EP1084432B1 - Projektionsschirm - Google Patents

Projektionsschirm Download PDF

Info

Publication number
EP1084432B1
EP1084432B1 EP99927772A EP99927772A EP1084432B1 EP 1084432 B1 EP1084432 B1 EP 1084432B1 EP 99927772 A EP99927772 A EP 99927772A EP 99927772 A EP99927772 A EP 99927772A EP 1084432 B1 EP1084432 B1 EP 1084432B1
Authority
EP
European Patent Office
Prior art keywords
holographic
projection
light
projection screen
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99927772A
Other languages
English (en)
French (fr)
Other versions
EP1084432A1 (de
Inventor
Jörg Gutjahr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1084432A1 publication Critical patent/EP1084432A1/de
Application granted granted Critical
Publication of EP1084432B1 publication Critical patent/EP1084432B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the invention relates to a projection screen, in particular a projection screen for large-scale image projections.
  • projection screens are used in cinemas.
  • On the projection screens are from one on the viewer side provided projector projected images.
  • the light hitting the projection screen becomes scattered from the projection screen, so that for the Viewers can see the image on the projection screen becomes.
  • Since such projection screens also have extraneous light, such as. Daylight, scatter, the room must be darkened his.
  • Such projection screens can be used outdoors can only be used at night, and also no extraneous light, e.g. through street lamps on which Projection screen may hit. With such Projection screens are already deteriorating low extraneous light the image quality.
  • Projection systems are also known in which the Projector placed on the back of the projection screen is.
  • the image is created by rear projection on the projection screen, the striking Light also scatters, shown.
  • APPLIED OPTICS (12, 1973) 21.80-84 describes a microfilm viewing device in which means of a hologram the combination of a lens is realized with a lens.
  • the hologram serves as a screen for the visualization of a Magnifying lens projected microfilm images.
  • the Hologram has that when illuminated with any light Shape of a focusing screen, i.e. it is milky and opaque.
  • the purpose of the hologram is to save a voluminous and complex lens.
  • a light panel is known from DE 43 30 384 A1 the image holograms, which surface or line patterns form, are saved.
  • the holograms in different colors Fields are under different lighting angles generated so that the fields the Show viewers different colors. It can only the saved pattern is made visible become.
  • the object of the invention is a projection screen to create, especially for large-scale image projections Can also be used with a large proportion of extraneous light is.
  • the projection screen according to the invention has several in holographic-optical elements arranged on one plane on.
  • Elements can be created using an image Rear projection. This is on everyone single holographic-optical element an image area a projected image. Thereby the image to be projected is quasi into individual pixels divided and each pixel by a holographic optical Element shown.
  • Each holographic-optical element has at least a diffraction grating and at least one lens.
  • the diffraction grating are, for example, light beams red, green and blue color separations of the projected Image diffracted differently.
  • the lens Through the lens the image to be projected is displayed in an image plane.
  • holographic-optical elements are designed such that the light beams of different color separations of an image to be projected into one common light beam with the same light beam angle are summarized.
  • Color information of the corresponding image area contains. Every holographic-optical element produces thus a single directed light beam.
  • the one at the Projection screen used holographic-optical according to the invention Elements are transparent and it there is only a slight scattering of the holographic-optical Elements of incident light. Consequently extraneous light is almost not scattered.
  • the projection screen can therefore also be used for large-scale image projections Daylight can be used.
  • the projection screen has the effect that when viewed Color images seen from the intended direction be made from a combination of different Color components exist. When viewing from a the projection screen is clear in the other direction and see-through.
  • the projection screen is also from the back transparent.
  • the Projection screen from a window pane of a room consist. Are the projectors arranged inside the room and aimed at the window, so it is the projected image is visible from the outside. Nevertheless came Daylight through the window into the room and people who are in the room can without that they see the picture through the window outside watch.
  • the light exit angles preferably differ vertically spaced holographic Elements such that the light exit bundle cut in a viewing plane.
  • the holographic-optical elements are preferred designed so that the light exit bundle only be expanded horizontally. Through the horizontal Widening also occurs in the side area of the projection screen arranged holographic-optical Elements light the exit bundle into the eye of the beholder. The fact that the light exit beam in vertical direction are not expanded Loss of light intensity avoided.
  • the first type consists of a single diffraction grating and one or more lenses. So that the diffraction grating a common light beam in the direction of the viewer, the back of the holographic optical Elements separated by color separations Beams of light irradiated. On the holographic-optical The element thus becomes a red, a green and the blue color separations of the one to be projected Projected light bundle projected. The Angles between the light beams are chosen so that the light beams after the diffraction-specific diffraction through the diffraction grating to a common one The light exit bundle collapse.
  • holographic-optical elements will only be a common bundle of light in which all Contain color separations of the image to be projected are on the back of the holographic optical Elements projected.
  • the common light beam points thus all light beams of the individual color separations on.
  • the holographic optical element points to everyone Color separation a separate grid and again one or more lenses.
  • the diffraction gratings are like this coordinated that the individual color separations of the incident light beam is not separated but as a common light beam with the same light emission angle in the direction of the viewer.
  • a Projection screen with the first type of holographic-optical Elements used. Furthermore, the projection system a projector to generate the individual Beams of light from the color separations. Since the back of the first type of holographic-optical elements from after Color separations are illuminated separate bundles of light, has the projector for each light beam to be generated a projection device. According to the invention the distance of the projection devices to the color-specific ones Diffraction angle of the in every holographic-optical Element contained diffraction grating such matched that of every holographic-optical element the light beams of the color separations into a common one Beam exit beam with the same beam exit angle be summarized.
  • this projection system can be used as a projector an RGB projector that a red, a green and a blue color separation of the image to be projected can be used.
  • RGB projector that a red, a green and a blue color separation of the image to be projected can be used.
  • images with high Luminance and high contrast are generated because of that entire to the back of the projection screen from light projected onto the projector towards the viewer is bowed.
  • a projection screen is used, the holographic-optical Has elements of the second type.
  • the The projector of this projection system has only one projection device on. From the projection device becomes a common bundle of light in which the individual Light bundles per color separation are included on the back projected on the projection screen. Every holographic-optical Element points for each light beam a diffraction grating. The diffraction gratings are coordinated so that from a common element for each holographic-optical element Beam of light emitted towards the viewer becomes. Because with this projection system for everyone A separate grating in each holographic-optical beam Element provided is the Luminance lower than in this projection system with the projection system described above. The Projection system can still be used for large-scale image projections be used in daylight. A special The advantage of this projection system is that that a conventional projector emitting white light can be used.
  • the The projector is usually not in the center of the screen arranged, but offset in the vertical direction.
  • the resulting distortion of the image projected through the projection screen the arrangement of equalization lenses in the beam path of the one or each projection device can be canceled.
  • the projector can also be equipped with an electronic equalization device be assigned by which to projecting image is distorted accordingly, so that an undistorted image appears on the projection screen.
  • a projection system is shown, where the first type of holographic-optical elements 10 is used.
  • On a back of the holographic-optical Elements 10 i.e. to the one viewer 12 side facing away from a projector 14 three light beams 16, 18, 20 are projected.
  • the projector 14 has three projection devices 22, 24, 26 on.
  • the projector 14 is a conventional one RGB projector using the projection device 22 a light beam 16 for the blue color separations of the image by means of the projection device 24 a light beam 18 for the green color separations of the Image and by means of the projection device 26 Beams of light 20 generated for the red color separations of the image.
  • Fig. 1 are the areas of the three light beams 16,18,20 shown on the back of an individual holographic-optical element 10. Through the three light beams 16, 18, 20 the entire Color information one by the holographic optical Element 10 represented image area on the holographic-optical Element 10 projected.
  • the three light beams 16, 18, 20 are made by the holographic-optical Element 10 bent differently, see above that a light exit angle ⁇ for each light beam 16, 18, 20 is identical. This is due to the holographic-optical Element 10 is a common light beam 28 generated that towards the viewer 12 is aligned.
  • Crucial for the fact that the three light beams 16, 18, 20 into one Beams 28 are summarized, are the execution one on the holographic optical element 10 provided diffraction grating and the angle of incidence of the individual light beams 16, 18, 20.
  • the angle of incidence of the Beams 16, 18, 20 can be changed by changing the distances the projection device 22, 24, 26 become.
  • the holographic-optical element 10 is designed that the light beams 16,18,20 in the vertical direction not be expanded (Fig. 1). In horizontal The light beams 16, 18, 20 are directed in the direction of an angle ⁇ (Fig. 2) expanded. This will be explained later the fig. 5 and 6 discussed in more detail.
  • FIG. 3 is a projection screen 30 of a projection system shown in which the on the basis of FIGS. 1 and 2 described holographic-optical elements 10 be used. From every holographic-optical Element 10 becomes another image area of the one to be projected Shown image, so that to be projected Image is divided by a grid, each Halftone dot through another holographic-optical Element 10 is mapped. This will appear on the Projection screen an enlargement of the to be projected Image by the individual holographic-optical Elements 10 is composed (Fig. 4).
  • the section of the projection screen 30 there are two holographic-optical elements 10a, 10b picked out. Only the green light beams are for clarification 18a, 18b shown by the projection device 24 on the back of the holographic-optical Elements 10a, 10b are projected.
  • the of The light beams generated by the projection devices 22, 24 are from the holographic-optical elements 10a, 10b together in the manner described with reference to FIG. 1 to common with the green light beams 18a, 18b Light exit bundles 28a, 28b combined.
  • the holographic-optical Elements 10a, 10b have a vertical one Distance from each other and are designed that the light exit bundles 28a, 28b have a different Have light exit angles ⁇ or ⁇ '.
  • the light exit angle ⁇ 'of the viewer 12 further Holographic-optical arranged at the top in the projection screen 30 Elements 10b is smaller than that Angle ⁇ of the lower holographic-optical Elements 10a.
  • the holographic optical element 10b is designed so that the light exit beam 28b the light exit beam 28a in a common viewing plane 32 cuts.
  • the rest of the holographic-optical Elements 10 of the projection screen 30 are also designed so that the size of each Light exit angle ⁇ is such that all Light exit bundle 28 of the holographic-optical Cut elements in viewing plane 32.
  • Corresponding increases the size of the angle ⁇ when a holographic optical Element 10 deeper than the viewer 12 is arranged.
  • the light exit angle ⁇ of in holographic-optical arranged in a horizontal line Elements are the same.
  • the image is on the projection screen 30 is shown distorted. To do that The image is rectified in the beam paths of the projector 14 shift lenses are provided. It can also Image is rectified on the projection screen 30 be arithmetic by the image to be projected equalized by an electronic equalization device becomes.
  • the holographic-optical elements 10 have one Film level 34 (Figs. 5 and 6) in which the diffraction grating is present through which the light beam 14,18,20 different color separations be strongly bowed.
  • On the back of the holographic-optical Elements 10 are multiple cylindrical lenses 36 provided in parallel to each other in a Level are arranged so that a raster cylinder lens 38 is formed.
  • the distance between adjacent cylindrical lenses 36 is 12 in relation to the distance of the viewer from the projection screen 30 low.
  • the raster cylinder lens 38 causes that those hitting the holographic optical element 10 Beams 16, 18, 20 only horizontally monochromatic be expanded (Fig. 2).
  • the cross section of the Cylindrical lenses are preferably circular; it can but also around elliptical or other curved cylindrical lenses act. From the cylindrical lenses 36 the image to be projected is shown in the focal lines. Because the cylindrical lenses 36 preferably have a diameter of about 1 mm are for the viewer 12 the parallel focal lines no longer recognizable separately from each other, so that a closed picture results.
  • the individual holographic-optical Elements 10 have, for example Size of 20 x 30 mm.
  • the angle y of the exposure of the Film 34 used light 42 is thus the vertical Location of the holographic-optical element 10 in the Projection screen 30 set.
  • Figs. 8 and 9 is another projection system can be seen in which the second type of holographic-optical Elements is used.
  • a projector 14 with a projection device 50 a light beam 52 on the back of a holographic optical Elements 54 projected.
  • white light onto that to be projected Image is emitted are in the light beam 52 the light beam for the red, the green and the blue color separation of the image to be projected, the dotted according to Fig. 1, solid or dashed lines shown are.
  • the holographic-optical element 54 is constructed in such a way that the light beam 52 is not in the individual color-specific light beam splits, but corresponding to the holographic-optical element 10 common light bundle 56 with the same light exit angle ⁇ in the direction of the viewer 12.
  • the holographic-optical element 54 has three different diffraction gratings 58, 60, 62 (FIG. 9), for example, the diffraction grating 58 the red, the diffraction grating 60 the green and the diffraction grating 62 diffracts the blue color portion of the light beam 52.
  • the arrangement of three diffraction gratings 58, 60, 62 side by side it is also possible to watch three films independently to expose each other and the diffraction gratings to be arranged one above the other. The manufacture of the diffraction grating is described in accordance with that of FIG.
  • FIGS. 8th and 9 corresponds to the above on the basis of FIGS. 8th and 9, the projection system described in the FIGS. 1-4 shown projection system.
  • the bundles of light are also in the horizontal direction by the angle ⁇ expanded (Fig. 2) and the projection screen 30 also from holographic-optical arranged side by side Elements 54 composed.
  • the holographic-optical Elements 54 also have a raster cylinder lens 38 and one or more exposed Films exposed as described above were.
  • a projection system is the projector 14 (Fig. 10) with respect to the projection screen 30 arranged on the side of the viewer 12.
  • the projection screen 30 66 There is a mirror behind the projection screen 30 66 provided.
  • the of the projection devices 22, 24, 26 generated light beams 16,18,20 on the back of the projection screen 30 reflected. So it is also with this arrangement of the projector 14 to a rear projection.
  • the three projection devices 22,24,26 can also be the single projection device 50 (FIG. 8) and in the projection screen 30 accordingly the second type of holographic-optical elements 54 are provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

Die Erfindung betrifft einen Projektionsschirm, insbesondere einen Projektionsschirm für großflächige Bildprojektionen.
Bei großflächigen Bildprojektionen, wie beispielsweise in Kinos, werden Projektionsleinwände eingesetzt. Auf die Projektionsleinwände werden von einem auf der Betrachterseite vorgesehenen Projektor Bilder projiziert. Das auf die Projektionsleinwand treffende Licht wird von der Projektionsleinwand gestreut, so daß für den Betrachter auf der Projektionsleinwand das Bild sichtbar wird. Da derartige Projektionsleinwände auch Fremdlicht, wie z.B. Tageslicht, streuen, muß der Raum abgedunkelt sein. Im Freien können derartige Projektionsleinwände nur nachts eingesetzt werden, wobei außerdem kein Fremdlicht, z.B. durch Straßenlaternen, auf die Projektionsleinwand auftreffen darf. Bei derartigen Projektionsleinwänden verschlechtert sich bereits bei geringem Fremdlichtanteil die Bildqualität.
Ferner sind Projektionssysteme bekannt, bei denen der Projektor auf der Rückseite der Projektionsleinwand angeordnet ist. Hierbei wird das Bild durch Rückprojektion auf der Projektionsleinwand, die auftreffendes Licht ebenfalls streut, abgebildet.
In der Zeitschrift APPLIED OPTICS, (12, 1973) 21.80-84 ist ein Mikrofilm-Sichtgerät beschrieben, bei dem mittels eines Hologramms die Kombination einer Streuscheibe mit einer Linse realisiert ist. Das Hologramm dient als Bildschirm zur Sichtbarmachung der durch eine Vergrößerungslinse projizierten Mikrofilmbilder. Das Hologramm hat bei Beleuchtung mit jeglichem Licht die Gestalt einer Mattscheibe, d.h. es ist milchig und undurchsichtig. Der Zweck des Hologramms besteht darin, eine voluminöse und aufwendige Linse zu ersparen.
Aus DE 43 30 384 A1 ist eine Leuchttafel bekannt, auf der Bildhologramme, welche Flächen- oder Linienmuster bilden, gespeichert sind. Die Hologramme in verschiedenfarbigen Feldern sind unter unterschiedlichen Beleuchtungswinkeln erzeugt worden, so daß die Felder dem Betrachter unterschiedliche Farben darbieten. Es kann jeweils nur das gespeicherte Muster sichtbar gemacht werden.
Aufgabe der Erfindung ist es, einen Projektionsschirm zu schaffen, der insbesondere für großflächige Bildprojektionen auch bei einem großen Fremdlichtanteil einsetzbar ist.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Patentanspruchs 1.
Der erfindungsgemäße Projektionsschirm weist mehrere in einer Ebene angeordnete holographisch-optische Elemente auf. Auf den eine geschlossene Fläche bildenden holographisch-optischen Elementen kann ein Bild mittels Rückprojektion dargestellt werden. Hierbei wird auf jedem einzelnen holographisch-optischen Element ein Bildbereich eines projizierten Bildes abgebildet. Dadurch wird das zu projizierende Bild quasi in einzelne Pixel unterteilt und jedes Pixel von einem holographisch-optischen Element dargestellt.
Jedes holographisch-optische Element weist mindestens ein Beugungsgitter und mindestens eine Linse auf. Durch das Beugungsgitter werden beispielsweise Lichtbündel roter, grüner und blauer Farbauszüge des zu projizierenden Bildes unterschiedlich gebeugt. Durch die Linse wird das zu projizierende Bild in einer Bildebene abgebildet.
Die bei dem erfindungsgemäßen Projektionsschirm verwendeten holographisch-optischen Elemente sind derart ausgebildet, daß die Lichtbündel unterschiedlicher Farbauszüge eines zu projizierenden Bildes jeweils zu einem gemeinsamen Lichtaustrittsbündel mit demselben Lichtaustrittswinkel zusammengefaßt sind. Somit wird von jedem holographisch-optischen Element in Richtung des Betrachters ein einziges Lichtbündel abgegeben, das sämtliche Farbinformationen des entsprechenden Bildbereichs enthält. Jedes holographisch-optische Element erzeugt somit ein einziges gerichtetes Lichtbündel. Die bei dem erfindungsgemäßen Projektionsschirm verwendeten holographisch-optischen Elemente sind transparent und es tritt nur eine geringe Streuung des auf die holographisch-optischen Elemente auftreffenden Lichts auf. Somit wird auch Fremdlicht annähernd nicht gestreut. Ferner sind der Kontrast und die Leuchtdichte des erfindungsgemäßen Projektionsschirms höher als bei herkömmlichen Projektionsleinwänden. Der Projektionsschirm kann daher auch für großflächige Bildprojektionen bei Tageslicht eingesetzt werden.
Der Projektionsschirm hat die Wirkung, daß bei Betrachtung aus der vorgesehenen Richtung farbige Bilder gesehen werden, die aus einer Kombination der verschiedenen Farbanteile bestehen. Bei Betrachtung aus einer anderen Richtung ist der Projektionsschirm dagegen klar und durchsichtig. Der Projektionsschirm ist auch von der Rückseite her durchsichtig. Beispielsweise kann der Projektionsschirm aus einer Fensterscheibe eines Raumes bestehen. Sind die Projektoren im Innern des Raumes angeordnet und auf die Fensterscheibe gerichtet, so ist das projizierte Bild von außen sichtbar. Gleichwohl gelangt Tageslicht durch das Fenster hindurch in den Raum und Personen, die sich im Raum befinden, können, ohne daß sie das Bild sehen, durch das Fenster nach draußen schauen.
Vorzugsweise unterscheiden sich die Lichtaustrittswinkel von in vertikaler Richtung beabstandeten holographischen Elementen derart, daß sich die Lichtaustrittsbündel in einer Betrachtungsebene schneiden. Ferner sind die holographisch-optischen Elemente vorzugsweise so ausgebildet, daß die Lichtaustrittsbündel nur horizontal aufgeweitet werden. Durch die horizontale Aufweitung gelangt auch von im Seitenbereich des Projektionsschirms angeordneten holographisch-optischen Elementen Licht der Austrittsbündel in das Auge des Betrachters. Dadurch, daß die Lichtaustrittsbündel in vertikaler Richtung nicht aufgeweitet werden, sind Lichtintensitätsverluste vermieden.
Vorzugsweise werden für den Projektionsschirm zwei Arten von holographisch-optischen Elementen verwendet. Die erste Art besteht aus einem einzigen Beugungsgitter und einer oder mehreren Linsen. Damit das Beugungsgitter ein gemeinsames Lichtaustrittsbündel in Richtung des Betrachters abgibt, wird die Rückseite des holographisch-optischen Elements von nach Farbauszügen getrennten Lichtbündeln bestrahlt. Auf das holographisch-optische Element wird somit ein die roten, ein die grünen und ein die blauen Farbauszüge des zu projizierenden Bildes enthaltendes Lichtbündel projiziert. Die Winkel zwischen den Lichtbündeln sind so gewählt, daß die Lichtbündel nach der farbauszugsspezifischen Beugung durch das Beugungsgitter zu einem gemeinsamen Lichtaustrittsbündel zusammenfallen.
Bei der zweiten Art der holographisch-optischen Elemente wird nur ein gemeinsames Lichtbündel, in dem sämtliche Farbauszüge des zu projizierenden Bildes enthalten sind, auf die Rückseite des holographisch-optischen Elements projiziert. Das gemeinsame Lichtbündel weist somit sämtliche Lichtbündel der einzelnen Farbauszüge auf. Das holographisch-optische Element weist für jeden Farbauszug ein gesondertes Gitter und wiederum eine oder mehrere Linsen auf. Die Beugungsgitter sind so aufeinander abgestimmt, daß die einzelnen Farbauszüge des auftreffenden Lichtbündels nicht voneinander getrennt werden, sondern als gemeinsames Lichtaustrittsbündel mit demselben Lichtaustrittswinkel in Richtung des Betrachters abgegeben werden.
Ebenso ist es möglich, die beiden vorstehenden Arten von holographisch-optischen Elementen zu kombinieren sowie entsprechend zu modifizieren, daß anstatt der Grundfarben Rot, Grün und Blau die Grundfarben Magenta, Zyan und Yellow verwendet werden.
Bei einem erfindungsgemäßen Projektionssystem wird ein Projektionsschirm mit der ersten Art holographisch-optischer Elemente verwendet. Ferner weist das Projektionssystem einen Projektor zur Erzeugung der einzelnen Lichtbündel der Farbauszüge auf. Da die Rückseite der ersten Art holographisch-optischer Elemente von nach Farbauszügen getrennten Lichtbündeln beleuchtet wird, weist der Projektor für jedes zu erzeugende Lichtbündel eine Projektionseinrichtung auf. Erfindungsgemäß ist der Abstand der Projektionseinrichtungen auf die farbspezifischen Beugungswinkel des in jedem holographisch-optischen Element enthaltenen Beugungsgitters derart abgestimmt, daß von jedem holographisch-optischen Element die Lichtbündel der Farbauszüge zu einem gemeinsamen Lichtaustrittsbündel mit demselben Lichtaustrittswinkel zusammengefaßt werden. Bei diesem Projektionssystem kann als Projektor ein RGB-Projektor, der einen roten, einen grünen und einen blauen Farbauszug des zu projizierenden Bildes erzeugt, verwendet werden. Mit dem Projektionssystem können Bilder mit hoher Leuchtdichte und hohem Kontrast erzeugt werden, da das gesamte auf die Rückseite des Projektionsschirms von dem Projektor projizierte Licht in Richtung des Betrachters gebeugt wird.
Bei einem weiteren erfindungsgemäßen Projektionssystem wird ein Projektionsschirm verwendet, der holographisch-optische Elemente der zweiten Art aufweist. Der Projektor dieses Projektionssystems weist nur eine Projektionseinrichtung auf. Von der Projektionseinrichtung wird ein gemeinsames Lichtbündel, in dem die einzelnen Lichtbündel je Farbauszug enthalten sind, auf die Rückseite des Projektionsschirms projiziert. Jedes holographisch-optische Element weist für jedes Lichtbündel eines Farbauszugs je ein Beugungsgitter auf. Die Beugungsgitter sind derart aufeinander abgestimmt, daß von jedem holographisch-optischen Element ein gemeinsames Lichtaustrittsbündel in Richtung des Betrachters abgegeben wird. Da bei diesem Projektionssystem für jedes Lichtbündel ein gesondertes Gitter in jedem holographisch-optischen Element vorgesehen ist, ist die Leuchtdichte bei diesem Projektionssystem geringer als bei vorstehend beschriebenem Projektionssystem. Das Projektionssystem kann dennoch für großflächige Bildprojektionen bei Tageslicht eingesetzt werden. Ein besonderer Vorteil dieses Projektionssystems liegt darin, daß ein herkömmlicher, weißes Licht abgebender Projektor verwendet werden kann.
Bei beiden vorstehenden Projektionssystemen ist der Projektor üblicherweise nicht mittig zum Projektionsschirm angeordnet, sondern in vertikaler Richtung versetzt. Die dadurch entstehenden Verzerrungen des auf den Projektionsschirm projizierten Bildes können durch das Anordnen von Entzerrungslinsen im Strahlengang der einen bzw. jeder Projektionseinrichtung aufgehoben werden. Ebenso kann dem Projektor eine elektronische Entzerrungseinrichtung zugeordnet sein, durch die das zu projizierende Bild entsprechend verzerrt wird, so daß auf dem Projektionsschirm ein unverzerrtes Bild erscheint.
Nachfolgend wird die Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
Es zeigen:
Fig. 1
eine schematische Seitenansicht eines holographisch-optischen Elements der ersten Art und eines entsprechenden Projektors,
Fig. 2
eine schematische Draufsicht des in Fig. 1 dargestellten holographisch-optischen Elements,
Fig. 3
eine schematische Seitenansicht eines Projektionssystems, mit holographisch-optischen Elementen der ersten Art,
Fig. 4
einen Ausschnitt einer schematischen Vorderansicht eines Projektionsschirms,
Fig. 5
eine schematische Seitenansicht eines einzelnen holographisch-optischen Elements,
Fig. 6
eine schematische Draufsicht des in Fig. 5 dargestellten holographisch-optischen Elements,
Fig. 7
eine Prinzipskizze der Herstellung eines holographisch-optischen Elements,
Fig. 8
eine schematische Seitenansicht eines holographisch-optischen Elements der zweiten Art und eines entsprechenden Projektors,
Fig. 9
eine schematische Vorderansicht einer Ausführungsform eines holographisch-optischen Elements der zweiten Art und
Fig. 10
eine schematische Seitenansicht einer weiteren Ausführungsform des Projektionssystems.
In den Fign. 1-3 ist ein Projektionssystem dargestellt, bei dem die erste Art holographisch-optischer Elemente 10 verwendet wird. Auf eine Rückseite des holographisch-optischen Elements 10, d.h. auf die einem Betrachter 12 abgewandte Seite, werden von einem Projektor 14 drei Lichtbündel 16,18,20 projiziert. Zur Erzeugung der Lichtbündel 16,18,20 für jeweils unterschiedliche Farbauszüge eines zu projizierenden Bildes weist der Projektor 14 drei Projektionseinrichtungen 22,24,26 auf. Bei dem Projektor 14 handelt es sich um einen herkömmlichen RGB-Projektor, der mittels der Projektionseinrichtung 22 ein Lichtbündel 16 für die blauen Farbauszüge des Bildes, mittels der Projektionseinrichtung 24 ein Lichtbündel 18 für die grünen Farbauszüge des Bildes und mittels der Projektionseinrichtung 26 ein Lichtbündel 20 für die roten Farbauszüge des Bildes erzeugt.
In Fig. 1 sind die Bereiche der drei Lichtbündel 16,18,20 dargestellt, die auf die Rückseite eines einzelnen holographisch-optischen Elements 10 auftreffen. Durch die drei Lichtbündel 16,18,20 werden die gesamten Farbinformationen eines durch das holographisch-optische Element 10 dargestellten Bildbereichs auf das holographisch-optische Element 10 projiziert.
Die drei Lichtbündel 16,18,20 werden durch das holographisch-optische Element 10 unterschiedlich gebeugt, so daß ein Lichtaustrittswinkel β für jedes Lichtbündel 16,18,20 identisch ist. Dadurch wird durch das holographisch-optische Element 10 ein gemeinsames Lichtaustrittsbündel 28 erzeugt, das in Richtung des Betrachters 12 ausgerichtet ist. Ausschlaggebend dafür, daß die drei Lichtbündel 16,18,20 zu einem gemeinsamen Lichtbündel 28 zusammengefaßt werden, sind die Ausführung eines an dem holographisch-optischen Element 10 vorgesehenen Beugungsgitters und die Einfallswinkel der einzelnen Lichtbündel 16,18,20. Die Einfallswinkel der Lichtbündel 16,18,20 können durch Verändern der Abstände der Projektionseinrichtung 22,24,26 eingestellt werden.
Das holographisch-optische Element 10 ist so ausgebildet, daß die Lichtbündel 16,18,20 in vertikaler Richtung nicht aufgeweitet werden (Fig. 1). In horizontaler Richtung werden die Lichtbündel 16,18,20 um einen Winkel α (Fig. 2) aufgeweitet. Hierauf wird später anhand der Fign. 5 und 6 näher eingegangen.
In Fig. 3 ist ein Projektionsschirm 30 eines Projektionssystems dargestellt, in dem die anhand der Fign. 1 und 2 beschriebenen holographisch-optischen Elemente 10 verwendet werden. Von jedem holographisch-optischen Element 10 wird ein anderer Bildbereich des zu projizierenden Bildes dargestellt, so daß das zu projizierende Bild durch ein Raster unterteilt ist, wobei jeder Rasterpunkt durch ein anderes holographisch-optisches Element 10 abgebildet wird. Dadurch erscheint auf dem Projektionsschirm eine Vergrößerung des zu projizierenden Bildes, das durch die einzelnen holographisch-optischen Elemente 10 zusammengesetzt ist (Fig. 4).
In dem Ausschnitt des Projektionsschirms 30 sind zwei holographisch-optische Elemente 10a,10b herausgegriffen. Zur Verdeutlichung sind nur die grünen Lichtbündel 18a,18b dargestellt, die von der Projektionseinrichtung 24 auf die Rückseiten der holographisch-optischen Elemente 10a,10b projiziert werden. Die von den Projektionseinrichtungen 22,24 erzeugten Lichtbündel werden von den holographisch-optischen Elementen 10a,10b auf die anhand Fig. 1 beschriebene Weise zusammen mit den grünen Lichtbündeln 18a,18b zu gemeinsamen Lichtaustrittsbündeln 28a,28b zusammengefaßt. Die holographisch-optischen Elemente 10a,10b weisen einen vertikalen Abstand zueinander auf und sind so ausgebildet, daß die Lichtaustrittsbündel 28a,28b einen unterschiedlichen Lichtaustrittswinkel β bzw. β' haben. Der Lichtaustrittswinkel β' des bzgl. des Betrachters 12 weiter oben in dem Projektionsschirm 30 angeordneten holographisch-optische Elements 10b ist kleiner als der Winkel β des tiefer angeordneten holographisch-optische Elements 10a. Das holographisch-optische Element 10b ist so ausgebildet, daß das Lichtaustrittsbündel 28b das Lichtaustrittsbündel 28a in einer gemeinsamen Betrachtungsebene 32 schneidet. Die übrigen holographisch-optische Elemente 10 des Projektionsschirms 30 sind ebenfalls so ausgebildet, daß die Größe des jeweiligen Lichtaustrittswinkels β derart ist, daß sich sämtliche Lichtaustrittsbündel 28 der holographisch-optischen Elemente in der Betrachtungsebene 32 schneiden. Je höher ein holographisch-optische Element 10 gegenüber dem Betrachter 12 in dem Projektionsschirm 30 angeordnet ist, desto kleiner ist der Winkel β. Entsprechend nimmt die Größe des Winkels β zu, wenn ein holographisch-optisches Element 10 tiefer als der Betrachter 12 angeordnet ist. Die Lichtaustrittswinkel β von in einer horizontalen Zeile angeordneten holographisch-optischen Elementen sind gleich.
Da der Projektor 14 in vertikaler Richtung unter dem Projektionsschirm 30 angeordnet ist, wird das Bild auf dem Projektionsschirm 30 verzerrt abgebildet. Um das Bild zu entzerren, sind in den Strahlengängen des Projektors 14 Shift-Linsen vorgesehen. Ebenso kann das Bild entzerrt auf dem Projektionsschirm 30 abgebildet werden, indem das zu projizierende Bild rechnerisch durch eine elektronische Entzerrungseinrichtung entzerrt wird.
Die holographisch-optischen Elemente 10 weisen eine Filmebene 34 (Fign. 5 und 6) auf, in der das Beugungsgitter vorhanden ist, durch das die Lichtbündel 14,18,20 der unterschiedlichen Farbauszüge unterschiedlich stark gebeugt werden. Auf der Rückseite der holographisch-optischen Elemente 10 sind mehrere Zylinderlinsen 36 vorgesehen, die parallel zueinander in einer Ebene angeordnet sind, so daß eine Rasterzylinderlinse 38 gebildet ist. Der Abstand benachbarter Zylinderlinsen 36 ist im Verhältnis zum Abstand des Betrachters 12 von dem Projektionsschirm 30 gering. Vorzugsweise haben die Zylinderlinsen 36 einen Durchmesser von etwa 1 mm und sind so angeordnet, daß sich benachbarte Zylinderlinsen 36 berühren. Die Rasterzylinderlinse 38 bewirkt, daß die auf das holographisch-optische Element 10 treffenden Lichtbündel 16,18,20 nur horizontal monochromatisch aufgeweitet werden (Fig. 2). Der Querschnitt der Zylinderlinsen ist vorzugsweise kreisförmig; es kann sich aber auch um elliptisch oder anders gekrümmte Zylinderlinsen handeln. Von den Zylinderlinsen 36 wird das zu projizierende Bild in den Fokallinien abgebildet. Da die Zylinderlinsen 36 vorzugsweise einen Durchmesser von etwa 1 mm aufweisen, sind für den Betrachter 12 die parallel zueinander verlaufenden Fokallinien nicht mehr getrennt voneinander erkennbar, so daß sich ein geschlossenes Bild ergibt. Die einzelnen holographisch-optischen Elemente 10 weisen beispielsweise eine Größe von 20 x 30 mm auf.
In vertikalem Abstand zueinander angeordnete holographisch-optische Elemente 10 müssen ein unterschiedliches Beugungsgitter aufweisen, da die Lichtaustrittsbündel in unterschiedlichen Lichtaustrittswinkeln β aus dem holographisch-optischen Element austreten müssen (Fig. 3). Zur Herstellung des Beugungsgitters wird der Film 34 durch paralleles Licht 40 (Fig. 7) sowie durch kohärentes paralleles Licht 42 gleicher Wellenlänge belichtet. Das Licht 40 ist senkrecht zum Film 34 ausgerichtet. Das Licht 42 wird unter einem Winkel y auf den Film 34 gerichtet. Der Winkel y entspricht beispielsweise dem Winkel zwischen dem grünen Lichtbündel 18 und der Rückseite des holographisch-optischen Elements 10 (Fig. 1). Durch den Winkel y des zur Belichtung des Films 34 verwendeten Lichts 42 ist somit die vertikale Lage des holographisch-optischen Elements 10 in dem Projektionsschirm 30 festgelegt. Je höher ein holographisch-optisches Element 10 in dem Projektionsschirm 30 angeordnet wird, desto kleiner muß der Winkel y bei der Belichtung des Films 34 sein.
Durch die Überlagerung des Lichts 40 und des Lichts 42, die dieselbe Wellenlänge aufweisen, bildet sich auf dem Film 34 ein Interferenzmuster. Durch das Entwickeln des Films 34 wird ein dem Interferenzmuster entsprechendes Beugungsgitter hergestellt. Nach dem Entwickeln des Films wird die Rasterzylinderlinse 38 auf die Rückseite des Films gelegt und die Lage des Films 34 zur Rasterzylinderlinse 38 beispielsweise zwischen Glas- oder Kunststoffplatten fixiert.
Aus den Fign. 8 und 9 ist ein weiteres Projektionssystem ersichtlich, bei dem die zweite Art der holographisch-optischen Elemente verwendet wird. Hierbei wird von einem Projektor 14 mit einer Projektionseinrichtung 50 ein Lichtbündel 52 auf die Rückseite eines holographisch-optischen Elements 54 projiziert. Da von der Projektionseinrichtung 50 weißes Licht auf das zu projizierende Bild abgegeben wird, sind in dem Lichtbündel 52 das Lichtbündel für den roten, den grünen und den blauen Farbauszug des zu projizierenden Bildes zusammengefaßt, die entsprechend Fig. 1 durch punktierte, durchgezogene bzw. gestrichelte Linien dargestellt sind. Das holographisch-optische Element 54 ist so aufgebaut, daß es das Lichtbündel 52 nicht in die einzelnen farbspezifischen Lichtbündel aufspaltet, sondern entsprechend dem holographisch-optischen Element 10 ein gemeinsames Lichtbündel 56 mit demselben Lichtaustrittswinkel β in Richtung des Betrachters 12 abgibt.
Hierzu weist das holographisch-optische Element 54 drei unterschiedliche Beugungsgitter 58,60,62 (Fig. 9) auf, wobei beispielsweise das Beugungsgitter 58 den roten, das Beugungsgitter 60 den grünen und das Beugungsgitter 62 den blauen Farbanteil des Lichtbündels 52 beugt. Anstelle der Anordnung von drei Beugungsgittern 58,60,62 nebeneinander ist es auch möglich, drei Filme unabhängig voneinander zu belichten und die Beugungsgitter übereinander anzuordnen. Die Herstellung der Beugungsgitter wird entsprechend des anhand der Fig. 7 beschriebenen Herstellungsverfahrens durchgeführt, wobei zur Erzeugung nebeneinander angeordneter Beugungsgitter 58,60,62 auf den. Film 34 eine Maske gelegt wird und der Film zur Erzeugung des ersten Beugungsgitters 58 mit Licht unter einem entsprechenden Einfallswinkel y belichtet wird. Anschließend wird die Maske verschoben und der Film 34 zur Erzeugung des Beugungsgitters 60 mit Licht unter entsprechend verändertem Einfallswinkel γ belichtet. Zur Herstellung des dritten Beugungsgitters 62 wird die Maske wiederum verschoben und der Film 34 mit Licht unter einem dritten Einfallswinkel y belichtet. Die Erzeugung von Beugungsgittern mit unterschiedlichen Lichtaustrittswinkeln β wird entsprechend der anhand der Fig. 7 beschriebenen Herstellung, d.h. durch Veränderung des Winkels y, durchgeführt. Hierbei haben das Licht 40 und das Licht 42 zur Erzeugung des Interferenzmusters dieselbe Wellenlänge.
Im übrigen entspricht das vorstehend anhand der Fign. 8 und 9 beschriebene Projektionssystem dem in den Fign. 1-4 dargestellten Projektionssystem. Die Lichtbündel werden in horizontaler Richtung ebenfalls um den Winkel α aufgeweitet (Fig. 2) und der Projektionsschirm 30 ist ebenfalls aus nebeneinander angeordneten holographisch-optischen Elementen 54 zusammengesetzt. Die holographisch-optischen Elemente 54 weisen ebenfalls eine Rasterzylinderlinse 38 und einen oder mehrere belichtete Filme auf, die wie vorstehend beschriebenen belichtet wurden.
Bei einer weiteren Ausführungsform eines Projektionssystems ist der Projektor 14 (Fig. 10) bzgl. des Projektionsschirms 30 auf der Seite des Betrachters 12 angeordnet. Hinter dem Projektionsschirm 30 ist ein Spiegel 66 vorgesehen. Durch den Spiegel 66 werden die von den Projektionseinrichtungen 22,24,26 erzeugten Lichtbündel 16,18,20 auf die Rückseite des Projektionsschirms 30 reflektiert. Somit handelt es sich auch bei dieser Anordnung des Projektors 14 um eine Rückprojektion. Anstatt der drei Projektionseinrichtungen 22,24,26 kann auch die einzelne Projektionseinrichtung 50 (Fig. 8) und in dem Projektionsschirm 30 dementsprechend die zweite Art der holographisch-optischen Elemente 54 vorgesehen werden.

Claims (13)

  1. Projektionsschirm, insbesondere für großflächige Bildprojektionen, zum Darstellen von Bildern mittels Rückprojektion, mit mehreren in einer Abbildungsebene angeordneten holographisch-optischen Elementen (10), auf denen jeweils Teilbereiche eines zu projizierenden Bildes abbildbar sind und die derart konfiguriert sind, dass sie die optischen Eigenschaften eines Beugungsgitters und mindestens einer Linse haben, wobei jedes holographisch-optische Element (10) derart ausgebildet ist, dass es Lichtbündel (16,18,20) unterschiedlicher Farbauszüge des zu projizierenden Teilbereichs, die unter verschiedenen Lichteintrittswinkeln einfallen, zu einem gemeinsamen Lichtaustrittsbündel (28) mit einheitlichem Lichtausstrittswinkel (β) zusammenfaßt
    dadurch gekennzeichnet, dass die holographisch-optischen Elemente (10) jeweils nur ein Beugungsgitter aufweisen, das die Lichtbündel (16,18,20) der einzelnen Farbauszüge mit unterschiedlichen Beugungswinkel beugt und
    dass jedes holographisch-optische Element (10,54) eine Rasterzylinderlinse (38) aus mehreren Zylinderlinsen (36) aufweist.
  2. Projektionsschirm, insbesondere für großflächige Bildprojektionen, zum Darstellen von Bildern mittels Rückprojektion, mit mehreren in einer Abbildungsebene angeordneten holographisch-optischen Elementen (54), auf denen jeweils Teilbereiche eines zu projizierenden Bildes abbildbar sind und die derart konfiguriert sind, dass sie die optischen Eigenschaften mehrerer Beugungsgitter und mindestens einer Linse haben, wobei jedes holographisch-optische Element (54) derart ausgebildet ist, dass es ein gemeinsames Lichtbündel (52) sämtlicher Farbauszüge des zu projizierenden Teilbereichs, die unter demselben Lichteintrittswinkel einfallen, zu einem gemeinsamen Lichtaustrittsbündel (56) mit einheitlichem Lichtausstrittswinkel (β) zusammenfaßt,
    dadurch gekennzeichnet, dass jedes holographisch-optische Element (10,54) eine Rasterzylinderlinse (38) aus mehreren Zylinderlinsen (36) aufweist.
  3. Projektionsschirm nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abstand der Betrachtungsebene (32) von der Rasterzylinderlinse (38) gegenüber dem Abstand benachbarter Zylinderlinsen (36) groß ist.
  4. Projektionsschirm nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Zylinderlinsen (36) in einer Ebene angeordnet sind.
  5. Projektionsschirm nach einem der Ansprüche 2-4, dadurch gekennzeichnet, dass die holographisch-optischen Elemente (54) für das Lichtbündel (52) jedes Farbauszugs je ein Beugungsgitter (58,60,62) aufweisen.
  6. Projektionsschirm nach einem der Ansprüche 2-5, dadurch gekennzeichnet, dass das holographisch-optische Element (54) drei unterschiedliche Beugungsgitter (58,60,62) aufweist, die entweder nebeneinander oder übereinanderliegend angeordnet sind.
  7. Projektionsschirm nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass die Lichtaustrittswinkel (β) von in vertikaler Richtung beabstandeten holographisch-optischen Elementen (10,54) derart verschieden sind, dass sich die Lichtaustrittsbündel (28,56) in einer Betrachtungsebene (32) schneiden.
  8. Projektionsschirm nach einem der Ansprüche 1-7, , dadurch gekennzeichnet, dass die holographisch-optischen Elemente (10,54) die Lichtaustrittsbündel (28,56) nur horizontal aufweiten.
  9. Projektionssystem mit einem Projektionsschirm (30) nach einem der Ansprüche 1,3,4,7 oder 8 und einem Projektor (14), wobei der Projektor (14) zur Erzeugung der einzelnen Lichtbündel (16,18,20) der Farbauszüge jeweils eine Projektionseinrichtung (22,24,26) aufweist und der Abstand der Projektionseinrichtung auf die farbauszugsspezifischen Beugungswinkel derart abgestimmt ist, dass von jedem holographisch-optischen Element (10) die Lichtbündel der Farbauszüge zu einem Lichtaustrittsbündel (28) mit demselben Lichtaustrittswinkel (β) zusammengefaßt sind.
  10. Projektionssystem mit einem Projektionsschirm (30) nach einem der Ansprüche 2-8 und einem Projektor (14), wobei der Projektor (14) nur eine Projektionseinrichtung (50) aufweist und die holographisch-optischen Elemente (54) für das Lichtbündel (52) jedes Farbauszugs je ein Beugungsgitter (58,60,62) aufweisen, die derart ausgebildet sind, dass die Lichtbündel (52) der Farbauszüge zu einem Lichtaustrittsbündel (56) mit demselben Lichtaustrittswinkel (β) zusammengefaßt sind.
  11. Projektionssystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Projektor (14) auf der Betrachterseite des Projektionsschirms (30) angeordnet ist und auf der Rückseite des Projektionsschirms (30) ein Spiegel (66) vorgesehen ist.
  12. Projektionssystem nach einem der Ansprüche 9-11, dadurch gekennzeichnet, dass im Strahlengang des von der Projektionseinrichtung (22,24,26,50) abgegebenen Lichts eine Entzerrungslinse angeordnet ist.
  13. Projektionssystem nach einem der Ansprüche 9-12, dadurch gekennzeichnet, dass in dem Projektor (14) eine elektronische Entzerrungseinrichtung vorgesehen ist.
EP99927772A 1998-06-05 1999-05-27 Projektionsschirm Expired - Lifetime EP1084432B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19825192 1998-06-05
DE19825192A DE19825192A1 (de) 1998-06-05 1998-06-05 Projektionsschirm
PCT/EP1999/003658 WO1999064902A1 (de) 1998-06-05 1999-05-27 Projektionsschirm

Publications (2)

Publication Number Publication Date
EP1084432A1 EP1084432A1 (de) 2001-03-21
EP1084432B1 true EP1084432B1 (de) 2004-04-21

Family

ID=7870040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99927772A Expired - Lifetime EP1084432B1 (de) 1998-06-05 1999-05-27 Projektionsschirm

Country Status (8)

Country Link
US (1) US6462869B1 (de)
EP (1) EP1084432B1 (de)
JP (1) JP2002517792A (de)
AT (1) ATE265054T1 (de)
AU (1) AU4501399A (de)
CA (1) CA2333969A1 (de)
DE (2) DE19825192A1 (de)
WO (1) WO1999064902A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035068A1 (de) 2000-07-17 2002-01-31 Daimler Chrysler Ag Holografisches Display
DE10135450A1 (de) * 2001-07-20 2003-02-06 I L B Inst Fuer Licht Und Baut Projektionssystem
CA2479607A1 (en) * 2002-03-22 2003-10-02 British Telecommunications Public Limited Company Interactive video system
ATE441877T1 (de) * 2002-11-13 2009-09-15 Seereal Technologies Gmbh Einrichtung zur rekonstruktion von videohologrammen
GB2398926A (en) * 2003-02-28 2004-09-01 Richard Knight Light emitting device
US7843563B2 (en) * 2005-08-16 2010-11-30 Honeywell International Inc. Light scattering and imaging optical system
DE102009008658A1 (de) 2008-02-19 2009-09-10 Glaswerke Arnold Gmbh & Co. Kg Element, insbesondere transparentes Element
KR101941063B1 (ko) 2016-12-21 2019-01-22 광운대학교 산학협력단 투과형 홀로그래픽 광학 소자 및 그 생성 방법, 및 투과형 홀로그래픽 광학 소자를 구비하는 스크린 장치
CN109729330B (zh) * 2019-03-06 2023-03-14 成都工业学院 一种高分辨率投影显示装置
DE102020209021A1 (de) 2020-07-20 2022-01-20 Robert Bosch Gesellschaft mit beschränkter Haftung Holografische Projektionsfläche für eine Projektionsvorrichtung und Projektionsvorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238629A (en) * 1937-04-24 1941-04-15 Jacob Z Deninson Method for stereoscopic scanning of pictures
US3187339A (en) * 1961-10-16 1965-06-01 Wallace A Clay Three dimensional viewing apparatus
JPS5045653A (de) * 1973-07-27 1975-04-23
US4500163A (en) 1981-07-29 1985-02-19 The Singer Company Holographic projection screen
US5767993A (en) * 1985-10-17 1998-06-16 Burney; Michael Holographic display transmitting device
US5162929A (en) 1991-07-05 1992-11-10 Eastman Kodak Company Single-beam, multicolor hologon scanner
DE4330384C2 (de) * 1993-09-08 1998-03-12 Helmut Frank Ottomar P Mueller Holographische Leuchttafel
GB2287554B (en) 1994-03-15 1997-11-26 Richmond Holographic Res Screen for projection system
JPH09505416A (ja) 1994-09-06 1997-05-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ リアープロジェクションスクリーン
US5734485A (en) * 1995-04-25 1998-03-31 Rocky Research Large display composite holograms and methods
US6256123B1 (en) * 1996-08-21 2001-07-03 Sony Corporation Projection liquid crystal display apparatus, process for producing holographic optical element for use in the display apparatus and holographic optical element produced by the method
US6229562B1 (en) * 1997-07-08 2001-05-08 Stanley H. Kremen System and apparatus for the recording and projection of images in substantially 3-dimensional format

Also Published As

Publication number Publication date
AU4501399A (en) 1999-12-30
DE19825192A1 (de) 1999-12-16
EP1084432A1 (de) 2001-03-21
WO1999064902A1 (de) 1999-12-16
JP2002517792A (ja) 2002-06-18
ATE265054T1 (de) 2004-05-15
US6462869B1 (en) 2002-10-08
DE59909244D1 (de) 2004-05-27
CA2333969A1 (en) 1999-12-16

Similar Documents

Publication Publication Date Title
EP0909517B1 (de) Verfahren und system zur projektion von bildern auf einen schirm mit hilfe eines lichtbündels
DE69429209T2 (de) Bildanzeigevorrichtung mit rückseitiger Beleuchtung
EP2357831B1 (de) Verfahren und System zur Projektion von Bildern auf einem Schirm mit Hilfe eines Lichtbündels
DE3000402C2 (de)
DE69713283T2 (de) Lichtdurchlässige bilder aufweisendes paneel
DE69331114T2 (de) Autostereoskopische Anzeigevorrichtung
DE60036255T2 (de) Parallax-Streife, autostereoskopisches Bild und autostereoskopische Anzeigevorrichtung
DE69525265T2 (de) Projektionssystem
DE2759957C2 (de) Aufzeichnungsträger mit einer Phasenbeugungsgitterstruktur zum Projizieren eines Grauwerte enthaltenden monochromen Bildes
DE112017003581B4 (de) Optische Vorrichtung und Verfahren zum dreidimensionalen Anzeigen
DE112015004035T5 (de) Bildanzeigevorrichtung
DE69634793T2 (de) Bildanzeigegerät mit Rückprojektion
DE10135342C1 (de) Projektionsanordnung
DE10003326A1 (de) Verfahren und Anordnung zur räumlichen Darstellung
DE69018735T2 (de) Durchsichtprojektionsschirm und Durchsichtprojektionssystem mit einem derartigen Schirm.
DE112017003904T5 (de) Optische Vorrichtung
EP1084432B1 (de) Projektionsschirm
DE112016003392T5 (de) Optische Vorrichtung
DE2556034C3 (de) Integralfototräger zur räumlichen Reproduktion nüt standortverschiedenen Betrachteransichten sowie Belichtungskamera und Reproduziervorrichtung für den Integralfototräger
DE10314184A1 (de) Holografischer Schirm
DE19831536A1 (de) Vorrichtung und Verfahren zur Vereinigung von Licht mit Hilfe einer flachen Platte und ein Verfahren zur Herstellung der Vorrichtung
DE69015170T2 (de) Anzeigemittel.
DE69526149T2 (de) Bildanzeigesystem
DE69527013T2 (de) Verfahren zur herstellung eines optisch variablen bildes
DE10322966A1 (de) Vorrichtung und Verfahren zur Bildprojektion unter Verwendung eines Rades mit dichroitischen Spiegeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040527

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040527

REF Corresponds to:

Ref document number: 59909244

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040421

BERE Be: lapsed

Owner name: GUTJAHR, JORG

Effective date: 20040531

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160526

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909244

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201