steam generator (2) according to one of Claims 1 to 5, in which the side walls (10a) of the combustion chamber (4) are formed from vertically arranged evaporator tubes (11) which are welded to one another in a gastight manner and to which flow medium (S) can be admitted in a parallel manner.
    7. Once-through steam generator (2) according to Claim 6, in which a number of evaporator tubes (11), on their inside, in each case have ribs (40) forming a multi-start thread.
    8. Once-through steam generator (2) according to Claim 7, in which a helix angle (α) between a plane (41) perpendicular to the tube axis and the flanks (42) of the ribs (40) arranged on the tube inside is less than 60°, preferably less than 55°.
    9. Once-through steam generator (2) according to one of Claims 1 to 8, in which the side walls (10b) of the horizontal gas flue (6) are formed from vertically arranged steam-generator tubes (12a) which are welded to one another in a gastight manner and to which flow medium (S) can be admitted in a parallel manner.
    10. Once-through steam generator (2) according to one of Claims 1 to 9, in which the side walls (10c) of the vertical gas flue (8) are formed from vertically arranged steam-generator tubes (12b) which are welded to one another in a gastight manner and to which flow medium (S) can be admitted in a parallel manner.
    11. Once-through steam generator (2) according to one of Claims 1 to 10, in which adjacent evaporator or steam-generator tubes (11, 12a, 12b) are welded to one another in a gastight manner via fins, the fin width being selected as a function of the respective position of the evaporator or steam-generator tubes (11, 12a, 12b) in the combustion chamber (4), of the horizontal gas flue (6) and/or of the vertical gas flue (8).
    12. Once-through steam generator (2) according to one of Claims 1 to 11, in which the tube inside diameter (D) of the evaporator tubes (11) of the combustion chamber (4) is selected as a function of the respective position of the evaporator tubes (11) in the combustion chamber (4).
    13. Once-through steam generator (2) according to one of Claims 1 to 12, in which a common inlet-collector system (16) for flow medium (S) is connected on the flow-medium side upstream of the evaporator tubes (11) assigned to the combustion chamber (4), and a common outlet-collector system (18) is connected downstream of the said evaporator tubes (11).
    14. Once-through steam generator (2) according to one of Claims 1 to 13, in which the evaporator tubes (11) of the end face (9) of the combustion chamber (4) are connected on the flow-medium side upstream of the evaporator tubes (11) of the side walls (10a) of the combustion chamber (4).
    15. Once-through steam generator (2) according to one of Claims 1 to 14, in which a number of superheater heating surfaces (22) are arranged in a suspended type of construction in the horizontal gas flue (6).
    16. Once-through steam generator (2) according to one of Claims 1 to 15, in which a number of convection heating surfaces (26) are arranged in the vertical gas flue (8).
    EP99936322A 1998-06-10 1999-05-26 Fossil fuel fired steam generator Expired - Lifetime EP1086339B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE19825800 1998-06-10
    DE1998125800 DE19825800A1 (en) 1998-06-10 1998-06-10 Fossil-fuel steam generator
    DE19851809 1998-11-11
    DE1998151809 DE19851809A1 (en) 1998-11-11 1998-11-11 Fossil-fuel steam generator
    PCT/DE1999/001550 WO1999064787A1 (en) 1998-06-10 1999-05-26 Fossil fuel fired steam generator

    Publications (2)

    Publication Number Publication Date
    EP1086339A1 EP1086339A1 (en) 2001-03-28
    EP1086339B1 true EP1086339B1 (en) 2001-12-12

    Family

    ID=26046709

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99936322A Expired - Lifetime EP1086339B1 (en) 1998-06-10 1999-05-26 Fossil fuel fired steam generator

    Country Status (11)

    Country Link
    US (1) US6557499B2 (en)
    EP (1) EP1086339B1 (en)
    JP (1) JP4242564B2 (en)
    KR (1) KR100597883B1 (en)
    CN (1) CN1192185C (en)
    CA (1) CA2334699C (en)
    DE (1) DE59900551D1 (en)
    DK (1) DK1086339T3 (en)
    ES (1) ES2170588T3 (en)
    RU (1) RU2208739C2 (en)
    WO (1) WO1999064787A1 (en)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19858780C2 (en) * 1998-12-18 2001-07-05 Siemens Ag Fossil-heated continuous steam generator
    DE19901621A1 (en) 1999-01-18 2000-07-27 Siemens Ag Fossil-heated steam generator
    DE19901430C2 (en) 1999-01-18 2002-10-10 Siemens Ag Fossil-heated steam generator
    DE19914761C1 (en) * 1999-03-31 2000-09-28 Siemens Ag Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
    DE19914760C1 (en) * 1999-03-31 2000-04-13 Siemens Ag Fossil-fuel through-flow steam generator for power plant
    CA2430088A1 (en) 2003-05-23 2004-11-23 Acs Engineering Technologies Inc. Steam generation apparatus and method
    WO2006032556A1 (en) * 2004-09-23 2006-03-30 Siemens Aktiengesellschaft Fossil-energy heated continuous steam generator
    EP1701090A1 (en) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Horizontally assembled steam generator
    EP2065641A3 (en) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
    EP2194320A1 (en) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
    EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
    EP2180250A1 (en) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Continuous-flow steam generator
    DE102009036064B4 (en) * 2009-08-04 2012-02-23 Alstom Technology Ltd. in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
    WO2011155005A1 (en) * 2010-06-11 2011-12-15 三浦工業株式会社 Boiler system
    US20120012036A1 (en) * 2010-07-15 2012-01-19 Shaw John R Once Through Steam Generator
    JP5774381B2 (en) * 2011-05-31 2015-09-09 株式会社東芝 Waste heat recovery boiler and power plant
    PL3311073T3 (en) * 2016-09-07 2020-11-16 Doosan Lentjes Gmbh Circulating fluidized bed apparatus

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3003479A (en) * 1952-10-11 1961-10-10 Duerrwerke Ag Steam and air boiler with heating surface of smallest load
    US3043279A (en) 1954-06-18 1962-07-10 Svenska Maskinverken Ab Steam boiler plant
    FR1154150A (en) * 1955-06-03 1958-04-02 Babcock & Wilcox France Improvements to tubular steam evaporation and superheating units
    DE1086382B (en) 1957-06-08 1960-08-04 Vorkauf Heinrich Steam generator firing system with separate fireplaces for two different fuels
    US3136298A (en) * 1962-06-27 1964-06-09 Babcock & Wilcox Co Vapor generator
    US3527261A (en) * 1968-11-12 1970-09-08 Babcock & Wilcox Co Tube guide apparatus
    US3741174A (en) * 1971-05-27 1973-06-26 Babcock & Wilcox Co Tube supports
    DE2504414C2 (en) 1975-02-03 1985-08-08 Deutsche Babcock Ag, 4200 Oberhausen Device for reducing the NO x content
    US3973523A (en) 1975-03-17 1976-08-10 The Babcock & Wilcox Company Vapor generator
    DE2734031C2 (en) 1977-07-28 1982-07-29 Ferdinand Lentjes, Dampfkessel- und Maschinenbau, 4000 Düsseldorf Mobile wet steam once-through steam generator
    EP0349834B1 (en) * 1988-07-04 1996-04-17 Siemens Aktiengesellschaft Once-through steam generator
    AU628463B2 (en) 1988-12-22 1992-09-17 Miura Co., Ltd. Square multi-pipe once-through boiler
    ES2067227T5 (en) * 1991-04-18 2002-04-01 Siemens Ag CONTINUOUS STEAM GENERATOR WITH A VERTICAL GAS SHOT CONSISTING OF SENSITIVELY VERTICALLY AVAILABLE TUBES.
    DE4227457A1 (en) 1992-08-19 1994-02-24 Siemens Ag Steam generator
    US5560322A (en) * 1994-08-11 1996-10-01 Foster Wheeler Energy Corporation Continuous vertical-to-angular tube transitions
    DE4431185A1 (en) * 1994-09-01 1996-03-07 Siemens Ag Continuous steam generator

    Also Published As

    Publication number Publication date
    RU2208739C2 (en) 2003-07-20
    US6557499B2 (en) 2003-05-06
    EP1086339A1 (en) 2001-03-28
    JP2002517706A (en) 2002-06-18
    ES2170588T3 (en) 2002-08-01
    US20020157618A1 (en) 2002-10-31
    CA2334699A1 (en) 1999-12-16
    CN1192185C (en) 2005-03-09
    WO1999064787A1 (en) 1999-12-16
    JP4242564B2 (en) 2009-03-25
    KR100597883B1 (en) 2006-07-13
    CN1309754A (en) 2001-08-22
    CA2334699C (en) 2008-11-18
    KR20010052698A (en) 2001-06-25
    DK1086339T3 (en) 2002-04-15
    DE59900551D1 (en) 2002-01-24

    Similar Documents

    Publication Publication Date Title
    EP1086339B1 (en) Fossil fuel fired steam generator
    EP0944801B1 (en) Steam generator
    EP1188021B1 (en) Fossil-fuel heated steam generator, comprising denitrification device for heating gas
    EP0349834A1 (en) Once-through steam generator
    DE19510033C2 (en) Forced-flow steam generator, especially for sliding pressure operation
    EP1141625B1 (en) Fossil fuel fired continuous-flow steam generator
    DE19914761C1 (en) Fossil fuel through-flow steam generator for electrical power plant has vertical evaporator pipes defined by walls of combustion chamber formed in loop at interface between combustion chamber and horizontal gas flue
    EP1166015B1 (en) Fossil-fuel fired continuous-flow steam generator
    EP1144910B1 (en) Fossil fuel fired steam generator
    WO1992018807A1 (en) Continuous flow steam generator with a vertical gas flue of substantially vertically fitted pipes
    EP1144911B1 (en) Fossil fuel fired steam generator
    EP0937218B1 (en) Method applicable to a continuous steam generator, and the steam generator needed for applying same
    EP2324287B1 (en) Continuous-flow steam generator
    DE19602680C2 (en) Continuous steam generator
    DE102005023082B4 (en) Through steam generator
    DE19851809A1 (en) Fossil-fuel steam generator
    DE19825800A1 (en) Fossil-fuel steam generator
    EP2601442A2 (en) Forced-flow steam generator
    EP1533565A1 (en) Once-through steam generator
    AT200164B (en) Radiant tubular heat exchangers, in particular radiant steam generators, with a furnace for finely divided fuels, such as coal dust or the like.
    DE2327892B2 (en) Forced once-through steam generator

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001116

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE DK ES FR GB LI SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 20010612

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE DK ES FR GB LI SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REF Corresponds to:

    Ref document number: 59900551

    Country of ref document: DE

    Date of ref document: 20020124

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020301

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20020515

    Year of fee payment: 4

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20020523

    Year of fee payment: 4

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2170588

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030527

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030531

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030527

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20120604

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160512

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20160519

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160720

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59900551

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20170531

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170526

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171201

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170526

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170531