EP1084517A1 - Procede de production d'une electrode et electrode destinee a une pile a combustible - Google Patents

Procede de production d'une electrode et electrode destinee a une pile a combustible

Info

Publication number
EP1084517A1
EP1084517A1 EP99922144A EP99922144A EP1084517A1 EP 1084517 A1 EP1084517 A1 EP 1084517A1 EP 99922144 A EP99922144 A EP 99922144A EP 99922144 A EP99922144 A EP 99922144A EP 1084517 A1 EP1084517 A1 EP 1084517A1
Authority
EP
European Patent Office
Prior art keywords
electrode
outer layer
fuel cell
organic polymers
thermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99922144A
Other languages
German (de)
English (en)
Inventor
Rolf BRÜCK
Andrée BERGMANN
Jörg-Roman KONIECZNY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1084517A1 publication Critical patent/EP1084517A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • H01M4/8889Cosintering or cofiring of a catalytic active layer with another type of layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the subject matter of the invention relates to a method for producing an electrode and to an electrode for a fuel cell, in particular for a low-temperature fuel cell.
  • Fuel cells or fuel cell systems are becoming increasingly important as they are used as an energy source for driving a
  • fuel cells are also used for stationary energy supply, in particular for decentralized power supply.
  • PEM fuel cells are fuel cells in which the electrolyte is formed by a proton-conducting membrane (proton exchange membrane).
  • the proton-conducting electrolyte membrane is a polymer film a few tenths of a millimeter thick. It is known that the proton-conducting electrolyte membrane can be coated on both sides with platinum and gas-permeable electrodes. This is known as a membrane electrode assembly (MEA). Graphite electrodes are used as electrodes. The handling of such configurations is relatively problematic because the proton-conducting - 2nd
  • the electrolyte membrane is very thin, which can have the consequence that if the connection between the gas-permeable electrodes or platinum and the electrolyte membrane is not sufficiently stable, the platinum or gas-permeable electrodes split off from the electrolyte membrane.
  • Electrodes are also known which are formed by graphite bodies. These graphite bodies are porous. They are brought into contact with the electrolyte.
  • the present invention is based on the object of specifying a method for producing an electrode for a fuel cell which is relatively simple to carry out and specifying an electrode which is simple to produce.
  • a blank containing organic polymers be subjected to a thermal treatment, so that the organic polymers are at least partially converted to conductor polymers.
  • This process procedure produces an electrode which, on the one hand, has an electrically conductive layer which can be brought into contact with an electrolyte.
  • the blank can contain organic polymers in whole or in part. In the case of a blank which only partially has the organic polymers, these are preferably contained in an outer layer, so that after a thermal - 3rd
  • Treatment in particular a pyrotechnic treatment, only the outer layer of the electrode has electrically conductive properties.
  • the mechanical properties of the electrode are determined by the other components of the electrode, which are preferably not changed or only to a small extent by the thermal treatment.
  • the organic polymers are at least partially converted into graphite-like structures by the thermal treatment.
  • This configuration has the advantage that a carbon-containing outer layer is created.
  • the organic polymers are formed by polyacrylonitrile (PAN) or cellulose acetate or a mixture thereof.
  • the polyacrylonitrile or cellulose acetate or their mixture is preferably first stabilized during the thermal treatment, as a result of which the polyacrylonitrile, the cellulose acetate or their mixtures are converted into an infusible form. Then takes place at elevated temperature, i.e. H. at a temperature of preferably between 1200 and 1500 ° C, carbonization with elimination of volatile products. The carbonization is preferably carried out in a nitrogen atmosphere. This is followed by graphitization of the polyacrylonitrile or the cellulose acetate, at a temperature between 2,000 and 3,000 ° C.
  • At least the graphitization is preferably carried out under vacuum.
  • at least the graphitization can take place in a protective gas atmosphere.
  • the protective gas atmosphere preferably contains nitrogen or argon.
  • an at least partially porous blank be subjected to a thermal treatment - 4th
  • the porosity of the blank is preserved during the thermal treatment. Even after the conductor polymers have been formed, the electrode has a porosity. The porosity is sufficient to ensure that a fuel gas, in particular hydrogen or methanol, or an oxidant, in particular oxygen, reaches the electrolyte.
  • an at least two-layer blank is first provided, an outer layer of the blank being organic polymers which convert at least partially to conductor polymers, and one of the Has outer layer adjacent electrically conductive layer.
  • the electrically conductive layer ensures a current flow from the outer layer to a connection.
  • the electrically conductive layer also reduces the ohmic losses of the electrode, which also makes it possible to increase the efficiency of the fuel cell.
  • the organic polymers are converted into conductor polymers in an outer layer.
  • an electrode for a fuel cell in particular for a low-temperature fuel cell, is proposed which has an electrically conductive layer which is formed by thermal conversion of organic polymers to conductor polymers.
  • the electrode can also be completely electrically conductive.
  • At least some of the outer layer preferably has a graphite-like structure.
  • the electrically conductive polymers are preferably formed by thermal treatment of polyacrylonitrile (PAN) or cellulose acetate or a mixture thereof. - 5 -
  • the electrode it is proposed that it be at least partially porous.
  • the electrode have an outer layer containing conductor polymers and an electrically conductive layer adjacent to the outer layer.
  • Fig. 1 in section a first embodiment of an electrode
  • Fig. 2 shows a second embodiment of an electrode.
  • the low-temperature fuel cell is preferably a fuel cell with a proton-conducting electrolyte.
  • the electrode 1 comprises a porous electrode body 4. Pores 3 are formed in the porous electrode body 4.
  • the electrode body 4 has an outer layer 2 which is formed by conductor polymers, in particular with a graphite-like structure.
  • the outer layer 2 is also porous.
  • the electrode 1 is designed so that it is gas-permeable to a fuel or an oxidant.
  • the outer layer 2 can be brought into contact with an electrolyte, not shown.
  • the arrow in FIG. 1 indicates the feed direction of a fuel or an oxidant.
  • the electrode 1 shown in FIG. 1 is formed by thermal treatment of a blank containing organic polymers, the organic polymers at least partially converting to lead polymers during the thermal treatment.
  • the electrode 1 has an electrode body 4 which is porous.
  • the pores of the porous electrode body 4 are designated by the reference number 3.
  • the electrode 1, as shown in FIG. 2, has a multilayer structure.
  • the electrode 1 has an outer layer 2, which is formed by Leite ⁇ olymers.
  • the lead polymers preferably have a graphite-like structure.
  • a layer 5, which is an electrically conductive layer, is connected to the outer layer 2. You, d. H. the layer 5 is in electrical connection with the outer layer 2.
  • the layer 5 can also be formed by individual bus conductors which extend to an electrical connection 7.
  • An insulating layer 6 is formed on the layer 5. The insulating layer 6 is intended to achieve electrical insulation of the layer 5 or the outer layer 2 from the surroundings.
  • the formation of the insulating layer 6 has the advantage that with an arrangement of fuel cells so that the electrodes of adjacent fuel cells touch, in particular when the fuel cells are stacked, the electrodes of adjacent fuel cells can be electrically separated from one another.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Afin de produire une électrode pour pile à combustible, notamment pour une pile à combustible basse température, il est prévu de soumettre une ébauche contenant des polymères organiques à un traitement thermique, de manière que les polymères organiques se transforment au moins en partie en polymères conducteurs, en particulier avec une structure de type graphite.
EP99922144A 1998-04-30 1999-04-29 Procede de production d'une electrode et electrode destinee a une pile a combustible Ceased EP1084517A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19819331A DE19819331A1 (de) 1998-04-30 1998-04-30 Verfahren zum Herstellen einer Elektrode sowie eine Elektrode für eine Brennstoffzelle
DE19819331 1998-04-30
PCT/EP1999/002919 WO1999057772A1 (fr) 1998-04-30 1999-04-29 Procede de production d'une electrode et electrode destinee a une pile a combustible

Publications (1)

Publication Number Publication Date
EP1084517A1 true EP1084517A1 (fr) 2001-03-21

Family

ID=7866289

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99922144A Ceased EP1084517A1 (fr) 1998-04-30 1999-04-29 Procede de production d'une electrode et electrode destinee a une pile a combustible

Country Status (5)

Country Link
US (1) US6582847B1 (fr)
EP (1) EP1084517A1 (fr)
JP (1) JP2002513992A (fr)
DE (1) DE19819331A1 (fr)
WO (1) WO1999057772A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19926353A1 (de) * 1999-06-10 2000-12-14 Daimler Chrysler Ag Brennstoffzelle mit Polymerelektrolytmembran
WO2004062020A2 (fr) * 2002-12-27 2004-07-22 Foamex L.P. Couche de diffusion gazeuse contenant de facon intrinseque un polymere conducteur pour piles a combustibles
US7632587B2 (en) 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
US7378176B2 (en) * 2004-05-04 2008-05-27 Angstrom Power Inc. Membranes and electrochemical cells incorporating such membranes
JP2008243491A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 燃料電池
EP2210303B1 (fr) * 2007-09-25 2017-04-05 Intelligent Energy Limited Systèmes de pile à combustible comprenant une chambre de fluide économisant l'espace et procédés associés
JP5535919B2 (ja) * 2007-09-25 2014-07-02 ソシエテ ビック 燃料電池カバー
EP2260528B1 (fr) * 2008-02-29 2016-02-24 Intelligent Energy Limited Cellule électrochimique et membranes associées
JP2013161737A (ja) * 2012-02-08 2013-08-19 Toyota Motor Corp 膜電極接合体、燃料電池セル、および、膜電極接合体の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039809A1 (fr) * 1997-03-06 1998-09-11 Magnet-Motor Gesellschaft Für Magnetmotorische Technik Mbh Electrode a diffusion gazeuse ayant une capacite de diffusion reduite pour l'eau et cellule electrochimique a membrane electrolytique polymerique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2108396A1 (de) * 1971-02-22 1972-09-07 Siemens Ag Verfahren zur Herstellung von pulverförmigem Wolframcarbid enthaltendem Elektrodenmaterial
JPS60122711A (ja) * 1983-12-08 1985-07-01 Oji Paper Co Ltd 多孔質炭素板の製造方法
US4832870A (en) * 1988-06-20 1989-05-23 The United States Department Of Energy Electrically conductive composite material
US5236687A (en) * 1989-10-17 1993-08-17 Kureha Kagaku Kogyo Kabushiki Kaisha Flat plate-like ribbed porous carbon material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039809A1 (fr) * 1997-03-06 1998-09-11 Magnet-Motor Gesellschaft Für Magnetmotorische Technik Mbh Electrode a diffusion gazeuse ayant une capacite de diffusion reduite pour l'eau et cellule electrochimique a membrane electrolytique polymerique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9957772A1 *

Also Published As

Publication number Publication date
US6582847B1 (en) 2003-06-24
JP2002513992A (ja) 2002-05-14
WO1999057772A1 (fr) 1999-11-11
DE19819331A1 (de) 1999-11-04

Similar Documents

Publication Publication Date Title
EP0987777B1 (fr) Couche catalytique pour des électrodes polymériques des piles à combustible
EP0934606B1 (fr) Unite electrodes-electrolyte pour une pile a combustible
DE112006001729B4 (de) Spannungswechselbeständige Brennstoffzelleneletrokatalysatorschicht, Brennstoffzelle umfassend dieselbe und Verwendung derselben
DE19624887A1 (de) Elektrochemisches Festelektrolyt-Zellsystem
DE19956507A1 (de) Brennstoffzellenelektrode mit leitfähigem Zeolithträgermaterial
DE102007044246A1 (de) Membran-Elektroden-Einheit mit hydrierbarem Material für eine Brennstoffzelle
DE102014210358A1 (de) Brennstoffzellenstapel mit einer dummyzelle
WO1999057773A1 (fr) Electrode a pores traversants pour un fluide et pile a combustible correspondante
DE102017214725A1 (de) Katalytische Zusammensetzung, Verfahren zu ihrer Herstellung, ihre Verwendung zur Herstellung einer Brennstoffzellenelektrode sowie Brennstoffzelle mit einer solchen
EP1084517A1 (fr) Procede de production d'une electrode et electrode destinee a une pile a combustible
DE10221397A1 (de) Herstellungsverfahren einer Brennstoffzellenelektrode und eine Brennstoffzelle davon
EP1224705B1 (fr) Pile a combustible a reformeur interne, et procede pour la faire fonctionner
DE102007056120A1 (de) Verfahren zum Herstellen einer 5-Schicht-Mea mit verbesserter elektrischer Leitfähigkeit
DE112006002510B4 (de) Brennstoffzelle
DE102004024844A1 (de) Elektrodenpaste zur Herstellung einer Katalysatorschicht für eine elektrochemische Zelle sowie Verfahren zur Herstellung einer Katalysatorschicht
DE102013219010A1 (de) Funktionalisierte Membran, funktionalisierte Bipolarplatte sowie Brennstoffzelle
DE102004063457A1 (de) Membran-Elektrodeneinheit einer Brennstoffzelle
EP1082770A2 (fr) Procede pour mouiller au moins une des surfaces d'un electrolyte dans une pile a combustible
DE102020102392A1 (de) Verfahren zur Herstellung eines Katalysators, Brennstoffzelle sowie Kraftfahrzeug
DE102007000646B4 (de) Verfahren zur Herstellung einer Membran-Elektroden-Einheit
EP1080508B1 (fr) Electrode pour pile a combustible et pile a combustible correspondante
WO2021121763A1 (fr) Couche de diffusion de gaz pour cellule électrochimique
DE10317780B3 (de) Kathode für eine Direkt-Methanol-Brennstoffzelle sowie Verfahren zum Betreiben derselben
DE102023114954A1 (de) Brennstoffzellen-einheit
DE102020132753A1 (de) Brennstoffzellenkatalysator, denselben umfassende Brennstoffzellenelektrode und denselben umfassende Membran-Elektroden-Baugruppe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20010917

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20020809