EP1083864A1 - Composition d'apres-shampoing contenant une huile de poly(alpha-olefine) - Google Patents

Composition d'apres-shampoing contenant une huile de poly(alpha-olefine)

Info

Publication number
EP1083864A1
EP1083864A1 EP98930083A EP98930083A EP1083864A1 EP 1083864 A1 EP1083864 A1 EP 1083864A1 EP 98930083 A EP98930083 A EP 98930083A EP 98930083 A EP98930083 A EP 98930083A EP 1083864 A1 EP1083864 A1 EP 1083864A1
Authority
EP
European Patent Office
Prior art keywords
hair
silicone
hair conditioning
conditioning composition
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98930083A
Other languages
German (de)
English (en)
Inventor
Hirotaka Uchiyama
Timothy Woodrow Coffindaffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1083864A1 publication Critical patent/EP1083864A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/895Polysiloxanes containing silicon bound to unsaturated aliphatic groups, e.g. vinyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/896Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate
    • A61K8/898Polysiloxanes containing atoms other than silicon, carbon, oxygen and hydrogen, e.g. dimethicone copolyol phosphate containing nitrogen, e.g. amodimethicone, trimethyl silyl amodimethicone or dimethicone propyl PG-betaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Definitions

  • the present invention relates to hair conditioning compositions comprising a selected poly ⁇ -olefin oil and an additional conditioning agent.
  • shampooing cleans the hair by removing excess soil and sebum.
  • shampooing can leave the hair in a wet, tangled, and generally unmanageable state. Once the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components.
  • the hair can further be left with increased levels of static upon drying which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair.
  • a variety of approaches have been developed to alleviate these after- shampoo problems.
  • a common method of providing conditioning benefit to the hair is through the use of hair conditioning agents such cationic surfactants and polymers, silicone conditioning agents, hydrocarbon oils, and fatty alcohols.
  • hair conditioning agents such cationic surfactants and polymers, silicone conditioning agents, hydrocarbon oils, and fatty alcohols.
  • Cationic surfactants and polymers, hydrocarbon oils and fatty alcohols are known to enhance hair shine and provide moistness, softness, and static control to the hair.
  • such components can also provide stickiness or greasy or waxy feeling, particularly when the hair is dried.
  • Silicone conditioning agents are also known to provide conditioning benefits such as smoothness and combing ease due to the low surface tension of silicone compounds.
  • silicone conditioning agents can cause dry feel or frizzy condition to the hair, again, particularly when the hair is dried.
  • the present invention is directed to a hair conditioning composition
  • a hair conditioning composition comprising:
  • an additional conditioning agent selected from the group consisting of hydrophilically substituted cationic surfactants, amines, high melting point compounds, and mixtures thereof;
  • the hair conditioning compositions of the present invention provide long lasting moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy.
  • the hair conditioning compositions of the present invention are suitable for product forms to leave on the hair, or rinse off from the hair.
  • the poly ⁇ -olefin oil is preferably included in the composition at a level by weight of from about 0.1% to about 20%, preferably from about 0.2% to about 10%, more preferably from about 0.5% to about 5%.
  • Preferred 1-alkene monomers useful for preparing the poly ⁇ -olefin oils are 1-octene, 1-decene, 1 -dodecene, 1- tetradecene, 1-hexadecene, and mixtures thereof.
  • Poly ⁇ -olefin oils useful herein further have a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3.
  • Poly ⁇ -olefin oils having a molecular weight of at least about 800 are useful herein. Such high molecular weight poly ⁇ -olefin oils are believed to provide long lasting moisturized feel to the hair. Poly ⁇ -olefin oils having a molecular weight of less than about 800 are useful herein. Such low molecular weight poly ⁇ -olefin oils are believed to provide a smooth, light, clean feel to the hair.
  • compositions of the present invention comprise an additional conditioning agent selected from the group consisting of hydrophilically substituted cationic surfactants, amines, high melting point compounds, and mixtures thereof.
  • the additional conditioning agents herein are typically used at levels by weight of the composition of at least about 1%, preferably from about 1% to about 20%, more preferably from about 1 % to about 10%.
  • Hydrophilically Substituted Cationic Surfactants are typically used at levels by weight of the composition of at least about 1%, preferably from about 1% to about 20%, more preferably from about 1 % to about 10%.
  • Hydrophilically substituted cationic surfactants are useful herein as an additional conditioning agent.
  • the hydrophilically substituted cationic surfactant herein include those which include at least 2 hydrophilic moieties wherein at least 1 substituent in the molecule selected from aromatic ether ester, amido or amino moieties, and at least 1 substituent selected from alkoxy (preferably C,-C 3 alkyoxy), polyoxyalkylene (preferably C r C 3 polyoxyalkylene), alkyl amido, hydroxyalkyl, and alkyl ester groups.
  • the hydrophilically substituted cationic surfactants herein contain from 2 to about 10 nonionic hydrophilic moieties.
  • the hydrophilically substituted cationic surfactant herein provides conditioning benefits such as smooth feel to the hair, particularly when the hair is dried. It is believed that, by combining the hydrophilically substituted cationic surfactant with the high molecular weight ester oil mentioned above, a conditioning composition which provides improved conditioning benefit both when the hair is wet and dried can be provided.
  • hydrophilically substituted cationic surfactant is preferably included in the composition at a level by weight of from about 0.1% to about 20%, preferably from about 0.2% to about 10%, more preferably from about 1% to about 5%.
  • Suitable hydrophilically substituted cationic surfactants include those of the formula (II) through (VIII) below:
  • Z 2 is an alkyl, preferably C C 3 alkyl, more preferably methyl
  • Z 3 is a short chain hydroxyalkyl, preferably hydroxymethyl or hydroxyethyl
  • n 3 and n 4 independently are integers from 2 to 4, inclusive, preferably from 2 to 3, inclusive, more preferably 2
  • R 111 and R 112 independently, are substituted or unsubstituted hydrocarbyls, C 12 -C 20 alkyl or alkenyl
  • X is a salt forming anion as defined above;
  • R 113 is a hydrocarbyl, preferably a C 1 -C 3 alkyl, more preferably methyl
  • Z 4 and Z 5 are, independently, short chain hydrocarbyls, preferably C 2 -C 4 alkyl or alkenyl, more preferably ethyl
  • m 4 is from 2 to about 40, preferably from about 7 to about 30, and
  • X is a salt forming anion as defined above;
  • R 114 and R 115 are C C 3 alkyl, preferably methyl, Z 6 is a
  • A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof; and X is a salt forming anion as defined above;
  • Nonlimiting examples of hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-16, quatemium-26, quatemium-27, quatemium-30, quaternium-33, quatemium-43, quaternium-52, quaternium-53, quaternium-56, quatemium-60, quaternium-61, quatemium-62, quatemium-70, quaternium-71 , quaternium-72, quaternium-75, quaternium-76 hydrolyzed collagen, quaternium-77, quaternium- 78, quaternium-79 hydrolyzed collagen, quatemium-79 hydrolyzed keratin, quaternium-79 hydroly
  • Amines are suitable as an additional conditioning agent.
  • Primary, secondary, and tertiary fatty amines are useful. Particularly useful are tertiary amido amines having an alkyl group of from about 12 to about 22 carbons.
  • Exemplary tertiary amido amines include: stearamidopropyldimethylamine, stearamidopropyidiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyld
  • amines can also be used in combination with acids such as £- glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, tartaric acid, citric acid, -glutamic hydrochloride, maleic acid, and mixtures thereof; more preferably ⁇ -glutamic acid, lactic acid, citric acid.
  • the amines herein are preferably partially neutralized with any of the acids at a molar ratio of the amine to the acid of from about 1 : 0.3 to about 1 : 2, more preferably from about 1 : 0.4 to about 1 : 1.
  • High melting point compounds are useful as additional conditioning agents.
  • High melting point compounds herein having a melting point of at least about 25°C selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, hydrocarbons, steroids, and mixtures thereof. It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
  • certain compounds having certain required carbon atoms may have a melting point of less than about 25°C. Such compounds of low melting point are not intended to be included in this section.
  • Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
  • the fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
  • the fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof.
  • Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e.
  • Hydrocarbons useful herein include compounds having at least about 20 carbons.
  • Steroids useful herein include compounds such as cholesterol.
  • High melting point compounds of a single compound of high purity are preferred.
  • Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred.
  • pure herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%.
  • high melting point compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOL series available from Shin Nihon Rika (Osaka, Japan), and NAA series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1- DOCOSANOL available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FAT available from Akzo (Chicago Illinois, USA), HYSTRENE available from Witco Corp. (Dublin Ohio, USA), and DERMA available from Vevy (Genova, Italy); and cholesterol having tradename NIKKOL AGUASOME LA available from Nikko.
  • the aqueous carrier is substantially water.
  • Deionized water is preferably used.
  • Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product.
  • the compositions of the present invention comprise from about 20% to about 95%, preferably from about 30% to about 92%, and more preferably from about 50% to about 90% water.
  • the hair conditioning composition of the present invention may further comprise a silicone compound.
  • the silicone compounds useful herein include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents.
  • soluble what is meant is that the silicone compound is miscible with the carrier of the composition so as to form part of the same phase.
  • insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets of the silicone.
  • the silicone compounds herein may be made by any suitable method known in the art, including emulsion polymerization.
  • the silicone compounds may further be incorporated in the present composition in the form of an emulsion, wherein the emulsion is made my mechanical mixing, or in the stage of synthesis through emulsion polymerization, with or without the aid of a surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, and mixtures thereof.
  • the silicone compounds for use herein will preferably have a viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1,800,000, and even more preferably from about 100,000 to about 1 ,500,000.
  • the viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970.
  • Silicone compound of high molecular weight may be made by emulsion polymerization.
  • Suitable silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and mixtures thereof. Other nonvolatile silicone compounds having hair conditioning properties can also be used.
  • the silicone compound is preferably included in the composition at a level by weight from about 0.01% to about 20%, more preferably from about 0.05% to about 10%.
  • silicone compounds herein also include polyalkyl or polyaryl siloxanes with the following structure (I)
  • Z 8 represents groups which block the ends of the silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R 123 ) or at the ends of the siloxane chains Z 8 can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
  • Suitable Z 8 groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R 123 groups on the silicon atom may represent the same group or different groups.
  • the two R 123 groups represent the same group.
  • Suitable R 123 groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred.
  • the polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes.
  • highly arylated silicone compounds such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
  • the silicone compounds that can be used include, for example, a polypropylene oxide modified polydimethylsiloxane although ethylene oxide or mixtures of ethylene oxide and propylene oxide can also be used.
  • the ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics of the silicone. These material are also known as dimethicone copolyols.
  • Suitable alkylamino substituted silicone compounds include those represented by the following structure (II) wherein R 124 is H, CH 3 or OH, p 1 , p 2 , q 1 and q 2 are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000. This polymer is also known as "amodimethicone”.
  • Suitable amino substituted silicone fluids include those represented by the formula (III)
  • G is chosen from the group consisting of hydrogen, phenyl, OH, C r C 8 alkyl and preferably methyl; a denotes 0 or an integer from 1 to 3, and preferably equals 0; b denotes 0 or 1 and preferably equals 1 ; the sum p 3 +p 4 is a number from 1 to 2,000 and preferably from 50 to 150, p 3 being able to denote a number from 0 to 1 ,999 and preferably from 49 to 149 and p 4 being able to denote an integer from 1 to 2.000 and preferably from 1 to 10; R 125 is a monovalent radical of formula C q3 H 2q3 L in which q 3 is an integer from 2 to 8 and L is chosen from the groups
  • R 126 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and X' denotes a halide ion.
  • An especially preferred amino substituted silicone corresponding to formula (III) is the polymer known as "trimethylsilylamodimethicone wherein R 24 is CH 3 .
  • R 28 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl
  • R 129 denotes a hydrocarbon radical, preferably a C C 18 alkylene radical or a C C 18 , and more preferably C C 8 , alkyleneoxy radical
  • Q" is a halide ion, preferably chloride
  • p 5 denotes an average statistical value from 2 to 20, preferably from 2 to 8
  • p 6 denotes an average statistical value from 20 to 200, and preferably from 20 to 50.
  • a preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56.”
  • References disclosing suitable nonvolatile dispersed silicone compounds include U.S. Patent No. 2,826,551 , to Geen; U.S. Patent No. 3,964,500, to Drakoff, issued June 22, 1976; U.S. Patent No. 4,364,837, to Pader; and British Patent No. 849,433, to Woolston.
  • silicone gum means a polyorganosiloxane material having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Patent No. 4,152,416, to Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968.
  • silicone resins which are highly crosslinked polymeric siloxane systems.
  • the crosslinking is introduced through the incorporation of tri- functional and tetra-functional silanes with mono-functional or di-functional, or both, silanes during manufacture of the silicone resin.
  • the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin.
  • silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxygen:silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized.
  • Preferred resins are offered by General Electric as GE SS4230 and SS4267.
  • silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid.
  • the silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as TospearlTM from Toshiba Silicones.
  • Silicone materials and silicone resins in particular, can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit (CH 3 ) 3 SiO 0 5 ; D denotes the difunctional unit (CH 3 ) 2 SiO; T denotes the trifunctional unit (CH 3 )Si0 1 5 ; and Q denotes the quadri- or tetra-functional unit Si02.
  • Primes of the unit symbols denote substituents other than methyl, and must be specifically defined for each occurrence. Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system. Higher relative molar amounts of T, Q, T and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking. As discussed before, however, the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
  • the silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins.
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight of the resin is from about 1000 to about 10,000.
  • silicone compounds which are useful herein include Dimethicone with tradename D-130, cetyl Dimethicone with tradename DC2502, stearyl Dimethicone with tradename DC2503, emulsified polydimethyl siloxanes with tradenames DC1664 and DC1784, and alkyl grafted copolymer silicone emulsion with tradename DC2-2845; all available from Dow Corning Corporation, and emulsion polymerized Dimethiconol available from Toshiba Silicone as described in GB application 2,303,857.
  • the hair conditioning compositions of the present invention may contain a variety of additional components, which may be selected by the artisan according to the desired characteristics of the final product. Additional components include, for example, hydrophobic cationic surfactants, cationic polymers, additional oily compounds, nonionic polymers, and other additional components. Hydrophobic Cationic Surfactant
  • hydrophobic cationic surfactants useful herein are those corresponding to the general formula (I):
  • R 101 , R 102 , R 103 and R 104 is selected from an aliphatic group of from 8 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms, the remainder of R 101 , R 102 , R 103 and R 04 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g.
  • the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferred is when R 101 , R 102 , R 103 and R 104 are independently selected from d to about C 22 alkyl.
  • the hair conditioning compositions of the present invention may contain one or more cationic polymers.
  • polymer shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
  • the cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 1.5 meq/gram, even more preferably at least about 1.1 meq/gram, still more preferably at least about 1.2 meq/gram.
  • Cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method. Those skilled in the art will recognize that the charge density of amino-containing polymers may vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
  • any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units.
  • the alkyl and dialkyl substituted monomers preferably have C, - C 7 alkyl groups, more preferably C, - C 3 alkyl groups.
  • Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
  • Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction.
  • Amines can also be similarly quaternized subsequent to formation of the polymer.
  • tertiary amine functionalities can be quaternized by reaction with a salt of the formula R 118 X wherein R 118 is a short chain alkyl, preferably a C - C 7 alkyl, more preferably a C, - C 3 alkyl, and X is a salt forming anion as defined above.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C, - C 3 alkyls, more preferably O, and C 2 alkyls.
  • Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C - C 7 hydrocarbyls, more preferably C - C 3 , alkyls.
  • Suitable cationic polymers are amphoteric terpolymers consisting of acrylic acid methacrylamidopropyl trimethylammonium chloride and methyl acrylate, having a structure as shown below referred to in the industry (CTFA) as Polyquaternium 47.
  • CTFA commercially referred to in the industry
  • An example of a suitable commerical material is MERQUAT 2001 ® wherein the ratio of n 6 :n 7 :n 8 is 45:45:10 supplied by Calgon Corp.
  • cationic polymers that can be used include polysaccharide polymers, such as cationic cellulose derivatives and cationic starch derivatives.
  • Cationic polysaccharide polymer materials suitable for use herein include those of the formula:
  • Z 7 is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R 119 is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof
  • R 20 , R 121 , and R 122 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R 120 , R 121 and R 122 ) preferably being about 20 or less
  • X is as previously described.
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR ® and LR ® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10.
  • CTFA trimethyl ammonium substituted epoxide
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200 ® .
  • cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride commercially available from Celanese Corp. in their Jaguar R series.
  • Other materials include quaternary nitrogen-containing cellulose ethers as described in U.S. Patent 3,962,418, and copolymers of etherified cellulose and starch as described in U.S. Patent 3,958,581.
  • Additional oily compounds useful herein include fatty alcohols and their derivatives, fatty acids and their derivatives, and hydrocarbons.
  • the additional oily compounds useful herein may be volatile or nonvolatile, and have a melting point of not more than about 25°C. Without being bound by theory, it is believed that, the additional oily compounds may penetrate into the hair to modify the hydroxy bonds of the hair, thereby resulting in providing softness and flexibility to the hair.
  • the additional oily compounds of this section are to be distinguished from the high melting point compounds described above. Nonlimiting examples of the additional oily compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the fatty acids useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Suitable fatty acids include, for example, oleic acid, linoleic acid, isostearic acid, linolenic acid, ethyl linolenic acid, ethyl linolenic acid, arachidonic acid, and ricinolic acid.
  • the fatty acid derivatives and fatty alcohol derivatives are defined herein to include, for example, esters of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, and bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils, glyceryl ester oils, and mixtures thereof.
  • Nonlimiting examples of fatty acid derivatives and fatty alcohol derivatives include, for example, methyl linoleate, ethyl linoleate, isopropyl linoleate, isodecyl oleate, isopropyl oleate, ethyl oleate, octyldodecyl oleate, oleyl oleate, decyl oleate, butyl oleate, methyl oleate, octyldodecyl stearate, octyldodecyl isostearate, octyldodecyl isopalmitate, octyl isopelargonate, octyl pelargonate, hexyl isostearate, isopropyl isostearate, isodecyl isononanoate, isopropyl isostearate,
  • Bulky ester oils such as pentaerythritol ester oils, trimethylol ester oils, citrate ester oils and glyceryl ester oils useful herein are those which have a molecular weight of less than about 800, preferably less than about 500.
  • the hydrocarbons useful herein include straight chain, cyclic, and branched chain hydrocarbons which can be either saturated or unsaturated, so long as they have a melting point of not more than about 25°C. These hydrocarbons have from about 12 to about 40 carbon atoms, preferably from about 12 to about 30 carbon atoms, and preferably from about 12 to about 22 carbon atoms. Also encompassed herein are polymeric hydrocarbons of alkenyl monomers, such as polymers of C 2 . 6 alkenyl monomers. These polymers can be straight or branched chain polymers. The straight chain polymers will typically be relatively short in length, having a total number of carbon atoms as described above. The branched chain polymers can have substantially higher chain lengths.
  • the number average molecular weight of such materials can vary widely, but will typically be up to about 500, preferably from about 200 to about 400, and more preferably from about 300 to about 350.
  • mineral oils are liquid mixtures of hydrocarbons that are obtained from petroleum. Specific examples of suitable hydrocarbon materials include paraffin oil, mineral oil, dodecane, isododecane, hexadecane, isohexadecane, eicosene, isoeicosene, tridecane, tetradecane, polybutene, polyisobutene, and mixtures thereof.
  • hydrocarbons selected from the group consisting of mineral oil, poly ⁇ -olefin oils such as isododecane, isohexadecane, polybutene, polyisobutene, and mixtures thereof.
  • fatty alcohols and their derivatives useful herein include: oleyl alcohol with tradename UNJECOL 90BHR available from Shin Nihon Rika, various liquid esters with tradenames SCHERCEMOL series available from Scher, and hexyl isostearate with a tradename HIS and isopropryl isostearate having a tradename ZPIS available from Kokyu Alcohol.
  • commercially available bulky ester oils useful herein include: trimethylolpropane tricaprylate/tricaprate with tradename MOBIL ESTER P43 from Mobil Chemical Co.
  • hydrocarbons useful herein include isododecane, isohexadeance, and isoeicosene with tradenames PERMETHYL 99A, PERMETHYL 101 A, and PERMETHYL 1082, available from Presperse (South Plainfield New Jersey, USA), a copolymer of isobutene and normal butene with tradenames INDOPOL H-100 available from Amoco Chemicals (Chicago Illinois, USA), and mineral oil with tradename BENOL available from Witco, isoparaffin with tradename ISOPAR from Exxon Chemical Co. (Houston Texas, USA.
  • Nonionic Polymers include isododecane, isohexadeance, and isoeicosene with tradenames PERMETHYL 99A, PERMETHYL 101 A, and PERMETHYL 1082, available from Presperse (South Plainfield New Jersey, USA), a copolymer of isobutene and normal butene with tradenames
  • Nonionic polymers useful herein include cellulose derivatives, hydrophobically modified cellulose derivatives, ethylene oxide polymers, and ethylene oxide/propylene oxide based polymers.
  • Suitable nonionic polymers are cellulose derivatives including methylcellulose with tradename BENECEL, hydroxyethyl cellulose with tradename NATROSOL, hydroxypropyl cellulose with tradename KLUCEL, cetyl hydroxyethyl cellulose with tradename POLYSURF 67, all supplied by Herculus.
  • Other suitable nonionic polymers are ethylene oxide and/or propylene oxide based polymers with tradenames CARBOWAX PEGs, POLYOX WASRs, and UCON FLUIDS, all supplied by Amerchol.
  • Polyethylene Glycols The polyalkylene glycols are characterized by the general formula:
  • R 201 is selected from the group consisting of H, methyl, and mixtures thereof.
  • these materials are polymers of ethylene oxide, which are also known as polyethylene oxides, polyoxyethylenes, and polyethylene glycols.
  • R 201 is methyl, these materials are polymers of propylene oxide, which are also known as polypropylene oxides, polyoxypropylenes, and polypropylene glycols.
  • R 201 is methyl, it is also understood that various positional isomers of the resulting polymers can exist.
  • x3 has an average value of from about 1500 to about 25,000, preferably from about 2500 to about 20,000, and more preferably from about 3500 to about 15,000.
  • Polyethylene glycol polymers useful herein are PEG-2M wherein R 201 equals H and x3 has an average value of about 2,000 (PEG-2M is also known as Polyox WSR ® N-10, which is available from Union Carbide and as PEG-2,000); PEG-5M wherein R 201 equals H and x3 has an average value of about 5,000 (PEG-5M is also known as Polyox WSR ® N-35 and Polyox WSR ® N-80, both available from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein R 201 equals H and x3 has an average value of about 7,000 (PEG-7M is also known as Polyox WSR ® N-750 available from Union Carbide); PEG-9M wherein R 201 equals H and x3 has an average value of about 9,000 (PEG 9-M is also known as Polyox WSR ® N-3333 available from Union Carbide); and PEG-14 M wherein
  • compositions of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits.
  • additional components generally are used individually at levels of from about 0.001% to about 10%, preferably up to about 5% by weight of the composition.
  • compositions of the present invention are suitable for rinse-off products and leave-on products, and are particularly useful for making products in the form of emulsion, cream, gel, spray or, mousse.
  • Examples 1 through 6 are hair conditioning compositions of the present invention which are particularly useful for rinse-off use.
  • Compositions are particularly useful for rinse-off use.
  • Varisoft 110 obtained by Witco.
  • 8 Stearamidopropyl dimethylamine: Amidoamine MPS obtained by Nikko.
  • *9 ⁇ -Glutamic Acid ⁇ -Glutamic acid (cosmetic grade) obtained by Ajinomoto.
  • 10 Stearamidopropyl betaine: Rikabion A-700 available from Shin Nihon Rika.
  • * 11 Hydroxyethyl Cellulose Available from Aqualon.
  • Pentaerythritol Tetraisostearate KAK PTI obtained by Kokyu alcohol.
  • Trimethylolpropane Trioleate Enujerubu TP3SO obtained by Shin Nihon Rika.
  • compositions of Examples 1 through 6 as shown above can be prepared by any conventional method well known in the art. They are suitably made as follows: If included in the composition, polymeric materials such as hydroxyethyl cellulose, polyoxyethylene, Polyquaternium-10, and Polyquaternium-7 are dispersed in water at room temperature to make a polymer solution. High melting point compounds, hydrophilically substituted cationic surfactant, amines, and the polymer solution, if present, are mixed and heated up to above 70°C. The mixture thus obtained is cooled down to below 50°C, and the remaining components are added with agitation, and further cooled down to about 30°C.
  • polymeric materials such as hydroxyethyl cellulose, polyoxyethylene, Polyquaternium-10, and Polyquaternium-7 are dispersed in water at room temperature to make a polymer solution.
  • High melting point compounds, hydrophilically substituted cationic surfactant, amines, and the polymer solution, if present are mixed and heated up to above 70°C.
  • high melting point compounds, tertiary amido amines, and the polymer solution, if present, are mixed and heated up to above 70°C.
  • the mixture thus obtained is cooled down to about 60°C where the hydrophilically substituted cationic surfactant is added.
  • the final mixtures thus obtained is cooled below 50°C, and the remaining components are added with agitation, and further cooled down to about 30°C.
  • a triblender and/or mill can be used in each step, if necessary to disperse the materials.
  • the embodiments disclosed and represented by the previous examples have many advantages. For example, they can provide long lasting moisturized feel, smooth feel, and manageability control to the hair when the hair is dried, yet not leave the hair feeling greasy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

L'invention se rapporte à une composition d'après-shampoing contenant: (1) des huiles de poly(alpha-oléfine) dérivées de monomères 1-alcène comportant approximativement de 6 à 16 atomes de carbone, lesdites huiles de poly(alpha-oléfine) ayant une viscosité comprise approximativement entre 1 et 35000 cst, un poids moléculaire compris approximativement entre 200 et 60000, et une polydispersité inférieure ou égale à 3 environ; (2) un agent supplémentaire d'embellissement du cheveu sélectionné dans le groupe constitué par des tensioactifs cationiques comportant des substituants hydrophiles, des amines, des composés à point de fusion élevé et des mélanges de ceux-ci; et (3) une base aqueuse.
EP98930083A 1998-06-04 1998-06-04 Composition d'apres-shampoing contenant une huile de poly(alpha-olefine) Withdrawn EP1083864A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/011784 WO1999062467A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampoing contenant une huile de poly(alpha-olefine)

Publications (1)

Publication Number Publication Date
EP1083864A1 true EP1083864A1 (fr) 2001-03-21

Family

ID=22267263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98930083A Withdrawn EP1083864A1 (fr) 1998-06-04 1998-06-04 Composition d'apres-shampoing contenant une huile de poly(alpha-olefine)

Country Status (6)

Country Link
EP (1) EP1083864A1 (fr)
JP (1) JP2000515563A (fr)
CN (1) CN1306412A (fr)
AU (1) AU7955398A (fr)
BR (1) BR9815886A (fr)
WO (1) WO1999062467A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042984A1 (fr) * 1999-01-25 2000-07-27 The Procter & Gamble Company Compositions de nettoyage
FR2795312B1 (fr) * 1999-06-23 2001-08-10 Oreal Composition contenant un agent opacifiant ou nacrant et au moins deux alcools gras
US6986886B2 (en) 2000-12-13 2006-01-17 The Procter & Gamble Company Hair conditioning compositions and their use in hair coloring compositions
US7056351B2 (en) 2000-12-13 2006-06-06 The Procter & Gamble Company Oxidative hair dye composition containing polyakyleneglyco(n)alkylamine and a solid fatty compound
US6946122B2 (en) 2001-03-09 2005-09-20 The Procter & Gamble Company Hair care composition containing a polyalkylene (n) alkylamine which provide hair volume reduction
EP1269974A1 (fr) * 2001-06-18 2003-01-02 Unilever Plc Compositions de coiffage
DE10317781A1 (de) * 2003-04-16 2004-11-04 Cognis Deutschland Gmbh & Co. Kg Poly-alpha-Olefin-haltige kosmetische Zusammensetzung
JP5616609B2 (ja) * 2009-11-06 2014-10-29 花王株式会社 毛髪化粧料
JP5710119B2 (ja) * 2009-11-20 2015-04-30 東邦化学工業株式会社 毛髪用組成物
JP5670131B2 (ja) * 2010-09-13 2015-02-18 東邦化学工業株式会社 毛髪用組成物
JP6360478B2 (ja) * 2012-07-27 2018-07-18 ユニリーバー・ナームローゼ・ベンノートシヤープ 方法
JP6810921B2 (ja) * 2012-07-27 2021-01-13 ユニリーバー・ナームローゼ・ベンノートシヤープ 組成物
MX2016009459A (es) * 2014-01-23 2017-04-27 Unilever Nv Composicion acondicionadora de cabello que comprende alcohol bencilico como conservante.
AR099157A1 (es) * 2014-01-23 2016-07-06 Unilever Nv Uso de una composición de acondicionamiento
BR112016013667A2 (pt) * 2014-01-23 2017-08-08 Unilever Nv Composições condicionadoras
BR112018074627A2 (pt) * 2016-06-15 2019-03-06 Dow Brasil Sudeste Ind Ltda emulsão catiônica para tratamento dos cabelos, e, método para fabricação de uma composição para tratamento dos cabelos.
CN109152704A (zh) * 2016-06-15 2019-01-04 罗门哈斯公司 协同毛发护理配方
WO2023227304A1 (fr) * 2022-05-27 2023-11-30 Unilever Ip Holdings B.V. Compositions de conditionnement concentrées

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9208653D0 (en) * 1992-04-22 1992-06-10 Unilever Plc Cosmetic composition and process for making it
FR2734720B1 (fr) * 1995-06-02 1997-07-18 Oreal Gel de rasage a moussage differe contenant un monoester d'acide en c4-c10 et d'alcool en c16-c18
US6268431B1 (en) * 1995-09-01 2001-07-31 The Procter & Gamble Company Hair styling shampoos containing low Tg latex polymer particles
ATE201135T1 (de) * 1996-03-27 2001-06-15 Procter & Gamble Polyalphaolefin-konditionierungsmittel enthaltende konditionierende shampoozusammensetzungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9962467A1 *

Also Published As

Publication number Publication date
WO1999062467A1 (fr) 1999-12-09
JP2000515563A (ja) 2000-11-21
BR9815886A (pt) 2001-10-23
AU7955398A (en) 1999-12-20
CN1306412A (zh) 2001-08-01

Similar Documents

Publication Publication Date Title
EP1227784B1 (fr) Composition apr s-shampooing antipelliculaire
US6468515B1 (en) Hair conditioning composition comprising high molecular weight ester oil
AU7824798A (en) Hair conditioning composition comprising high molecular weight ester oil
WO1999062492A1 (fr) Compositions de tonifiants capillaires
EP1328240A1 (fr) Compositions de tonifiant capillaire a base de particules
EP1200044A1 (fr) Composition de traitement capillaire contenant de l'ether de cellulose rendu hydrophobe
EP1083864A1 (fr) Composition d'apres-shampoing contenant une huile de poly(alpha-olefine)
US20030215415A1 (en) Hair conditioning compositions comprising particles
AU1614100A (en) Hair conditioning composition comprising hydrophobically modified cationic cellulose
AU6056100A (en) Hair conditioning composition comprising cationic silicone emulsion
CA2304275C (fr) Produit capillaire a base d'esters huiles a haute densite moleculaire
WO1999062466A1 (fr) Composition de conditionnement pour cheveux contenant une huile d'ester de citrate
WO1999062468A1 (fr) Composition d'apres-shampooing comprenant une huile primaire et une huile secondaire
WO2000064412A1 (fr) Compositions d'apres-shampoing
WO2000006094A1 (fr) Composition pour les cheveux comprenant des antioxydants
EP1032365A1 (fr) Compositions pour traitement capillaire comprenant des tensioactifs cationiques hydrophiliquement substitues et des composes a point de fusion eleve
MXPA00011992A (en) HAIR CONDITIONING COMPOSITION COMPRISING POLY&agr;-OLEFIN OIL
MXPA00011991A (es) Composición acondicionadora del cabello que comprende aceite primario y aceite secundario
MXPA00002664A (en) Hair conditioning composition comprising high molecular weight ester oil
MXPA00004589A (en) Hair conditioning compositions comprising hydrophilically substituted cationic surfactants and high melting point compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030103